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A SPATIAL MUTATION MODEL WITH INCREASING MUTATION RATES
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Abstract

We consider a spatial model of cancer in which cells are points on the d-dimensional
torus T = [0, L]d , and each cell with k − 1 mutations acquires a kth mutation at rate
µk. We assume that the mutation rates µk are increasing, and we find the asymptotic
waiting time for the first cell to acquire k mutations as the torus volume tends to infinity.
This paper generalizes results on waiting for k ≥ 3 mutations in Foo et al. (2020), which
considered the case in which all of the mutation rates µk are the same. In addition, we
find the limiting distribution of the spatial distances between mutations for certain values
of the mutation rates.
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1. Introduction

Cancer is often caused by genetic mutations which disrupt regular cell division and apop-
tosis, in which case cancerous cells divide much more rapidly compared to healthy cells. This
can happen, for example, as soon as several distinct mutations occur and dramatically disrupt
cell function. Thus, it is sometimes reasonable to model cancer as occurring after k distinct
mutations appear in sequence within a large body.

Mathematical models in which cancer occurs once some cell acquires k mutations date back
to the famous 1954 paper [1], which proposed a multi-stage model of carcinogenesis in which,
once a cell has acquired k − 1 mutations, it acquires a kth mutation at rate µk. In this model,
the probability of acquiring the kth mutation during a small time interval (t, t + dt) is

µ1µ2 · · · µktk−1

(k − 1)! dt.

That is, the incidence rate of the kth mutation (at which point the individual becomes cancer-
ous) is proportional to µ1µ2 · · · µktk−1. This means that cancer risk is proportional to both the
mutation rates and the (k − 1)th power of age. More sophisticated models, taking into account
the possibilities of cell division and cell death, were later analyzed in [6, 7, 9, 12, 13, 15, 17,
18, 24].

To model some types of cancer, it is important to also include spatial structure in the model.
In 1972, [25] introduced a spatial model of skin cancer now known as the biased voter model.
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1158 B. CHAO AND J. SCHWEINSBERG

At each site on a lattice, there is an associated binary state indicating whether the site is cancer-
ous or healthy. Each cell divides at a certain rate, and when cell division occurs, the daughter
cell replaces one of the neighboring cells chosen at random. The model is biased in that a can-
cerous cell spreads κ > 1 times as fast as a healthy cell. Computer simulations for this model
were presented in [25], and the model was later analyzed mathematically [3, 4].

More recently, [5], building on earlier work in [8, 14], studied a spatial Moran model which
is a generalization of the biased voter model. Cells are modeled as points of the discrete torus
(Z mod L)d, and each cell is of type i ∈N∪ {0}. A cell of type i − 1 mutates to type i at rate
µi. Type i cells have fitness level (1 + s)i, where s > 0 measures the selective advantage of
one cell over its predecessors. Each cell divides at a rate proportional to its fitness, and then,
as in the biased voter model, the daughter cell replaces a randomly chosen neighboring cell.
The authors considered the question of how long it takes for some type 2 cell to appear. To
simplify the analysis, they introduced a continuous model where cells live inside the torus
[0, L]d. This continuous stochastic model approximates the biased voter model because of the
Bramson–Griffeath shape theorem [3, 4], which implies that, conditioned on the survival of
the mutations, the cluster of cells in Zd with a particular mutation has an asymptotic shape that
is a convex subset of Rd. In [5, Section 4], the authors used the continuous model to compute
the distribution of the time that the first type 2 cell appears, under certain assumptions on the
mutation rates.

We describe here in more detail this continuous approximation to the biased voter model.
The spread of cancer is modeled on the d-dimensional torus T := [0, L]d, where the points 0
and L are identified. Note that this is the continuous analog of the space (Z mod L)d considered
in [5]. We write N := Ld to denote the volume of T . Each point in T is assigned a type,
indicating the number of mutations the cell has acquired. At the initial time t = 0, all points
in T are type 0, meaning they have no mutations. A so-called type 1 mutation then occurs at
rate µ1 per unit volume. Once each type 1 mutation appears, it spreads out in a ball at rate α
per unit time. This means that t time units after a mutation appears, all points within a distance
αt of the site where the mutation occurred will have acquired the mutation. Type 1 points then
acquire a type 2 mutation at rate µ2 per unit volume, and this process continues indefinitely.
In general, type k mutations overtake type k − 1 mutations at rate µk per unit volume, and
each type k mutation then spreads outward in a ball at rate α per unit time. A full mathematical
construction of this process, starting from Poisson point processes which govern the mutations,
is given at the beginning of Section 3.

Let σk denote the first time that some cell becomes type k; [11] obtained the asymptotic
distribution of σ2 under a wide range of values for the parameters α, µ1, and µ2, extending
the results in [5], and also found the asymptotic distribution of σk for k ≥ 3 assuming equal
mutation rates µi = µ for all i. In this paper, we will further generalize the results in [11] for
k ≥ 3 by considering the case where the mutation rates are increasing. We will see that several
qualitatively different types of behavior are possible, depending on how fast the mutation rates
increase.

We mention two biological justifications for assuming increasing mutation rates. A gen-
eral phenomenon in carcinogenesis was suggested in [16] where there is favorable selection
for certain mutations in genes responsible for repairing DNA damage. The increasing genetic
instability disrupting DNA repair, in the context of the present paper, would correspond to
increasing mutation rates. Also, our model would be of interest in the situation described in
[22], which hypothesized that cancer cells express a mutator phenotype, which causes cells to
mutate at a much higher rate, and proposed targeting the mutator phenotype as part of cancer
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A spatial mutation model with increasing mutation rates 1159

therapy, possibly with the goal of further increasing the mutation rate to the point where the
mutations incapacitate or kill malignant cells.

As in [11], we assume that the rate of mutation spread α is constant across mutation types,
so that successive mutations have equal selective advantage. One possible generalization of our
model would be to allow each type i mutation to have a different rate of spread αi. However,
this more general model is non-trivial even to formulate unless (αi)∞i=1 is decreasing, because if
αi+1 > αi, then regions of type i + 1 could completely swallow the surrounding type i region.
Consequently, it would be necessary to model what happens not only when mutations of types
i + 1 and i compete, but also how mutations of types i + 1 and j ∈ {1, . . . , i − 1} compete. We
do not pursue this generalization here.

After computing the limiting distribution of σk, we also find the limiting distribution of
the distances between the first mutation of type i and the first mutation of type j, where i < j.
The distribution of distances between mutations is relevant in studying a phenomenon known
as the “cancer field effect”, which refers to the increased risk for certain regions to acquire
primary tumors. These regions are called premalignant fields, and they have a high risk of
becoming malignant despite appearing to be normal [10]. The size of the premalignant field
is clinically relevant when a patient is diagnosed with cancer, because it will determine the
area of tissue to be surgically removed in order to avoid cancer recurrence. Surgical removal
of premalignant fields, put in the context of this paper, is akin to removing the region with at
least i mutations once the first type j > i mutation appears. The case in which i = 1 and j = 2
was considered in [10], which characterized the sizes of premalignant fields conditioned on
{σ2 = t} in d ∈ {1, 2, 3} spatial dimensions. These ideas were applied to head and neck cancer
in [23].

We note that the model that we are studying in this paper independently appeared in the
statistical physics literature, where it is known as the polynuclear growth model. It has been
studied most extensively in d = 1 when all of the µk are the same [2, 19, 20], but the model
was also formulated in higher dimensions in [21]. Most of this work in the statistical physics
literature focuses on the long-run growth properties of the surface, and detailed information
about the fluctuations has been established when d = 1. This is quite different from our goal of
understanding the time to acquire a fixed number of mutations.

In Section 2 we introduce some basic notation and state our main results, as well as some
heuristics explaining why these results are true. In Section 3 we prove the limit theorems
regarding the time to wait for k mutations, and in Section 4 we prove the limit theorems for the
distances between mutations.

2. Main results and heuristics

We first introduce some notation that we will need before stating the results. Given two
sequences of non-negative real numbers (aN)∞N=1 and (bN)∞N=1, we write:

aN ∼ bN if lim
N→∞

aN/bN = 1;

aN ≪ bN if lim
N→∞

aN/bN = 0 and aN ≫ bN if lim
N→∞

aN/bN = ∞;

aN ≍ bN if 0 < lim inf
N→∞

aN/bN ≤ lim sup
N→∞

aN/bN < ∞;

aN ! bN if lim sup
N→∞

aN/bN < ∞.
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1160 B. CHAO AND J. SCHWEINSBERG

We also define the following notation:

• If XN converges to X in distribution, we write XN ⇒ X.

• If XN converges to X in probability, we write XN →p X.

• γd denotes the volume of the unit ball in Rd.

• For each k ≥ 1 and j ≥ 1, we define

βk :=
(

Nα(k−1)d
k∏

i=1

µi

)−1/((k−1)d+k)

, κj := (µjα
d)−1/(d+1). (1)

We explain how βk and κj arise in Sections 2.3 and 2.5, respectively.

• σk denotes the first time a mutation of type k appears, and σ (2)
k denotes the second

time a mutation of type k appears. More rigorous definitions of σk and σ (2)
k are given

in Sections 3 and 4, respectively.

All limits in this paper will be taken as N → ∞. The mutation rates (µi)∞i=1 and the rate of
mutation spread α will depend on N, even though this dependence is not recorded in the nota-
tion. Throughout the paper we will assume that the mutation rates (µi)∞i=1 are asymptotically
increasing, i.e.

µ1 !µ2 !µ3 ! · · · . (2)

2.1. Theorem 1: Low mutation rates
Assume

µ1 ≪ α

N(d+1)/d and
µi

µ1
→ ci ∈ (0, ∞] for all i ∈ {1, . . . , k}.

The first time a mutation of type 1 appears is exponentially distributed with rate Nµ1. The
maximal distance between any two points on the torus T = [0, L]d is

√
dL/2. Also note that

L = N1/d, where N is the volume of T . Consequently, once the first type 1 mutation appears, it
will spread to the entire torus in time

√
dL/(2α) =

√
dN1/d/(2α). Hence, as noted in [11], the

time required for a type 1 mutation to fixate once it has first appeared is much shorter than σ1
precisely when N1/d/α≪ 1/(Nµ1), which is equivalent to µ1 ≪ α/N(d+1)/d.

Now, because of the second assumption µi/µ1 → ci ∈ (0, ∞], mutations of types i ∈
{2, . . . , k} appear at least as fast as the first mutation. If ci < ∞, then the waiting
times σ1 and σi − σi−1 are on the same order of magnitude. Because we have σ1 ∼
Exponential(Nµ1c1), it follows that σi − σi−1 is also exponentially distributed and that σi −
σi−1 ∼ Exponential(Nµ1ci). Otherwise, if ci = ∞, then the first type i mutation appears so
quickly that its waiting time σi − σi−1 is negligible as N → ∞. Putting everything together
gives us the following theorem. This result is a very slight generalization of [11, Theorem 1],
and is proved by the same method.

Theorem 1. Suppose (2) holds, and µ1 ≪ α/N(d+1)/d. Suppose that, for all i ∈ {1, . . . , k},
we have µi/µ1 → ci ∈ (0, ∞]. Let W1, . . . , Wk be independent random variables with Wi ∼
Exponential(ci) if ci < ∞ and Wi = 0 if ci = ∞. Then Nµ1σk ⇒ W1 + · · · + Wk.

Figure 1 illustrates that once a type i mutation appears, it quickly fills up the whole torus,
and then a type i + 1 mutation occurs.
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A spatial mutation model with increasing mutation rates 1161

FIGURE 1. Mutations transition from type i to type i + 1. Higher mutation types are colored darker than
lower mutation types.

2.2. Theorem 2: Type j ≥ 2 mutations occur rapidly after σ1

Assume

µ1 ≫ α

N(d+1)/d , µ2 ≫ (Nµ1)d+1

αd . (3)

In contrast to Theorem 1, the assumption µ1 ≫ α/N(d+1)/d means that the time it takes for type
1 mutations to spread to the entire torus is much longer than σ1. As a result, there will be many
growing balls of type 1 mutations before any of these balls can fill the entire torus. However, if
mutations of types 2, 3, . . . , k appear quickly after the first type 1 mutation appears, then the
time to wait for the first type k mutation will be close to the time to wait for the first type 1
mutation. We consider here the conditions under which this will be the case.

First, consider the ball of type 1 cells resulting from the initial type 1 mutation at time σ1.
Assuming t is small enough that, by time σ1 + t, the ball has not started overlapping itself by
wrapping around the torus, the ball will have volume γd(αt)d at time t. Then the probability
that the first type 2 mutation appears in that ball before time t is

1 − exp
(

−
∫ t

0
µ2γd(αr)d dr

)
= 1 − exp

(
− γd

d + 1
µ2α

dtd+1
)

. (4)

It follows that the first time a type 2 mutation occurs in this ball is on the order of
(µ2α

d)−1/(d+1). Hence, whenever (µ2α
d)−1/(d+1) ≪ 1/(Nµ1), which is equivalent to the sec-

ond assumption in (3), it follows that σ2 − σ1 is much quicker than σ1. From this heuristic,
we see that Nµ1(σ2 − σ1) →p 0. Repeating this reasoning with types j − 1 and j in place of
types 1 and 2, we see that σj − σj−1 is much quicker than σ1 when (µjα

d)−1/(d+1) ≪ 1/(Nµ1),
or, equivalently, µj ≫ (Nµ1)d+1/αd. However, this follows from the second assumption in (3)
because of (2). Hence, we also have Nµ1(σj − σj−1) →p 0. Putting everything together, when
N is large,

Nµ1σk = Nµ1σ1 + Nµ1(σ2 − σ1) + · · · + Nµ1(σk − σk−1) ≈ Nµ1σ1.

This gives us the following theorem. We note that the k = 2 case was proved in [5, Theorem 3]
using essentially the same reasoning as above.

Theorem 2. Suppose (2) holds. Suppose µ1 ≫ α/N(d+1)/d and µ2 ≫ (Nµ1)d+1/αd. For all
k ≥ 2, Nµ1σk ⇒ W, where W ∼ Exponential(1).

A pictorial representation is given in Fig. 2, where the nested circles correspond to mutations
of types 1, . . . , k for k = 4.

2.3. Theorem 3: Type j ∈ {1, . . . , k − 1} mutations appear many times
Assume

µ1 ≫ α

N(d+1)/d , µk ≪ 1

αdβd+1
k−1

. (5)
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1162 B. CHAO AND J. SCHWEINSBERG

FIGURE 2. Once the first type 1 mutation appears, the type 2, 3, and 4 mutations all happen quickly.
Higher mutation types are colored darker than lower mutation types.

As in Theorem 2, the first assumption ensures that σ1 is shorter than the time it takes for type
1 mutations to fixate once they appear. The second assumption ensures that all mutations of
types up to k do not appear too quickly, so that we are not in the setting of Theorem 2. In
particular, note that when k = 2, we have βk−1 = (Nµ1)−1, and the second assumption reduces
to µ2 ≪ (Nµ1)d+1/αd. When (5) holds, for j ∈ {2, . . . , k} there will be many small balls of
type j − 1 before any type j mutation appears. In this case, we will be able to use a ‘law of
large numbers’ established in [11] to approximate the total volume of type j − 1 regions with
its expectation.

To explain what happens in this case, we review a derivation from [11]. We want to define
an approximation vj(t) to the total volume of regions with at least j mutations at time t. We set
v0(t) ≡ N. Next, let t > 0. For times r ∈ [0, t], type j mutations occur at rate µjvj−1(r), and these
type j mutations each grow into a ball of size γd(α(t − r))d by time t. Therefore, we define

vj(t) =
∫ t

0
µjvj−1(r)γd(α(t − r))d dr.

Note that this gives a good approximation to the volume of the type j region because we have
many mostly non-overlapping balls of type j. In [11] it is shown using induction that

vj(t) = γ
j
d(d!)j

(j(d + 1))!

( j∏

i=1

µi

)

Nαjdtj(d+1),

which gives us the approximation

P(σk > t) ≈ exp
(

−
∫ t

0
µkvk−1(r) dr

)

= exp

(

− γ k−1
d (d!)k−1

((k − 1)d + k)!

(
k∏

i=1

µi

)

Nα(k−1)dt(k−1)d+k

)

.

It will follow that if we define βk as in (1), then we have the following result.

Theorem 3. Suppose (2) holds. Let k ≥ 2, and suppose µ1 ≫ α/N(d+1)/d and µk ≪
1/(αdβd+1

k−1 ). Then, for t > 0,

P(σk > βkt) → exp
(

− γ k−1
d (d!)k−1

((k − 1)d + k)! t(k−1)d+k
)

.
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FIGURE 3. Mutations of types 1, 2, and 3 appear in succession. Higher mutation types are colored darker
than lower mutation types.

When we have equal mutation rates (i.e. µi = µ for all i), the result above is covered by [11,
Theorem 10, part 3]. The form of the result and the strategy of the proof are exactly the same
in the more general case when the mutation rates can differ. Theorem 3 is illustrated in Fig. 3
for k = 3.

2.4. Theorem 4: An intermediate case between Theorems 2 and 3
Assume µ1 ≫ α/N(d+1)/d. We first define

l := max

{

j ≥ 2: µj ≪
1

αdβd+1
j−1

}

. (6)

It follows from (2) that if µj ≪ 1/
(
αdβd+1

j−1

)
, then µj−1 ≪ 1/

(
αdβd+1

j−1

)
, which by Lemma 2

below implies that µj−1 ≪ 1/
(
αdβd+1

j−2

)
. It follows that

l = max

{

j ≥ 2: µ2 ≪ 1

αdβd+1
1

, µ3 ≪ 1

αdβd+1
2

, . . . , µj ≪
1

αdβd+1
j−1

}

. (7)

Intuitively, l is the largest index for which mutations of types 1, 2, . . . , l behave exactly
as in Theorem 3. The definition of l in (6) omits the possibility l = 1, since β0 is unde-
fined. However, if we define l = 1 when the set over which we take the maximum in (6) is
empty, then Theorem 4 below when l = 1 is the same as Theorem 2. On the other hand, if
l ∈ {k, k + 1, . . .} ∪ {∞}, then by (7) we have µk ≪ 1/

(
αdβd+1

k−1

)
, in which case Theorem 3

applies. Hence, we assume l ∈ {2, . . . , k − 1} and

µl+1 ≫ 1

αdβd+1
l

. (8)

The situation in Theorem 4 is a hybrid of Theorems 2 and 3. A mutation of type
j ∈ {1, . . . , l − 1} takes a longer time to fixate in the torus than the interarrival time σj − σj−1.
As a result, if j ∈ {2, . . . , l}, there will be many mostly non-overlapping balls of type j − 1
before time σj. Using this fact, we proceed as in Theorem 3 and find limN→∞ P(σl > βlt). Next,
our assumption in (8) places us in the regime of Theorem 2; all mutations of types l + 1, . . . , k
happen so quickly that for all ε> 0 we have P(σk − σl > βlε) → 0. Then, combining these two
results yields the following theorem.

Theorem 4. Suppose (2) holds, and suppose µ1 ≫ α/N(d+1)/d. Suppose also that l ∈
{2, . . . , k − 1} and that µl+1 ≫ 1/

(
αdβd+1

l

)
. Then, for t > 0,

P(σk > βlt) → exp
(

− γ l−1
d (d!)l−1

((l − 1)d + l)! t(l−1)d+l
)

.
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1164 B. CHAO AND J. SCHWEINSBERG

In pictures, Theorem 4 looks like Fig. 3 for mutations up to type l. Then, once the first type
l mutation appears and spreads in a circle, all the subsequent mutations become nested within
that circle, similar to Fig. 2.

Remark 1. Theorems 1–4 cover most of the possible cases in which (2) holds. However, we
assume that either µ1 ≪ α/N(d+1)/d or µ1 ≫ α/N(d+1)/d. In the case µ1 ≍ α/N(d+1)/d, we
expect that at the time a type 2 mutation appears, there could be several overlapping type 1
balls whose size is comparable to the size of the torus, and we do not expect the limiting
distribution of σk to have a simple expression. Consequently, we do not pursue this case here.
We note that if µ1 ≍ α/N(d+1)/d and all mutation rates are equal (i.e. µi = µ for all i), then it
is proven, as a special case of [11, Theorem 12], that Nµσk converges in distribution to a non-
degenerate random variable for every k ≥ 1. Likewise, we do not consider the case in which,
instead of (8), we have µl+1 ≍ 1/

(
αdβd+1

l

)
. In this case we believe there could be several

overlapping type l balls at the time the first type l + 1 mutation occurs, again preventing there
from being a simple expression for the limit distribution.

2.5. Distances between mutations
For 1 ≤ i < j, define Di,j to be the distance in the torus between the location of the first

mutation of type j and the location of the first mutation of type i. Also define Di+1 := Di,i+1.
Consider the setting of Theorem 2. We will assume a stronger version of (2):

µ2 ≪ µ3 ≪ µ4 ≪ · · · . (9)

Recall that the mutations appear in nested balls as in Fig. 2. Because the first type j + 1 muta-
tion will therefore appear before the second type j mutation with high probability, we can
calculate, as in (4), that

P(σj+1 − σj > t) ≈ exp
(

−µj+1γdα
d

d + 1
td+1

)
.

It follows that if we define κj+1 as in (1), then

P(σj+1 − σj > κj+1t) ≈ exp
(

− γd

d + 1
td+1

)
.

With this, we can calculate the approximate density f (t) of (σj+1 − σj)/κj+1. This allows us to
calculate

P
(

Dj+1

ακj+1
≤ s
)

≈
∫ ∞

0
P
(

Dj+1

ακj+1
≤ s | σj+1 − σj

κj+1
= t
)

f (t) dt.

The location of the first type j + 1 mutation conditioned on σj+1 − σj = κj+1t is a uni-
formly random point on a d-dimensional ball of radius ακj+1t. This allows us to calculate
limN→∞ P(Dj+1 ≤ ακj+1s). Next, because of (9), mutations of types j + 2, j + 3, j + 4, . . .

appear rapidly once the first type j + 1 appears. This means that Dj+2 + · · · + Dj+k is small rel-
ative to Dj+1, and therefore that Dj,k has the same limiting distribution as Dj+1. These heuristics
lead to the following theorem.

Theorem 5. Suppose (9) holds. Suppose µ1 ≫ α/N(d+1)/d and µ2 ≫
(
Nµ1

)d+1
/αd. Suppose

1 ≤ j < k. Then, for all s > 0,

P
(

Dj,k

ακj+1
≤ s
)

→
∫ ∞

0
γd(t ∧ s)d exp

(
−γdtd+1

d + 1

)
dt.
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Recall the definition of l in (6). Theorem 4 is similar to Theorem 2 in that once the first type l
mutation appears, all the subsequent type l + 1, l + 2, . . . mutations happen quickly. Therefore,
it is reasonable to expect that the type l, l + 1, l + 2, . . . mutations behave similarly to the type
1, 2, 3, . . . mutations in Theorem 2. Hence, analogous to (9), assume that

µl+1 ≪ µl+2 ≪ µl+3 ≪ · · · . (10)

We then obtain the following result.

Theorem 6. Suppose (10) holds, and suppose µ1 ≫ α/N(d+1)/d. Define l as in (6), and suppose
also that l ≥ 2 and that µl+1 ≫ 1/

(
αdβd+1

l

)
. Suppose l ≤ j < k. Then, for all s > 0,

P
(

Dj,k

ακj+1
≤ s
)

→
∫ ∞

0
γd(t ∧ s)d exp

(
−γdtd+1

d + 1

)
dt.

Remark 2. Theorems 5 and 6 hold in the settings of Theorems 2 and 4 respectively. In the set-
ting of Theorem 1, each type i ≥ 1 mutation fills up the entire torus before a type i + 1 mutation
occurs, and so the first type i + 1 mutation appears at a uniformly distributed point on the torus,
independently of where all previous mutations originated. Therefore, the problem of finding
the distribution of the distances between mutations becomes trivial in this case. On the other
hand, in the setting of Theorem 3, type i mutations appear in small and mostly non-overlapping
circles before the first type i + 1 mutation appears. Thus, calculating the distribution of Di+1
requires understanding not only the total volume of the type i region, but also the sizes and
locations of many small type i regions. We do not pursue this case here, but we conjecture that
because the first type i + 1 mutation is likely not to appear within the type i region generated
by the first type i mutation, the locations of the first type i and the first type i + 1 mutations
should be nearly independent of each other, as in the setting of Theorem 1.

3. Proofs of limit theorems for σk

In this section we prove Theorems 1–4. We begin by introducing the structure of the torus
T = [0, L]d, following the notation of [11]. We define a pseudometric on the closed interval
[0, L] by dL(x, y) := min{|x − y|, L − |x − y|}. The d-dimensional torus of side length L will
be denoted by T = [0, L]d. For x = (x1, . . . , xd) ∈ T and y = (y1, . . . , yd) ∈ T , we define a
pseudometric by

|x − y| :=

√√√√
d∑

i=1

dL(xi, yi)2.

The torus should be viewed as T modulo the equivalence relation x ∼ y if and only if
|x − y| = 0, or more simply T = (R ( mod L))d. However, we will continue to write T =
[0, L]d, keeping in mind that certain points are considered to be the same via the equivalence
relation defined above. It will be useful to observe the following:

• We have dL(x, y) ≤ L/2 for all x, y ∈ [0, L]. As a result, the distance between any two
points x, y ∈ T is at most

sup{|x − y| : x, y ∈ T } =

√√√√
d∑

i=1

(
L
2

)2

=
√

dL
2

.
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• Therefore, once a mutation of type j appears, the entire torus will become type j in time

maximal distance between any x, y ∈ T
rate of mutation spread per unit time

=
√

dL
2α

. (11)

We use |A| to denote the Lebesgue measure of some subset A of T or T × [0, ∞), so that
N = Ld = |T | is the torus volume. Each x ∈ T at time t has a type k ∈ {0, 1, 2, . . .}, which we
denote by T(x, t), corresponding to the number of mutations the site has acquired. The set of
type i sites is defined by χi(t) := {x ∈ T : T(x, t) = i}. The set of points whose type is at least i
is defined by

ψi(t) := {x ∈ T : T(x, t) ≥ i} =
∞⋃

j=i

χj(t).

At time t, we denote the total volume of type i sites by Xi(t) := |χi(t)|, and the total volume of
sites with type at least i by Yi(t) := |ψi(t)|. The first time a type k mutation appears in the torus
can be expressed as σk = inf{t > 0: Yk(t) > 0}.

Still following [11], we now explicitly describe the construction of the process which gives
rise to mutations in the torus. We model mutations as random space-time points (x, t) ∈ T ×
[0, ∞). Let ()k)∞k=1 be a sequence of independent Poisson point processes on T × [0, ∞),
where )k has intensity µk. That is, for any space-time region A ⊆ T × [0, ∞), the probability
that A contains j points of type k is e−µk|A|(µk|A|)j/j!. Each (x, t) ∈)k is a space-time point
at which x ∈ T can acquire a kth mutation at time t. We say that x mutates to type k at time
t precisely when x ∈ χk−1(t) and (x, t) ∈)k. Once an individual obtains a type k mutation, it
spreads the type k mutations outward in a ball at rate α per unit time.

3.1. Proof of Theorem 1
In the setting of Theorem 1, once the first mutation appears, with high probability it

spreads to the entire torus before another mutation appears. The proof of Theorem 1 uses
[11, Theorem 1], which we restate below as Theorem 7. Theorem 1 is very similar to
Theorem 7 when j = 1. However, Theorem 7 requires µj ≪ α/N(d+1)/d for all j ∈ {1, . . . , k},
whereas Theorem 1 requires this condition only for j = 1. This is why Theorem 1 cannot be
deduced directly from Theorem 7, even though the proofs of the results are essentially the
same.

Theorem 7. ([11, Theorem 1].) Suppose µi ≪ α/N(d+1)/d for i ∈ {1, . . . , k − 1}. Suppose
there exists j ∈ {1, . . . , k} such that µj ≪ α/N(d+1)/d and µi/µj → ci ∈ (0, ∞] for all i ∈
{1, . . . , k}. Let W1, . . . , Wk be independent random variables such that Wi has an expo-
nential distribution with rate parameter ci if ci < ∞ and Wi = 0 if ci = ∞. Then Nµjσk ⇒
W1 + · · · + Wk.

Proof of Theorem 1. Let r := max{j ∈ {1, . . . , k}:µj !µ1}. For all j ∈ {1, . . . , r}, we have
µj ≪ α/N(d+1)/d. By Theorem 7, Nµ1σr ⇒ W1 + · · · + Wr. If r = k, then the conclusion fol-
lows. Otherwise, r ≤ k − 1, and by the maximality of r and (2), we have µl/µ1 → ∞ for all
l ∈ {r + 1, . . . , k}. Then the result follows if we show that Nµ1(σk − σr) →p 0. We have

0 ≤ Nµ1(σk − σr) = Nµ1

k−1∑

j=r

(σj+1 − σj). (12)

We will find an upper bound for the right-hand side of (12). For i ≥ 1, let ti = inf{t > 0: Yi(t) =
N} be the first time which every point in T is of at least type i. Define t̂i := ti − σi, which is
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the time elapsed between σi and when mutations of type i fixate in the torus. Also define σ̂i =
inf{t > 0: )i ∩ (T × [ti−1, t]) ̸=∅}, which is the first time there is a potential type i mutation
after ti−1. Observe that, because we always have σi ≤ σ̂i,

σj+1 − σj ≤ σ̂j+1 − σj = σ̂j+1 − σj + tj − tj = t̂j + (σ̂j+1 − tj).

Also observe that, by (11), we have t̂j ≤
√

dN1/d/(2α). Consequently, the right-hand side of
(12) has the upper bound

Nµ1

(
k−1∑

j=r

t̂j +
k−1∑

j=r

(σ̂j+1 − tj)

)

≤ Nµ1(k − r)

√
dN1/d

2α
+ Nµ1

k−1∑

j=r

(σ̂j+1 − tj).

The result follows if the right-hand side of the above expression converges to 0 in probability.
The first term tends to zero because µ1 ≪ α/N(d+1)/d. The second term tends to zero because
σ̂j+1 − tj ∼ Exponential(Nµj+1), so Nµ1(σ̂j+1 − tj) ∼ Exponential(µj+1/µ1) →p 0. "

3.2. Proof of Theorem 2

Lemma 1. Let tN be a random time that is σ ()1, . . . ,)j−1)-measurable and satisfies tN ≥
σj−1. Then

P(σj > tN) =E
[

exp
(

−
∫ tN

σj−1

µjYj−1(s) ds
)]

.

Proof. Write G := σ ()1, . . . ,)j−1). Define the set A := {(x, r) ∈ψj−1(r) × [σj−1, tN]},
and note that the Lebesgue measure of this set, which we denote by |A|, is a G-measurable
random variable. The event {σj > tN} occurs precisely when )j ∩ A =∅. Let X be the num-
ber of points of )j in the set A. Because )j is independent of )1, . . . ,)j−1, the conditional
distribution of X given G is Poisson(µj|A|). Therefore,

P(σj > tN | G) = P(X = 0 | G) = exp( − µj|A|) = exp
(

−
∫ tN

σj−1

µjYj−1(s) ds
)

.

Taking expectations of both sides completes the proof. "
Proof of Theorem 2. Write Nµ1σk as a telescoping sum,

Nµ1σk = Nµ1σ1 +
k∑

j=2

Nµ1(σj − σj−1).

We have Nµ1σ1 ∼ Exponential(1). Hence, it suffices to show that, for each j ≥ 2, the random
variable Nµ1(σj − σj−1) converges in probability to zero. Let t > 0. Then, by Lemma 1,

P(Nµ1(σj − σj−1) > t) = P
(
σj >

t
Nµ1

+ σj−1

)
=E

[
exp

(
−
∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s) ds
)]

.

We want to show that the term on the right-hand side tends to zero. By the dominated
convergence theorem, it suffices to show that as N → ∞,

∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s) ds → ∞.
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1168 B. CHAO AND J. SCHWEINSBERG

Notice that because µ1 ≫ α/N(d+1)/d, for all sufficiently large N we have t/(Nµ1) ≤
N1/d/(2α). Therefore, at time σj−1 + t/(Nµ1), there is a ball of type j − 1 mutations of radius
α(t − σj−1) which has not yet begun to wrap around the torus and overlap itself. Hence, we
have Yj−1(s) ≥ γdα

d(s − σj−1)d for s ∈ [σj−1, σj−1 + t/(Nµ1)], and therefore
∫ t/(Nµ1)+σj−1

σj−1

µjYj−1(s) ds ≥
∫ t/(Nµ1)+σj−1

σj−1

µjγdα
d(s − σj−1)d ds

=
∫ t/(Nµ1)

0
µjγdα

dud du = µjγdα
d

d + 1

(
t

Nµ1

)d+1

.

It remains to show that

µjγdα
d

d + 1

(
t

Nµ1

)d+1

→ ∞ as N → ∞.

For the above to hold, it suffices to have µj ≫ (Nµ1)d+1/αd, which holds due to the second
assumption in the theorem and (2). This completes the proof. "

3.3. Proof of Theorem 3
We recall the definition of βk as in (1) of Section 2. In the setting of Theorem 3, βk is the

order of magnitude of the time it takes for the kth mutation to appear.
Much of the proof of Theorem 3 will rely on [11, Lemma 9], which approximates a mono-

tone stochastic process by a deterministic function under a certain time scaling. In order to
apply this lemma, it is important to ensure that Yk(t) is well approximated by its expectation,
which is [11, Lemma 8].

Before proving Theorem 3, we state several lemmas, some of which are from [11]. First, we
need to ensure that the last assumption, µkα

dβd+1
k−1 → 0, in Theorem 3 implies µkα

dβd+1
k → 0,

so that we are able to use part (ii) of Lemma 5 to approximate Yk−1(βkt) by its expectation.

Lemma 2. For k ≥ 2, we have µk ≪ 1/
(
αdβd+1

k

)
if and only if µk ≪ 1/

(
αdβd+1

k−1

)
.

Proof. By using the definition of βk from (1), we get

µk ≪ 1

αdβd+1
k

⇐⇒ µ
(k−1)d+k
k ≪ 1

αd[(k−1)d+k]

(

Nα(k−1)d
k∏

i=1

µk

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k ≪ 1

αd Nd+1

(
k−1∏

i=1

µi

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k ≪ αd(d+1)(k−2)

αd[(k−2)d+(k−1)] Nd+1

(
k−1∏

i=1

µi

)d+1

⇐⇒ µ
(k−2)d+(k−1)
k ≪ 1

αd[(k−2)d+(k−1)]

(

Nα(k−2)d
k−1∏

i=1

µi

)d+1

⇐⇒ µk ≪ 1

αdβd+1
k−1

,

as claimed. "
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We also need [11, Lemma 9], which is restated as Lemma 3. This lemma gives necessary
conditions under which a monotone stochastic process is well approximated by a deterministic
function.

Lemma 3. Suppose, for all positive integers N, (YN(t), t ≥ 0) is a non-decreasing stochastic
process such that E[YN(t)] < ∞ for each t > 0. Assume there exist sequences of positive num-
bers (νN)∞N=1 and (sN)∞N=1 and a continuous non-decreasing function g > 0 such that, for each
fixed t > 0 and ε> 0, we have

lim
N→∞

P(|YN(sNt) −E[YN(sNt)]| > εE[YN(sNt)]) = 0, (13)

and

lim
N→∞

1
νN

E[YN(sNt)] = g(t). (14)

Then, for all ε> 0 and δ> 0, we have

lim
N→∞

P(νNg(t)(1 − ε) ≤ YN(sNt) ≤ νNg(t)(1 + ε) for all t ∈ [δ, δ−1]) = 1.

Next, we state a criterion which guarantees that, for fixed t > 0, the probability P(σk > βkt)
converges to a deterministic function as N → ∞.

Lemma 4. For a continuous non-negative function g, a sequence (νN)∞N=1 of positive real
numbers, and δ, ε> 0, define the event

Bk−1
N (δ, ε, g, νN) = {g(u)(1 − ε)νN ≤ Yk−1(βku) ≤ g(u)(1 + ε)νN, for all u ∈ [δ, δ−1]}.

If (νN)∞N=1 and g are chosen such that limN→∞ P
(
Bk−1

N (δ, ε, g, νN)
)
= 1 and limN→∞ νNβkµk

exists, then

lim
N→∞

P(σk > βkt) = lim
N→∞

exp
(

−νNβkµk

∫ t

0
g(u) du

)
.

Proof. Suppose δ ≤ t ≤ δ−1. We reason as in the proof of [11, Theorem 10]. The upper and
lower bounds from [11, (26) and (27)] are

P(σk > βkt) ≤ exp
(

−µkβkνN(1 − ε)
∫ t

δ
g(u) du

)
+ P

(
Bk−1

N (δ, ε, g, νN)c),

P(σk > βkt) ≥ P
(
Bk−1

N (δ, ε, g, νN)
)

exp
(

−νN(1 + ε)βkµk

∫ t

δ
g(u) du

)

− γ k−1
d (d!)k−1

(d(k − 1) + k)!δ
d(k−1)+k.

Taking N → ∞ and then ε, δ→ 0, we get the desired result. "
We also need to approximate the expected volume of type k or higher regions, E[Yk(t)],

with a deterministic function, as well as making sure that Yk(t) is well approximated by its
expectation. Lemma 5 is a restatement of [11, Lemmas 5 and 8]. It is important to note that for
this result, the time t may depend on N.

Lemma 5. Fix a positive integer k. Suppose µjα
dtd+1 → 0 for all j ∈ {1, . . . , k}. Also suppose

t ≤ N1/d/(2α). Then
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1170 B. CHAO AND J. SCHWEINSBERG

(i) Setting vk(t) := γ k
d (d!)k

(k(d + 1))!

(
k∏

i=1

µi

)

Nαkdtk(d+1), we have E[Yk(t)] ∼ vk(t).

(ii) If, in addition, we assume

(
k∏

i=1

µi

)

Nα(k−1)dt(k−1)d+k → ∞, then, for all ε> 0,

lim
N→∞

P((1 − ε)E[Yk(t)] ≤ Yk(t) ≤ (1 + ε)E[Yk(t)]) = 1.

Remark 3. Lemma 5 in [11] omits the necessary hypothesis t ≤ N1/d/(2α). This hypothesis
ensures that a growing ball of mutations cannot begin to wrap around the torus and overlap
itself before time t, which is needed for the formula for E[,k−1(t)] in [11, (15)] to be exact.
This equation is used in the proof of [11, Lemma 5]. Note that the hypothesis t ≤ N1/d/(2α) is
also needed for [11, Lemma 8], because its proof uses [11, Lemma 5]. However, because it is
easily verified that this hypothesis is satisfied in [11] whenever these lemmas are used, all of
the main results in [11] are correct without additional hypotheses.

The next lemma states that if µ1 ≫ α/N(d+1)/d, then βl is much smaller than the time it
takes for a mutation to spread to the entire torus.

Lemma 6. Suppose µ1 ≫ α/N(d+1)/d and (2) holds. Then βl ≪ N1/d/α for any l ∈N.

Proof. By (2), we have µ1, . . . , µl ≫ α/N(d+1)/d. Thus

l∏

i=1

µi ≫
αl

Nl(1+1/d) .

On the other hand by simplifying,

βl ≪
N1/d

α
⇐⇒ Nα(l−1)d

l∏

i=1

µi ≫
(

α

N1/d

)(l−1)d+l

⇐⇒
l∏

i=1

µi ≫
αl

Nl(1+1/d) .

This proves the lemma. "
Proof of Theorem 3. In view of Lemma 4, we will choose (νN)∞N=1 and a continuous

non-negative function gk such that limN→∞ νNβkµk exists and P
(
Bk−1

N (δ, ε, gk, νN)
)
→ 1 as

N → ∞. We set νN = 1/(βkµk), and, as in the proof of [11, Theorem 10], set

gk(t) := γ k−1
d (d!)k−1t(k−1)(d+1)

((k − 1)(d + 1))! .

A lengthy calculation shows that βkµkvk−1(βkt) = gk(t). On the other hand, by the last
assumption in the theorem, we have µkα

dβd+1
k−1 → 0. By Lemma 2, this is equivalent to

µkα
dβd+1

k → 0. Because of (2), this implies that µjα
d(βkt)d+1 → 0 for all j ∈ {1, . . . , k}.

Also, because of Lemma 6, we have βk ≪ N1/d/(2α). Hence the hypotheses of Lemma 5
are satisfied, and by the first result in Lemma 5 applied to k − 1, it follows that vk−1(βkt) ∼
E[Yk−1(βkt)], which implies

lim
N→∞

βkµkE[Yk−1(βkt)] = lim
N→∞

βkµkvk−1(βkt) = gk(t).
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Hence, (14) of Lemma 3 is satisfied. A direct calculation gives
(

k−1∏

i=1

µi

)

Nα(k−2)dβ
(k−2)d+k−1
k = 1

µkαdβd+1
k

→ ∞,

which by the second result of Lemma 5 is sufficient to give (13). Therefore, Lemma 3
guarantees that P

(
Bk−1

N (δ, ε, gk, νN)
)
→ 1 as N → ∞. Then, Lemma 4 gives us

lim
N→∞

P(σk > βkt) = lim
N→∞

exp
(

−νNβkµk

∫ t

0
gk(u) du

)

= exp
(

−
∫ t

0

γ k−1
d (d!)k−1u(k−1)(d+1)

((k − 1)(d + 1))! du
)

= exp
(

− γ k−1
d (d!)k−1

(d(k − 1) + k)! td(k−1)+k
)

,

completing the proof. "

3.4. Proof of Theorem 4
Now we turn to proving Theorem 4, which is a hybrid of Theorems 2 and 3. In particular,

we assume that there is some l ∈N such that the mutation rates µ1, µ2, . . . , µl fall under the
regime of Theorem 3, and all subsequent mutation rates µl+1, . . . , µk are large enough that all
mutations after the first type l mutation occur quickly, as in Theorem 2.

Proof of Theorem 4. For ease of notation, set, for j ∈N and t ≥ 0,

fj(t) := exp
(

−γ
j−1
d (d!)j−1td(j−1)+j

(d(j − 1) + j)!

)
.

For ε> 0, we have the inequalities

P(σl > βlt) ≤ P(σk > βlt) ≤ P(σl > βl(t − ε)) + P(σk − σl > βlε).

Taking N → ∞ and using Theorem 3 (noting that l ≥ 2), we have

fl(t) ≤ lim
N→∞

P(σk > βlt) ≤ fl(t − ε) + lim
N→∞

P(σk − σl > βlε).

Since fl is continuous, the result follows (by taking ε→ 0) once we show that, for each fixed
ε> 0,

lim
N→∞

P(σk − σl > βlε) = 0. (15)

Notice that because

{σk − σl > βlε} ⊆
k−1⋃

j=l

{
σj+1 − σj >

βlε

k − l

}
,

it suffices to show that, for all j ∈ {l, . . . , k − 1}, P(σj+1 − σj > βlε) → 0. By Lemma 1, we
have

P(σj+1 − σj > βlε) =E
[

exp
(

−
∫ βlε+σj

σj

µj+1Yj(s) ds
)]

.

.���7�  ��/���� ������� 0������������
�
1/7.�����1/���
��	�2
�/������/:��7/���
��77

https://doi.org/10.1017/jpr.2022.120


1172 B. CHAO AND J. SCHWEINSBERG

Hence, by the dominated convergence theorem, to show that P(σj+1 − σj > βlε) → 0, it suffices
to show that

∫ βlε+σj
σj

µj+1Yj(s) ds → ∞ almost surely. By Lemma 6 we have βl ≪ N1/d/α,

so βlε≤ N1/d/(2α) for large enough N. That is, βlε does not exceed the time it takes for a
mutation to wrap around the torus. Hence, we have the lower bound Yj(s) ≥ γdα

d(s − σj)d for
s ∈ [σj, σj + βlε], and

∫ βlε+σj

σj

µj+1Yj(s) ds ≥
∫ βlε+σj

σj

µj+1γdα
d(s − σj)d ds = µj+1γdα

d

d + 1
(βlε)d+1. (16)

By the second assumption in the theorem, we have µl+1 ≫ 1/
(
αdβd+1

l

)
. Because of (2),

we have µj+1 ≫ 1/
(
αdβd+1

l

)
. It follows that the right-hand side of (16) tends to infinity as

N → ∞, which completes the proof. "

4. Proofs of limit theorems for distances between mutations

For each j ≥ 1, we define σ (2)
j to be the time at which the second type j mutation occurs, i.e.

σ
(2)
j := inf{t > σj : (x, t) ∈)j and x ∈ψj−1(t) for some x ∈ T }.

Note that σ (2)
j is defined to be the first time, after time σj, that a point of )j lands in a region

of type j − 1 or higher. If this point lands in a region of type j − 1, then a new type j ball
will begin to grow. If this point lands in a region of type j or higher, then the evolution of the
process is unaffected. Also recall from (1) that κj := (µjα

d)−1/(d+1).

4.1. Proof of Theorem 5
We begin with an upper bound for the time between first mutations of consecutive types.

Lemma 7. Assume µ1 ≫ α/N(d+1)/d. Suppose i and j are positive integers. Then, for each
fixed t > 0, we have, for all sufficiently large N,

P(σj+1 − σj > κit) ≤ exp
(

− γd

d + 1
· µj+1

µi
td+1

)
.

Proof. Using Lemma 1, we have

P(σj+1 − σj > κit) =E
[

exp
(

−
∫ σj+κit

σj

µj+1Yj(s) ds
)]

.

Because of µ1 ≫ α/N(d+1)/d and (2), for all sufficiently large N we have κit < L/(2α). Thus,
Yj(s) ≥ γdα

d(s − σj)d for s ∈ [σj, σj + κit]. Then,

P(σj+1 − σj > κit) ≤ exp
(

−
∫ σj+κit

σj

µj+1γdα
d(s − σj)d ds

)

= exp
(

−
∫ κit

0
µj+1γd(αs)d ds

)

.���7�  ��/���� ������� 0������������
�
1/7.�����1/���
��	�2
�/������/:��7/���
��77

https://doi.org/10.1017/jpr.2022.120


A spatial mutation model with increasing mutation rates 1173

= exp
(

−µj+1γdα
d

d + 1
(κit)d+1

)

= exp
(

− γd

d + 1
· µj+1

µi
td+1

)
.

This completes the proof. "
By Lemma 7, when µ1 ≫ α/N(d+1)/d the interarrival time σj − σj−1 is at most the same

order of magnitude as κj. Lemma 8 further shows that if, in addition, µj ≪ µj+1 ≪ µj+2 ≪ · · · ,
then mutations of type m > j appear on an even faster time scale.

Lemma 8. Assume µ1 ≫ α/N(d+1)/d. Suppose j is a positive integer, and µj ≪ µj+1 ≪
µj+2 ≪ · · · . Then (σm − σj)/κj →p 0 for every m > j.

Proof. Using (2), we get

σm − σj

κj
=

m−1∑

i=j

σi+1 − σi

κj
!

m−1∑

i=j

σi+1 − σi

κi
,

so it suffices to show that (σi+1 − σi)/κi →p 0 for all i ∈ {j, j + 1, . . . , m − 1}. Let ε> 0. Using
Lemma 7, we have, for all sufficiently large N,

P(σi+1 − σi > κiε) ≤ exp
(

− γd

d + 1
· µi+1

µi
εd+1

)
.

Then, P(σi+1 − σi > κiε) → 0 because µi+1/µi → ∞, as desired. "
Next, we want to show that the balls from different mutation types become nested, as in

Fig. 2. That is, for any i ≥ 1 and j > i, we have P(σj < σ
(2)
i ) → 1, meaning that a type j mutation

appears before a second type i mutation can appear. We first prove the case when i = 1 in
Lemma 9, assuming the same hypotheses as in Theorem 2.

Lemma 9. Suppose (2) holds, and suppose µ1 ≫ α/N(d+1)/d and µ2 ≫ (Nµ1)d+1/αd. Then:

(i) For all t > 0, P
(
σ2 + κ2t < σ

(2)
1

)
→ 1.

(ii) For every j ≥ 2, P
(
σj < σ

(2)
1

)
→ 1.

Proof. To prove (i), let ε> 0. It was shown in the proof of Theorem 2 that
Nµ1(σ2 − σ1) →p 0. Also, the assumption µ2 ≫ (Nµ1)d+1/αd implies Nµ1κ2t → 0. Thus,
Nµ1(σ2 − σ1) + Nµ1κ2t →p 0. Therefore, for all sufficiently large N,

P(Nµ1(σ2 − σ1) + Nµ1κ2t < ε) > 1 − ε.

On the other hand, because Nµ1(σ (2)
1 − σ1) has an Exponential(1) distribution,

P(Nµ1
(
σ

(2)
1 − σ1

)
> ε) = e−ε > 1 − ε.

Combining the above, we find

P
(
σ2 + κ2t < σ

(2)
1

)
≥ P(Nµ1(σ2 − σ1) + Nµ1κ2t < ε< Nµ1

(
σ

(2)
1 − σ1

)
) > 1 − 2ε.
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This proves (i). For (ii), by the proof of Theorem 2 again, we have Nµ1(σi − σi−1) →p 0 for
every i ≥ 2. Thus,

Nµ1(σj − σ1) =
j∑

i=2

Nµ1(σi − σi−1) →p 0,

and the rest of the proof is essentially the same as that of (i); we just replace Nµ1(σ2 − σ1) +
Nµ1κ2t with Nµ1(σj − σ1). "

In Lemma 10, we establish that σ (2)
j − σj > κjδ with high probability. Then, for k > j, since

(σk − σj)/κj →p 0 by Lemma 8, it will follow that σk − σj < κjδ with high probability. It will
then follow that P

(
σk < σ

(2)
j

)
→ 1, which we show in Lemma 11.

Lemma 10. Suppose (2) holds, and suppose µ1 ≫ α/N(d+1)/d. Let i ≥ 2. Define the events
A := {σi − σi−1 < κit} and B :=

{
σi + κiδ< σ

(2)
i−1

}
. Then, for any fixed t > 0 and δ > 0, for

sufficiently large N we have

P
(
σ

(2)
i − σi > κiδ

)
≥ exp

(
− γd

d + 1
[(t + δ)d+1 − td+1]

)
− P(Ac) − P(Bc).

Proof. Reasoning as in the proof of Lemma 1, we have

P
(
σ

(2)
i − σi > κiδ

)
=E

[
exp

(
−
∫ κiδ

0
µiYi−1(s + σi) ds

)]
. (17)

Because of µ1 ≫ α/N(d+1)/d and (2), for sufficiently large N we have κi(t + δ) < L/(2α). Thus,
on the event A, we have κiδ + (σi − σi−1) < L/(2α). Therefore, on the event A ∩ B, for all
s ∈ [0, κiδ] we have, for sufficiently large N,

Yi−1(s + σi) = γdα
d(s + σi − σi−1)d ≤ γdα

d(s + κit)d.

Thus, for sufficiently large N,

exp
(

−
∫ κiδ

0
µiYi−1(s + σi) ds

)
≥ exp

(
−
∫ κiδ

0
µiγdα

d(s + κit)d ds
)

1A∩B

≥ exp
(

−
∫ κiδ

0
µiγdα

d(s + κit)d ds
)

− 1Ac − 1Bc . (18)

It follows from (17) and (18) that, for sufficiently large N,

P
(
σ

(2)
i − σi > κiδ

)
≥ exp

(
−
∫ κiδ

0
µiγdα

d(s + κit)d ds
)

− P(Ac) − P(Bc)

= exp
(

−µiγdα
d

d + 1
[(κiδ + κit)d+1 − (κit)d+1]

)
− P(Ac) − P(Bc)

= exp
(

− γd

d + 1
[(t + δ)d+1 − td+1]

)
− P(Ac) − P(Bc),

as claimed. "
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In Lemma 11 we give sufficient conditions for P
(
σj < σ

(2)
i

)
→ 1 for j > i ≥ 1, which implies

that we obtain nested balls, as in Fig. 2.

Lemma 11. Assume µ1 ≫ α/N(d+1)/d, µ2 ≫ (Nµ1)d+1/αd, and µj ≪ µj+1 for j ≥ 2. Then,
for every i ≥ 1 and j > i,

P
(
σj < σ

(2)
i

)
→ 1. (19)

Proof. The result in (19) when i = 1 was proved in part (ii) of Lemma 9. To establish the
result when i ≥ 2, we will show that, for all i ≥ 2 and all ε> 0, there exists δ > 0 such that, for
sufficiently large N,

P
(
σ

(2)
i−1 > σi + κiδ

)
> 1 − ε, (20)

P
(
σ

(2)
i > σi + κiδ

)
> 1 − ε. (21)

Assume for now that i ≥ 2, and that (20) and (21) hold. Let ε> 0, and choose δ > 0 to satisfy
(21). Lemma 8 implies that if j > i then P(σj − σi < κiδ) > 1 − ε for sufficiently large N. It
follows that

P
(
σj < σ

(2)
i

)
≥ P

(
σ

(2)
i > σi + κiδ > σj

)
> 1 − 2ε

for sufficiently large N, which implies (19).
It remains to prove (20) and (21); we proceed by induction. The result (20) when i = 2 is

part (i) of Lemma 9. Therefore, it suffices to show that (20) implies (21), and that if (21) holds
for some i ≥ 2, then (20) holds with i + 1 in place of i.

To deduce (21) from (20), we first let ε> 0 and use Lemma 7 to choose t > 0 large enough
that

P(σi − σi−1 > κit) ≤ exp
(

− γd

d + 1
td+1

)
<
ε

3
.

Then choose δ > 0 small enough that (20) holds with ε/3 in place of ε for sufficiently large N,
and

exp
(

− γd

d + 1
[(t + δ)d+1 − td+1]

)
> 1 − ε

3
.

It now follows from Lemma 10, that for sufficiently large N,

P
(
σ

(2)
i > σi + κiδ

)
> 1 − ε

3
− ε

3
− ε

3
= 1 − ε,

so (21) holds.
Next, suppose (21) holds for some i ≥ 2. Let ε> 0. By (21), there exists δ > 0 such that, for

sufficiently large N,

P
(
σ

(2)
i > σi + κiδ

)
> 1 − ε

2
.

By Lemma 8 and the fact that µi ≪ µi+1, we have (σi+1 − σi)/κi + δ(κi+1/κi) →p 0. Thus, for
sufficiently large N,

P
(
σi+1 − σi

κi
+ κi+1δ

κi
< δ

)
> 1 − ε

2
,
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and therefore

P
(
σ

(2)
i > σi+1 + κi+1δ

)
≥ P

(
σ

(2)
i − σi > κiδ > σi+1 + κi+1δ − σi

)
> 1 − ε,

which is (20) with i + 1 in place of i. "
We now find the limiting distribution of distances between mutations of consecutive types.

Lemma 12. Suppose µ1 ≫ α/N(d+1)/d, µ2 ≫ (Nµ1)d+1/αd, and µj ≪ µj+1 for j ≥ 2. Then,
for all s > 0,

P
(

Dj+1

ακj+1
≤ s
)

→
∫ ∞

0
γd(t ∧ s)d exp

(

−γdtd+1

d + 1

)
dt. (22)

Proof. Define the event A := ⋂j
i=1{σj+1 < σ

(2)
i }. On the event A, the first type j + 1 muta-

tion appears before the second mutation of any type i ∈ {1, . . . , j}. By Lemma 11, we have
P(A) → 1. As a result, it will be sufficient for us to consider a modified version of our process
in which, for i ∈ {1, . . . , j}, only the first type i mutation is permitted to occur. Note that this
modified process can be constructed from the same sequence of independent Poisson processes
()i)∞i=1 as the original process. However, in the modified process, all points of)i after time σi
are disregarded. On the event A, the first j + 1 mutations will occur at exactly the same times
and locations in the original process as in the modified process. Therefore, because P(A) → 1,
it suffices to prove (22) for this modified process. For the rest of the proof we will work with
this modified process, which makes exact calculations possible.

Let K ∈ (s, ∞) be a constant which does not depend on N. Our assumptions imply that
µj+1 ≫ µ1 ≫ α/N(d+1)/d. Thus, there is an NK such that for N ≥ NK we have κj+1t < L/(2α)
for all t ∈ [0, K]. It follows that Yj(s) = γdα

d(s − σj)d for s ∈ [σj, σj + κj+1K]. Therefore,
reasoning as in the proof of Lemma 7, we get

P(σj+1 − σj > κj+1t) = exp

(

− γd

d + 1
td+1

)
. (23)

It follows that, for N ≥ NK , the probability density of (σj+1 − σj)/κj+1 restricted to [0, K] is

f (t) := γdtd exp
(

− γd

d + 1
td+1

)
.

For N ≥ NK and t ∈ [0, K], conditional on the event {σj+1 − σj = κj+1t}, the location of the
first type j + 1 mutation is a uniformly random point on a d-dimensional ball of radius ακj+1t,
which means

P
(

Dj+1

ακj+1
≤ s | σj+1 − σj

κj+1
= t
)

= 1{s>t} + γd(ακj+1s)d

γd(ακj+1t)d 1{s≤t} = 1{s>t} + sd

td
1{s≤t}.

It follows that, for N ≥ NK ,

P
(

Dj+1

ακj+1
≤ s
)

=
∫ K

0
f (t)

(
1{s>t} + sd

td
1{s≤t}

)
dt + P

(
Dj+1

ακj+1
≤ s,

σj+1 − σj

κj+1
> K

)

=
∫ K

0
γd(t ∧ s)d exp

(
−γdtd+1

d + 1

)
dt + P

(
Dj+1

ακj+1
≤ s,

σj+1 − σj

κj+1
> K

)
.
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Because (23) implies that

lim
K→∞

lim
N→∞

P
(

Dj+1

ακj+1
≤ s,

σj+1 − σj

κj+1
> K

)
= 0,

the result (22) follows by letting N → ∞ and then K → ∞. "
Proof of Theorem 5. Lemma 12 proves the case when k = j + 1, so assume that k ≥ j + 2.

The triangle inequality implies that

Dj+1 − (Dj+2 + · · · + Dk) ≤ Dj,k ≤ Dj+1 + (Dj+2 + · · · + Dk).

Suppose j + 2 ≤ i ≤ k. We know from Lemma 12 that Di/(ακi) converges in distribution to a
non-degenerate random variable as N → ∞. Because κj+1/κi → ∞ by the assumption in (9),
it follows that Di/(ακj+1) →p 0. Therefore,

(Dj+2 + · · · + Dk)/(ακj+1) →p 0.

Thus, Theorem 5 follows from Lemma 12 and Slutsky’s theorem. "

4.2. Proof of Theorem 6
Having found a limiting distribution for distances between mutations in the setting of

Theorem 2, we now prove a similar result in the setting of Theorem 4, where once the first
type l mutation appears, all subsequent mutations appear in nested balls.

We begin with a result that bounds σ (2)
l − σl away from zero with high probability, on the

time scale βl.

Lemma 13. Assume the same hypotheses as Theorem 4. Then, for all ε> 0, there is r > 0 such
that lim infN→∞ P

(
σ

(2)
l − σl > βlr

)
> 1 − ε.

Proof. Let ε> 0. Using Theorem 3, choose a large t > 0 so that

lim
N→∞

P(σl ≤ βlt) > 1 − ε

2
. (24)

Now set, as in the proof of Theorem 3,

g(s) := γ l−1
d (d!)l−1s(l−1)(d+1)

((l − 1)(d + 1))! .

It is clear that we can choose a small r > 0 so that

exp
(

−
∫ t+r

t
g(s) ds

)
> 1 − ε

2
. (25)

Having chosen t > 0 and r > 0, choose δ > 0 so that [t, t + r] ⊆ [δ, δ−1]. Then, for any λ> 0,
define, as in Lemma 4, the event

B := Bl−1
N

(
δ, λ, g,

1
µlβl

)
=
{

g(u)(1 − λ)
βlµl

≤ Yl−1(βlu) ≤ g(u)(1 + λ)
βlµl

, for all u ∈ [δ, δ−1]
}

.
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Now we calculate

P
(
σ

(2)
l − σl > βlr

)
=E

[
exp

(
−
∫ σl+βlr

σl

µlYl−1(s) ds
)]

≥E
[

exp
(

−
∫ σl+βlr

σl

µlYl−1(s) ds
)

1{σl≤βlt}1B

]
. (26)

Because Yl−1(s) is monotone increasing in s, on the event {σl ≤ βlt} ∩ B we have
∫ σl+βlr

σl

µlYl−1(s) ds ≤
∫ βl(t+r)

βlt
µlYl−1(s) ds ≤ (1 + λ)

∫ t+r

t
g(s) ds.

Using the above and (26), we have

P
(
σ

(2)
l − σl > βlr

)
≥ exp

(
−(1 + λ)

∫ t+r

t
g(s) ds

)
P({σl ≤ βlt} ∩ B).

Now take N → ∞. Using that P(B) → 1 as shown in the proof of Theorem 3, and using (24),
we have

lim inf
N→∞

P
(
σ

(2)
l − σl > βlr

)
≥ exp

(
−(1 + λ)

∫ t+r

t
g(s) ds

)
· lim inf

N→∞
P(σl ≤ βlt)

> exp
(

−(1 + λ)
∫ t+r

t
g(s) ds

)(
1 − ε

2

)
.

Since λ> 0 is arbitrary, (25) implies lim infN→∞ P
(
σ

(2)
l − σl > βlr

)
> (1 − ε/2)2 > 1 − ε,

completing the proof. "
Using Lemma 13, we prove an analog of Lemma 9 in the setting of Theorem 4.

Lemma 14. Assume the same hypotheses as Theorem 4. Then:

(i) For all t > 0, P
(
σl+1 + κl+1t < σ

(2)
l

)
→ 1.

(ii) For every k ≥ l + 1, P
(
σk < σ

(2)
l

)
→ 1.

Proof. Let ε> 0. Lemma 13 implies that there is r > 0 such that, for sufficiently large N,

P
(
σ

(2)
l − σl > βlr

)
> 1 − ε. (27)

Now note that (σl+1 − σl)/βl →p 0 by (15) in the proof of Theorem 4. Also, our assump-
tion that µl+1 ≫ 1/

(
αdβd+1

l

)
is equivalent to κl+1 ≪ βl. It follows that, for sufficiently large

N, P((σl+1 − σl + κl+1t)/βl < r) > 1 − ε. This estimate along with (27) imply that P
(
σl+1 +

κl+1t < σ
(2)
l

)
> 1 − 2ε for sufficiently large N. This proves the first statement. The second

statement is proved similarly, using instead that (σk − σl)/βl →p 0 by (15). "

At this point, we have proved that, for k > l, the first type k mutation occurs before σ (2)
l

with probability tending to 1 as N → ∞. This implies that in the setting of Theorem 4, we can

.���7�  ��/���� ������� 0������������
�
1/7.�����1/���
��	�2
�/������/:��7/���
��77

https://doi.org/10.1017/jpr.2022.120


A spatial mutation model with increasing mutation rates 1179

disregard the type 1, . . . , l − 1 mutations and regard the first type l mutation as the first type 1
mutation, and then prove Theorem 6 by following the same argument used to prove Theorem 5.

Proof of Theorem 6. Relabel the type l, l + 1, l + 2, . . . mutations as type 1, 2, 3, . . . muta-
tions, and repeat the arguments in Lemmas 7–12 and in the proof of Theorem 5. The only
difference is that we have to apply Lemma 14 instead of Lemma 9. Note that type l muta-
tions do not appear at the same rate as type 1 mutations, so we needed a different technique to
establish P

(
σj < σ

(2)
l

)
→ 1 for j > l. "
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