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A SPATIAL MUTATION MODEL WITH INCREASING MUTATION RATES
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Abstract

We consider a spatial model of cancer in which cells are points on the d-dimensional
torus 7 = [0, L]¢, and each cell with k — 1 mutations acquires a kth mutation at rate
k- We assume that the mutation rates uj are increasing, and we find the asymptotic
waiting time for the first cell to acquire kK mutations as the torus volume tends to infinity.
This paper generalizes results on waiting for £ > 3 mutations in Foo ef al. (2020), which
considered the case in which all of the mutation rates u; are the same. In addition, we
find the limiting distribution of the spatial distances between mutations for certain values
of the mutation rates.

Keywords: Mutation; cancer; spatial population model

2020 Mathematics Subject Classification: Primary 60J99
Secondary 60G5S5; 92D15; 92D25

1. Introduction

Cancer is often caused by genetic mutations which disrupt regular cell division and apop-
tosis, in which case cancerous cells divide much more rapidly compared to healthy cells. This
can happen, for example, as soon as several distinct mutations occur and dramatically disrupt
cell function. Thus, it is sometimes reasonable to model cancer as occurring after k distinct
mutations appear in sequence within a large body.

Mathematical models in which cancer occurs once some cell acquires k mutations date back
to the famous 1954 paper [1], which proposed a multi-stage model of carcinogenesis in which,
once a cell has acquired k£ — 1 mutations, it acquires a kth mutation at rate px. In this model,
the probability of acquiring the kth mutation during a small time interval (¢, 4 df) is

iy - pgt<!
(k—1)!

That is, the incidence rate of the kth mutation (at which point the individual becomes cancer-
ous) is proportional to 11147 - - - k. This means that cancer risk is proportional to both the
mutation rates and the (k — 1)th power of age. More sophisticated models, taking into account
the possibilities of cell division and cell death, were later analyzed in [6, 7, 9, 12, 13, 15, 17,
18, 24].

To model some types of cancer, it is important to also include spatial structure in the model.
In 1972, [25] introduced a spatial model of skin cancer now known as the biased voter model.
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At each site on a lattice, there is an associated binary state indicating whether the site is cancer-
ous or healthy. Each cell divides at a certain rate, and when cell division occurs, the daughter
cell replaces one of the neighboring cells chosen at random. The model is biased in that a can-
cerous cell spreads « > 1 times as fast as a healthy cell. Computer simulations for this model
were presented in [25], and the model was later analyzed mathematically [3, 4].

More recently, [5], building on earlier work in [8, 14], studied a spatial Moran model which
is a generalization of the biased voter model. Cells are modeled as points of the discrete torus
(Z mod L), and each cell is of type i € NU {0}. A cell of type i — 1 mutates to type i at rate
wi. Type i cells have fitness level (1 + s)i, where s > 0 measures the selective advantage of
one cell over its predecessors. Each cell divides at a rate proportional to its fitness, and then,
as in the biased voter model, the daughter cell replaces a randomly chosen neighboring cell.
The authors considered the question of how long it takes for some type 2 cell to appear. To
simplify the analysis, they introduced a continuous model where cells live inside the torus
[0, L]¢. This continuous stochastic model approximates the biased voter model because of the
Bramson—Griffeath shape theorem [3, 4], which implies that, conditioned on the survival of
the mutations, the cluster of cells in Z¢ with a particular mutation has an asymptotic shape that
is a convex subset of R?. In [5, Section 4], the authors used the continuous model to compute
the distribution of the time that the first type 2 cell appears, under certain assumptions on the
mutation rates.

We describe here in more detail this continuous approximation to the biased voter model.
The spread of cancer is modeled on the d-dimensional torus 7 := [0, L]d, where the points 0
and L are identified. Note that this is the continuous analog of the space (Z mod L)? considered
in [5]. We write N := L¢ to denote the volume of 7. Each point in 7 is assigned a type,
indicating the number of mutations the cell has acquired. At the initial time 7 =0, all points
in 7 are type 0, meaning they have no mutations. A so-called type 1 mutation then occurs at
rate 1 per unit volume. Once each type 1 mutation appears, it spreads out in a ball at rate «
per unit time. This means that ¢ time units after a mutation appears, all points within a distance
at of the site where the mutation occurred will have acquired the mutation. Type 1 points then
acquire a type 2 mutation at rate ¢, per unit volume, and this process continues indefinitely.
In general, type k mutations overtake type k — 1 mutations at rate p; per unit volume, and
each type k mutation then spreads outward in a ball at rate « per unit time. A full mathematical
construction of this process, starting from Poisson point processes which govern the mutations,
is given at the beginning of Section 3.

Let oy denote the first time that some cell becomes type k; [11] obtained the asymptotic
distribution of o under a wide range of values for the parameters «, (1, and wy, extending
the results in [5], and also found the asymptotic distribution of o} for k > 3 assuming equal
mutation rates w; = p for all i. In this paper, we will further generalize the results in [11] for
k > 3 by considering the case where the mutation rates are increasing. We will see that several
qualitatively different types of behavior are possible, depending on how fast the mutation rates
increase.

We mention two biological justifications for assuming increasing mutation rates. A gen-
eral phenomenon in carcinogenesis was suggested in [16] where there is favorable selection
for certain mutations in genes responsible for repairing DNA damage. The increasing genetic
instability disrupting DNA repair, in the context of the present paper, would correspond to
increasing mutation rates. Also, our model would be of interest in the situation described in
[22], which hypothesized that cancer cells express a mutator phenotype, which causes cells to
mutate at a much higher rate, and proposed targeting the mutator phenotype as part of cancer
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therapy, possibly with the goal of further increasing the mutation rate to the point where the
mutations incapacitate or kill malignant cells.

As in [11], we assume that the rate of mutation spread « is constant across mutation types,
so that successive mutations have equal selective advantage. One possible generalization of our
model would be to allow each type i mutation to have a different rate of spread «;. However,
this more general model is non-trivial even to formulate unless («;){°, is decreasing, because if
ait+1 > o, then regions of type i + 1 could completely swallow the surrounding type i region.
Consequently, it would be necessary to model what happens not only when mutations of types
i+ 1 and i compete, but also how mutations of typesi+ 1 andj e {1, ..., i — 1} compete. We
do not pursue this generalization here.

After computing the limiting distribution of oy, we also find the limiting distribution of
the distances between the first mutation of type i and the first mutation of type j, where i < j.
The distribution of distances between mutations is relevant in studying a phenomenon known
as the “cancer field effect”, which refers to the increased risk for certain regions to acquire
primary tumors. These regions are called premalignant fields, and they have a high risk of
becoming malignant despite appearing to be normal [10]. The size of the premalignant field
is clinically relevant when a patient is diagnosed with cancer, because it will determine the
area of tissue to be surgically removed in order to avoid cancer recurrence. Surgical removal
of premalignant fields, put in the context of this paper, is akin to removing the region with at
least i mutations once the first type j > i mutation appears. The case in whichi=1 and j=2
was considered in [10], which characterized the sizes of premalignant fields conditioned on
{on =t} ind € {1, 2, 3} spatial dimensions. These ideas were applied to head and neck cancer
in [23].

We note that the model that we are studying in this paper independently appeared in the
statistical physics literature, where it is known as the polynuclear growth model. It has been
studied most extensively in d = 1 when all of the uj are the same [2, 19, 20], but the model
was also formulated in higher dimensions in [21]. Most of this work in the statistical physics
literature focuses on the long-run growth properties of the surface, and detailed information
about the fluctuations has been established when d = 1. This is quite different from our goal of
understanding the time to acquire a fixed number of mutations.

In Section 2 we introduce some basic notation and state our main results, as well as some
heuristics explaining why these results are true. In Section 3 we prove the limit theorems
regarding the time to wait for X mutations, and in Section 4 we prove the limit theorems for the
distances between mutations.

2. Main results and heuristics

We first introduce some notation that we will need before stating the results. Given two
sequences of non-negative real numbers (ay)y._; and (by)y_,, we write:

ay ~ by if lim ay/by=1;
N—oo

ay L by if lim ay/by =0and ay > by if lim ay/by = oo;
N—o0 N—o0

ay < by if 0 <liminfay /by <limsup ay/by < 00;
N—o0 N—oo

ay < by if lim sup ay /by < 00.
N—o0
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We also define the following notation:

e If Xy converges to X in distribution, we write Xy = X.
o If Xy converges to X in probability, we write Xy —, X.
ey, denotes the volume of the unit ball in R¥.

e Foreachk>1andj> 1, we define

k —1/((k—1)d+k)
Br = (Na(k_”d I1 m) o K= ()T, ()

i=1

We explain how B and «; arise in Sections 2.3 and 2.5, respectively.

e oy denotes the first time a mutation of type k appears, and a,iz) denotes the second
time a mutation of type k appears. More rigorous definitions of o} and o,fz) are given

in Sections 3 and 4, respectively.

All limits in this paper will be taken as N — oco. The mutation rates (/,Ll‘)?i | and the rate of
mutation spread o will depend on N, even though this dependence is not recorded in the nota-
tion. Throughout the paper we will assume that the mutation rates ()72, are asymptotically

increasing, i.e.
P S22 SU3S 2

2.1. Theorem 1: Low mutation rates

Assume

o Wi .
M1<<]Wandz—>c,e(0,oo]forallze{1,...,k}.

The first time a mutation of type 1 appears is exponentially distributed with rate Nui. The
maximal distance between any two points on the torus 7 = [0, L]¢ is v/dL/2. Also note that
L=N'"4 where N is the volume of 7. Consequently, once the first type 1 mutation appears, it
will spread to the entire torus in time x/?ZL/ Qa)= Jdni/d /(2a). Hence, as noted in [11], the
time required for a type 1 mutation to fixate once it has first appeared is much shorter than o
precisely when N'/¢ /o <« 1/(N 1), which is equivalent to | < o/ N@+D/d,

Now, because of the second assumption w;/u; — ¢; € (0, co], mutations of types i€
{2,...,k} appear at least as fast as the first mutation. If ¢; < oo, then the waiting
times o1 and o; —o;—1 are on the same order of magnitude. Because we have op ~
Exponential(Nu cy), it follows that o; — o;_1 is also exponentially distributed and that o; —
oi—1 ~ Exponential(N 1 c;). Otherwise, if ¢; = oo, then the first type i mutation appears so
quickly that its waiting time o; — 0;_1 is negligible as N — co. Putting everything together
gives us the following theorem. This result is a very slight generalization of [11, Theorem 1],
and is proved by the same method.

Theorem 1. Suppose (2) holds, and ju1 < a/NtV/4 Suppose that, for all i€ {1, ..., k),
we have pi/u1 — c; € (0, o0o]. Let Wy, ..., Wi be independent random variables with W; ~
Exponential(c;) if ¢c; < 00 and W; =0if ¢; = 00. Then Nuoxy = Wi + - - - + Wy

Figure 1 illustrates that once a type i mutation appears, it quickly fills up the whole torus,
and then a type i + 1 mutation occurs.
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FIGURE 1. Mutations transition from type i to type i + 1. Higher mutation types are colored darker than
lower mutation types.

2.2. Theorem 2: Type j > 2 mutations occur rapidly after o

Assume
(Npp)*!

1> > . 3)

o
N(d+D/d’

In contrast to Theorem 1, the assumption z¢1 > o/N“@*1D/4 means that the time it takes for type
1 mutations to spread to the entire torus is much longer than o7. As a result, there will be many
growing balls of type 1 mutations before any of these balls can fill the entire torus. However, if
mutations of types 2, 3, ..., k appear quickly after the first type 1 mutation appears, then the
time to wait for the first type k mutation will be close to the time to wait for the first type 1
mutation. We consider here the conditions under which this will be the case.

First, consider the ball of type 1 cells resulting from the initial type 1 mutation at time o7.
Assuming ¢ is small enough that, by time o7 + ¢, the ball has not started overlapping itself by
wrapping around the torus, the ball will have volume y,(f)? at time 7. Then the probability
that the first type 2 mutation appears in that ball before time 7 is

t
1 —exp| — / ugyd(ar)d dr)=1—-exp| — vd /Lz()ldtd+1 . 4)
0 d+1

It follows that the first time a type 2 mutation occurs in this ball is on the order of
(uzad)_l/(d“). Hence, whenever (,ugad)_l/(d“) & 1/(Nu1), which is equivalent to the sec-
ond assumption in (3), it follows that oo — o7 is much quicker than oq. From this heuristic,
we see that Nuy(o2 — o1) —p 0. Repeating this reasoning with types j — 1 and j in place of
types 1 and 2, we see that o; — 0j_1 is much quicker than o7 when (ujad)’l/(“l) <L 1/(Nuy),
or, equivalently, 1t; > (Nu D41 /a? . However, this follows from the second assumption in (3)
because of (2). Hence, we also have Nui(oj — 0j_1) —p 0. Putting everything together, when
N is large,

Nuior =Nuior +Nui(op — o) + - - -+ Nui(ox — op—1) * Nuyoy.
This gives us the following theorem. We note that the k = 2 case was proved in [5, Theorem 3]

using essentially the same reasoning as above.

Theorem 2. Suppose (2) holds. Suppose iy > /N9 and s > (N Ja?. For all
k>2, Nujox = W, where W ~ Exponential(1).

A pictorial representation is given in Fig. 2, where the nested circles correspond to mutations
of types 1, ..., kfork=4.

2.3. Theorem 3: Typej € {1, ..., k — 1} mutations appear many times
Assume

o 1
m1 > IW’ g << oﬁd’B—dH (@)

k—1
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FIGURE 2. Once the first type 1 mutation appears, the type 2, 3, and 4 mutations all happen quickly.
Higher mutation types are colored darker than lower mutation types.

As in Theorem 2, the first assumption ensures that o is shorter than the time it takes for type
1 mutations to fixate once they appear. The second assumption ensures that all mutations of
types up to k do not appear too quickly, so that we are not in the setting of Theorem 2. In
particular, note that when k = 2, we have f;_; = (N, m)’l, and the second assumption reduces
to w2 < (Vi) /a?. When (5) holds, for j € {2, ..., k} there will be many small balls of
type j — 1 before any type j mutation appears. In this case, we will be able to use a ‘law of
large numbers’ established in [11] to approximate the total volume of type j — 1 regions with
its expectation.

To explain what happens in this case, we review a derivation from [11]. We want to define
an approximation v;(#) to the total volume of regions with at least j mutations at time . We set
vo(t) = N. Next, let # > 0. For times r € [0, t], type j mutations occur at rate u;v;—1(r), and these
type j mutations each grow into a ball of size y (a(t — )4 by time ¢. Therefore, we define

t
V(1) = /0 wvi—1(Pyale(t — r)? dr.

Note that this gives a good approximation to the volume of the type j region because we have
many mostly non-overlapping balls of type j. In [11] it is shown using induction that

_ Vé@ﬂy / id j(d+1)
Vj(t)—m EM, No/¥ ,

which gives us the approximation

t
Poy > 1) ~ exp(— / WiVe—1(r) dr)
0

k—1 k—1 k

Ya__ @Y (k=1)d (k= 1)d-+k
= —_— i |V t .
ex"( = navir| L e

i=1
It will follow that if we define B as in (1), then we have the following result.

Theorem 3. Suppose (2) holds. Let k>2, and suppose > a/NV/ and 1, «
1/(@?Bt ). Then, for t > 0,

k=1, 1\k—1
Ya (@) t(kl)d+k).

P> i) = eXp(‘((k "D+

https://doi.org/10.1017/jpr.2022.120 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2022.120

A spatial mutation model with increasing mutation rates 1163

FIGURE 3. Mutations of types 1, 2, and 3 appear in succession. Higher mutation types are colored darker
than lower mutation types.

When we have equal mutation rates (i.e. u; = p for all i), the result above is covered by [11,
Theorem 10, part 3]. The form of the result and the strategy of the proof are exactly the same
in the more general case when the mutation rates can differ. Theorem 3 is illustrated in Fig. 3
for k=3.

2.4. Theorem 4: An intermediate case between Theorems 2 and 3
Assume 1 > o/N@TD/_ We first define

adp

[ := max {jZZ: wj <<
i

1
—{Hll . (6)

It follows from (2) that if u; < 1/(0tdﬂ;1_+11), then ;1 < 1/(01‘1/3;1:1), which by Lemma 2

below implies that u; 1 < 1/ ((xd ﬂjfj_‘zl). It follows that

1 1
I=max 1j>2: ur < , m3 K ey WK ——7 1 @)
{ adﬂld-Fl adﬂzdﬂ “dﬂﬁ—ll
Intuitively, [ is the largest index for which mutations of types 1,2, ..., [ behave exactly

as in Theorem 3. The definition of / in (6) omits the possibility /=1, since Bo is unde-
fined. However, if we define /=1 when the set over which we take the maximum in (6) is
empty, then Theorem 4 below when [ =1 is the same as Theorem 2. On the other hand, if
lelk,k+1,...}U{oo}, then by (7) we have u; < 1/(ad/3,‘ffll), in which case Theorem 3

applies. Hence, we assume [ € {2, ...,k — 1} and

M1 > ——- (®)

adﬁld-‘rl

The situation in Theorem 4 is a hybrid of Theorems 2 and 3. A mutation of type
je{l, ..., -1} takes a longer time to fixate in the torus than the interarrival time o; — 0j_.
As aresult, if je {2, ..., 1}, there will be many mostly non-overlapping balls of type j — 1
before time o;. Using this fact, we proceed as in Theorem 3 and find limy_, o P(07 > ;7). Next,
our assumption in (8) places us in the regime of Theorem 2; all mutations of types/+ 1, ...,k

happen so quickly that for all ¢ > 0 we have P(oyx — 07 > B;¢) — 0. Then, combining these two
results yields the following theorem.

Theorem 4. Suppose (2) holds, and suppose 1> a/NYTV/4 Suppose also that |e
{2, ..., k— 1} and that 41> 1/ (B ). Then, fort > 0,

=1 I—1
va (@) t(ll)d+l>'

P(oy > Bit) — exp(— (—Dd <D
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In pictures, Theorem 4 looks like Fig. 3 for mutations up to type /. Then, once the first type
! mutation appears and spreads in a circle, all the subsequent mutations become nested within
that circle, similar to Fig. 2.

Remark 1. Theorems 1-4 cover most of the possible cases in which (2) holds. However, we
assume that either p©; < oc/N(d'H)/d or 1> ot/N(d'H)/d. In the case u xoc/N(d'H)/d, we
expect that at the time a type 2 mutation appears, there could be several overlapping type 1
balls whose size is comparable to the size of the torus, and we do not expect the limiting
distribution of o} to have a simple expression. Consequently, we do not pursue this case here.
We note that if 21 =< oo/N@*+D/4 and all mutation rates are equal (i.e. i; = u for all i), then it
is proven, as a special case of [11, Theorem 12], that N oy converges in distribution to a non-
degenerate random variable for every k > 1. Likewise, we do not consider the case in which,
instead of (8), we have p;11 =<1/ (adﬁldH). In this case we believe there could be several
overlapping type / balls at the time the first type / 4+ 1 mutation occurs, again preventing there
from being a simple expression for the limit distribution.

2.5. Distances between mutations

For 1 <i <}, define D;; to be the distance in the torus between the location of the first
mutation of type j and the location of the first mutation of type i. Also define D;41 := D it1.
Consider the setting of Theorem 2. We will assume a stronger version of (2):

Mo K3 K g KL -0 ©)]

Recall that the mutations appear in nested balls as in Fig. 2. Because the first type j + 1 muta-
tion will therefore appear before the second type j mutation with high probability, we can
calculate, as in (4), that

. d
P(ojr1 —oj >0~ exp<—%t‘i+l)

It follows that if we define «;11 as in (1), then

Yd
P(ojr1 —0j > Kjr1) = exp<—mfd+l>-

With this, we can calculate the approximate density f(¢) of (0j+1 — 0j)/kjy1. This allows us to

calculate
D; © D; OjL] — Oj
P( Jtl §s>%/ IP( AR A ]=t)f(t)dt.
OKjt1 0 OKjt1 Kj+1

The location of the first type j+ 1 mutation conditioned on oj;1 —0j =kjy1f is a uni-
formly random point on a d-dimensional ball of radius a;j;1t. This allows us to calculate
limy_s 00 P(Dj31 < akjy15). Next, because of (9), mutations of types j+2,j+3,j+4, ...
appear rapidly once the first type j + 1 appears. This means that Dj;» + - - - + Dj4 is small rel-
ative to Djy 1, and therefore that D; ; has the same limiting distribution as D; 1. These heuristics
lead to the following theorem.

Theorem 5. Suppose (9) holds. Suppose 1 > o/NY9TV/ gnd 115 > (Nul)d+1/ad. Suppose
1 <j < k. Then, for all s > 0,

D: 0 A+1
IP’( J-k < s) — / yd(t/\s)d exp<— Ye ) dt
aKjt1 0 d+1
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Recall the definition of / in (6). Theorem 4 is similar to Theorem 2 in that once the first type /
mutation appears, all the subsequent type / 4 1, [ 4+ 2, . . . mutations happen quickly. Therefore,
it is reasonable to expect that the type [, [+ 1, [+ 2, .. . mutations behave similarly to the type
1,2, 3, ... mutations in Theorem 2. Hence, analogous to (9), assume that

il K< 2 K 43 KL =00 (10)
We then obtain the following result.

Theorem 6. Suppose (10) holds, and suppose j11 > a/N9TV/4_ Define 1 as in (6), and suppose
also that | > 2 and that i+ > 1/(01‘1/31‘“'1). Suppose | <j < k. Then, for all s > 0,

D: 0 td+1
IP’( Ik Ss) — / yd(t/\s)d exp(—yd—) dt
QK1 ] 0 d+1

Remark 2. Theorems 5 and 6 hold in the settings of Theorems 2 and 4 respectively. In the set-
ting of Theorem 1, each type i > 1 mutation fills up the entire torus before a type i + 1 mutation
occurs, and so the first type i + 1 mutation appears at a uniformly distributed point on the torus,
independently of where all previous mutations originated. Therefore, the problem of finding
the distribution of the distances between mutations becomes trivial in this case. On the other
hand, in the setting of Theorem 3, type i mutations appear in small and mostly non-overlapping
circles before the first type i + 1 mutation appears. Thus, calculating the distribution of D;4
requires understanding not only the total volume of the type i region, but also the sizes and
locations of many small type i regions. We do not pursue this case here, but we conjecture that
because the first type i + 1 mutation is likely not to appear within the type i region generated
by the first type i mutation, the locations of the first type i and the first type i + 1 mutations
should be nearly independent of each other, as in the setting of Theorem 1.

3. Proofs of limit theorems for oy,

In this section we prove Theorems 1-4. We begin by introducing the structure of the torus
T =10, L4, following the notation of [11]. We define a pseudometric on the closed interval
[0, L] by dp(x, ¥) := min{|x — y|, L — |x — y|}. The d-dimensional torus of side length L will
be denoted by 7 =1[0, L]%. For x=(x', ..., x)eT and y=("', ...,y e T, we define a
pseudometric by

d
e—yl= | ) dixd, y)2.
i=1

The torus should be viewed as 7 modulo the equivalence relation x~y if and only if
|x —y| =0, or more simply 7 = (R (mod L))?. However, we will continue to write 7 =
[0, L]1¢, keeping in mind that certain points are considered to be the same via the equivalence
relation defined above. It will be useful to observe the following:

e We have dr(x,y) <L/2 for all x, y € [0, L]. As a result, the distance between any two
points x, y € T is at most

sup{lx —yl: x,yeT}=
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e Therefore, once a mutation of type j appears, the entire torus will become type j in time

maximal distance between any x, y€ 7 VdL

(1)

rate of mutation spread per unit time 20

We use |A| to denote the Lebesgue measure of some subset A of 7 or T x [0, 00), so that
N =L%=|T] is the torus volume. Each x € 7 at time ¢ has a type k € {0, 1, 2, . ..}, which we
denote by T'(x, ), corresponding to the number of mutations the site has acquired. The set of
type i sites is defined by x;(¢) := {x € T : T(x, t) =i}. The set of points whose type is at least i
is defined by

[e¢)
Yilt) = e T: T(x, = i}y = x(0).
J=1
At time ¢, we denote the total volume of type i sites by X;(¢) := |x;(¢)|, and the total volume of
sites with type at least i by Y;(¢) := [vi(#)|. The first time a type k mutation appears in the torus
can be expressed as oy = inf{r > 0: Yy (¢) > 0}.

Still following [11], we now explicitly describe the construction of the process which gives
rise to mutations in the torus. We model mutations as random space-time points (x, t) € 7 x
[0, 00). Let (l'lk),‘(x:’1 be a sequence of independent Poisson point processes on 7 x [0, 00),
where IT; has intensity . That is, for any space-time region A C T x [0, 00), the probability
that A contains j points of type k is e/ Al(ur]AlY /j). Each (x, t) € TIi is a space-time point
at which x € T can acquire a kth mutation at time ¢. We say that x mutates to type k at time
t precisely when x € xx—1(¢) and (x, t) € [1x. Once an individual obtains a type k mutation, it
spreads the type k mutations outward in a ball at rate o per unit time.

3.1. Proof of Theorem 1

In the setting of Theorem 1, once the first mutation appears, with high probability it
spreads to the entire torus before another mutation appears. The proof of Theorem 1 uses
[11, Theorem 1], which we restate below as Theorem 7. Theorem 1 is very similar to
Theorem 7 when j = 1. However, Theorem 7 requires u; < o/NUTD/d for all je {1, ..., k},
whereas Theorem 1 requires this condition only for j = 1. This is why Theorem 1 cannot be
deduced directly from Theorem 7, even though the proofs of the results are essentially the
same.

Theorem 7. ([11, Theorem 1].) Suppose p; < a/NY9tV/4 for ie(1,..., k—1}. Suppose
there exists je{l, ..., k} such that p; < o/NUFD/ gpg wi/mj— ci € (0, o] for all i€
{1,...,k}. Let Wy, ..., Wi be independent random variables such that W; has an expo-
nential distribution with rate parameter c; if ¢; <00 and W; =0 if ¢;=o00. Then Nujor =
Wi+ -+ W

Proof of Theorem 1. Let r:= max{j € {1, ..., k}:u; Su1}. Forallje{l, ..., r}, we have
M<K oc/N(d“)/d. By Theorem 7, Nujo, = Wy + - - - + W,.. If r =k, then the conclusion fol-
lows. Otherwise, r <k — 1, and by the maximality of r and (2), we have u;/u; — oo for all

le{r+1,...,k}. Then the result follows if we show that Nu(ox — 0,) —p 0. We have
k—1
0<Nui(or— o) =Nu1 )_ (011 —0)). (12)
Jj=r

We will find an upper bound for the right-hand side of (12). Fori > 1,lett; =inf{r > 0: Y;(t) =
N7} be the first time which every point in 7T is of at least type i. Define 7; :== t; — o;, which is
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the time elapsed between o; and when mutations of type i fixate in the torus. Also define 6; =
inf{r > 0: T1; N (T X [tj—1, t]) # @}, which is the first time there is a potential type i mutation
after ;_;. Observe that, because we always have o; < 6;,

Oj+1 = 0j S 041 = 03 = Gjpt — 0 +1; = 1;=1j + (Gj11 — 1))-

Also observe that, by (11), we have ?j < AN /(2a). Consequently, the right-hand side of

(12) has the upper bound
k—1 k—1 «/_ 1/d k—1
N n dN R
Nu1<2tj+2<q;+1 —t,)) < Npi(k=n)=——— +Nu1 Y Gpe1 = ).
Jj=r Jj=r j=r

The result follows if the right-hand side of the above expression converges to 0 in probability.
The first term tends to zero because 1] < oo/ N@+1D/4 The second term tends to zero because
Gj+1 — tj ~ Exponential(Npijy1), so Niw1(6j41 — ) ~ Exponential(1j11/p1) = 0. O

3.2. Proof of Theorem 2

Lemma 1. Let ty be a random time that is o(I1y, ..., I1;_1)-measurable and satisfies ty >
oj_1. Then
N
P(oj > ty) = IE|: exp(— / wiYi-1(s) ds>:|.
0j-1
Proof. Write G := o(I1y, ..., I1j_1). Define the set A:= {(x, r) € ¥;_1(r) x [0j_1, tn]},

and note that the Lebesgue measure of this set, which we denote by |A|, is a G-measurable
random variable. The event {o; > fy} occurs precisely when I1; NA = &. Let X be the num-
ber of points of IT; in the set A. Because I1; is independent of Iy, ..., ITj_, the conditional
distribution of X given G is Poisson(u;|A[). Therefore,

IN
]P’(Uj>tN|g)=P(X=0|g)=CXP(—Mj|A|)=eXP<—/

i1

wiYi—1(s) ds).

Taking expectations of both sides completes the proof. O

Proof of Theorem 2. Write N0y as a telescoping sum,

k

Nuiog =Nuio1 + ZN/M(G]‘ —0j—1).
=2

We have Nu1oq ~ Exponential(1). Hence, it suffices to show that, for each j > 2, the random
variable N 1(oj — oj_1) converges in probability to zero. Let ¢ > 0. Then, by Lemma 1,

t t/(Npi)+oj-1
P(Npi(oj —oj—1) > 1) =]P’<oj > — —i—aj]) =E|:exp<— / wiYi—1(s) ds)].
N/‘Ll 0j-1

We want to show that the term on the right-hand side tends to zero. By the dominated
convergence theorem, it suffices to show that as N — oo,

t/(Nui)+oj-1
/ w;jYi—1(s) ds — oo.
gi—1

7
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Notice that because w1 > a/N@tD/d for all sufficiently large N we have t/(Nu) <
N4 /(2a). Therefore, at time oj_1 +t/(Nu1), there is a ball of type j — 1 mutations of radius
a(t — oj_1) which has not yet begun to wrap around the torus and overlap itself. Hence, we
have Y;_1(s) > ydoed(s — oj,l)d for s € [0j_1, 0j—1 +t/(Nu1)], and therefore

t/(Nuy)+oj— t/(Nuy)+oj-1 4 4
/ wiYi—1(s)ds > / wjvaa®(s —oj_1)* ds
0,

i—1 0j-1
/(Nu) oad [\ 4!
:/ /Ljydadud du:%<—> .
0 d+1 \Nu

It remains to show that

d d+1
i t
Hjvax [ T — 00 as N — 0.
d+1 \Nu

For the above to hold, it suffices to have p; > (Nu 41 /e which holds due to the second
assumption in the theorem and (2). This completes the proof. U

3.3. Proof of Theorem 3

We recall the definition of S as in (1) of Section 2. In the setting of Theorem 3, S is the
order of magnitude of the time it takes for the kth mutation to appear.

Much of the proof of Theorem 3 will rely on [11, Lemma 9], which approximates a mono-
tone stochastic process by a deterministic function under a certain time scaling. In order to
apply this lemma, it is important to ensure that Yi(f) is well approximated by its expectation,
which is [11, Lemma 8].

Before proving Theorem 3, we state several lemmas, some of which are from [11]. First, we
need to ensure that the last assumption, ,ukadﬂgfll — 0, in Theorem 3 implies ukozdﬁfH — 0,
so that we are able to use part (ii) of Lemma 5 to approximate Y;_(Bxt) by its expectation.

Lemma 2. For k > 2, we have e < 1/(a?B8) if and only if jue < 1/ ().

Proof. By using the definition of g from (1), we get

k d+1
1 (k—1)d-+k 1 (k—1)d
l/«k<<ad’3—d+l<=>,bbk <<m Na l_[Mk
k

i=1

| k—1 d+1
k—=2)d+(k—1
3 Ml(c Yd+( )<<a_de+1<l_!Mi)

=

dd+1)k-2) k=t
(k=2)d+(k—1) o d+1 .
= My L S para Y (H '““l)
i=1

1 k—1 d+1
(k—2)d+(k—1) (k—2)d X
= M K A= G—T)] (N o [ “’)
i=1
— <L —
adﬁkj'l
as claimed. O
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We also need [11, Lemma 9], which is restated as Lemma 3. This lemma gives necessary
conditions under which a monotone stochastic process is well approximated by a deterministic
function.

Lemma 3. Suppose, for all positive integers N, (Yn(?), t > 0) is a non-decreasing stochastic
process such that E[Yy(t)] < oo for each t > 0. Assume there exist sequences of positive num-
bers (vn)y_, and (sn)y_, and a continuous non-decreasing function g > 0 such that, for each
fixed t > 0 and ¢ > 0, we have

Nli_)moo P(|Yn(snt) — E[Yn(snD]| > eE[Yn(sy)]) =0, (13)

and |
lim —E[Yy(syt)] = g(®). (14)

N—o00 VN

Then, for all ¢ > 0 and & > 0, we have
Nlim P(ung(t)(1 — €) < Yn(syt) < vng()(1 + &) forall te[8,8 ') =1.
—00

Next, we state a criterion which guarantees that, for fixed ¢ > 0, the probability P(oy > Bi?)
converges to a deterministic function as N — oo.

Lemma 4. For a continuous non-negative function g, a sequence (vn)y._, of positive real
numbers, and 8, € > 0, define the event

BTG, &, g, vv) = {g)(1 — &)vy < Yie1(Bru) < g)(1 4 e)vy, forall uel[s, s 1)

If(vN),‘i,ozl and g are chosen such that limy_, o ]P’(BkN_l(S, &g, vN)) =1 and limy_ o VN Bi Lk
exists, then

t
lim P(og > Bxt) = lim exp(—vNﬂkuk/ g(u) du).
N—oo N—o0 0

Proof. Suppose 8 <t < 8~!. We reason as in the proof of [11, Theorem 10]. The upper and
lower bounds from [11, (26) and (27)] are

t
P(oy > fif) < exP(‘.kaﬁkVN(l —¢) /5 g(w) du) +P(B1 6, €, g vn)°).

t
P(ox > Bit) = P(BY (8. &, g, vw)) exp(—w(l + &)Briuk /5 gu) du)

k=1, k=
Y @ sdk—=1)+k
dk— 1) + k) '

Taking N — oo and then ¢, § — 0, we get the desired result. O

We also need to approximate the expected volume of type k or higher regions, E[Y;(?)],
with a deterministic function, as well as making sure that Y;(¢) is well approximated by its
expectation. Lemma 5 is a restatement of [11, Lemmas 5 and 8]. It is important to note that for
this result, the time # may depend on N.

Lemma 5. Fix a positive integer k. Suppose ujadtd+1 — Oforalljef{l,...,k}. Also suppose
t <N /QQa). Then
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yi@n

(i) Setting vi(t) := m

k
(1_[ ,ui) Nk k@D e have E[Y ()] ~ vi(2).
i=1
k
(ii) If, in addition, we assume (H y,l->Na(k_1)dt(k_l)d+k — 00, then, for all ¢ > 0,

i=1

Aim P((1 = e)E[Y (0] = Yi(1) = (1 + )E[Y (D)) = 1.

Remark 3. Lemma 5 in [11] omits the necessary hypothesis < N'/¢/(2«). This hypothesis
ensures that a growing ball of mutations cannot begin to wrap around the torus and overlap
itself before time ¢, which is needed for the formula for E[A;_1(#)] in [11, (15)] to be exact.
This equation is used in the proof of [11, Lemma 5]. Note that the hypothesis r < N'/¢/(2a) is
also needed for [11, Lemma 8], because its proof uses [11, Lemma 5]. However, because it is
easily verified that this hypothesis is satisfied in [11] whenever these lemmas are used, all of
the main results in [11] are correct without additional hypotheses.

The next lemma states that if 1 > a/N@tD/4 then B; is much smaller than the time it
takes for a mutation to spread to the entire torus.

Lemma 6. Suppose 11 >> o/N9tV/4 and (2) holds. Then B < N4 Ja for any I € N.
Proof. By (2), we have uy, ..., u> a/N(d+1)/d. Thus

l

! o
[Tui> NI+
i=1

On the other hand by simplifying,

N/ . oy \(-Dd I o
,31<<T<:>N(¥ nMi>><W> <:>nﬂi>>1m.
i=1 i=1

This proves the lemma. O

Proof of Theorem 3. In view of Lemma 4, we will choose (v]\;);i,o:1 and a continuous

non-negative function g such that limy_, o vy Bk exists and P(Bf\,_l(ﬁ, &, &k, vN)) — 1 as
N — 00. We set vy = 1/(Bruk), and, as in the proof of [11, Theorem 10], set

yj—l(d!)k—lt(k—l)(dﬂ)

((k— D+ 1)
A lengthy calculation shows that Biuixvi—1(Bkt) = gk(f). On the other hand, by the last
assumption in the theorem, we have ,ukogdﬂ,‘fjll — 0. By Lemma 2, this is equivalent to
pad BT — 0. Because of (2), this implies that wja?(B)?! — 0 for all je{l, ..., k).
Also, because of Lemma 6, we have By < N 1/ d/(2a). Hence the hypotheses of Lemma 5

are satisfied, and by the first result in Lemma 5 applied to k — 1, it follows that vx_1(Bt) ~
E[Yr—1(Bkt)], which implies

gk(t) =

]\}Lmoo BritiE[Yi—1(Bkt)] = Nli_)moo Britivi—1(Bit) = gi(1).
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Hence, (14) of Lemma 3 is satisfied. A direct calculation gives

k=1
_ _ 1
L e ———
i=1 mre By

which by the second result of Lemma 5 is sufficient to give (13). Therefore, Lemma 3
guarantees that ]P’(leil_l(é , €, &k vN)) — 1 as N — oo. Then, Lemma 4 gives us

t
lim P(oy > Brt) = lim exp(—vN,Bkuk/ gi(u) du)
N—o00 N—o00 0

=exp<_ fl yi @)k Ty DD du)
o ((k=Dd+1)

=exp<— vi @) td(k—l)—i—k)
dk— 1)+ k!

completing the proof. O

3.4. Proof of Theorem 4

Now we turn to proving Theorem 4, which is a hybrid of Theorems 2 and 3. In particular,
we assume that there is some / € N such that the mutation rates w1, (2, . .., u; fall under the
regime of Theorem 3, and all subsequent mutation rates j4;+1, . . . , 4y are large enough that all
mutations after the first type / mutation occur quickly, as in Theorem 2.

Proof of Theorem 4. For ease of notation, set, for j € N and ¢ > 0,

y‘Jl;—l(d!)j—ltd(/‘—l)—&-j
dg—1D+n! )

fi() = exp(—
For ¢ > 0, we have the inequalities
P(o1 > Bir) < Plox > Bir) < P(oy > Bi(t — €)) + Ploy — o1 > Bie).
Taking N — oo and using Theorem 3 (noting that / > 2), we have
fil) < Jim Blo > Bin) <filt — &) + lim Plox — 01> pre).

Since f; is continuous, the result follows (by taking ¢ — 0) once we show that, for each fixed

e >0,
lim P(O’k — 0] > /318) =0. (15)
N—oo
Notice that because
k—1
Bie
_ C g >
{ok Gz>ﬁ18}_U {G]H %>
j=l
it suffices to show that, for all je{/, ..., k— 1}, P(oj+1 — 0; > Bi¢) — 0. By Lemma 1, we

have
Bie+oj

P(ojr1 —0j > Bie) = IE|: exp(— / wjr1Y;(s) ds)].
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Hence, by the dominated convergence theorem, to show that P(oj1 — o > &) — 0, it suffices
to show that ftngaj 14j+1Y;(s) ds — oo almost surely. By Lemma 6 we have B < N/ /a,
so Bie < N4 /(2a) for large enough N. That is, B does not exceed the time it takes for a

mutation to wrap around the torus. Hence, we have the lower bound Y;(s) > yaa(s — aj)d for
s € [0}, 07 + Bie], and

Bie+o;j

Pretos " 1)/d
/ wj+1Y;(s) dszf s 1vae(s — o) ds = kL
0

| | e A

By the second assumption in the theorem, we have ;1> 1/ (ad ﬂld+1). Because of (2),

we have wjr1 > 1/(a ( dﬂd+1) It follows that the right-hand side of (16) tends to infinity as
N — oo, which completes the proof. O

4. Proofs of limit theorems for distances between mutations

For eachj > 1, we define 0 ) to be the time at which the second type j mutation occurs, i.e.

6j(2) := inf{t > 0j: (x, 1) € I1j and x € ;1 (r) for some x € T'}.

Note that o® is defined to be the first time, after time oy, that a point of IT; lands in a region
of type j — 1 or higher. If this point lands in a region of type j — 1, then a new type j ball
will begin to grow. If this point lands in a region of type j or higher, then the evolution of the
process is unaffected. Also recall from (1) that «j := (ujozd)_l/ @+D),

4.1. Proof of Theorem 5

We begin with an upper bound for the time between first mutations of consecutive types.

Lemma 7. Assume > o/N9V/. Suppose i and j are positive integers. Then, for each
fixed t > 0, we have, for all sufficiently large N,

Yd MK+l td+1>

P(gjt1 _(7j>Kit)§eXp<_d+l "
1

Proof. Using Lemma 1, we have
oj+kKit
P(oj+1 — 0 > Kit) =E[GXP<—/ Hj+1Y;(s) ds)]
i
Because of 1 > a/N9@tD/ and (2), for all sufficiently large N we have «;t < L/(2a). Thus,
Yi(s) > ydad(s — crj)d for s € [0}, 0j + «;t]. Then,

(7j+Kl't

P(ojy1 —0j > kit) < exp(— / i1 )/dOld(S — aj)d ds)
0,

J

Kit
ool [ nsesra)
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d
i o
— exp<_M(Kit)d+l>

d+1
d+1
This completes the proof. (]

By Lemma 7, when jt1 > a/N@+D/4 the interarrival time o; — oj_; is at most the same
order of magnitude as ;. Lemma 8 further shows that if, in addition, p; < pjr1 <K pjgo <K - - -,
then mutations of type m > j appear on an even faster time scale.

Lemma 8. Assume 1 > a/N9tV/ Suppose j is a positive integer, and W< 1 K
mjr2 L -+ -. Then (o — 07)/kj —p 0 for every m > j.

Proof. Using (2), we get

m—1 m—1
Om — Oj _Z Oi+1 — Oj < Z Oi+1 — 0i
Kj — Kj ~ L ki
=J =

so it suffices to show that (o;41 — 0;)/k; —p0forallie {j,j+1,...,m—1}. Lete > 0. Using
Lemma 7, we have, for all sufficiently large N,

Yd Hit1 g41

P(ojyr1 — 0; > Kkie) <exp| — - — .
(0iy1 — 0 > Ki )< p( d+1 0 )
Then, P(cjy+1 — 0; > kje) — 0 because w;y1/pn; — 00, as desired. O

Next, we want to show that the balls from different mutation types become nested, as in
Fig. 2. Thatis, for any i > 1 and j > i, we have P(0; < al-(z)) — 1, meaning that a type j mutation
appears before a second type i mutation can appear. We first prove the case when i=1 in
Lemma 9, assuming the same hypotheses as in Theorem 2.

Lemma 9. Suppose (2) holds, and suppose i1 > o/N9TV/ and 15 > (N1t Jal. Then:

(i) Forall t > 0, P(0 + kot < 01(2)) - L
(ii) For every j > 2, P(oj < 01(2)) — L.

Proof. To prove (i), let ¢ >0. It was shown in the proof of Theorem 2 that
Npy(oz — 01) =, 0. Also, the assumption po > (N/L1)d+l/ad implies Nuikot — 0. Thus,
Nui(op — o1) + Nuikat — 5 0. Therefore, for all sufficiently large N,

P(Nui(op —o1)+ Nukot <e) > 1 —e.
On the other hand, because N ,ul(al(z) — o01) has an Exponential(1) distribution,
2 _ =
P(Npi(o)” —o1) >e)=e*>1—¢.

Combining the above, we find

HD(UZ + Kot < 0'1(2)) >P(Nui(op —o1)+Nuikot < e <N,u1(al(2) — U])) >1—2e.
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This proves (i). For (ii), by the proof of Theorem 2 again, we have Nu(o; — 0i—1) —, 0 for
every i > 2. Thus,

J
Npi(oj—o1)=Y_ Nui(oi — 0i-1) =0,
i=2

and the rest of the proof is essentially the same as that of (i); we just replace Nui(o2 — o1) +
Nuikot with Ny (oj — o). O

In Lemma 10, we establish that O’j(z) — 0j > k;6 with high probability. Then, for k > j, since

(ox — 0j)/kj —p 0 by Lemma 8, it will follow that o} — 0; < ;6 with high probability. It will

then follow that ]P’(ak < aj(z)) — 1, which we show in Lemma 11.

Lemma 10. Suppose (2) holds, and suppose 11 > a/NUHV/4. Let i > 2. Define the events
A:= {o;j —0i_1 <kit} and B := {cri + K8 < ai(z)l } Then, for any fixed t >0 and § > 0, for
sufficiently large N we have

P(o/” —0; > ;) > exp(—%[(r + 8)d+! — td+1]> — P(AS) — P(BS).
Proof. Reasoning as in the proof of Lemma 1, we have
Kid
]P)(ai(z) —0;> K,’5) = E|: exp(— / wiYi—1(s + oy) ds>:|. 17
0

Because of 1 > a/N(d“)/d and (2), for sufficiently large N we have «;(f + §) < L/(2«). Thus,
on the event A, we have «;§ 4+ (0, — gi—1) < L/(2a). Therefore, on the event A N B, for all
s € [0, k;6] we have, for sufficiently large N,

Yi1(s + 01) = ya@®(s + 0; — 01— 1) < yaa’(s + kir)?.

Thus, for sufficiently large N,

Kid K8
exp(— f wiYio1(s+o0y) ds) > exp(— f uivao® (s + kit)? ds) Lang
0 0

Kid
> exp(— / u,-ydoed(s + Kit)d ds) — 14 —1pe.  (18)
0

It follows from (17) and (18) that, for sufficiently large N,

Kid
P(ai(z) —0;> K,-S) > exp(— / wivaa(s + kin)? ds) —P(A®) — P(B°)
0

. d
= exp(— "d’:‘foi [(ki6 + ki)™ — (m)d“]) — P(A%) — P(BY)

= exp(— df T+ 8§t — rd“]) — P(A%) — P(B°),

as claimed. O
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In Lemma 11 we give sufficient conditions for P(oj < ‘71'(2)) — 1forj > i > 1, which implies

that we obtain nested balls, as in Fig. 2.

Lemma 11. Assume 11> a/NTD/4 1> (Nu)4* o, and i K g1 for j=2. Then,
foreveryi>1landj>1i,
P(oj < al@) — 1. (19)

Proof. The result in (19) when i = 1 was proved in part (ii) of Lemma 9. To establish the
result when i > 2, we will show that, for all i > 2 and all € > 0, there exists § > 0 such that, for
sufficiently large N,

]P’(oi(z)1 > 0; + I(,'(S) >1—¢, 20)

P(o” > 0; 4 k;8) > 1 — . Q1)

Assume for now that i > 2, and that (20) and (21) hold. Let ¢ > 0, and choose § > 0 to satisfy
(21). Lemma 8 implies that if j > i then P(0; — 0; < k;6) > 1 — ¢ for sufficiently large N. It
follows that

IP’(aj < ai(z)) > ]P’(ai(z) > 0; + K6 > aj) >1-—2¢

for sufficiently large N, which implies (19).

It remains to prove (20) and (21); we proceed by induction. The result (20) when i =2 is
part (i) of Lemma 9. Therefore, it suffices to show that (20) implies (21), and that if (21) holds
for some i > 2, then (20) holds with i + 1 in place of i.

To deduce (21) from (20), we first let ¢ > 0 and use Lemma 7 to choose ¢ > 0 large enough
that

P(o; — 0j_1 > kjt) < exp(—%t‘“‘l) < g

Then choose § > 0 small enough that (20) holds with ¢/3 in place of ¢ for sufficiently large N,
and

Vd d+1 _ d+1 €
— t+46 —t 1—-=.
eXP( d+1[(+) ])> 3

It now follows from Lemma 10, that for sufficiently large N,
P(ai(z) > 0 +Ki8) >l—=-—=-—-= =1-—g¢,

so (21) holds.
Next, suppose (21) holds for some i > 2. Let ¢ > 0. By (21), there exists § > 0 such that, for
sufficiently large N,

&
P(O‘i(z) >0; + K,-S) >1-— 7
By Lemma 8 and the fact that u; < (i1, we have (0j11 — 07)/k; + 8(kir1/k;) —p 0. Thus, for

sufficiently large N,
]P<Ui+1 —oi Ki+18 <8) o1 57
Ki Ki 2
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and therefore
]P’(ai(Z) > 0it1 + K,~+18) > P(Ui(z) —0j > Ki6 > 0j4] + Ki+10 — ai) >1—e¢,
which is (20) with i 4 1 in place of i. O
We now find the limiting distribution of distances between mutations of consecutive types.

Lemma 12. Suppose (11 3> /N4 1o (Nu)@ ! jad, and 1 < pjt1 for j > 2. Then,

foralls >0,
D; 00 Zd+1
P(f—“ < s) N / va(t A s)4 exp (— va ) dr. (22)
0

AKj+1 d+1

Proof. Define the event A := ﬂi.:l{o/ur 1< (Tl-(2)}. On the event A, the first type j + 1 muta-
tion appears before the second mutation of any type i € {1, ..., j}. By Lemma 11, we have
P(A) — 1. As aresult, it will be sufficient for us to consider a modified version of our process
in which, fori € {1, ..., j}, only the first type i mutation is permitted to occur. Note that this
modified process can be constructed from the same sequence of independent Poisson processes
(T2, as the original process. However, in the modified process, all points of IT; after time o;
are disregarded. On the event A, the first j 4+ 1 mutations will occur at exactly the same times
and locations in the original process as in the modified process. Therefore, because P(A) — 1,
it suffices to prove (22) for this modified process. For the rest of the proof we will work with
this modified process, which makes exact calculations possible.

Let K € (s, 00) be a constant which does not depend on N. Our assumptions imply that
M1 > [ > ot/N(dH)/d. Thus, there is an Nk such that for N > Ng we have k1t < L/(20)
for all € [0, K]. It follows that Yi(s) = ydozd(s — aj)d for s € [0}, 0j + kj+1K]. Therefore,
reasoning as in the proof of Lemma 7, we get

d
P(0j41 — 0j > Kjy11) =exp (—dJ/?td“) : (23)

It follows that, for N > Nk, the probability density of (oj;1 — 0})/«j11 restricted to [0, K] is

. d Yd 441
)= yat - ¢ .
f@® =y eXP( a1 )

For N > Nk and ¢ € [0, K], conditional on the event {oj;1 — 0j = kj1t}, the location of the
first type j + 1 mutation is a uniformly random point on a d-dimensional ball of radius akj1¢,
which means

Djyq Ojy] — Oj )/d(()lK'+1S)d s4
IP’( T <s| - f=t) =g+ ey = Ly + 1z
QK1 Kjt1 V(oK) t

It follows that, for N > Nk,

D: K 54 D: Ol — O
IP’(—’+1 §s):/ f(l)(l{s>z}+t—dl{ssz}> df+]P’< P, T >K>
0

(¥Kj+] OlKj+] Kj+1

K A4+l D: oLl — O
=/ yd(t/\s)dexp<— va )dt+P< it <s, it J >K>.
0 d—+1 aKj1 Kj+1
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Because (23) implies that

lim 1im P 2L < TG ) o,
K—o00o N—oo 0K Kj+1

the result (22) follows by letting N — oo and then K — ooc. O

Proof of Theorem 5. Lemma 12 proves the case when k =j + 1, so assume that k > j+ 2.
The triangle inequality implies that

Djy1 — (Djy2 + -+ -+ Dp) <Djy < Djt1 + (Djy2 + - - - + Dy).

Suppose j + 2 <i < k. We know from Lemma 12 that D;/(ak;) converges in distribution to a
non-degenerate random variable as N — oo. Because kj;1/k; — oo by the assumption in (9),
it follows that D;/(akjy1) —p 0. Therefore,

(Djy2 + - -+ Di)/(akjr1) = 0.
Thus, Theorem 5 follows from Lemma 12 and Slutsky’s theorem. O

4.2. Proof of Theorem 6

Having found a limiting distribution for distances between mutations in the setting of
Theorem 2, we now prove a similar result in the setting of Theorem 4, where once the first
type [ mutation appears, all subsequent mutations appear in nested balls.

We begin with a result that bounds al(z) — o7 away from zero with high probability, on the
time scale ;.

Lemma 13. Assume the same hypotheses as Theorem 4. Then, for all € > 0, there is r > 0 such

that lim infy_s oo ]P(Ul(z) — o] > ,Blr) >1—e¢.

Proof. Let ¢ > 0. Using Theorem 3, choose a large 7 > 0 so that

I
lim P(o; < 1——. 24
Nl)moo (o1 < Bit) > > (24)

Now set, as in the proof of Theorem 3,

)/é_l (d!)l—ls(l—l)(d+1)

86 = = T ha T )

It is clear that we can choose a small » > 0 so that

t+r e
exp(— / g(s) ds) >1-— 7 25)
t

Having chosen ¢ > 0 and r > 0, choose § > 0 so that [¢, t 4 r] C [, 8_1]. Then, for any A > 0,
define, as in Lemma 4, the event

B:= B’N‘I(&k,g, ! >={g(u)(l_)“) <Y By < SUED e s, 51]}.
wipi Biwi Birki
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Now we calculate

P(ol(z) —o1>fir) = E|:exp<— /

o +pir
> E[ exp (— / wiYi—1(s) dS) 1{015/311}13:| . (26)
0,

1

or+Bir

wiYi—1(s) ds>i|

Because Y;_1(s) is monotone increasing in s, on the event {o; < ;} N B we have

o1 +pir Bi(t+r) +r
f Ja¥i () ds < /,3 Ja¥i () ds < (14 ) / ¢(s) ds.
g 1t t

Using the above and (26), we have

t+r
P(e® — o> i) = exp<—(1 + ) / 4(s) ds> P({o1 < Bt} N B).
t

Now take N — oo. Using that P(B) — 1 as shown in the proof of Theorem 3, and using (24),
we have

t+r
liminf P(0,” — 0y > fyr) > exp<—(1 + ) / g(s) ds) -liminf P(o; < Byit)
N—oo ' N—oo

t+r e
>exp(—(1+)»)/ g(s) ds) (1 — 5)
t

Since A >0 is arbitrary, (25) implies liminfy_, oo ]P’(al(z) — o7 > ,BIr) >(1-— 8/2)2 >1—g¢,
completing the proof. (]

Using Lemma 13, we prove an analog of Lemma 9 in the setting of Theorem 4.

Lemma 14. Assume the same hypotheses as Theorem 4. Then:

(i) Forallt>0, P(o11 + k11 < ‘71(2)) - L

(ii) Foreveryk>1+1,P(op <o) — 1.

Proof. Let ¢ > 0. Lemma 13 implies that there is r > 0 such that, for sufficiently large N,
IP(O’I(2> — 07> ﬂ[r) >1—e. 27

Now note that (0741 —07)/B8; —p 0 by (15) in the proof of Theorem 4. Also, our assump-
tion that pzy1 > 1/ (adﬂld“) is equivalent to ;| < B;. It follows that, for sufficiently large
N, P((o141 — 01+ k1411)/B1 < r) > 1 — €. This estimate along with (27) imply that IP’(01+1 +
Kiy1t < Ul(z)) > 1 — 2¢ for sufficiently large N. This proves the first statement. The second
statement is proved similarly, using instead that (o — 07)/8; —p 0 by (15). O

At this point, we have proved that, for k > [, the first type k mutation occurs before 01(2)
with probability tending to 1 as N — oo. This implies that in the setting of Theorem 4, we can
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disregard the type 1, . .., [ — 1 mutations and regard the first type [ mutation as the first type 1
mutation, and then prove Theorem 6 by following the same argument used to prove Theorem 5.

Proof of Theorem 6. Relabel the type [, [+ 1, [+ 2, .. . mutations as type 1, 2, 3, ... muta-
tions, and repeat the arguments in Lemmas 7-12 and in the proof of Theorem 5. The only
difference is that we have to apply Lemma 14 instead of Lemma 9. Note that type / muta-
tions do not appear at the same rate as type 1 mutations, so we needed a different technique to
establish P(o; < 0>)) — 1 for j > 1. O
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