

Concept Paper

Comparison of Experimental and Simulated Separation Performance in Capillary Tube-in-Manifold Devices

Christopher Piccolo¹, Michael Keller², Daniel J. Czarnecki³, Thomas Austin²,
Graham Shelver², and James P. Grinias^{1,*}

¹Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028

²IDEX Health & Science, Rohnert Park, CA 94928

³IDEX Health & Science, Bristol, CT 06010

*Corresponding Author: James P. Grinias, grinias@rowan.edu

Keywords: Liquid Chromatography; Column Preparation; Microfluidics; Computational Fluid Dynamics

Abstract

17 A metal tube-in-manifold packed bed capillary column device, designed to overcome
18 common limitations associated with capillary LC separations is described. Experimental results
19 of initial packing tests with sub-3 μ m core-shell particles demonstrated efficiencies greater than
20 47,000 plates/m for a separation performed using the column device. Computational fluid
21 dynamics (CFD) modeling of the multicomponent separation used for this work was validated
22 against experimental LC results and the optimized model was able to effectively predict
23 component peak retention times. However, the accuracy of predicted efficiencies requires further

24 refinement. The tube-in-manifold design demonstrates that packed capillary columns with
25 cylindrical cross-sectional channel geometry and ultrahigh pressure, low dead volume fluidic
26 connections are achievable.

27

28 **1. Introduction**

29 The increase in efficiency observed in liquid chromatographic separations over the past
30 several decades has typically focused on decreasing particle diameter and increasing system
31 pressure limits [1–3]. However, challenges exist in exceeding current instrument limits of 1500
32 bar using traditional analytical-scale columns [4,5]. As pressures increase at high flow rates,
33 viscous heating occurs which can reduce chromatographic efficiency due to the formation of
34 radial thermal gradients. To achieve significantly higher pressures, accommodating longer
35 columns packed with smaller diameter particles, the use of capillary columns with smaller inner
36 diameters (i.d.'s) is most effective at minimizing the effects of these radial thermal gradients
37 [6,7]. However, this can lead to new challenges in instrument design, as the smaller volume
38 capillary columns can be more susceptible to extra-column broadening effects related to
39 injectors, connecting tubing, and detectors [8,9]. One approach that can overcome both obstacles
40 is the use of integrated microfluidic LC devices that closely couple sample introduction, the
41 separation column, and detection with minimal dead volume [10–14].

42 Several approaches to designing microfluidic LC columns have been described, including
43 packed particle beds [15], monolithic columns [16,17], and pillar arrays [18]. To access the
44 widest range of commercially available chromatographic separation modes, packed particle beds
45 are most desirable because the same stationary phases can be readily employed in the
46 microfluidic column channels. The biggest disadvantage to this approach is that particle packed

47 beds typically have the highest flow resistance of these column types, requiring “world-to-chip”
48 connections with high pressure limits in order to connect other instrument components.
49 Previously reported commercial options for fitting-based connections had pressure limits in the
50 150-690 bar range [19], while literature reports have demonstrated 500 bar limits for glass chips
51 [19] and pressures exceeding 1500 bar for titanium chips [20,21]. This latter description provides
52 a workable range that can fully utilize the current limits of commercial UHPLC pumps, although
53 it requires specialized fittings and precision setting of the connections to avoid excess dead
54 volume [21].

55 In this concept report, we explore the use of a new metal-based microfluidic packed bed
56 column format that is compatible with modern face-sealing tubing connections that are now
57 commonplace within UHPLC instrumentation [22]. The design and format of the device are
58 described and a separation achieved by packing the channel with sub-3 μm core-shell particles
59 [23–25] is demonstrated. Progress towards computational fluid dynamics (CFD) modeling [26]
60 to describe the separation performance that is observed experimentally and help inform future
61 manifold designs is also presented.

62

63 **2. Materials & Methods**

64 *2.1. Manifold Design and Manufacturing*

65 A schematic drawing of the capillary tube-in-manifold device is shown in **Figure 1**. To
66 fabricate the devices, a length of stainless steel tubing (grade 304, 27-gauge, regular wall –
67 0.0163” [410 μm] outer diameter (o.d.) x 0.0083” [210 μm] inner diameter (i.d.)) is placed
68 within a channel in a 316 stainless-steel supporting structure which includes bend radii greater
69 than ten times the i.d. of the tube. The tube is affixed within the channel-containing substrate

70 using a combination of Marine epoxy 314 resin with 102 hardener (TAP Plastics, San Leandro,
71 CA) and mechanical fasteners. In combination with a backplate of the same substrate material to
72 the primary manifold layer, the fasteners and epoxy firmly clamp and enclose the tubing in place.
73 This supports the internal tubing that contains the separation channel and ensures mechanical
74 strength and stability. A cross-sectional image of the tubing following the bonding of these layers
75 is shown in **Figure 1B**. The epoxy is only used to support the tubing in place and does not
76 actually come in contact with any mobile phase solvents. Extra tubing beyond the surface of the
77 manifold is then cut approximately flush and the entire surface is smoothed using a lapping
78 process. Counterbores for accepting inlet and outlet frits were placed at the inlet and outlet ports
79 of the tubing by post-bond machining using traditional machining techniques (**Figure 1C**).
80 Finally, removable fitting ports with #10-32 UNF-2B internal threads designed for MarvelXACT
81 tubing with integrated fittings (IDEX Health & Science, Oak Harbor, WA) were attached above
82 the inlet and outlet holes using #6-32 UNC-2B machine screws. These removable fitting ports
83 are aligned to the inlet and outlet ports using precision 1/8" diameter dowel pins and
84 corresponding holes to ensure good fluid path alignment. **Figure 1D** shows a photograph of the
85 fully integrated manifold device.

86

87 *2.2. Column Preparation and Characterization*

88 A capillary tube-in-manifold device containing a 0.2 x 150 mm channel (**Figure 1A**), was
89 packed with Halo C₁₈ 2.7 μ m 160 \AA core-shell particles (Advanced Materials Technology,
90 Wilmington, DE). A 25 mg/mL particle slurry in 1:1 acetone:acetonitrile (both HiPerSolv HPLC
91 grade, VWR, Radnor, PA) was sonicated for 10 minutes and then loaded into a high pressure
92 packing reservoir (**Figure S1**) that was connected to the inlet of the manifold device. Acetone

93 was also used as a pushing solvent for packing, which was initiated at 150 bar using a DSHF-300
94 Haskel pump (Burbank, CA). The packing pressure was increased to 1000 bar until the channel
95 was filled and then pressure was slowly released to minimize disruptions to the packed bed. The
96 0.018" diameter inlet and outlet frits consisted of 0.015" thick Bekipor ST 3AL3 stainless steel
97 mesh (Bekaert, Marietta, GA). The mesh was manually inserted into the counterbored holes in
98 the manifold (**Figure 1C**) using a custom tool (**Figure 2A**). A magnified image of one of these
99 frits cut and inserted is shown in **Figure 2B**.

100 Chromatographic efficiency was tested using an alkylphenone test mix consisting of
101 thiourea (Acros Organics, Morris Plains, NJ), acetophenone (Alfa Aesar, Ward Hill, MA),
102 propiophenone (Acros Organics, Morris Plains, NJ), and butyrophenone (Alfa Aesar, Ward Hill,
103 MA) at a concentration of 300 ppm (w/w) with the mobile phase as the diluent. The mobile
104 phase consisted of 55% acetonitrile in water (both HiPerSolv HPLC grade, VWR, Radnor, PA)
105 with 0.1% trifluoroacetic acid (Sigma-Aldrich, Saint Louis, MO). Tests were performed at 1.5
106 μ L/min with mobile phase flow generated from a nanoAcquity binary solvent manager (Waters,
107 Milford, MA). The pump was connected to a prototype 104 nL internal sample loop injector
108 which was then connected to the manifold channel inlet with a 0.025 x 100 mm Marvel XACT
109 connecting tube. Valve actuation was timed at 0.1 s to provide an approximate minimal injection
110 volume of 2.5 nL at the operating flow rate [8]. The column outlet was connected to a capillary-
111 scale LED-UV absorbance detector module described in [27] (Axcend LLC, Provo UT) with a
112 0.025 x 100 mm Marvel XACT tube coupled to a 0.025 x 50 mm PEEKsil tube (Trajan
113 Scientific, Ringwood, Australia) using a P-882 adapter (IDEX Health & Science, Oak Harbor,
114 WA) required because of different tubing outer diameters. Data were acquired using a home-built
115 Raspberry Pi data acquisition platform [28] and raw chromatograms were corrected for high

116 frequency noise with a digital frequency filter and baseline drift with a polynomial fit
117 background subtraction. Retention times and plate counts (also referred to as the total number of
118 theoretical plates, N) were calculated using an iterative statistical moments (ISM) algorithm [29]
119 in Igor Pro 6.0 (Wavemetrics, Inc., Lake Oswego, OR). This program was also used for plotting
120 chromatograms.

121

122 *2.3. CFD Simulation of Separation Performance*

123 A CFD model incorporating Darcian flow, column wall effects with differential stationary
124 phase porosity, sub-optimal fluid path geometries, operating backpressure, and the injection of
125 parameterized analyte, was constructed using the Darcian flow and transport of diluted species in
126 porous media modules of the COMSOL Multiphysics 6.2 simulation tool (COMSOL Inc.,
127 Burlington, MA). A model that incorporated flow rate, porosity, analyte concentration, and
128 retention time was developed and tested on cylindrical straight tube and wide radius curve tube
129 geometries. The input variables are listed in **Table S1**. Estimates for diffusion coefficients were
130 made using the Wilke-Chang equation with approximations made for the association constant of
131 acetonitrile based on the mobile phase used in this study [30]. The optimized model was then
132 validated against experimental LC results obtained using the tube-in-manifold device (**Figure 1**)
133 with respect to retention time, plate count, and skew using the same ISM algorithm.

134

135 **3. Results & Discussion**

136 The capillary tube-in-manifold device (**Figure 1**) consists of a stainless steel tube of a
137 given dimension sealed within a stainless steel manifold body that contains support structures to
138 guide the tube inlet and outlet to the surface, where face-sealing internal thread fittings can be

139 affixed to accommodate connecting tubing into and out of the device. This approach enables
140 cylindrical packing channels, which provide the highest cross-sectional symmetry and reduce on-
141 column band broadening [31]. Other approaches to achieving cylindrical channels for
142 microfluidic LC columns have required difficult alignment techniques (glass devices) [32] or
143 have had limited pressure ranges (embossed cyclic olefin copolymer devices) [33], both of
144 which are resolved with this design approach.

145 When preparing packed chromatographic beds in microfluidic devices, it is critical to
146 effectively design a particle retaining frit to ensure packed bed stability. Retaining structures [34]
147 or weirs [35] can be fabricated into the device, monolithic structures [36] or particles [32] can be
148 placed at the end of the separation channel, or a filter material can be placed at the outlet and
149 held in place using connecting tubing [20]. With the capillary tube-in-manifold devices described
150 here, a frit insertion approach enables the use of traditional stainless steel frit material placed
151 within the counterbored connection ports into and out of the separation channel (**Figure 1C**). An
152 insertion alignment tool (**Figure 2A**) enables direct placement of the bulk frit material above the
153 port, with the material inserted into the port using a fine point punch with applied manual
154 pressure. This approach permits particle bed stability with use of a material that is more closely
155 associated with traditional analytical scale columns than the aforementioned approaches to
156 trapping particles in microfluidic LC packed bed columns.

157 Preliminary efficiency tests of chromatographic beds prepared within the capillary tube-
158 in-manifold device were conducted to test general column performance with a generic packing
159 protocol and provide an empirical comparison to aid in the development of CFD simulations of
160 chromatographic separations using the devices. Experimental conditions were selected to provide
161 a retention factor around 5 for the most retained peak (butyrophenone) and then efficiency of this

162 peak was measured at a mobile phase flow rate of 1.5 $\mu\text{L}/\text{min}$ (observed as approximate van
163 Deemter minimum). In the experimental chromatogram shown in **Figure 3**, the plate count for
164 the butyrophenone peak was 7090 (**Table S2**), which correlates with a plate height of 21 μm
165 (reduced plate height of 7.8). To further improve efficiency, the use of smaller diameter particles
166 and optimized packing procedures utilizing higher pressures [20,21] will be explored in future
167 development of this column platform.

168 By using the chromatographic data, observed backpressure at the given flow rate and
169 mobile phase composition, and approximate estimates of stationary phase surface area and
170 particle porosities, the replication of the chromatographic separation *in silico* using CFD
171 simulation was pursued. Results from 3D simulation runs (**Figure S2**), showed that the
172 symmetrical wide radius tube-in-manifold design produced minimal flow gradients around each
173 bend (approximately 6% difference between inner and outer wall). Comparison of simulated
174 chromatographic results in the radial bend channel with those from equivalent straight tube
175 geometry (**Figure 3**) indicated less than ~2% difference in retention time and plate count for the
176 three retained analyte peaks (**Table S2**). Compared to the simulated models, the experimental
177 data demonstrated lower plate counts for the unretained void time marker and higher plate counts
178 for the retained peaks, especially propiophenone and butyrophenone, which were both more than
179 double the *in silico* values. Furthermore, the experimental data had more positive skew values
180 than the CFD peaks, designating higher tailing; some of the simulated peaks even demonstrated
181 negative skew (fronting). Based on the conditions used, it is unlikely that column overloading is
182 the cause of this observation and rather may be indicative of the impact of the interparticle
183 porosity values used in the simulation for bulk and wall regions. These values may not
184 effectively lead to the true flow velocities observed in a packed bed, which are typically far more

185 complex [37] than can be characterized with the current CFD model. The retention time
186 predictions between the CFD and experimental results were much closer (all less than 6%
187 difference) based on optimization of the Langmuir Adsorption coefficient used in the simulation
188 (**Table S1**). These observations indicate that further refinement of the model is needed to fully
189 predict the peak shape of the experimental results, most likely to better take into account extra-
190 column effects based on the observed trends. With improved correlation between the CFD and
191 experimental results, the ability to better predict efficiency trends with different tube geometries
192 that could be used for different integrated column functions can be explored prior to fabrication
193 and experimental testing, thus decreasing overall development cycle times.

194

195 **4. Conclusions & Future Directions**

196 In this concept study, a new capillary tube-in-manifold platform for LC separations was
197 described. With this design, microfluidic LC columns with cylindrical cross-sectional channels
198 and ultrahigh pressure world-to-chip fluidic connections using face-sealing fittings are
199 achievable. Within the connection ports, robust stainless steel frits can be readily placed to retain
200 particles within the chromatographic bed using materials similar to most commercial columns.
201 Experimental results of initial packing tests demonstrated efficiencies in excess of 47,000
202 plates/m (for retained butyrophenone peak). CFD modeling of the separation could effectively
203 predict retention times, although further refinement is needed to improve the accuracy of the
204 observed efficiency. From this concept of the column portion of a manifold, continued work will
205 focus on further integration of LC system components, such as an injector and/or a detector,
206 towards a platform that allows for capillary-scale separations at ultrahigh pressures with minimal
207 extra-column volumes.

208

209 **Declaration of Interests Statement**

210 M.K., D. J. C., T. A., and G.S. are employed by IDEX Health & Science, which is the assignee
211 for patents related to the technology described in this work. Partial funding from IDEX Health &
212 Science in support of this project was provided to C.P. and J.P.G. (Rowan University).

213

214

215

216 **Acknowledgements**

217 This work was supported by the Chemical Measurement and Imaging Program in the National
218 Science Foundation Division of Chemistry under Grant CHE-2045023 (to J.P.G.).

219

220 **References**

221 [1] F. Gritti, G. Guiochon, The current revolution in column technology: How it began, where
222 is it going?, *J. Chromatogr. A.* 1228 (2012) 2–19.
223 <https://doi.org/10.1016/j.chroma.2011.07.014>.

224 [2] R.E. Majors, Historical Developments in HPLC and UHPLC Column Technology : The
225 Past 25 Years, *LC-GC North Am.* 33 (2015) 818–840.

226 [3] K. Broeckhoven, G. Desmet, Advances and Innovations in Liquid Chromatography
227 Stationary Phase Supports, *Anal. Chem.* 93 (2021) 257–272.
228 <https://doi.org/10.1021/acs.analchem.0c04466>.

229 [4] R.E. Majors, Future Needs of HPLC and UHPLC Column Technology, *LC-GC Eur.* 28
230 (2015) 658–665. <http://www.chromatographyonline.com/future-needs-hplc-and-uhplc-column-technology-0>.

232 [5] K. Broeckhoven, G. Desmet, Advances and Challenges in Extremely High-Pressure
233 Liquid Chromatography in Current and Future Analytical Scale Column Formats, *Anal.*
234 *Chem.* 92 (2020) 554–560. <https://doi.org/10.1021/acs.analchem.9b04278>.

235 [6] J.W. Jorgenson, Capillary liquid chromatography at ultrahigh pressures, *Annu. Rev. Anal.*
236 *Chem.* 3 (2010) 129–150. <https://doi.org/10.1146/annurev.anchem.1.031207.113014>.

237 [7] L.E. Blue, E.G. Franklin, J.M. Godinho, J.P. Grinias, K.M. Grinias, D.B. Lunn, S.M.
238 Moore, Recent advances in capillary ultrahigh pressure liquid chromatography, *J.*
239 *Chromatogr. A.* 1523 (2017) 17–39. <https://doi.org/10.1016/j.chroma.2017.05.039>.

240 [8] J.P. Grinias, B. Bunner, M. Gilar, J.W. Jorgenson, Measurement and Modeling of Extra-

241 Column Effects Due to Injection and Connections in Capillary Liquid Chromatography,
242 Chromatography. 2 (2015) 669–690. <https://doi.org/10.3390/chromatography2040669>.

243 [9] G. Desmet, K. Broeckhoven, Extra-column band broadening effects in contemporary
244 liquid chromatography: Causes and solutions, TrAC Trends Anal. Chem. 119 (2019)
245 115619. <https://doi.org/10.1016/j.trac.2019.115619>.

246 [10] J.P. Grinias, R.T. Kennedy, Advances in and prospects of microchip liquid
247 chromatography, TrAC - Trends Anal. Chem. 81 (2016) 110–117.
248 <https://doi.org/10.1016/j.trac.2015.08.002>.

249 [11] D.A. Vargas Medina, E.V.S. Maciel, F.M. Lanças, Miniaturization of liquid
250 chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS
251 devices, TrAC - Trends Anal. Chem. 131 (2020) 116003.
252 <https://doi.org/10.1016/j.trac.2020.116003>.

253 [12] C.G. Warren, P.K. Dasgupta, Liquid phase detection in the miniature scale. Microfluidic
254 and capillary scale measurement and separation systems. A tutorial review, Anal. Chim.
255 Acta. 1305 (2024) 342507. <https://doi.org/10.1016/j.aca.2024.342507>.

256 [13] X. Yuan, R.D. Oleschuk, Advances in Microchip Liquid Chromatography, Anal. Chem.
257 90 (2018) 283–301. <https://doi.org/10.1021/acs.analchem.7b04329>.

258 [14] F. Haghghi, Z. Talebpour, A.S. Nezhad, Towards fully integrated liquid chromatography
259 on a chip: Evolution and evaluation, TrAC - Trends Anal. Chem. 105 (2018) 302–337.
260 <https://doi.org/10.1016/j.trac.2018.05.002>.

261 [15] A. Kecskemeti, A. Gaspar, Particle-based liquid chromatographic separations in

262 microfluidic devices - A review, *Anal. Chim. Acta.* 1021 (2018) 1–19.
263 <https://doi.org/10.1016/j.aca.2018.01.064>.

264 [16] M. Vázquez, B. Paull, Review on recent and advanced applications of monoliths and
265 related porous polymer gels in micro-fluidic devices, *Anal. Chim. Acta.* 668 (2010) 100–
266 113. <https://doi.org/10.1016/j.aca.2010.04.033>.

267 [17] R. Knob, V. Sahore, M. Sonker, A.T. Woolley, Advances in monoliths and related porous
268 materials for microfluidics, *Biomicrofluidics.* 10 (2016) 032901.
269 <https://doi.org/10.1063/1.4948507>.

270 [18] G. Rozing, Micropillar array columns for advancing nanoflow HPLC, *Microchem. J.* 170
271 (2021) 106629. <https://doi.org/10.1016/j.microc.2021.106629>.

272 [19] C. Lotter, J.J. Heiland, V. Stein, M. Klimkait, M. Queisser, D. Belder, Evaluation of
273 Pressure Stable Chip-to-Tube Fittings Enabling High-Speed Chip-HPLC with Mass
274 Spectrometric Detection, *Anal. Chem.* 88 (2016) 7481–7486.
275 <https://doi.org/10.1021/acs.analchem.6b01907>.

276 [20] M. Gilar, T.S. McDonald, F. Gritti, Experimental evaluation of chromatographic
277 performance of capillary and microfluidic columns with linear or curved channels, *J.*
278 *Chromatogr. A.* 1470 (2016) 76–83. <https://doi.org/10.1016/j.chroma.2016.10.004>.

279 [21] M. Gilar, T.S. McDonald, F. Gritti, G.T. Roman, J.S. Johnson, B. Bunner, J.D. Michienzi,
280 R.A. Collamati, J.P. Murphy, D.D. Satpute, M.P. Bannon, D. DellaRovere, R.A. Jencks,
281 T.A. Dourdeville, K.E. Fadgen, G.C. Gerhardt, Chromatographic performance of
282 microfluidic liquid chromatography devices: Experimental evaluation of straight versus
283 serpentine packed channels, *J. Chromatogr. A.* 1533 (2018) 127–135.

284 https://doi.org/10.1016/j.chroma.2017.12.031.

285 [22] J.J. Stankovich, F. Gritti, P.G. Stevenson, G. Guiochon, The impact of column connection
286 on band broadening in very high pressure liquid chromatography, *J. Sep. Sci.* 36 (2013)
287 2709–2717. https://doi.org/10.1002/jssc.201300175.

288 [23] G. Guiochon, F. Gritti, Shell particles, trials, tribulations and triumphs, *J. Chromatogr. A.*
289 1218 (2011) 1915–1938. https://doi.org/10.1016/j.chroma.2011.01.080.

290 [24] B. Bobály, J.L. Veuthey, D. Guillarme, S. Fekete, New developments and possibilities of
291 wide-pore superficially porous particle technology applied for the liquid chromatographic
292 analysis of therapeutic proteins, *J. Pharm. Biomed. Anal.* 158 (2018) 225–235.
293 https://doi.org/10.1016/j.jpba.2018.06.006.

294 [25] C. Luo, J.J. DeStefano, T.J. Langlois, B.E. Boyes, S.A. Schuster, J.M. Godinho,
295 Fundamental to achieving fast separations with high efficiency: A review of
296 chromatography with superficially porous particles, *Biomed. Chromatogr.* 35 (2021)
297 e5087. https://doi.org/10.1002/bmc.5087.

298 [26] Y.X. Wu, C.B. Ching, The theoretical study of the effect of packing heterogeneity on
299 HPLC by computational fluid dynamics, *Chromatographia.* 56 (2002) 679–686.
300 https://doi.org/10.1007/BF02492468.

301 [27] S.W. Foster, E.P. Gates, P.A. Peaden, S. V. Calugaru, W.R. West, M.L. Lee, J.P. Grinias,
302 Column selection considerations in compact capillary liquid chromatography, *J.*
303 *Chromatogr. A.* 1701 (2023) 464067. https://doi.org/10.1016/j.chroma.2023.464067.

304 [28] S.W. Foster, M.J. Alirangues, J.A. Naese, E. Constans, J.P. Grinias, A low-cost, open-

305 source digital stripchart recorder for chromatographic detectors using a Raspberry Pi, J.
306 Chromatogr. A. 1603 (2019) 396–400. <https://doi.org/10.1016/j.chroma.2019.03.070>.

307 [29] S. Hsieh, J.W. Jorgenson, Preparation and Evaluation of Slurry-Packed Liquid
308 Chromatography Microcolumns with Inner Diameters from 12 to 33 μ m, Anal. Chem. 68
309 (1996) 1212–1217. <https://doi.org/10.1021/ac950682m>.

310 [30] K. Miyabe, Estimation of molecular diffusivity in aqueous solution of acetonitrile by the
311 Wilke-Chang equation, J. Sep. Sci. 34 (2011) 2674–2679.
312 <https://doi.org/10.1002/jssc.201100385>.

313 [31] S. Khirevich, A. Höltzel, D. Hlushkou, U. Tallarek, Impact of conduit geometry and bed
314 porosity on flow and dispersion in noncylindrical sphere packings, Anal. Chem. 79 (2007)
315 9340–9349. <https://doi.org/10.1021/ac071428k>.

316 [32] K. Li, W. Hu, Y. Zhou, X. Dou, X. Wang, B. Zhang, G. Guo, Single-particle-frit-based
317 packed columns for microchip chromatographic analysis of neurotransmitters, Talanta.
318 215 (2020). <https://doi.org/10.1016/j.talanta.2020.120896>.

319 [33] L. Mats, G.T.T. Gibson, R.D. Oleschuk, Plastic LC/MS microchip with an embedded
320 microstructured fibre having the dual role of a frit and a nanoelectrospray emitter,
321 Microfluid. Nanofluidics. 16 (2014) 73–81. <https://doi.org/10.1007/s10404-013-1221-x>.

322 [34] S. Ehlert, L. Trojer, M. Vollmer, T. Van De Goor, U. Tallarek, Performance of HPLC/MS
323 microchips in isocratic and gradient elutionmodes, J. Mass Spectrom. 45 (2010) 313–320.
324 <https://doi.org/10.1002/jms.1719>.

325 [35] A.G. Chambers, J.S. Mellors, W.H. Henley, J.M. Ramsey, Monolithic integration of two-

326 dimensional liquid chromatography-capillary electrophoresis and electrospray ionization
327 on a microfluidic device, *Anal. Chem.* 83 (2011) 842–849.
328 <https://doi.org/10.1021/ac102437z>.

329 [36] S. Thurmann, L. Mauritz, C. Heck, D. Belder, High-performance liquid chromatography
330 on glass chips using precisely defined porous polymer monoliths as particle retaining
331 elements, *J. Chromatogr. A.* 1370 (2014) 33–39.
332 <https://doi.org/10.1016/j.chroma.2014.10.008>.

333 [37] S. Bruns, J.P. Grinias, L.E. Blue, J.W. Jorgenson, U. Tallarek, Morphology and separation
334 efficiency of low-aspect-ratio capillary ultrahigh pressure liquid chromatography columns,
335 *Anal. Chem.* 84 (2012) 4496–4503. <https://doi.org/10.1021/ac300326k>.

336

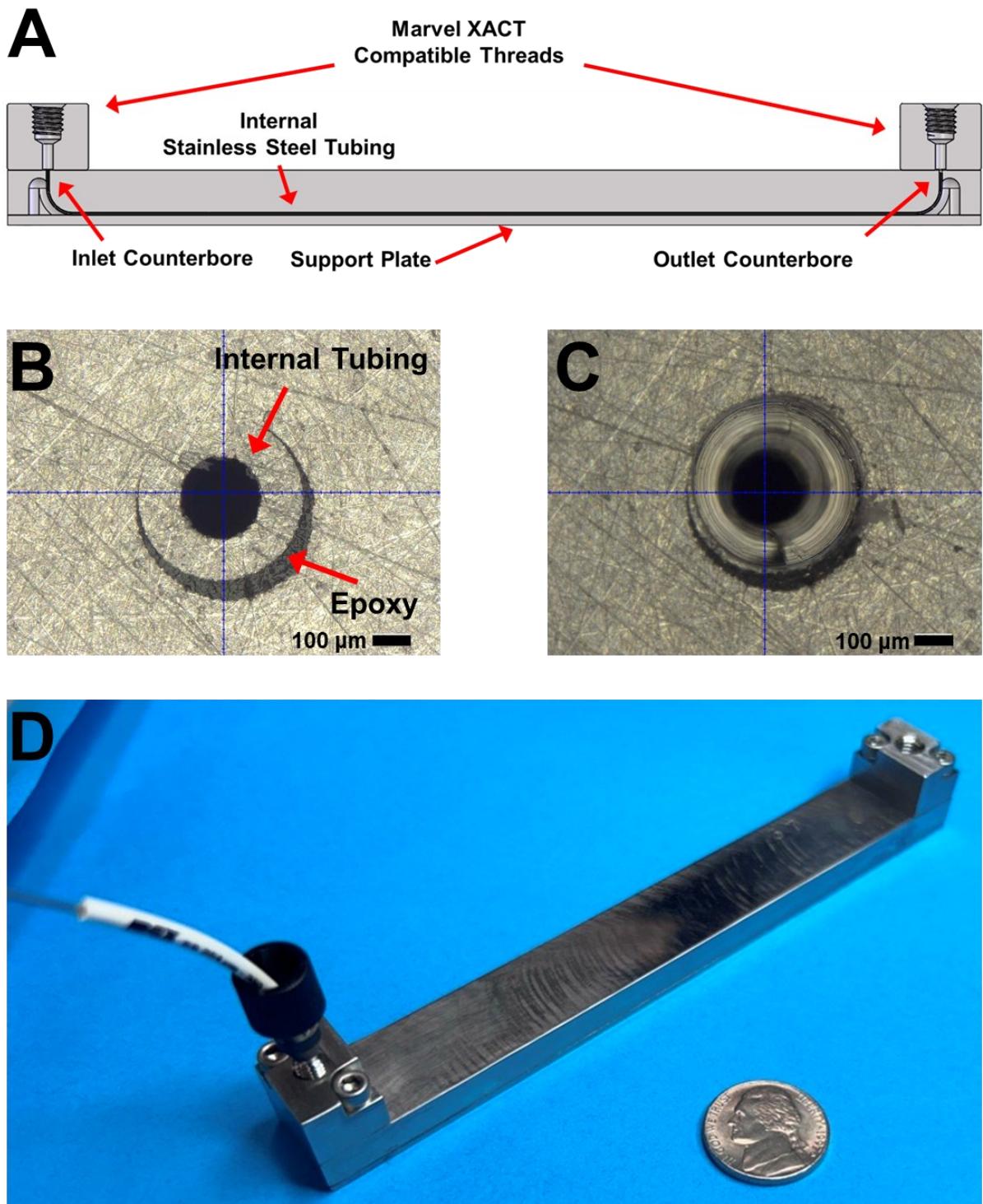
337

338 **Figure Captions**

339 **Figure 1.** A cross-sectional schematic drawing of the capillary tube-in-manifold device with
340 ports for face-sealing tubing connections into and out of the device is shown in (A). The cross-
341 sectional area of the embedded tubing and the surface counterbore for frit insertion within the
342 tubing are shown in (B) and (C), respectively. A photograph of the device with face-seal fitting
343 installed at the column inlet is shown in (D).

344

345 **Figure 2.** The insertion of frits into the capillary tube-in-manifold device involves use of a
346 centered frit punching device placed over the counterbores (A). Placement of a frit into the
347 counterbore is shown in (B).

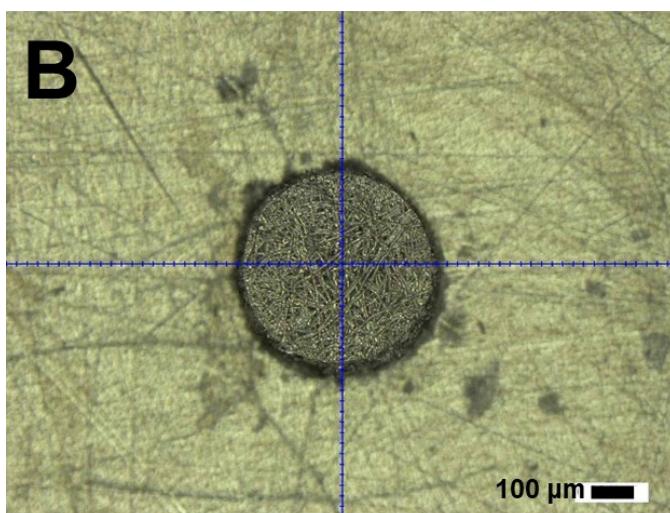
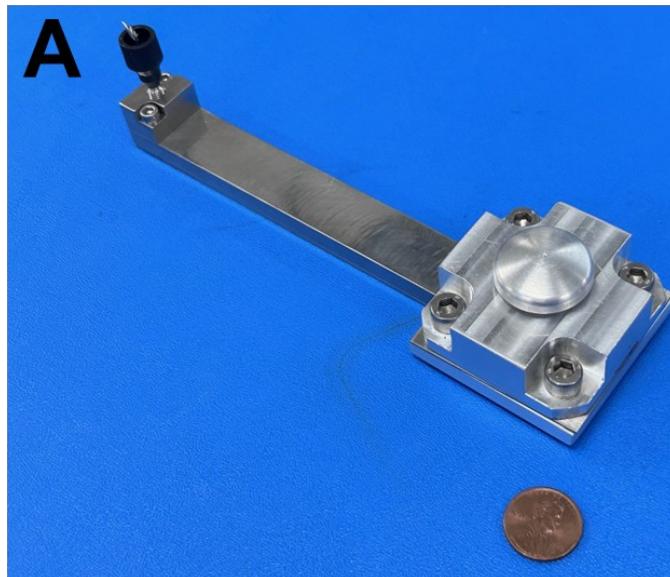

348

349 **Figure 3.** CFD simulation of chromatographic separation of test mixture using straight tube
350 (black dotted trace) and curved bend (blue dotted trace) geometries. Experimental chromatogram
351 using the capillary tube-in-manifold device (0.2 x 150 mm) is shown in the red trace.
352 Chromatographic figures of merit calculated using an iterative statistical moments algorithm are
353 shown in **Table S2**.

354

355

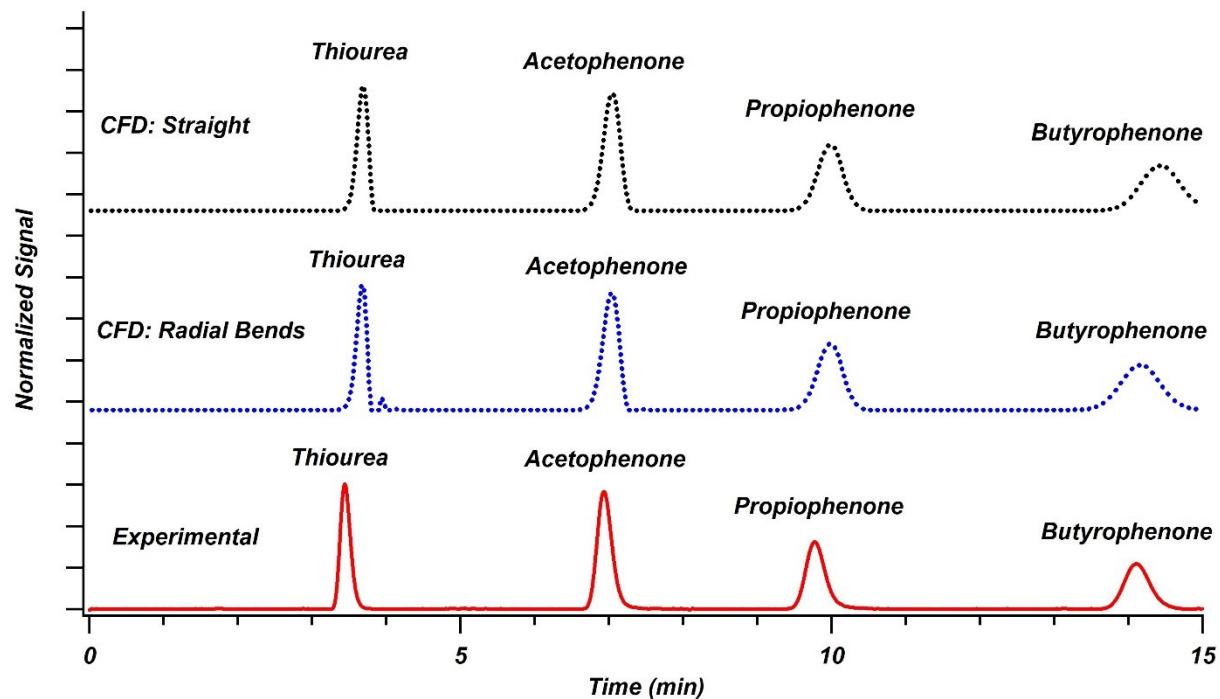
356 **Figure 1.**



357

358

359

361 **Figure 2.**


362

363

364

365

366 **Figure 3.**

367

368

369

370

371

Concept Paper

372

Comparison of Experimental and Simulated Separation Performance

373

in Capillary Tube-in-Manifold Devices

374

375 Christopher Piccolo¹, Michael Keller², Daniel J. Czarnecki³, Thomas Austin²,
376 Graham Shelver², and James P. Grinias^{1,*}

377 ¹Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028

378

²IDEX Health & Science, Rohnert Park, CA 94928

379

³IDEX Health & Science, Bristol, CT 06010

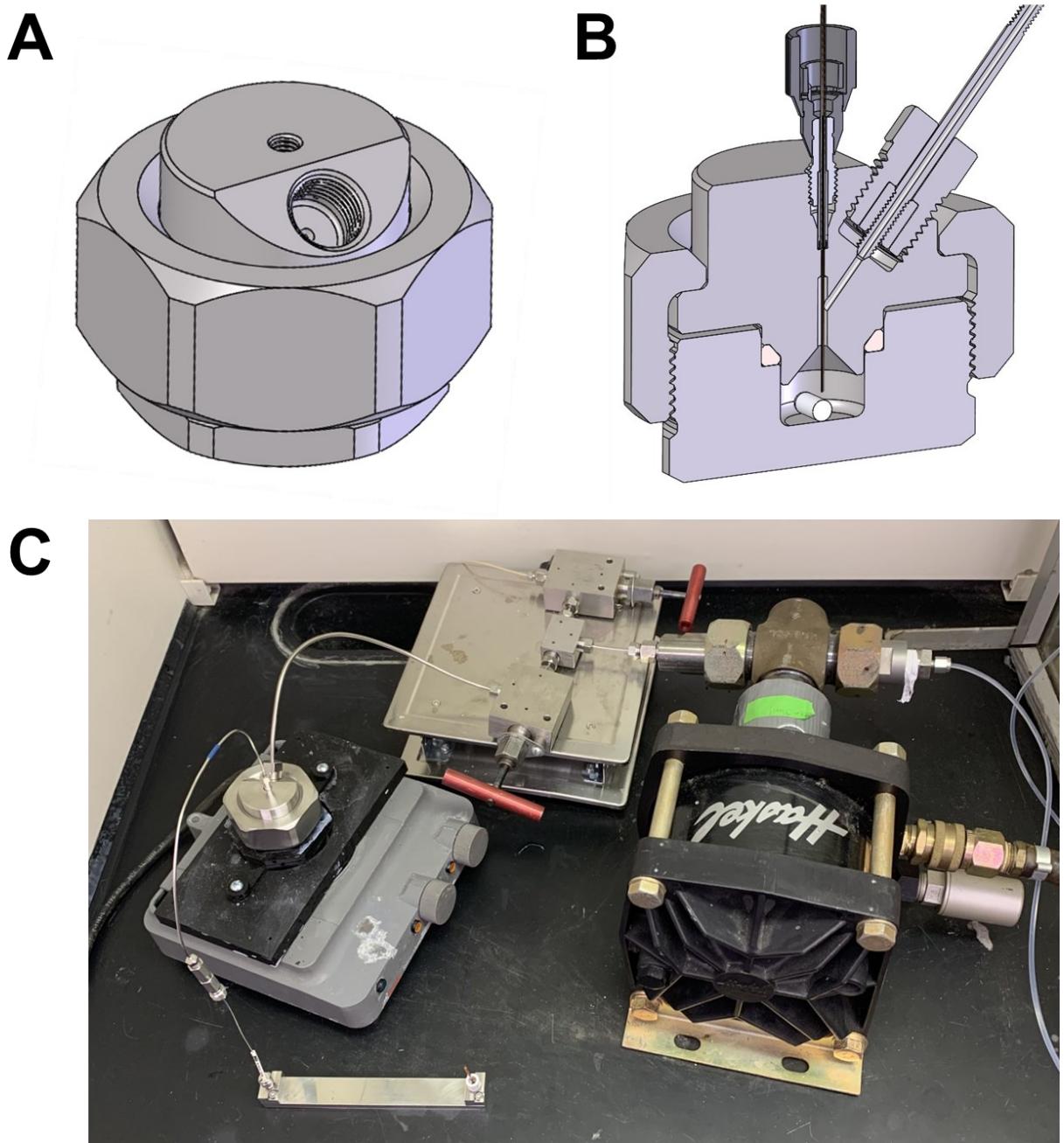
380

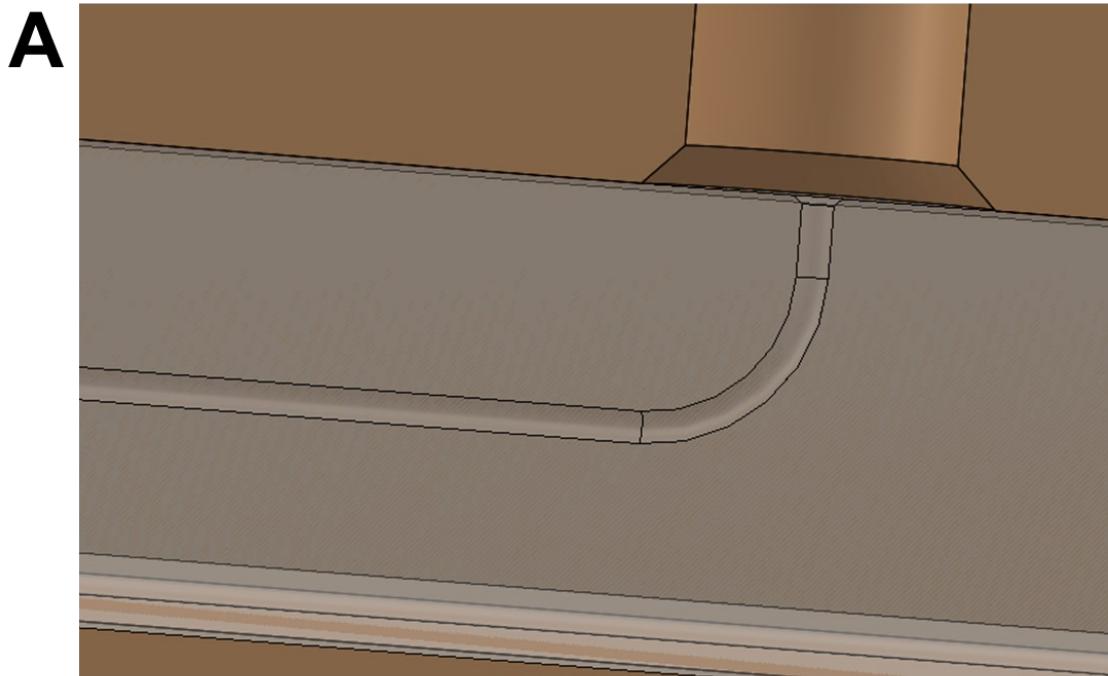
381

*Corresponding Author: James P. Grinias, grinias@rowan.edu

382

383


384


Supporting Information

385

386

387

394

395

396 **Figure S2.** Computational reconstruction of radial bend in computational fluid dynamics
397 modeling software (A) and results from flow simulation through packed radial bend (B).

398

399

400 **Table S1.** Parameters used in CFD simulation of separation in capillary tube-in-manifold device.

401

Simulation Parameter	Value
Column length [L_c]	150 mm
Column diameter	200 μm
Particle specific surface area [S]	1.2e ⁵ m^2/kg
Density solid material particles [rho_p]	2200 kg/m^3
Porosity [eps_p]	0.4
Porosity near wall [eps_p2]	0.6
Maximum inlet injector concentration Thiourea	4.468 mol/m^3
Maximum inlet injector concentration Acetophenone	2.825 mol/m^3
Maximum inlet injector concentration Propiophenone	2.523 mol/m^3
Maximum inlet injector concentration Butyrophenone	2.295 mol/m^3
Mobile phase linear velocity [v_l]	4.5e ⁻⁴ m/s
Thiourea diffusion coefficient [D_1]	2.10e ⁻⁹ m^2/s
Acetophenone diffusion coefficient [D_2]	1.17e ⁻⁹ m^2/s
Propiophenone diffusion coefficient [D_3]	1.07e ⁻⁹ m^2/s
Butyrophenone diffusion coefficient [D_4]	9.92e ⁻¹⁰ m^2/s
Thiourea Langmuir adsorption constant [K1]	3.71e ⁻⁴ m^3/mol
Acetophenone Langmuir adsorption constant [K2]	0.001468 m^3/mol
Propiophenone Langmuir adsorption constant [K3]	0.002431 m^3/mol
Butyrophenone Langmuir adsorption constant [K4]	0.003793 m^3/mol
Monolayer capacity, primary [n01]	4e ⁻⁶ mol/m^2

402

403

404

405 **Table S2.** Comparison of chromatographic figures of merit (calculated using iterative statistical
406 moments algorithm) for simulated and experimental separations using the capillary tube-in-
407 manifold device.

408

	<u>Straight Cylindrical Tube</u> <u>(CFD)</u>	<u>Cylindrical Tube with</u> <u>Two Radial Bends (CFD)</u>	<u>Experimental</u>
<u>Retention Time (min)</u> <i>(Thiourea)</i>	3.67	3.66	3.46
<u>Plate Count</u> <i>(Thiourea)</i>	2880	3340	2770
<u>Skew</u> <i>(Thiourea)</i>	-0.35	-0.44	0.29
<u>Retention Time (min)</u> <i>(Acetophenone)</i>	7.03	7.02	6.95
<u>Plate Count</u> <i>(Acetophenone)</i>	4510	4840	5260
<u>Skew</u> <i>(Acetophenone)</i>	-0.22	-0.34	0.26
<u>Retention Time (min)</u> <i>(Propiophenone)</i>	9.98	9.98	9.80
<u>Plate Count</u> <i>(Propiophenone)</i>	3840	3840	5850
<u>Skew</u> <i>(Propiophenone)</i>	-0.03	-0.05	0.28
<u>Retention Time (min)</u> <i>(Butyrophenone)</i>	14.44	14.17	14.13
<u>Plate Count</u> <i>(Butyrophenone)</i>	3090	3080	7090
<u>Skew</u> <i>(Butyrophenone)</i>	0.05	0.03	0.20

409

410

411