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e Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conser-
vation. Here, we analyse the global distribution of plant PD, which remains poorly understood
despite plants being the foundation of most terrestrial habitats and key to human livelihoods.
¢ Capitalising on a recently completed, comprehensive global checklist of vascular plants, we
identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distribu-
ted than species diversity; (2) areas of highest PD (often called ‘hotspots’) do not maximise
cumulative PD; and (3) many biomes are needed to maximise cumulative PD.

e Our results support all three hypotheses: more than twice as many regions are required to
cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative
PD substantially differ from the regions with outstanding individual PD; and while (sub-)
tropical moist forest regions dominate across PD hotspots, other forest types and open biomes
are also essential.

e Safeguarding PD in the Anthropocene (including the protection of some comparatively
species-poor areas) is a global, increasingly recognised responsibility. Having highlighted coun-
tries with outstanding unique plant PD, further analyses are now required to fully understand
the global distribution of plant PD and associated conservation imperatives across spatial scales.
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Introduction

Compared with species diversity patterns, the global distribution
of phylogenetic diversity (PD) is poorly understood. Phyloge-
netic diversity is a more meaningful proxy for ‘feature diversity’
than simple species counts (Faith, 1992). By accounting for the
total amount of phylogenetic history represented by a set of taxa,
PD (Faith, 1992) broadly captures diversity in form and function
(Owen et al., 2019), and is connected to the resilience of key eco-
system functions (Mazzochini et @/, 2019) and services (Forest
et al., 2007; Molina-Venegas ez al., 2021). Phylogenetic diversity
is also a widely accepted indicator of the ‘option value’ of biodi-
versity for future uses and benefits to people (Faith, 2021). It has
been established explicitly as a guiding measure for conservation
efforts, that is to identify areas that maximise the amount of pro-
tected PD and hence feature diversity (Faith, 1992; Véron
et al., 2019). However, this requires a robust knowledge of the
spatial distribution of PD.

Crucially, the regions that are richest in species or PD are not
necessarily the regions of biggest conservation concern. Instead,
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conservation tends to focus on hotspots of wunique (endemic)
diversity, that is regions that harbour many species or lineages
that occur nowhere else, and consequently cannot be conserved
anywhere else. For example, the classic biodiversity hotspots for
conservation priorities(Myers et al., 2000) were selected to contain
at least 1500 endemic plant species each (as well as high levels of
anthropogenic threat). A similar train of thought has been
applied to PD, using metrics such as PD endemism (Faith, 1994;
Sechrest er al., 2002) or phylogenetic endemism (Rosauer ez al.,
2009). Alternatively, complementarity analyses can be used to
identify the set of areas that most efficiently maximises PD (Faith
et al., 2003; Kukkala & Moilanen, 2013). Analyses of PD ende-
mism and complementarity can show which parts of the world
harbour particularly high amounts of unique evolutionary his-
tory, either globally or relative to other regions, thus guiding con-
servation attention.

Considering that plants are the trophic and structural founda-
tion of most terrestrial habitats and hence also a cornerstone of
human livelihoods, exploring and explaining the distribution
of their diversity is clearly a priority. However, due to limitations
in both geographic and phylogenetic data (Meyer ez al., 20165
Rudbeck ez al., 2022), global plant PD remains incompletely
understood. This is in stark contrast to most vertebrates, which
are well-served with geographic and phylogenetic data that have
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facilitated exploration of their global PD patterns (Davies &
Buckley, 2011; Safi ez al., 2011; Fritz & Rahbek, 2012; Voskamp
et al., 2017; Daru et al., 2019; Gumbs et al., 2020). Previous stu-
dies on global plant PD were either limited in their taxonomic
sampling and resolution (Daru ez 4/., 2019), or based on incom-
pletely documented, closed-access data sets (Qian er al., 2023).
Additionally, it is also important to note that neither of these stu-
dies adequately addressed complementarity from a conservation
perspective.

To establish the distribution of plant PD, its relationship to
species richness, and its conservation requirements, we frame
three hypotheses. First, we hypothesise that PD is more evenly
distributed across the surface of the Earth than species diversity
(H1). While the world’s plant species are concentrated in rela-
tively few ‘hyperdiverse’ regions (Pimm & Joppa, 2015), PD is
unlikely to behave in the same way because closely related spe-
cies and lineages are spatially autocorrelated (i.e. occur in close
proximity at a global scale; Kissling e al, 2012b; Eiserhardt
et al., 2013). Typically, ‘hyperdiverse’ regions are dominated by
local diversification and therefore include many close relatives
(e.g. Schnitzler ez al,, 2011; Hughes & Atchison, 2015). Thus,
while hyperdiverse regions capture species richness and shallow
phylogenetic history, many different regions are required to
represent deep phylogenetic history and maximise PD. This
challenges the prevailing worldview that places conservation
responsibility primarily with countries that harbour ‘hyperdi-
verse’ biota.

Second, we hypothesise that the areas of highest PD, which are
often designated as hotspots (e.g. Daru et al, 2019; Qian
et al., 2023) do not maximise cumulative PD (Faith ez 2/, 2004;
Pollock ez al., 2017), and thus do not effectively guide conserva-
tion attention (H2). Because lineages usually diversify within cer-
tain geographic boundaries, set either by dispersal constraints or
limited ability to adapt to new environments or both (Eiserhardt
et al., 2013), adjacent areas are often similar in their biotic com-
position. Thus, we expect that the areas of highest PD are often
geographically close and redundant in their composition of spe-
cies and lineages. By contrast, we expect that hotspots based on
complementarity, that is explicitly maximising the cumulative
PD they represent, will be substantially different from the areas
that individually have the highest PD, sampling geographically
distant areas that harbour phylogenetically distant floras.

Third, we hypothesise (H3) that absolute phylogenetic diver-
sity is highest in tropical and subtropical moist broadleaf forest,
where species richness is overall high and diversification rates low
(Igea & Tanentzap, 2020; Sun ez al., 2020; Tietje er al., 2022)
and many old lineages persist (tropical conservatism hypothesis;
Wiens & Donoghue, 2004). However, as different biomes repre-
sent different lineages (biome conservatism hypothesis; Crisp
et al., 2009), we expect that the highest values of PD would be
attained by regions with both a high proportion of tropical and
subtropical moist broadleaf forest and elements from other evolu-
tionarily divergent biomes. Along a similar vein, we expect a
wider range of biomes to be important in complementarity-based
hotspots compared with high-PD regions, in line with the idea
that diversification is not only spatially, but also environmentally
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autocorrelated (Wiens & Donoghue, 2004; Crisp e al., 2009;
Eiserhardt er al., 2013).

Here, we test these hypotheses in a global analysis of phyloge-
netic diversity focussed on seed plants (Spermatophyta). With
>330000 accepted species, seed plants constitute >90% of
extant land plant diversity and dominate almost all terrestrial
vegetation. Our analyses capitalise on the recently completed
World Checklist of Vascular Plants (Govaerts et al., 2021), a
publicly accessible, comprehensive taxonomic checklist of vascu-
lar plants and their geographic distributions, in conjunction with
a complete phylogeny of seed plants (Smith & Brown, 2018).
We extend our test of these hypotheses with an evaluation of glo-
bal threats (deforestation, human footprint and climate change),
to facilitate comparison with the existing literature on conserva-
tion hotspots, which have traditionally accounted for degree of
threat (Myers ez al., 2000). By integrating these resources within
a complementarity framework for the first time, we highlight a
set of regions within which a large proportion of global plant
phylogenetic diversity could be conserved.

Materials and Methods

Phylogeny and distribution data

All phylogenetic measures were derived from the phylogenetic
tree of Smith and Brown (2018) to which we added missing
species using TACT (Chang ez al., 2020). Of the different trees
provided by Smith and Brown (2018), we used the one that
contained only species with molecular data and a backbone
from Magallén et al. (2015; GBMB). TACT adds missing spe-
cies to a time-calibrated phylogeny using a taxonomic guide
tree and birth—death models to estimate branching times. Since
TACT has a stochastic component, we used averages across
100 replicate phylogenetic trees produced by TACT in all our
analyses.

The geographic distribution of each species was derived from
the World Checklist of Vascular Plants (Govaerts et al., 2021),
which provides the presence and absence data for each World
Geographical Scheme for Recording Plant Distributions
(WGSRPD) level 3 unit (hereafter ‘botanical country’; Brummitt
et al., 2001). These botanical country names follow in some cases
alternative spellings (e.g. Sumatera for Sumatra), we follow here
the names as provided in Brummitt ez 2/ (2001).

Species names in the Smith and Brown phylogeny follow
NCBI nomenclature. These were updated to follow the WCVP
nomenclature using the taxonomy matching procedure as pre-
viously described (Sun ez al., 2021), which uses the WCVP tax-
onomy data as authority. Our data include 330 527 described
species of seed plants. Bryophytes, clubmosses and ferns are not
included in our analysis as geographic and/or phylogenetic data
were unavailable.

Diversity indices

Diversity indices were calculated for each botanical country. Spe-
cies richness was measured as the number of species recorded in a
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botanical country and species endemism as the number of ende-
mic species. We calculated PD as the sum of the lengths of all
branches that span members of a region (Faith, 1992), and PD
endemism as the total amount of branch length found only in a
given region (Faith, 1994). Because species richness, and by
extension, PD are known to correlate with area, we additionally
standardised all indices by area. Indices were estimated using the
R package PHYLOREGION (Daru ef al., 2020b) functions PD, phy-
lo_endemism and weighted_endemism. We calculated spatial corre-
lations of diversity indices using Lee’s L, an integration of
Pearson’s 7, and Moran’s I (Lee, 2001).

Hotspots

We identified PD hotspots following two different approaches.
First, we identified botanical countries with the highest 2.5%
estimates for species richness, PD and PD endemism, following
previous authors (e.g. Orme ez al., 2005; Daru et al., 2019). For
our 368 botanical countries, the top 2.5% corresponds to the top
9.2 botanical countries, which we round up to top 10 for simpli-
city. Second, we identified each country’s
(= complementarity) to global species richness, PD, species ende-
mism and PD endemism. To assess complementarity, we used a
greedy algorithm that starts with the botanical country that has

contribution

the highest PD value (or other estimate of interest) and sequen-
tially adds botanical countries, in each step choosing the country
that adds most PD to the total PD in the set. Once a group of
species has been covered by adding a country to the set, these spe-
cies are exempt from calculations of PD for the remaining coun-
tries. This way the algorithm identified the minimum number of
countries that together contained the maximum amount of PD
in as small an area as possible. We selected the set of 10 countries
that jointly maximised PD to facilitate comparison with top
2.5% countries.

Hotspot characteristics

For each botanical country, we calculated several anthropogenic
and environmental characteristics (see for sources Supporting
Information Table S1). We estimated the percent coverage of
each hotspots’ area with different biomes (Olson ez 4/, 2001) and
the impact of deforestation, human footprint index and future
climate change (annual precipitation and mean annual tempera-
ture) as average threat values per botanical country. All values
were calculated as averages for each botanical country (Table S1).
Quantitative differences in threats between hotspot and nonhot-
spot botanical countries were tested using Kruskal-Wallis rank
sum tests.

Analyses were made in R v.4.2.1 (R Core Team, 2022). R
packages used include DaTA.TABLE (Dowle & Srinivasan, 2021),
sF (Pebesma, 2018), PHYLOREGION (Daru et al, 2020b), TERRA
(Hijmans, 2022a), ccrLot2 (Wickham, 2016), cowrLOT
(Wilke, 2020), rasTER (Hijmans, 2022b), EXACTEXTRACTR (Bas-
ton, 2022), casToR (Louca & Doebeli, 2018), sTRINGR (Wick-
ham, 2022), sppEP (Bivand & Wong, 2018).
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Results

Phylogenetic diversity was strongly correlated with species rich-
ness (Fig. la,b; Lee’s L=0.86; P=0.001). However, the top
2.5% countries differed clearly between species richness and PD
(Fig. 2a,b). While the majority of highest species richness values
were concentrated in the Neotropics, the top 2.5% PD
values were more evenly distributed between South America and
parts of southern Asia. The highest PD values were found in
Colombia followed by China South-Central and Peru, whereas
Antarctica and small islands had the lowest PD values. These low
PD regions were also characterised by low species richness
(Fig. la,b). Area-standardised PD was consistently highest on
small islands, but it did not reveal any meaningful patterns for
continental floras (Fig. S1).

The 10 botanical countries that were selected based on com-
plementarity (‘complementarity hotspots’) were clearly different
from the 10 botanical countries that had the highest individual
diversities, both for species richness (Fig. 2a,c) and PD (Fig. 2b,d).
Importantly, the former harboured a higher total diversity than
the latter (40% vs 33.5% for species richness and 23% vs 19%
for PD). It is noteworthy that 10 botanical countries can cover
40% of global species richness, but only 23% of global PD. This
difference became even more apparent when comparing numbers
of countries required to contain fixed proportions of global diver-
sity. For example, while 50% of global species richness could be
included in 15 botanical countries (Fig. 3a), a minimum number
of 33 countries was required to cover 50% of PD (Fig. 3b). This
pattern was consistent across diversity thresholds between 10%
and 90% (Fig. 4), showing that species richness could be cap-
tured in comparatively few areas, whereas PD was more evenly
distributed.

The complementarity hotspots of PD (Fig. 2d; Table 1) were
almost identical to the complementarity hotspots of species rich-
ness (Fig. 2¢), only differing in the inclusion of Western Australia
(species richness) and Zaire (PD). Complementarity hotspots of
PD were widespread across Central- and South America, Africa,
China, Madagascar, Borneo and New Guinea. They showed a
significantly higher number of biomes than nonhotspot countries
(Kruskal-Wallis rank sum test; 2<0.001). These hotspots also
showed higher biome coverage proportions with (sub)tropical
moist and dry broadleaf forest as well as montane grasslands and
shrublands than their nonhotspot counterparts (Kruskal—Wallis
rank sum test; £<0.005; Fig. S2a). Both patterns were similar
for countries selected for highest 2.5% PD values (Fig. S2b).
These results were consistent with the positive correlation of
biome types and total PD observed (Fig. S3; Spearman’s rank
correlation p=10.57; P<0.001).

The complementarity hotspots of species richness were, with
one exception (Mexico Southwest), also the countries with the
highest species endemism (Fig. 2¢,e). There was also a large over-
lap between the PD complementarity hotspots and the countries
with the highest PD endemism (Fig. 2d,f). Notably, two Austra-
lian states (Queensland and Western Australia) were among the
top 10 countries with highest PD endemism but were not
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(a) Species richness
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Fig. 1 Four aspects of diversity: (a) species richness (SR), (b) phylogenetic diversity (PD) as per (Faith, 1992), (c) species endemism, and (d) PD endemism.
Colour saturation shows respective diversity values. Maps in Winkel tripel projection.

selected as PD complementarity hotspots. Conversely, Mexico
Southwest and Zaire had lower PD endemism, but did qualify as
PD complementarity hotspots. Relatively few countries were
required to cover a given proportion of global PD endemism
compared with PD and species richness (Fig. 4); for example,
only 12 botanical countries were required to cover 50% of global
PD endemism.

Anthropogenic and environmental characteristics varied sub-
stantially between PD complementarity hotspots (Fig. 5). Com-
plementarity hotspots of PD had a significantly larger area
affected by deforestation compared with nonhotspots (Fig. S4;
Kruskal-Wallis rank sum test; P=0.016). Borneo was particu-
larly strongly affected by deforestation. In general, the relative
area affected by deforestation within the last 20 yr varied greatly
from 47% on Borneo to 2% in the Cape Provinces and Australia.
We found no significant difference between hotspots and non-
hotspots for other threats (Fig. S4).

Discussion

Using a recently completed, comprehensive, open access data set
of the taxonomy and geographic distributions of all vascular plant
species (Govaerts er al., 2021), we dissected the distribution of

© 2023 The Authors
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global seed plant PD using a complementarity-based approach.
We found that (1) PD is more evenly distributed across the globe
than species richness; (2) absolute PD (Daru ez al., 2019; Qian
et al., 2023) is no substitute for cumulative PD derived from
complementarity-based analyses; and (3) tropical rain forests are
important for sustaining high levels of PD, but a variety of
biomes are implicated in the conservation of global seed
plant PD.

Phylogenetic diversity is more evenly distributed across the
globe than species richness

Our results support hypothesis H1, demonstrating that, for seed
plants, PD is more evenly distributed across the globe than spe-
cies richness. Because PD increases more slowly with area than
species richness (Morlon ez al., 2011; Helmus & Ives, 2012),
more than twice as many botanical countries are needed to repre-
sent 50% of global PD than to achieve the same for species
richness (Fig. 3). This discrepancy is due to the spatial autocorre-
lation of diversification. If the area of a given sampling unit is
increased, new species are added, but those species are likely close
relatives to the ones that are already in the set. Biologically, this
pattern results from the limited niche evolution and dispersal of
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(b) Bot countries with top 2.5% PD
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(e) Bot. countries with top 2.5% species endemism
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Fig. 2 Absolute values and complementarity for species richness (SR) and phylogenetic diversity (PD). Botanical countries with the top 2.5% total species
richness (a) or PD (b), and the top 10 botanical countries with the highest contribution (complementarity) to global species richness (c) or PD (d). (e, f)
Show the top 10 botanical countries for species endemism and PD endemism. Complementarity was assessed using a greedy algorithm that identifies the
minimum number of countries containing the maximum number of species richness or phylogenetic diversity. The algorithm starts with the highest SR and
PD value and subsequently adds countries with the next highest remaining contribution to SR and PD to the set.

diversifying clades (Wiens et al, 20105 Eiserhardt e al, 2013).
Well-known examples of this phenomenon are local radiation
events such as those driven by the uplift of the Andes (Hughes &
Eastwood, 2006; Pérez-Escobar ez al., 2017), where species-rich
regions contain disproportionately many closely related species.
These results highlight the risks of focussing purely on species
richness in area prioritisation for conservation (Rodrigues

et al., 2005).

New Phytologist (2023) 240: 1636-1646
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Absolute phylogenetic diversity is no substitute for
complementarity

In line with our hypothesis H2, we found that hotspots selected
for PD complementarity outperformed hotspots selected for
highest total PD in representing global diversity. The two
approaches selected substantially different sets of regions. Evi-
dently, many of the regions of highest PD were not only spatially
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(a) 50% SR in 15 bot. countries

Research

(b) 50% PD in 33 bot. countries
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Fig. 3 Minimum number of botanical countries needed to capture 50% of global species richness (SR; (a) 15 botanical countries) and phylogenetic diversity
(PD; (b) 33 botanical countries). Botanical countries were identified using a greedy algorithm that starts with the highest SR and PD values and
subsequently adds countries with the next highest remaining contribution to SR and PD to the set.
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Fig. 4 Number of botanical countries required to capture different
percentages of species richness (SR), phylogenetic diversity (PD) and
endemic phylogenetic diversity. Half (50%) of plant SR, PD, PD endemism
or species endemism can be captured in either 15, 33, 12, or 17 botanical
countries, respectively.

adjacent, but also significantly redundant in their composition of
species and lineages. For example, the botanical countries with
the highest PD included clusters of adjacent countries in
north-western South America and continental Asia (Fig. 2b). The
complementarity approach showed that several of these were
redundant in maximising PD in 10 botanical countries, instead
highlighting the importance of Sub-Saharan Africa and Australa-
sia for global PD. Of note, these areas were also identified by
Qian et al. (2023) by ranking absolute PD, but using a much
lower threshold (10%), leading to many more regions being

© 2023 The Authors
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recognised as hotspots, which makes prioritisation more difficult.
Focussing on the areas with the highest individual PD as ‘hot-
spots’ (Daru et al., 2019; Qian ez al., 2023) risks attention being
diverted from parts of the world that are essential to safeguarding
seed plant PD globally.

Ranking botanical countries by their PD endemism (Fig. 2f)
identified many of the same areas as our complementarity analy-
sis (Fig. 2d), which is expected since areas with much endemic
PD can by definition always contribute many lineages that are
not already represented by other areas (Faith, 1994). However,
there are notable differences suggesting that the two approaches
are not redundant. The Australian states that were not selected as
complementarity hotspots despite high PD endemism likely
overlapped too much in their phylogenetic composition with
the geographically close New Guinea (Joyce er al., 2021); thus,
the geographically distant and hence likely phylogenetically less
similar Mexico Central and Zaire were able to contribute more
to the set of hotspots. While PD endemism outperforms raw PD
in selecting areas that are important for global PD, the two
approaches emphasise slightly different aspects of the global dis-
tribution of PD.

Tropical rain forests are important, but a variety of biomes
are required to conserve global PD

The distribution of high-PD regions and complementarity hot-
spots (Table 1) across biomes largely supports our hypothesis H3.
As anticipated, regions of high individual PD had high coverage
of (sub)tropical moist broadleaf forest (Fig. S3; Table 1). Due to
biome conservatism (Crisp er al., 2009), we also expected PD to
be highest in regions that harbour many other biomes in addition
to (sub)tropical moist broadleaf forest. This expectation was also
confirmed (Fig. S3). However, the biome composition of high-
PD regions (Table 1) suggests that the type of biomes included
matters too. High-PD regions typically include several other for-
est types, specifically (sub)tropical dry forest, (sub)tropical coni-
ferous forest, or temperate broadleaf or coniferous forest.
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Table 1 Phylogenetic diversity (PD) complementarity hotspot characteristics.
Top 2.5% Complementarity
top 10 Species PD
Level name PD SR SR PD SR PD endemism endemism Biome composition
Borneo 0 0 1 1 10782 106890 5967 s161
Brazil Southeast 1 1 1 1 16960 121481 6686 4913 e
Cape Provinces 0 1 1 1 15362 88425 10590 16197
China South-Central 1 1 1 1 18238 153301 6313 5772 ]
Colombia 1 1 1 1 22833 157886 7096 EEEME | ]
Madagascar 0 0 1 1 10720 89042 9040 9482 I
Mexico Southwest 0 1 1 1 13133 111444 2681 1754 )
New Guinea 0 0 1 1 12042 103369 8465 5874
Peru 1 1 1 1 19235 143769 7008 4414 T |
Zaire 0 0 0 1 9094 90968 1280 763 |
Bolivia 1 1 0 0 13568 123978 2602 1642 s
China Southeast 1 0 0 0 10214 117100 2443 3061 ]
Ecuador 1 1 0 0 16599 128453 5286 3295
Thailand 1 0 0 0 10048 113039 1718 2262
Venezuela 1 1 0 0 14957 130885 3369 3012 N N
Vietnam 1 0 0 0 10539 118236 2335 2453 1 I

l (Sub)Tropical moist broadleaf forests l (Sub)Tropical dry broadleaf forests . (Sub)Tropical coniferous forests

Temperate broadleaf and mixed forests Temperate coniferous forests I (Sub)Tropical grasslands, savannas, shrublands

Montane grasslands and shrublands Mediterranean forests, woodlands, scrub Deserts and xeric shrublands

. Mangroves

Hotspots were identified using a greedy algorithm that starts with the highest PD value and subsequently adds countries with the next highest remaining
contribution to PD to the set. The first 10 selected countries are defined as hotspots. Top 2.5% columns indicate if the country is among the top 2.5% total
PD or species richness (SR) countries (0= no, 1=yes). Complementarity top 10 columns indicate if the country is among the top 10 first selected countries
using SR or PD. Grey rows show countries with top 2.5% PD values that have not been picked as PD complementarity hotspot. The biome column depicts

the biome composition of each hotspot country.

Whether this is because forest generally harbours older and/or
more divergent lineages than open vegetation, or because these
forest biomes just happen to be spatially adjacent to the phylogen-
etically highly diverse (sub)tropical moist broadleaf forest, is
unclear and worthy of further study. Our expectation that com-
plementarity hotspots jointly cover a wider range of biomes than
high-PD regions is primarily supported by the observation that
complementarity hotspots encompass more open biomes than the
primarily forested high-PD regions. This is particularly evident
from the inclusion of the Cape Provinces of South Africa, which
are exclusively covered by open biomes (at the scale of the biome
maps used here). This confirms that while (sub)tropical moist
broadleaf forest is, on its own, the most phylogenetically diverse
biome, other ecologically and evolutionarily divergent biomes are
required to appropriately represent global seed plant PD.

Threats to phylogenetic diversity

Countries identified as PD complementarity hotspots were not
consistently more or less threatened by human impact than non-
hotspot areas except for deforestation, which affected hotspots
more strongly. The deforestation result is plausible, since hotspots
also showed on average larger proportions of (sub)tropical moist
broadleaf forest, with the notable exception of Cape Provinces.
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This biome is known to be under intense deforestation pressure
(Lindquist e al, 2012). Human footprint did not show clear
results, possibly due to the large spatial scale our study was con-
ducted on, which averages footprint over large areas, not differen-
tiating between heavily affected urban areas and remote
untouched landscapes. Since the majority of high diversity areas
were located at low latitudes, anticipated future climate changes
were naturally rather low since the absolute extent of climate
change is predicted to be larger near the poles (Rantanen
et al., 2022). Threat status, usually represented as some form of
habitat loss of a region, has been used as one of the defining cri-
teria of conservation hotspots (Myers ¢t al., 2000). However, the
example of New Guinea with its extraordinary flora, high contri-
bution to global PD, but insufficient threat to qualify as conserva-
tion hotspot demonstrates potential challenges with the inclusion
of threat in hotspot criteria (Camara-Leret ¢t 4/, 2020), especially
since anthropogenic habitat loss can be rapid (Gaveau ez al., 2014;
Gamoga er al., 2021). Due to the dynamic nature of threats, we
defined hotspots solely based on their contribution to global PD.

Conservation prioritisation
We believe that safeguarding phylogenetic diversity in the

Anthropocene is a global responsibility. Attention is often

© 2023 The Authors
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Fig. 5 Four types of threat for phylogenetic diversity (PD) complementarity hotspots. Rank of each hotspot (x-axis) with the corresponding threat value for
deforestation, human footprint, predicted future change in precipitation and temperature, ordered by increasing threat values.

focussed on exceptionally species-rich regions, such as the Neo-
tropics (Antonelli & Sanmartin, 2011; Cazzolla Gatt
et al., 2022), which also are highlighted by our analyses of abso-
lute, country-level PD. However, complementarity-based ana-
lyses clearly show that many more biogeographic regions and
biomes are needed for effective conservation of global PD,
and hence global feature diversity. This includes regions of the
world that are known for their comparatively low species rich-
ness, such as parts of the African continent (Couvreur, 2015).
Because our analyses are conducted at the scale of botanical coun-
tries, most of which correspond to political or administrative
units (Brummitt e al, 2001), our findings can in principle
directly inform conservation policy in those units. In our view,
this advantage of botanical countries outweighs their disadvan-
tage of being variable in size, which complicates their use in eco-
logical and evolutionary research (but see e.g. Kissling
et al., 2012a; Guo et al., 2022; Tietje ez al., 2022) but is less pro-
blematic in a conservation context. While larger (botanical)
countries are more likely to be identified as priority regions for
conservation, these do also in fact hold larger proportions of

© 2023 The Authors
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global PD. Of note, the countries that were most implicated in
the conservation of global PD were largely unaffected by the
somewhat arbitrary division of the largest countries into lower-
level administrative units (Figs S5-S8; Table S2). Importantly,
we stress that countries that are not selected in our complemen-
tarity analysis can still play a major role in the conservation of
global plant PD, as their PD may largely overlap with adjacent,
selected countries. Not being flagged as a priority country for glo-
bal PD complementarity thus does not imply that a country has
no role to play in conservation.

Prospects

Our findings are a first pass at revealing not only where centres of
plant PD are located, but also how broadly plant PD is distribu-
ted across the planet. By taking complementarity into account
and using a taxonomically comprehensive, open access data set,
our analysis goes substantially beyond previous studies (Daru
et al., 2019; Qian et al., 2023). However, due to data availability,
our analysis is limited to a relatively large spatial scale, and
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further studies are warranted to fully explore how the distribution
and complementarity of plant PD is affected by spatial scaling
(Morlon et al., 2011; Helmus & Ives, 2012; Daru et al., 2020a).
While analyses at finer spatial resolution are needed to more
accurately pinpoint the locations of PD hotspots, these may not
necessarily improve insights from PD complementarity for con-
servation prioritisation (Daru et al., 2019). Analyses at intermedi-
ate spatial resolution using units that do not vary in area could
provide invaluable insights. However, the point occurrence data
sets needed for such analyses are notoriously incomplete and
biased (Meyer et al., 2016), making such an analysis impractical
for the time being and underlining the value of the taxonomically
and geographically complete data set used here. Further invest-
ment in the assembly of global distribution datasets is clearly
needed.

Phylogenetic diversity provides substantially deeper insights
into total ‘feature diversity’ than simple species counts
(Faith, 1994). It captures both the evolutionary past and
possible future evolutionary potential in a region, as well as
the ‘option value’ of biodiversity for future human uses.
However, it is no panacea for conservation prioritisation,
which requires a full grasp of trade-offs between different
diversity measures such as basic species counts, phylogenetic
diversity metrics, functional and trait diversity and anthropo-
genic factors, including rapid changes in land use and the
ubiquitous effects of climate change and plant distribution
and diversity (Pollock ez al, 2017; Faith, 2021). We do not
intend to judge the relative importance of these factors or
suggest that PD is the most relevant. Instead, integrating
phylogenetic measures (including PD) with other diversity
metrics, as suggested by Pavoine and Bonsall (2011) might
be the most appropriate way to explore and understand the
current biodiversity crisis and its potential future implica-
tions. We also acknowledge that complementarity analysis in
conservation practice requires multivariate optimisation pro-
cesses guided by spatial, political, financial and social aspects
and limitations (Sarkar et al, 2006; Kukkala & Moila-
nen, 2013). Thus, while our results provide important
insights into the global distribution of plant PD, future stu-
dies need to integrate these findings with other aspects of
plant diversity as well as the political and socioeconomic
context of real-world conservation.
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