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ABSTRACT: Integrative structural biology synergizes experimental
data with computational methods to elucidate the structures and
interactions within biomolecules, a task that becomes critical in the
absence of high-resolution structural data. A challenging step for
integrating the data is knowing the expected accuracy or belief in the
dataset. We previously showed that the Modeling Employing Limited
Data (MELD) approach succeeds at predicting structures and finding
the best interpretation of the data when the initial belief is equal to or
slightly lower than the real value. However, the initial belief might be
unknown to the user, as it depends on both the technique and the
system of study. Here we introduce MELD-Adapt, designed to
dynamically evaluate and infer the reliability of input data while at the
same time finding the best interpretation of the data and the structures compatible with it. We demonstrate the utility of this method
across di!erent systems, particularly emphasizing its capability to correct initial assumptions and identify the correct fraction of data
to produce reliable structural models. The approach is tested with two benchmark sets: the folding of 12 proteins with coarse
physical insights and the binding of peptides with varying a"nities to the extraterminal domain using chemical shift perturbation
data. We find that subtle di!erences in data structure (e.g., locally clustered or globally distributed), starting belief, and force field
preferences can have an impact on the predictions, limiting the possibility of a transferable protocol across all systems and data types.
Nonetheless, we find a wide range of initial setup conditions that will lead to successful sampling and identification of native states,
leading to a robust pipeline. Furthermore, disagreements about how much data is enforced and satisfied rapidly serve to identify
incorrect setup conditions.

■ INTRODUCTION
Integrative structural biology (ISB)1 aims to synergize
experimental insights with computational methods grounded
in physical or statistical principles. The goal is to unravel the
intricate structures and interactions within biomolecules and
their complexes. ISB is particularly invaluable when incomplete
or limited structural data2 is available that cannot, on its own,
identify di!erent metastable states of the system, or even the
most relevant one. In this limited regime, the key challenges
arise from the combination of sparse, ambiguous, and noisy3
datasets and the challenge of interpreting experimental signals
that are averaged over the multiple states present in the
ensemble.4−7 The goal of ISB models is to recover the di!erent
functional states that are in best agreement with such limited
data. This is typically done by either reweighting ensembles
produced by one technique (e.g., Molecular Dynamics) based
on the data8 or using the data itself simultaneously with a
sampling strategy to generate conformational ensembles.9,10 In
this work, we focus on the latter.
To provide guiding power, the data is often transformed into

some set of restraints (forward model) that the system has to
satisfy, and which will incur some energy penalties when not
satisfied.6 Enforcing higher amounts of data as restraints

restricts sampling to conformations compatible with the force
field and these restraints, therefore focusing the search for
states compatible with the data. The caveat is that noise and
ambiguity prevent us from using all the data simultaneously.
The correct interpretation of the data is self-consistent with a
particular structure, whereas random subsets of data are
inconsistent with a structural and physical/statistical model.
Thus, how much data an ISB approach believes is critical in
determining the structures.9−14 When too few data points are
trusted, it is easier to find states compatible with the data, but
it significantly reduces guiding power (see Figure 1). On the
other hand, when too much data is trusted, it increases guiding
power, but it becomes incompatible with structural and
physical/statistical models, producing incorrect predictions
(see Figure 1). These issues become exacerbated by the
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system’s internal dynamics and ensemble-averaged resolution
of experimental data, leading to di!erent possible interpreta-
tions of data, each compatible with di!erent biologically
relevant states.1,7 Thus, setting the data belief becomes critical.
We previously introduced Modeling Employing Limited

Data (MELD)9,14 as an ISB tool based on molecular dynamics
(MD), where by analyzing the ensembles using the principles
of statistical mechanics15 we can recover di!erent metastable
states compatible with data. By leveraging data, MELD
explores the energy landscape more broadly than can be
done with traditional MD.16−18 The di"culty in MELD lies in
knowing the amount of data to trust from the available pool
that should be used.19 It is especially important when
combining sources of data that might mitigate individual
limitations in each set.20 It is possible that di!erent substates of
the system, represented by the data, satisfy a di!erent
percentage of the data. In the past, these led to running

multiple simulations with di!erent belief values, which rapidly
became computationally demanding.
To address these challenges, we introduce a novel Bayesian

inference approach combined with MELD, called MELD-
Adapt, designed to dynamically learn and adjust the trust-
worthiness of data inputs, thereby enabling more accurate
structure predictions. We demonstrate the e!ectiveness of this
approach across di!erent systems for protein and protein-
peptide structure prediction, showcasing its ability to predict
accurate structures even when initial assumptions are incorrect.
First, we show that when the initial data accuracy is correct
(e.g., has already been optimized), MELD-Adapt is able to
predict accurate structures in agreement with MELD. Then we
show that even when the initial assumptions are incorrect,
MELD-Adapt is able to identify the correct fraction of data and
the structures compatible with it, whereas traditional MELD
makes incorrect predictions.

Figure 1. Balancing the quantity of semireliable data in guiding simulations. Insu"cient data leads to ine"cient sampling (left), while an excess
of inaccurate data can result in highly focused yet incorrect predictions (right). Finding the optimal balance between data and physics-based models
ensures broad and accurate sampling (middle). The letters I and N represent the initial and native states, respectively. MELD uses a fixed amount
of data, which is user-defined to predict structure, potentially leading to any of the three scenarios depicted. MELD-Adapt dynamically optimizes
the balance between data accuracy and force field preferences so independently of the starting trust it recovers optimal sampling.
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■ COMPUTATIONAL METHODS
The Modeling Employing Limited Data (MELD)

Approach. The MELD methodology has been previously
described9,14 and thus only a quick summary is provided here.
The MELD philosophy combines information that might be
ambiguous and noisy with molecular simulations through
Bayesian inference. Ambiguity refers to a source of data that
might have multiple interpretations where only one is correct
in the native structure of the biomolecules (e.g., atoms A and B
are within 5 Å of each other or A and C are within 5 Å). By
noisy data, we mean that for some data none of the possible
interpretations are found in the native structure.
MELD does not use all data simultaneously to accommodate

for noise and ambiguity. Rather, we provide an accuracy value
for each dataset (a collection) that determines how many data
points should be enforced, but not which data points. Which
data is enforced dynamically changes throughout the
simulation. A simulation can have multiple collections
originating from di!erent experiments or data sources. During
the simulation, all of the data points in a collection are
evaluated and ranked by the restraint penalty they introduce to
the simulation. Then, the data points with the lowest energy
are used until the next simulation step−driving the dynamics
together with the force field. How many data points are used is
fixed and determined by the accuracy value and number of data
points in the collection. These choices provide a deterministic
way for selecting which data points to enforce given a certain
sampled structure.
MELD sampling at low temperatures, where restraints are

strongly enforced, rarely changes which restraints are active, as
this would require crossing over large energy barriers. To
facilitate sampling of di!erent subsets of data that guide to
di!erent regions of phase space, we use a Hamiltonian and
Temperature Replica Exchange ladder.21 At the highest
replicas, temperature is high, and force constants for restraints
vanish, allowing the e"cient sampling of phase space and
enforcing di!erent subsets of data. As those structures are
exchanged to lower replicas, the subset of restraints with the
lowest restraint energy becomes active, guiding sampling
toward regions of phase compatible with the active subset of
data.
In the end, the posterior distribution agrees with both the

force field and the best interpretation of the data. This can be
framed as a Bayesian inference approach (eq 1):

p x D
p D x p x

p D
p D x p x( )

( ) ( )
( )

( ) ( )| = | |
(1)

where x represents a particular conformation at a time step
given by an atomistic force field and D represents
corresponding data. The prior (p(x)) originates from the
Boltzmann distribution given a force field, and the data
likelihood (p(D|x)) is given by the energy penalty of using
some subset of data given the sampled structure. Finally, p(x|
D) is the posterior distribution from which we sample. It
represents the probability of sampling a specific conformation
given the fraction of the data enforced in the simulation.The
critical step here is to determine the accuracy value for each
collection. Users need to develop a deep understanding of the
technique and system before selecting useful values for this−
often having to compare agreements between di!erent
protocols using di!erent accuracy values to ensure consistency
and robustness of the approach. In the next section, we

introduce a new implementation that allows the simulation to
learn the accuracy value through the simulation using Bayesian
inference.

MELD-Adapt: Inferring the Accuracy Value for a
Collection. A fixed (static) accuracy value forces the decision
upfront. If the user selects a value higher than the true accuracy
of the data, the native basin will incur a nonzero energy
restraint penalty. As a result, the ratio of Boltzmann weights
between the native state and other basins will di!er from that
in the unbiased ensemble. Therefore, there is no guarantee that
the highest population cluster in the biased ensemble will
correspond to the one in the unbiased ensemble. On the other
hand, choosing a number much lower than the dataset
accuracy implies losing directive power in the simulations.
Ideally, the accuracy can dynamically change during the
simulation. This implies that throughout the simulation, in
addition to selecting the most appropriate subset of data to
use, there is also a process to ascertain the optimal amount of
data to be utilized. To address this limitation, we have
extended the Bayesian inference approach to consider the
likelihood of enforcing the data (D) given a structure (x) and a
number of active restraints (y). Thus, the posterior probability
becomes

p x y D p x p y p D x y( , ) ( ) ( ) ( , )| | (2)

where p(x) represents the prior probability over the structural
variable x and is modeled using the Boltzmann distribution
generated by the force field, p(y) reflects the prior probability
over the number of active restraints y, which crucially
determines the number of active restraints associated with
each collection during the simulation, and p(D|x, y) quantifies
the likelihood of observing a subset of the given data D under a
specific structural conformation x and a particular set of active
parameters y. Our primary focus for structural determination
typically centers on the marginal distribution p(x|D), which is
obtained by integrating out the variable y to provide a more
comprehensive understanding of the structural aspects of the
system, all driven by the available data. Although x and y are
dependent on each other (p(D|x, y) is evaluated as a log-
likelihood involving both variables), their priors (p(x) and
p(y)) are independent as one originates from the force field
(p(x)) and the other from the forward-model used to
implement the experimental data (p(y)).
Restraints are typically enforced as flat-bottom harmonic

potentials, implying that their energy contribution is always
greater or equal to zero. Thus, an on-the-fly increase in the
number of restraints to satisfy would typically imply an
increase in energy (unless a restraint is already satisfied, in
which case it would not bring additional directive power). On
the other hand, reducing the number of restraints will typically
lead to a reduction in the overall restraint energy.
Consequently, a naive approach would have a strong tendency
toward satisfying zero restraints and thus lose any benefit
MELD brings. We next consider what constitutes a good prior
for the data (p(y)).
We employ a dynamic approach to update the active fraction

of restraints throughout the MD simulation by utilizing Monte
Carlo (MC) trials. We initialize the simulation with a prior for
each collection based on the expected accuracy and a
maximum and minimum range. We perform a Monte Carlo
trial at given simulation intervals (e.g., every 100th MD step).
During each trial, the number of active restraints can change by
up to ±5. If, after the trial, the system has a number of
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restraints between the maximum and minimum values, the
change in the number of restraints is accepted based on the
Metropolis criterion. In the Metropolis criterion decreasing the
energy will always result in acceptance of the change. Since the
restraint energy for each restraint is always greater or equal to
zero (Erest ≥ 0), reducing the number of restraints would
always be favored. In essence, this corresponds to having a
uniform prior that does not promote or discourage a specific
number of restraints and just relies on the restraint energy. As
the restraint energy with a uniform prior would lead to
satisfying few restraints and therefore losing guiding power, it
becomes important to establish a prior that promotes enforcing
a higher number of restraints.
We decided to use an exponential prior to reward the

addition of restraints over the initial value (see Figure 2).
E!ectively, this prior is introduced by adding a reward energy
term for every restraint above an initial value, the Ereward =
−λkBT(Ni − Nprior), where λ determines the magnitude of the
reward per restraint, Ni is the number of current proposed
restraints, and Nprior is the number of restraints we set as a
prior for the simulation. E!ectively, this Ereward is the log-prior
and requires two hyperparameters: λ (reward magnitude) and
Nprior (starting belief). When λ is set to zero, we return to the
uniform distribution prior. When λ > 0, we have an exponential
prior. When combining the prior with the restraint energy and
force field energy, we obtain a distribution of sampled
restraints (see Figure 2). As λ increases, the method would
enforce more and more data−overcoming force field
preferences. Thus, it is important to find a good reward
magnitude that will balance between the best use of the data
and force field. Below we detail the type of data used in this
study and how we identified the value for λ.
Most importantly, the decision of how many restraints to

satisfy is particular to each walker in the replica exchange
system. As each walker samples di!erent conditions along
replicas (temperature and Hamiltonian), the distributions of
how many restraints are satisfied will also change.
Benchmark Datasets. We use two benchmark sets for

which we have previous experience using MELD with fixed
accuracy values. The first benchmark is the folding of 12
proteins starting from sequence using coarse physical insights

(CPIs) as external information. The second benchmark is the
binding of a series of peptides that fold upon binding the
extraterminal (ET) domain of bromo and extraterminal
domain (BET) proteins using chemical shift perturbation
(CSP) data for the ET domain measured in the presence/
absence of the peptide.22 Each type of data (CPIs or CSPs) has
its own strengths and weaknesses.
CPIs originate from general protein principles14 such as the

presence of hydrophobic cores or pairing of beta strands based
on secondary structure predictions using PSIPRED23 protein
structure prediction server.24 This leads to many possible
restraints across pairs of residues along the sequence. Since this
data does not originate from an experiment, it is typically less
self-consistent than that from experiments and provides less
guiding power. The advantage is that this data is easy to derive
starting from the protein sequence, but the amount of possible
restraints and, therefore, the amount of noise increases with
protein complexity (in terms of secondary structure) and size.
Thus, the approach has only been successful for small proteins.
CSP datasets for peptide binding provide information about

chemical shifts in the protein that change in the presence/
absence of the peptide but provide no structural information
about the peptide.22 Typically, we process this data to identify
residues in the protein with the largest perturbation and
hypothesize that this change could be due to interactions with
the peptide. However, we do not know which residues in the
peptide interact, thus generating all possible interaction
combinations between peptide residues and protein residues
above the threshold, leading to a noisy dataset. Some of the
selected protein residues might not even be involved in
interactions with the peptide and change their chemical
environment due to allosteric changes, further increasing the
noise level in the dataset.
The major di!erence between CSP and CPIs is that CPIs

are distributed through the 3D space of the protein, thus
leading to many incompatible sets of restraints. On the other
hand, CSP data tends to be localized near the binding site;
thus, small conformational changes in the protein-peptide
interaction easily give rise to satisfying a higher number of
restraints (e.g., an extended conformation wrapping around the

Figure 2. E!ect of reward value on prior distribution. When the reward is zero, the prior is constant, and it uniformly samples all possible
numbers of restraints in the absence of any forces (left). When the reward is nonzero, the prior grows exponentially, favoring a large number of
active fractions in the absence of any forces (middle). In the presence of a force field, the active fractions find an upper and lower limit governed by
the reward value and the force field (right).
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active site) − challenging the biological relevance of the
simulations.
Simulation Details. Protein Folding Benchmark. We

conducted MELD-Adapt simulations on a dataset comprising
12 proteins (listed in Table S1). All simulations were
performed using the OpenMM25 suite of programs, starting
from fully extended chains and a combination of the !14SB26
and !99SB27 atomic force fields for side chains and backbone,
respectively. The simulations were executed within the
GBNeck2 implicit solvent model,28 using hydrogen mass
repartitioning and a 3.5 fs time step.29 To mitigate issues
related to local energy minima, and to achieve e"cient
sampling, MELD uses Hamiltonian and Temperature Replica
Exchange Molecular Dynamics (H, T-REMD).21 We used 30
replicas such that each replica operates at varying temperatures
within the range of 300 K to 550 K while maintaining a strong
force constant (250 KJ·mol·nm−2) for low-temperature replicas
and gradually reducing it to zero for high-temperature replicas.
We performed simulations choosing di!erent values for the

two parameters that control how much data is enforced: the
reward value and the prior belief. For the reward value, Ereward
= −λkBTΔ, choosing higher rewards promotes the activation of
a higher number of restraints. We experimented with di!erent
values of λ, specifically 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0.
Consequently, six di!erent simulations were conducted for
each test system, each utilizing di!erent reward values. For
these systems, we chose our initial belief as we had done in our
prior work,14 which had already been optimized to account for
most proteins (each hydrophobic residue is on average in
contact with 2.4 other hydrophobic residues), and 45% of
residues predicted to be part of β-strands will be involved in
N−H···O hydrogen bonding to another strand residue. We
then selected three systems (3GB1, T0769, and T0773), for
which we repeated the calculation with an initial belief that was
either lower (1.2 hydrophobic contacts and 25% of strand
residues directed toward strand pairing) or higher than our
previous work (4.8 hydrophobic contacts and 65% of strand
residues directed toward strand pairings).
Protein−Peptide Binding Benchmark. We chose five

di!erent reward values to optimize: λ = [0, 0.25, 0.5, 0.75,
1.0]. Furthermore, for these systems, where intrinsically
disordered peptides fold upon binding, the force field plays a
crucial role. Thus, along with the reward value optimization,
we tested there di!erent force field and solvent model
combinations: !14SBside+gbNeck2,26,28 !14SBside+obc,26,30
!12SB-cMAP+obc.30,31 For each of them we ran the
traditional MELD approach with fixed number of data belief
or the current MELD-Adapt protocol. Our previous experience
with this systems used standard MELD with the !14SBside
+gbNeck2 combination.22
Simulations start from an unstructured peptide far from the

protein receptor. We use the ET domain of BRD3 with
peptides TP,32 NSD3,32 CHD4,33 and BRG133 and the ET
domain of BRD4 for the LANA34 peptide based on the solved
NMR structures deposited in the PDB (7JQ8, 7JYN, 6BGG,
6BGH, 2ND0).32−34 We used available CSP data from TP and
NSD332 and transferred the ET:TP data to the remaining
systems, as previously done.22 We set our initial trust of the
CSP data at 4% for both MELD and MELD-Adapt protocols.
Each simulation ran for 1 μs with 30 replicas. Temperature and
restraint strength were scaled nonlinearly. Temperature ranged
from 300 to 500 K, and force constant ranged from 350 kJ
mol−1 nm−2 in the lower replicas to 0 kJ mol−1 nm−2 at the

highest replica. More detail regarding setting up the H,T-
REMD protocol can be found in our previous study.22

Analysis. We analyze the ensembles produced by di!erent
protocols by their ability to predict native-like confirmations
(e.g., in the highest population cluster), provide faster and
more robust convergence to the native state (e.g., by looking at
the behavior across all replicas), and by finding the ideal
fraction of the data to trust. This leads to the following three
types of analysis.

Clustering. We used hierarchical agglomerative clustering to
group structurally similar configurations and determine their
respective populations using AMBER’s cpptraj package.35 The
clustering process was applied to the second half of the
trajectory from the five lowest temperature replicas, utilizing a
cuto! distance of 2 Å and considering only Cα carbons of
residues with predicted secondary structure. In cases where the
secondary structure prediction covers less than 50% of the
residues, the Cα of all residues were included in the clustering
(listed in Table S2). For protein-peptide complexes, we used a
cuto! of 1.5 Å for clustering, and unstructured peptide regions
were removed from clustering. Our reported predictions
include the centroid of the most populated cluster (top1) or
the best centroid from the top 5 population clusters (top5) and
their population and RMSD from native (interface RMSD or
iRMSD36 for protein-peptide complexes). Additionally, we
assessed the fraction of frames with structures that conformed
to the same number of restraints as native structures.

Convergence Checks. We conducted structure prediction
convergence checks by analyzing the ensembles produced by
the 30 replicas. First, we analyzed the RMSD distribution for
the ensemble generated at each replica (the di!erent
Hamiltonian and Temperature). We anticipated observing
RMSD distributions that would be wide at the highest replica
and become narrower distributions (either native-like or
misfolded) at lower replicas, in essence following a funnel-
like behavior. We expect better protocols to yield a more
funneled landscape toward native-like structures. Whereas bad
protocols will converge quickly to non-native states.
Second, we checked convergence by comparing RMSD

distributions against the native state for each individual walker
as it performs a random walk in replica space. A well-converged
simulation is characterized by consistent RMSD distributions
among all walkers, with peaks occurring at the same values.
Simulations that do not exchange properly (e.g., exchanging
locally without achieving roundtrips in replica space) will
present very di!erent RMSD distributions. In a converged
simulation with stable conformations, each walker should be
able to visit native-like structures, with RMSD values below 4
Å. We quantified convergence using the Kullback−Leibler
(KL) divergence using the Scikit-learn package.37 A KL
divergence value of 1.0 implies a significant disparity with
the other individual distributions, while a value of 0.0 indicates
an exact match between the observed and the other individual
distributions.

Comparison of MELD-Predicted Accuracy with the
Amount of Data Satisfied by the Experimental Structure.
MELD-Adapt simulations sample a distribution of accuracies
in a replica-dependent manner. We expect the analysis of the
distribution of enforced accuracy at the lowest replica index to
overlap significantly with the number of restraints satisfied by
the native structure. Thus, we analyzed the number of
hydrophobic and strand pairing restraints (for protein folding)
and CSP-derived distance restraints (for peptide binding)
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within the structure of each frame at the lowest temperature
replica relative to the native structure using the MDTraj
package.38 The optimal reward value (λ) should yield a
distribution that overlaps with the distribution obtained from
satisfied restraints.

■ RESULTS AND DISCUSSION
MD-based approaches typically have a hard time disambiguat-
ing between sampling issues and force field issues. In this
study, the addition of restraints can overpower force field
preferences, and as we allow the number of restraints to

change, so can the balance between force field and restraint
energy contributions be skewed. This e!ect becomes especially
pronounced in peptide−protein complexes, where the nature
of the data and the marginal stability of the peptide, with the
balance between intrinsically disordered proteins/peptides
(IDPs) (unbound) and folded (bound), is more sensitive to
changes in the number of enforced restraints. Thus, we will
present and discuss the two benchmark sets separately and
then provide a broader discussion.

MELD-Adapt Samples Folded States Across a Wide
Range of Protocols. For each system and simulation

Figure 3. Comparative analysis of protocols with varying reward values for Protein G. Panel A uses a fixed belief with traditional MELD, while
Panels B−D use MELD-Adapt with di!erent λ values. The first column shows the funneling power of each protocol. The second column shows the
overlap in RMSD distributions across 30 walkers; the values at the top right indicate how many of the 30 replicas have an average pairwise KL
divergence lower than 0.5. The third column shows the percentage of active restraints during simulation (in blue) and the percentage of restraints
satisfied (in red). The fourth column shows the centroid of the top population cluster (in blue) compared to the native structure (PDB ID 3GB1,
in gray).
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condition, we look at the ability of the approach to (1) sample
the native state, (2) identify the native state as the highest
population cluster, (3) identify the correct interpretation of the
original data, and (4) agree between replica walkers
(convergence). Figure 3 summarizes our results across
di!erent protocols for Protein G (PDB ID 3GB1). First, we
look at the funneling power of di!erent protocols, that is, the
ability to narrow down sampling in low-temperature replicas to
focus on the native state. Second, we look at the overlap in
RMSD distributions along di!erent replicas and calculate the
KL divergence to assess convergence: if only one replica finds
the native state for a long time the system is less converged
than if all replicas sample the native state for a short amount of
time. Third, we look at how much data (how many active
restraints) the system is imposing during the simulation, and
how many restraints are actually satisfied. If more restraints are
enforced than satisfied, that means that we are adding restraint
energy to our potential, which could alter force field
preferences. On the other hand, if we are satisfying more
restraints than actually enforced, this shows that the
cooperative nature of restraints leads to satisfying more
restrains than the ones being enforced (e.g., a contact between
residues i and j trivially results in a contact between i and j + 1
even if there is no restraint guiding to it). Fourth, we look at
the RMSD value between the centroid of the top population
cluster and the native structure.
In general, when the data is not directive enough the

funneling plots will exhibit broader distributions in the lowest
temperature replica (see panels A and B in Figure 3). They will
also rapidly lose native-like populations as we go to higher
replicas. On the other hand, when enough data is enforced this
leads to narrow RMSD histograms in the lowest temperature
replica (see panel C in Figure 3). When a higher amount of
data is enforced than the correct amount it can also lead to
narrow distributions that are shifted with respect to the native
state: the method guides to an incorrect region of phase space
(see panel D in Figure 3).
Even with the fixed accuracy in MELD, we observe a

distribution along the number of restraints that are satisfied in
the native state centered around the enforced value (see panel
A in Figure 3). This is due to the way we introduce restraints
using flat-bottom harmonic restraints, where there is a
quadratic term extending one Å in each direction that
contributes kBT at its maximum. Hence, thermal fluctuations
can already account for small changes in satisfied restraints
close to the fixed MELD value. Interestingly, with a reward
value of one, we start seeing a separation between the number
of restraints enforced (that is, contributing a restraint energy
term to the potential, blue distribution) and those actually
satisfied (red distribution, contributing an energy of 0 kcal/mol
to the potential energy). Although protocols using a reward
value between 0.25 and 1 kcal/mol per restraint activated
above the initial belief systematically find the native state with
high accuracy, the latter has a greater funneling potential and
greater convergence of the results across replicas. As the
di!erence between satisfied and enforced restraints becomes
larger (λ = 4 and higher, see Figure S1), we observe
convergence toward incorrect regions of phase space.
Of the ten protein systems we studied, the first nine produce

excellent results with both MELD, and MELD-Adapt with
rewards between 0.25 and 1. For these systems, the native state
is always found as one of the top 5 population clusters, and for
the 0.25 and 0.5 rewards systems also as the top population

cluster (see Figures S1−S9 and Table S4). Ubiquitin, the tenth
system, is the most complex protein in the dataset and a slow
folder. Additionally, for this system, the accuracy of the
secondary structure prediction was much lower than for the
rest (see Table S3), resulting in low guiding power. When
running simulations with our protocol MELD was not able to
sample any native-like structures, so all clusters remain far from
the native state (see Table S4). The MELD-Adapt protocol
with a reward of 1 was the only to sample the native state (best
RMSD in the ensemble of 3.36 Å), but not enough to get
native-like clusters. It is unclear from our simulations if the
failure with ubiquitin originates from a force field or sampling
issue. Since MELD-Adapt was able to sample the native state,
but not detect it as a high population state, it points to a
possible force field deficiency.
We thus rerun ubiquitin by placing secondary structure

more compatible with the native state (in accordance to the
methods, this also changed which residues we clustered on; see
Table S2). In these conditions, both MELD and a range of
MELD-Adapt protocols were able to sample the native state
and identify it through clustering (see Figure S10 and Table
S4). Potentially, the secondary structure restraints are
overcoming limitations in the force field that now allow us
to sample the native structure in high populations. The
presence of a small 3-10 helix flanked by loop regions with no
secondary structure seems to be the most challenging part to
get the overall topology of ubiquitin correct.
Figure S11 summarizes our results by showing improve-

ments and failures of di!erent reward values with respect to the
original MELD approach in terms of RMSD of the top cluster
and its population. In the plot, positive values for population
increase and negative values for RMSD depict improvement of
the MELD-Adapt protocol over MELD for a given reward
value. The plot shows that reward values above λ = 2 have an
overall negative e!ect, while lower values seem to perform
similarlya result of using good initial beliefs from our
previous work.14 This robustness across several λ values is a
nice feature of the approach, since results are not overly
dependent on the initial value chosen. For λ > 2, we are able to
detect the protocol as a bad one (for example by looking at the
disagreement between satisfied and enforced restraintsl Figures
S1−S10).
As increasing λ values translate into enforcing a higher

number of restraints, we thought this might a!ect the biased
folding kinetics. Surprisingly, there are no clear trends as to the
e!ect of di!erent protocols on first passage time (the first time
we sample the native state) (see Table S5). Indeed, Figures
S1−S10 show that the distribution of satisfied restraints is very
similar across protein systems for λ values between 0.25 and
1.0. However, when comparing these protocols to the original
MELD results, the first passage time tends to increase.
This is expected when considering that the number of

enforced restraints in MELD-Adapt is specific to each walker
and recalculated at every time step. Examining the distribution
of active restraints across replica conditions (varied by
Temperature and Hamiltonian), we find that the belief level
is replica-dependent (see Figure S12). At the highest replica
index, all restraint force constants vanish and the temperature
is high, so MELD-Adapt does not have preferences for how
many restraints are satisfied (broad distribution of enforced
restraints). At this replica, simulations sample unfolded states.
As we move down the replica ladder, the force constants
increase while the conformations are still largely unfolded,
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making it energetically costly to enforce many restraints.
Consequently, MELD-Adapt typically satisfies a small fraction
of restraints at these replicas, which help to initiate the folding
of the protein. As the temperature continues to decrease and
the restraint force constants increase further, the number of
enforced restraints selected by MELD-Adapt progressively
grows. At the lowest replica index, MELD-Adapt satisfies the
optimal number of restraints (see Figure S12). In contrast,
MELD enforces the same fraction of restraints at every step.
Having more guiding information enforced at the higher
replicas leads to shorter first passage times.

Another consequence of enforcing fewer restraints at higher
replicas is the ability to sample more native-like folding routes.
In MELD, the same amount of data is enforced across all
replicas, hence the amount of data drives toward end states,
where many contacts are formed. Some subsets of the data will
lead to correct protein folds and some will lead to incorrect
folds. However, the intermediates found are also driven by the
same amount of restraints, so the MELD folding intermediates
are not necessarily meaningful. In MELD-Adapt, fewer
restraints are satisfied at higher replicas, which are compatible
with earlier folded intermediates. Thus, MELD-Adapt allows
for more physically meaningful intermediate states.

Figure 4. Folding belief analysis. Comparison of protein folding behavior between MELD (blue) and MELD-Adapt (red, with a reward value of
1.0 kcal/mol) under three scenarios: (i) initial data below real accuracy, (ii) accurate initial data, and (iii) initial data above real accuracy. The
analysis includes (A) funneling protocol, (B) RMSD distribution, (C) percentage of enforced and satisfied hydrophobic restraints, and (D)
percentage of enforced and satisfied strand pairing restraints, illustrating that MELD-Adapt dynamically adjusts the trust percentage and is
independent from initial beliefs. (E) Best predicted structures in each protocol compared to the native structure (silver).
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For instance, consider protein G (3GB1), a small protein
consisting of N-terminal and C-terminal hairpins that form a β-
sheet through an interaction between strands 1 and 4. An α-
helix then packs against the β-sheet to complete the protein’s
topology. The folding pathway involves first forming a non-
native (registry-shifted) hairpin at the N-terminus, which
stabilizes the C-termini hairpin. In this misfolded intermediate,
the C-terminus is native-like, while the N-terminus is not.
However, the pairing between of strands 1 (N-terminus) and 4
(C-terminus) is correct, allowing the N-terminus to partially
unfold and refold into the native hairpin.
We previously showed that biasing MELD to the end state

can recover the native state−but the folding pathways are
incorrect.39 Additionally, when MELD is biased to information
compatible with the intermediate states, it can find the correct
experimental folding pathway. However, without additional
restraints to continue folding the protein, significantly longer
simulation times are required to reach the fully folded state.
In MELD-Adapt simulations, the number of restraints varies

across replicas, allowing compatibility with intermediate states

at higher replicas and with the native state at the lowest
replicas. As a result, MELD-Adapt can identify the correct
folding pathway with significantly fewer resources. Indeed,
Figure S13 shows the population of native-like, registry-shifted
N-terminal and C-terminal hairpins present at di!erent replica
indexes for MELD and MELD-Adapt simulations. Traditional
MELD simulations sample many compact states at high replica
index and eventually predicts structures that are a mixture of
the registry shifted and native-like N-terminal hairpin. MELD-
Adapt, on the other hand, better separates the registry-shifted
(populated at higher replica index) and native N-terminal
states. Initially, it does not form hairpins at the highest replicas.
As the registry shifted N-terminal hairpin is populated at
intermediate replicas (orange), we start seeing population of
the C-terminal hairpin (light blue), and as the replica index
further decreases and the population of the C-terminal hairpin
increases (dark blue and purple), so does the population of the
correct N-terminal hairpin increase, while that of the registry-
shifted hairpin decreases.

Figure 5. MELD-Adapt representative structures (centroid from the highest population cluster) for protein−peptide complexes simulated
with di!erent force fields. For each of the five simulated systems, the representative structure in each of the four simulation conditions are shown.
The experimental structures are given as reference in the top row. The protein force field was fixed at the !14SBside, with implicit solvent changing
between OBC and GBneck2, and sampling using MELD or MELD-Adapt (λ = 0.25 kcal/mol). The red dashed box shows the most successful
protocol.
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Figure S14 further illustrates this point by looking at which
data points among all possibilities are enforced for both strand
pairing and hydrophobic restraints in protein G at the lowest
replica. Most protocols (see Figure S14) capture the correct
pairing between strands, but the first hairpin (pairing between
strands 1 and 2) is o!-registry for several protocols.39 When
considering these results together with hydrophobic pairings,
this leads to further di!erences among protocols to accurately
predict the native state−while the overall fold given the
common core restraints is similar.
MELD-Adapt Recovers from Incorrect Beliefs. While

the previous results show the importance of choosing the
correct reward value, they show similar results between MELD
and MELD-Adapt. The CPI initial belief was already optimized
when developing the CPI protocols. Thus, MELD-Adapt
converges on the MELD solution. To showcase the power of
MELD-Adapt over MELD, we prepared a set of simulations
using an incorrect initial belief. We chose three systems
(protein G, and CASP1140 targets T0769 and T0773),41 where
we set the initial belief to be substantially below or above the
real accuracy of the data. For these three tests, we used our
previously selected reward value of 1 kcal/mol. Figures 4, S15,
and S16 and Tables S6−S8 summarize our results across these
systems. The funneling plots show that, indeed, the MELD-
Adapt method obtains similar results irrespective of the initial
belief. Table S6 shows that only for two of the scenarios
traditional MELD does not identify the native state in the top5
clusters, and Table S7 shows an increase in the population of
the top1 cluster when using MELD-Adapt, indicating a more
funneled behavior. This is a significant improvement over
MELD, where enforcing too little data is not directive enough
for protein G; and enforcing too much data directs protein G
to an incorrect region of phase space. Surprisingly, for T0769
and T0773, we obtained good results even when satisfying
incorrect data in fixed MELD. Both T0769 and T0773 were
protein designs from the Baker lab,42 which have been
optimized to have very good funneling behavior and more
stability than naturally occurring proteins. Thus, in this case,
the balance between force field and restraint penalties favors
the native state even when too much data is being enforced. In
this scenario where di!erent number of restraints are applied
to the same system, it is easier to see the e!ect in the first
passage time (see Table S8). Thus, in traditional MELD using
an understimation of the data results in longer folding times.
As more data is enforced, the first passage time is reduced. For
the case of 3GB1 an overstimation of the data results in
incorrect folding and thus cannot measure a mean first passage
time. As discussed above, for the two designed proteins, adding
more data just accelerates folding times. The situation is quite
di!erent when using MELD-Adapt, where simulations
converge on the amount of data used. Despite this, for two
of the systems (see Table S8), starting with a lower trust and
increasing the number of restraints seems to be favored over
starting with a high belief value.
Peptide Binding.We chose a series of five peptide systems

that bind the ET domain with di!erent binding a"nities
ranging from nanomolar (90 nM) to submillimolar (635 μM)
(see Table S9).22,32−34 We had previously shown that using
CSP data alone we could predict the structure of the complex
for the three strongest binders (TP, CHD4, and BRG1).22 For
NSD3, the structure of the complex was within the top 5
clusters, and for LANA, it was within the top 10 clusters. One
of the caveats in mapping the experimental data from CSP is

that the sensitivity of the data is dependent on the binding
a"nity; hence, we had to decide on a di!erent threshold to
optimize.22 Furthermore, we used the CSP data from the TP
and transferred it to use for BRG1, LANA, and CHD4. The
threshold allows us to determine how many protein residues
will likely be involved in the protein-peptide interface. Since
there is no information for the peptide we have to consider
that any residue in the peptide could be involved in binding−
this leads to a combinatoric of possible contacts between
protein and peptide. Since the peptides are of di!erent lengths
(Table S9), this also means that the number of total restraints
is di!erent for each system. In our previous work, we used a
4% accuracy after looking for self-consistency in predictions
across simulations enforcing di!erent belief values. Ideally,
parameter sampling would allow us to recover the structure of
the complex as the top prediction for all systems.
As in the case of folded proteins, we attempted MELD-

Adapt with di!erent reward values, first starting from the
!14SBside force field and GBneck2 implicit solvent we had
used in previous work (see second row in Figure 5). However,
in this case, reward values above 0.50 kcal/mol rapidly lead to
incorrect predictions where the peptide stretched surrounding
the active site (See Figure S17). Upon reflection, all restraining
contacts in the dataset for these systems are clustered together
(as we made all combinatorics from the CSP data), and the
peptides are at the threshold of stability for folding upon
binding. Hence, even a small reward for satisfying more
restraints can easily overcome force field preferences, which are
enabled by the close proximity of all candidate restraints. As
the reward value increases, we observe a rapid shift in the
distributions of enforced and satisfied restraints, with their
overlap diminishing as λ increases (see Figure S18). For λ =
0.25 kcal/mol, predictions for each peptide sequence correctly
locate the peptide in the binding site, but the peptide’s internal
conformation is often incorrectly predicted. The tail peptide
(TP), the strongest binder in the set, is the only one correctly
predicted. LANA, the weakest binder in the set, is predicted in
the active site pairing as a β-strand, but the interacting residues
in LANA are shifted along the sequence with respect to the
experimental structure. Both CHD4 and BRG1 are predicted
to bind as strands, but in a flipped conformation with respect
to the experimental structure (see third row in Figure 5).
Finally, NSD3 is predicted to bind adopting a helical
conformation instead of the native hairpin conformation.
Acknowledging that this could be a force field deficiency,

rather than an issue with the MELD-Adapt procedure, we ran
simulations with di!erent force fields (see methods) to better
balance preferences between the helical and extended
conformations.31,43 Thus, we repeated our approach with the
!14SBside force field and OBC implicit solvent model. In this
case, the protocol leads to accurate predictions up to a reward
value of 0.50 (Figures S17 and S18). Therefore, we decided on
a reward value of 0.25 for all peptide MELD-Adapt protocols.
Analyzing all the simulations, we indeed observe, that top
predictions using the traditional MELD approach with the
OBC implicit solvent and !14SBside with CMAP31 correction
significantly improved, capturing three of the five complexes as
the top cluster (missing the orientation of BRG1 and the
NSD3 peptide conformation, see the fourth row in Figure 5).
The results improved with MELD-Adapt simulations, with all
five predictions corresponding to the native structure of the
complex. Figures S19 and S20 help rationalize the balance
between the force field and parameter sampling. For instance,
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all protocols and force fields were able to sample native-like
structures of the complex (see RMSD values in Figure S20).
They were just not preferred as high-population clusters in
several cases. Figure S20 shows that the force field has a larger
influence on the performance than whether MELD or MELD-
Adapt was used. However, a head-to-head comparison between
MELD and MELD-Adapt within each force field favors the
later strategy. We further investigated the reason behind the
protocol with !14SBside force field and OBC solvent model
being the best protocol. We analyzed all the generated
restraints from the CSP data to see which and how many of
them are satisfied in the top prediction from di!erent protocols
(Figure S21). We observe that protocol with the gbNeck2
solvent model shows a high number of true negative and false
positive contacts irrespective of MELD or MELD-Adapt
approach. The protocols with OBC satisfy most of the
accurate contacts with very few true negative and false positive.
MELD-Adapt shows a modest improvement with respect to
MELD in this scenario (Figure S21). Overall pairs of systems,
there was an insignificant improvement over the top five
predictions and over the ensemble. However, the average
MELD-Adapt improvement for the top cluster predictions was
about 1−2 Å, showing that the approach is able to improve the
ranking among force field selected top clusters, increasing its
population. We repeated the simulations with an earlier force
field version (!12SB) with CMAP correction31 which failed to
reproduce most structures of the complex (even TP).
On-the-Fly Learning Dataset Accuracy Improves

Modeling Predictions. Reducing human intervention and
decisions in computational modeling leads to greater
reproducibility. In the context of integrative approaches, the
user has many choices to make, from the number of relevant
states to how to model the data to how to deal with
uncertainties in the data. The MELD approach starts with the
idea that if we have a belief in the data that is equal to or lower
than the real accuracy of the data, it can identify the best
interpretation of the data as well as the structures compatible
with the data. However, estimating this value is not trivial, and
will change according to experiments. The ability to sample
native-like structures is still conditioned by challenges like
backtracking,44 force field accuracy, and sampling e"ciency−
and it is hard to disambiguate the di!erent contributions.
Here, we have shown that on-the-fly identification of data

accuracy can lead to more e"cient simulations, increase
sampling e"ciency when our initial belief is too low, and
correct phase space exploration when our initial belief drives to
incorrect structures. However, the method is sensitive to the
internal structure of the data (local or distributed) and the
balance with the force field. Thus, high reward values can lead
to too much data being satisfied and overcoming force field
preferences. We did not find a protocol where fixing the reward
value can be uniformly transferable across datasets, but lower
reward values (0.25 kcal/mol) seemed to work best overall in
both cases−with low guiding power for the protein folding
dataset.
We have focused our e!orts on two challenging problems for

MD simulations: binding and folding. Both fall under the
broader category of structure prediction, where AI methods
like AlphaFold (AF) have shown great success. We do not
expect our method to outperform AF in cases where AF excels.
However, MD-based integrative methods o!er distinct
advantages, such as compatibility with known experimental
data and a physics model, transferability to di!erent systems

where available force fields exist, the ability to handle
ensembles with relative importance determined by popula-
tions. Additionally, MD can identify intermediate and
metastable states, as well as the relationships between them.
MELD-Adapt allows users to adjust the balance between

how much the data is trusted versus how much the force field
is relied upon. This is a decision left to the user. We
recommend examining the restraint energies: if these energies
are too high at the lowest replica, the force field has less
influence in identifying states through clustering. On the other
hand, if the restraint penalties are relatively low, they can help
compensate for any shortcomings in the force field, providing
additional guidance to the simulations.

■ CONCLUSION
This study presents an enhanced MELD approach that
incorporates on-the-fly learning to dynamically calibrate the
use of experimental data, improving the accuracy of
biomolecular structure predictions. Our results underline the
importance of carefully balancing force field influences and
data restraints to avoid convergence to incorrect regions of
phase space. While the method shows sensitivity to the internal
structure of the data and the balance with the force field, we
have demonstrated that lower reward values tend to o!er a
safer compromise between data guidance and depending more
on force field accuracy. The ability of the MELD-Adapt
technique to recover from incorrect initial beliefs showcases its
potential as a powerful tool in integrative structural biology,
especially when addressing the inherent uncertainties present
in experimental datasets. Ultimately, our approach reduces
human intervention, increasing the reproducibility of computa-
tional modeling and providing a robust framework for
predicting the structure of proteins and their complexes with
peptides.
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