Check for
Updates

A Transducers-based Programming Framework for Efficient Data
Transformation

Tri Nguyen
North Carolina State University
United States of America
tmnguye7@ncsu.edu

Abstract

Many data analytics and scientific applications rely on data trans-
formation tasks, such as encoding, decoding, parsing of structured
and unstructured data, and conversions between data formats and
layouts. Previous work has shown that data transformation can rep-
resent a performance bottleneck for data analytics workloads. The
transducers computational abstraction can be used to express a wide
range of data transformations, and recent efforts have proposed con-
figurable engines implementing various transducer models (from
finite state transducers, to pushdown transducers, to extended mod-
els). This line of research, however, is still at an early stage. Notably,
expressing data transformation using transducers requires a para-
digm shift, impacting programmability.

To address this problem, we propose a programming framework
to map data transformation tasks onto a variety of transducer mod-
els. Our framework includes: (1) a platform agnostic programming
language (xPTLang) to code transducer programs using intuitive
programming constructs, and (2) a compiler that, given an xPTLang
program, generates efficient transducer processing engines for CPU
and GPU. Our compiler includes a set of optimizations to improve
code efficiency. We demonstrate our framework on a diverse set of
data transformation tasks on an Intel CPU and an Nvidia GPU.

ACM Reference Format:

Tri Nguyen and Michela Becchi. 2024. A Transducers-based Programming
Framework for Efficient Data Transformation. In International Conference
on Parallel Architectures and Compilation Techniques (PACT °24), October
14-16, 2024, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3656019.3676891

1 Introduction

Data transformation is one of the core processing steps in many
data analytics and scientific applications. For example, Extract-
Transform-Load (ETL) workloads require extracting information
from a variety of formats, transforming the data, and loading them
into a target format. Data transformation tasks performed by these
workloads include: data encoding/decoding, data compression and
serialization for communication and storage density, data analy-
sis, and query of structured or unstructured data (using popular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’24, October 14-16, 2024, Long Beach, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0631-8/24/10

https://doi.org/10.1145/3656019.3676891

66

Michela Becchi
North Carolina State University
United States of America
mbecchi@ncsu.edu

data formats such as CSV and JSON). In addition, scientific appli-
cations operating on matrices often require data conversion be-
tween different matrix formats [25], such as compressed sparse
row (CSR), compressed sparse column (CSC), and coordinate list
(COO) [15, 26, 27, 29, 41]. Performing these data transformations
efficiently is crucial to application performance.

Due to rapidly increasing data sizes, data transformation has
increasingly become a performance bottleneck for many data an-
alytic applications [24, 36, 40, 46]. At the same time, the use of
hardware heterogeneity to maximize performance and achieve en-
ergy efficiency has led to the need for portable implementations.
To address these issues, optimized CPU and GPU libraries imple-
menting common data transformations have been made available.
These include: Parquet [37] and Cub [2] (data encoding and de-
coding), Pandas [8] and RapidsAlI [6] (parsing), and Inte]l MKL[5]
and cuSparse [2] (sparse matrices). While efficient, these libraries
only address specific data transformations, and lack generality. As
new data transformations are devised, optimized implementations
tailored to different platforms are needed, leading to significant
programming effort.

Broader applicability to diverse data transformation tasks and
portability can be achieved by a programming framework relying
on a solid computational abstraction with efficient implementa-
tions for diverse hardware platforms. Previous work on transducers
processing [22, 23, 43] has shown the capability of the transducer
model to express a wide range of data transformations, from natu-
ral language processing, to structured data parsing (e.g., XML and
HTML), to image reversal, among others. However, the acceleration
of the transducers computational model has received only limited
consideration. Recent efforts [34, 35] have proposed accelerated pro-
cessing engines for finite state and pushdown transducers. To this
end, these works have proposed compact and efficient transducer
models amenable for hardware acceleration, as well as their imple-
mentation on a variety of platforms, including CPUs, GPUs and
novel accelerators [21]. Their results show that transducers-based
implementations can provide performance on par with popular
custom libraries running on the same hardware, and in some cases
even outperform those libraries.

However, using the transducers abstraction to express data trans-
formation tasks implies a programming paradigm shift. Program-
mers typically view applications in terms of sequences of algorith-
mic steps, often implemented through a Von Neumann language
with intuitive constructs such as program variables, assignment
statements, and control-flow statements. Implementing a data trans-
formation task using a finite state or pushdown transducer requires
expressing the computation through a set of states, transitions and
possibly stack operations. Existing proposals either lack a high-level
programming interface, or provide a basic programming interface

PACT °24, October 14-16, 2024, Long Beach, CA, USA

that, while including different constructs, inherently requires the
programmer to think of the computation in terms of states and
transitions [34, 35]. This paradigm shift is a major gatekeeper in
the wider adoption of transducers in general data processing tasks.

In this work, we aim to address this problem by providing a
programming framework for data transformation tasks rooted on
the transducers abstraction. The goals of the framework are: pro-
grammability, portability, efficiency and extensibility. Specifically,
the framework aims to: (1) support a wide range of transducer
models (from finite state transducers, to pushdown transducers
and extensions), (2) provide an intuitive and platform independent
programming interface that bypasses the paradigm of states and
transitions, (3) generate efficient transducer engines for CPU and
GPU offering performance competitive with hand-tune transducers
and custom data transformation libraries, and (4) be easily extended
to support diverse hardware platforms and transducer models.

In this paper, we make the following contributions:

e xPTLang, a platform agnostic programming language that allows
for expressing transducer programs as sequences of steps using
common and intuitive programming constructs, such as arith-
metic and control-flow statements;

e A compiler that, given an xPTLang program, constructs a trans-
ducer, optimizes it and generates efficient CPU and GPU process-
ing engines for it;

e Four compiler optimizations to reduce the transducer’s memory
footprint and improve control-flow efficiency;

e An evaluation of our framework on a set of data encoding/decod-
ing, data analytics, matrix transformation and structured data
query tasks [2, 4-6, 8, 37].

Our experiments show that our implementation achieves an aver-
age speedup of 1.6X and 2X over customized library implementa-
tions for CPU and GPU, respectively, while outperforming existing
transducer processing engines by 1.9X and 2.6X on average across
applications and datasets. From the programmability perspective,
not only does xPTLang provide a unified programming interface for
diverse hardware platforms (i.e., CPU and GPU), but it also allows
for compact codes, hiding from the programmer the implementation
details of the transducer engine (e.g., input/output stream handling,
memory management) on the targeted platforms.

2 Background and Motivation

Transducers are computational abstractions that map a streaming
input into a streaming output based on a transition relationship. As
such, they are a natural abstraction to express and implement data
transformation applications. Two basic transducer models are finite
state tranducers (FSTs) and pushdown transducers (PDTs). FSTs have
a finite number of states and transitions. Transitions are associated
one (or more) input and output symbols, the former denoting the
symbol(s) triggering the transition, and the latter the output sym-
bol generated when the transition is activated. PDTs extend FSTs
with a stack, inherently adding state. While the theoretical PDT
model includes an infinite stack, in practice stacks have a finite
size, and infinite stacks can be simulated by dynamically allocating
stack space as needed. Independent of the specific model, a data
transformation expressed through a transducer can be implemented
by processing the input stream symbol-by-symbol, and traversing

67

Tri Nguyen and Michela Becchi

1 Saving “name” field to a stack % ,6utput name” based on “gender f|eld\|
1 input == “" | push(s_0, input) 1 1

Input .
<d/po,
Pallfs o
=0 ¢)

2 input != “\n”
"Mput <2

=~
! DOaa//(s\o o
? “Utpyy)

N o o o -

N ———

A ——

Figure 1: Pushdown transducer that extracts the names of all
female individuals from a CSV file containing three columns:
name, gender and occupation.

the transducer’s states and transitions based on the sequence of
symbols read.

2.1 Formal Definition and Example

Formally, a pushdown transducer (PDT) [32] is defined as a quintu-
ple P =(Q, %, 4, s, F) such that:

e Q is a finite set of states;

e X is an alphabet such that ¥ = 3] U g U g, where X1, X0, and
Xg are the input, output and stack alphabets, respectively;
dCQXEU{e) x (Es Ule) xQx (S0 U{e) X (Bs U{e}) isa
finite state transition relationship, € being the empty string;

s € Q is the start state;

e F C Qs a set of final states.

A finite state transducer (FST) is similarly defined by excluding
stacks from the alphabet and transitions’ definition.

Operationally, besides writing to an output stream, a PDT can
pop symbols from a stack and push symbols onto it. A PDT tran-
sition r = (q1, 011, 01, 2, 002 0s2) is triggered when state q; is
active, the current input symbol is o1, and symbol og; is at the top
of the stack. Upon traversal, the transition will activate a new state
q2, generate output symbol 6oy, pop symbol os; from the stack
and push symbol og onto it. Transducers can be deterministic or
non-deterministic: the former have only one active state, while the
latter can have multiple states active at the same time.

Figure 1 shows a PDT extracting the names of all the female indi-
viduals from a CSV file containing three columns: name, gender, and
occupation. This transducer traverses the CSV file in row-major or-
der using a counter (s_I) to iterate through each column. The states
inherently record the progress of the transformation, while the
transitions check for conditions on stacks and inputs, and generate
the output accordingly. States 0-2 and their connecting transitions
(i.e., green block) read and save the content of the name field into
a stack (s_0), while states 3 and 4 and their connecting transitions
(i.e., the blue block) check whether the gender column (column 1)
indicates a female (marked as 1) and, when so, they output the
name of the individual recorded in stack s_0.

2.2 Related Work

Over the past decade, there have been several efforts focused on
extending the traditional FST and PDT models to support different
classes of applications efficiently. These works range from theo-
retical contributions to transducer engines deployed on real-world
datasets. Table 1 summarizes the characteristics of several notable
transducers.

A Transducers-based Programming Framework for Efficient Data Transformation

Table 1: Model features and availability of an execution en-
gine implementation for different transducer works.

Model Model Features and Extensions Execution
Var. Stacks Arith. Multil/O | Engine
openFST [7] | V/ - - - -
FOMA [3] v - - - -
Thrax [10] v - - - -
SFST [43] v - v - -
VPT [22] - v - - -
SST [12] v - - - -
DFST+ [35] | v - v - CPU
effPDT [34] | V/ v v v CPU/GPU
SORE [31] - v - - CPU
xPTLang v v v v CPU/GPU

e openFST [7], FOMA[3] and Thrax[10] are libraries for con-
structing finite state and weighted transducers from an existing
set of rewrite rules or regular expressions.

e Symbolic Finite State Transducers (SFSTs) [43] extend FSTs
with the concept of registers and arithmetic operations to support
HTML decoding and image blurring.

e Visibly Pushdown Transducers (VPTs) [22] use an input-
aware stack to support nested alphabet translation (for example,
for XML parsing).

e Streaming String Transducers (SSTs) [12] utilize a set of fixed-
length and variable-length registers to perform transformation
of key-value pair data.

e DFST+s [35] extend FSTs with registers and arithmetic opera-
tions to perform data encoding/decoding.

o StreamQREs (SQRE) [31] provide a query language for pat-
terned data.

o effPDTs [34] extend PDTs with multiple stacks, arithmetic oper-
ations and multiple I/O streams to support a wide range of data
transformations.

The works on SFSTs, VPTs, and SSTs focus on the theoretical sound-
ness of the proposed models, their decidability and expressiveness.
The authors prove that the proposed transducers can support a
wide range of applications: from computation intensive tasks such
as image reversal, to control-flow heavy tasks such as XML parsing.
In all cases, the underlying processing engine is a standard FST or
PDT. It is shown that the proposed extended transducers can be
converted to standard FSTs and PDTs by performing input/output
enumeration. This conversion, however, can lead to state explosion
when increasing the alphabet size (for example, SFSTs can get to
millions of states on 6-bit alphabets).

More recent work (DFST+s and effPDTs) has focused on putting
the transducers’ theory to practice by using compact and hardware-
friendly transducer models, and implementing high-throughput
transducer processing engines on GPU and other hardware accel-
erators. DFST+s and effPDTs extend FSTs and PDTs, respectively,
with arithmetic operations and an addressable memory. They are
capable of expressing data transformations that, when using practi-
cal alphabets, cannot be feasibly supported by standard transducers
on reasonable hardware.

Most of the works discussed above either require users to hand-
code the transducer expressing the target data transformation
(which can be complex and error-prone), or include a low-level in-
terface that requires users to describe data transformations in terms

68

PACT °24, October 14-16, 2024, Long Beach, CA, USA

XxPTLang
Program

PO ‘l; ———————————————— ~._ | [output
? SN

|
|
|
|
|
! Stack — String \‘\ |D Parser l
Reduction Disambiguation ! :‘ Internal |
i
' i | Data Flow l
1 |
T ——— | |
Transducer IR i l
i
¥ 5
Topology Block i
=3 B

S Parser ./
-

mmm) | [GPU

\\\ [Platform Specific Code Generation } J CPU

1
i
i
1
i g
L =) Entry Point
|
: :_ ‘ Exit Point
1
i
i
1
1
i

Figure 2: High-level design of the xPTLang framework.

of states and transitions, limiting programmability and adoption
in practice. While lacking an efficient execution engine implemen-
tation, openFST, FOMA and Thrax can be used as frontend to our
framework for data transformations that can be easily expressed
through a set of rewrite rules and can be encoded using traditional
models (namely, FSTs and weighted FSTs). Our work aims to pro-
vide a transducers-based programming framework with a high-level
programming interface for general data transformations, while sup-
porting the model features of the extended transducers proposed
in previous work (Table 1).

It is worth noting that the idea of accelerating entire classes of
applications by focusing on the computational abstraction at their
core has been successfully explored in other contexts. For example,
there has been a large body of work on the implementation and
acceleration of automata processing on GPU [17, 45, 47], FPGA [14,
33,39] and custom hardware [16, 19, 20, 28, 30, 38]. Recent work [13,
18] has proposed a high level automata description language to map
pattern matching programs to Micron’s Automata Processor and
similar spatial architectures. Since automata are computationally
equivalent to regular expressions, these works focus primarily on
search applications that perform various kinds of pattern matching
on textual data. However, they cannot be easily adapted to support
data transformation because they do not provide efficient support
for dynamic output generation [14, 19, 44].

3 Programming Framework’s Design

Figure 2 illustrates the high-level design of the xPTLang program-
ming toolchain. The parser takes an xPTLang program, constructs
an internal representation of it in the form of an extended trans-
ducer (transducer IR), and performs various compiler optimizations
(stack reduction, string disambiguation, topology reduction, and block
coalescing) aimed to reduce the transducer’s size and improve code
efficiency. The code generator produces a transducer processing
engine, that is, a program implementing the transducer’s traversal.
The current implementation supports code generation for CPU and
GPU. However, the framework can be extended with additional
code generators targeting other platforms.

PACT °24, October 14-16, 2024, Long Beach, CA, USA

3.1 General Design Decisions

Programming interface: First, the programming language should
hide the underlying transducer abstraction from the programmer.
Second, it should support the data streaming abstraction, which
is intrinsically implemented by transducers and allows limiting
memory and storage requirements. Third, different data transfor-
mation applications process the input at different granularity. For
instance, many data encoding algorithms process the input symbol-
by-symbol, and require a fixed number of read operations (typically
one) on each symbol. On the other hand, text parsing/querying ap-
plications typically process the data token-by-token (where a token
is a string of text). To improve programmability, xPTLang should
support both styles of input processing.

Choice of the underlying transducer abstraction: Our goal
is to support FSTs and PDTs, along with the transducer models
discussed in Section 2.2. To this end, we implement an extended
PDT model incorporating the features and extensions listed in Ta-
ble 1, namely: memory in the form of stacks (we treat variables as
single-element stacks), arithmetic operations associated to states,
and multiple input/output streams. We leverage theoretical results
from prior work. Specifically, the work on SFSTs [43] and well-
nested VPTs [22] proves that the addition of memory and arithmetic
operations retains the closure and composition properties of these
transducers. A transducer is considered closed under composition
if its composition operations (concatenation, union, intersection) pro-
duce a transducer of the same class. In practice, given an xPTLang
program, this property allows us to construct a transducer incre-
mentally, by first generating small transducers corresponding to
single program statements, and then recursively composing those
transducers using the three transducer composition operations
based on the control flows in the program.

4 Programming Model
4.1 xPTLang Programming Constructs

xPTLang includes three categories of programming constructs: ac-
tions, conditions and loops. These constructs allow programmers
to describe the computation in a sequential fashion using a set of
unconditional statements, conditional statements and loops. Those
statements operate on stacks, input streams and output streams.
XxPTLang provides constructs to process the input symbol-by-symbol
and token-by-token.

4.1.1 Keywords for stacks, input and output streams. We use iden-
tifiers to refer to stacks, input and output streams. Keywords s_ID,
input_ID, output_ID, where ID is a numeric value, represent stack,
input and output identifiers, respectively.

4.1.2 Actions. Actions denote changes in the content of stacks,
input streams or output streams. Allowed operations include: (1)
arithmetic operations on the element at the top of a stack, (2) basic
stack operations such as push and pop, and (3) advanced stack
operations such as flush, popall and write. Table 2 summarizes the
available actions as well as the topology of the sub-transducer
generated by the compiler for each action (recall that the final
transducer is built by incrementally composing smaller transducers,
each expressing a portion of the program). The blue coloring is to
indicate that, within the sub-transducer, arithmetic operations will

69

Tri Nguyen and Michela Becchi

Table 2: Actions: syntax and corresponding sub-transducers.

Category Action

Arith. op.

Transducer topology

S==0
@===©®

dst = srcl op src2

push (dst, src)
pop (src, dst)
popall (src, dst)
flush (src, dst)
write (dst, src)

Basic stack op.

Adv. stack op.
& Output op.

be associated to states while stack and output operations will be
associated to transitions.

Arithmetic operations have two source operands, srcl and src2,
and one destination operand, dst. srcI can be either a stack or an
input stream identifier, src2 can be a stack identifier, an input stream
identifier or a constant value, and dst identifies the destination stack.
Allowed operators include: addition, subtraction, multiplication,
division, bit-wise operations and bit manipulation operations.

Push and pop actions modify the stack identified by their first
argument. The second argument indicates the provenance or the
destination of the symbol pushed onto the stack or popped from
it, respectively, and can be a stack, an input or an output stream
identifier. In addition, the programmer can use the epsilon symbol
(€) as the destination argument of the pop operation to indicate that
the symbol retrieved from the stack can be discarded. All accesses
to input and output streams cause these streams to be modified.

Advanced stack operations are for enhancing productivity, but
can be expressed using a combination of arithmetic and basic stack
operations. popall and flush allow programmers to write the entire
content of a stack into a destination (another stack or an output
stream) in top-to-bottom or bottom-to-top order, respectively. The
src operand of the write operation can be either a stack or a constant
value. In the first case, the write operation allows for copying the
element at the top of a stack to a destination (another stack or an
output stream) without removing it from the source stack.

4.1.3 Conditions. Conditions denote conditional changes in the
program’s execution flow. Table 3 shows the basic structure of a
condition statement and the corresponding sub-transducer gener-
ated by the compiler. Note that each condition contains nested block
of statements (block;). The compiler will generate a sub-transducer
for each block;. The topology in Table 3 shows how these sub-
transducers are composed in case of a condition statement.

The if and cond keywords mark the beginning of a conditional
block and of an execution guard, respectively. Execution guards are
statements that evaluate to either true or false, and have the form
([arithmetic comparator][stack/constant value]).

Each guard determines whether a block of statements (which
can include actions, conditions, loops or string operations) will be
executed. The left-hand-side of the guard is specified by the source
in the parent if.

4.1.4 Loops. Aloop denotes repeated execution of a block of state-
ments. Table 3 shows the basic structure of a loop and the cor-
responding sub-transducer. Notably, loops introduce backward-
directed transitions. The loop body can include actions, condi-
tions, loops and string operations, and will have an associated

A Transducers-based Programming Framework for Efficient Data Transformation

Table 3: Loops, conditions, and string operations: syntax and
corresponding sub-transducers. Note that block; can in turn
be an action, a condition, a loop or a string operation. The
green blocks to the right represent the sub-transducers asso-
ciated to nested code blocks block;.

if (source)
cond (guard,) b|OCk 1 %
2 block;
Pio
3 cond (guardyn)
5 blocky block N ﬁ
else []
else-block Else Block
., | while (source)
I cond (guard) <—P—|
(S
= block m bl k
while-input oc
block %5 @
if-match (source)
é block; i %w Rlosi
tchin,
S | (i olockn) = (2)
S case (stringnr) ‘
o s o)
= else
@ else-block
I [CRGRIGRIIC

sub-transducer. The while keyword marks the beginning of a loop
structure. The guard operates as in condition statements.

4.1.5 String Operations. String operations allow for defining the in-
put and output processing at a “token” granularity, and are suitable
for transformations that require string matching, such as parsing
and querying of semi-structured data. xPTLang includes two string
processing primitives (listed in Table 3): if-match and print.

The if-match primitive allows the comparison of a source (either
an input stream or a stack) with a set of predefined strings (denoted
by the case keyword). The code blocks block; can include any con-
structs, except nested if-match statements on the same source. The
generated sub-transducer contains a “matching machine”, which
performs string matching against the given set of strings, connected
to the sub-transducers corresponding to the block; code blocks.

The print primitive writes a predefined string to an output stream.
The generated sub-transducer consists of states connected by non-
consuming transitions, each outputting a symbol of the string.

We note that string operations can be implemented as sequences
of symbol operations, using the condition and action constructs.
However, doing so will significantly increase the program length
and decrease its readability. Finally, these primitives allow express-
ing data transformations through the enumeration of the accepted
input strings and generated outputs, supported by standard FSTs.

4.2 Streaming Behavior

Following the transducer abstraction, the xPTLang language as-
sumes read-only input and write-only output streams. Reading
from an input stream consumes an input symbol, while writing to
an output stream causes a symbol to be appended to the stream.
In both cases, a stream pointer is implicitly incremented. As men-
tioned above, performing a data transformation using a finite state
or a pushdown transducer requires a transducer traversal guided

70

PACT °24, October 14-16, 2024, Long Beach, CA, USA

Listing 1: xPTLang program implementing RLE.

1 push(s_0, input_0) > s_0: run length symbol
2 write (output_0, s_0) > s_1: counter
3 push(s_1, 1) > _: current symbol
4 while -input

5 push(s_2, input_0)

6 if —source (s_ 2)

7 cond (== s_0)

8 s_.1 =s_1 +1

9 pop(s_2, €)

10 cond (!= s_0)

11 pop(s_1, output_0)

12 pop(s_0, output _0)

13 pop(s_2, s_0)

14 push(s_1, 1)

by the symbols in the input stream. Thus, during processing, the
input stream is read symbol-by-symbol, and the computation con-
tinues as long as there are input symbols still to be processed. In
the presence of multiple inputs, the processing is considered com-
pleted only when all input streams have become empty. To this
end, xPTLang includes a special loop construct called while-input
(Table 3), which iterates as long as there is a symbol to be processed
in any of the input streams. xPTLang hides from the programmer
the internal handling of input and output streams (i.e., handling
of stream pointers, input/output buffering, and data transfers be-
tween host and device). Stream accesses (for example, through push
and pop instructions) implicitly advance the corresponding stream
pointer, and, when necessary, cause operations on internal buffers
and host-device data transfers.

4.3 Stack Handling

We recall that arithmetic operations operate solely on the element
on the top of each stack accessed, but do not push elements into the
destination stack or pop elements from the source stack(s). Loop
and condition guards access stacks without modifying their content.
To conform with the pushdown transducers abstraction, a stack’s
depth is modified only by push, pop, popall, and flush operations
(Table 2). Stack operations involving two stacks modify the depth
of the two stacks in opposite ways. For example, push(s_1, s_2)
causes an element to be inserted into stack s_1 and an element to
be removed from stack s_2. On the other hand, write operations
involving stacks can read or write the element on top of a stack
(depending on whether the stack is the src or dst argument), without
adding or removing stack elements.

In terms of implementation, upon declaration, stacks are initial-
ized to empty. The xPTLang’s implementation handles internally
any memory management operations required to provide a logically
infinite stack. Users can define a stack-specific maximum depth
(otherwise set to 128 elements by default). Additional buffers are
dynamically allocated as needed when the stack’s depth exceeds
the pre-allocated buffer size.

4.4 Example

Listing 1 shows an xPTLang program that implements run-length
encoding (RLE). This encoding scheme compresses the input data
by recording every symbol in the input followed by the number

PACT °24, October 14-16, 2024, Long Beach, CA, USA

Table 4: Nesting level (NL), peers, children and body list for
RLE program. Line numbers are colored to match Listing 1.

Line | NL | Peers Children Body List

Root 0 1,2,3,4 Sys, L1,L2, L3, Ly, Sye
1 1 |234 Sis, Ste

2 1 1,3, 4 S2s, S2e

3 1 1,2, 4 S35, S3e

4 1 1,23 5 Sus, Ls, Sse

5 2 | 6 Sss, Sse

6 2 5 7,10 SessL7,L10 Sge

7 3 |10 8,9 S7s, Lg, Lo, S7e

B 4 |9 S3s5:58e

9 4 |8 Sos, Soe

10 3 |7 11,12,13,14 | Sios, L11, L12, L13, L14, S10e
11 4 12,13, 14 Si1s, Site

12 4 | 11,13, 14 Si2s, S12e

13 4 | 11,12, 14 S13s, S13e

14 4 11, 12, 13 S1ss, S1ae

of its consecutive occurrences (for example, aaabbbbbc — a3b5c1).
Stack s_0 stores the symbol being counted, stack s_1 stores the
run-length counter, while stack s_2 stores the current input symbol.
Lines 1-3 initialize the stacks and output the first symbol read. Lines
4 marks the main execution loop. The loop body reads the next
symbol (line 5), checks if it matches the symbol being counted (lines
7-10), and increments the counter (line 8) or outputs the run-length
and resets the counter (lines 11-14).

5 xPTLang Compiler
5.1 Parser

Given an xPTLang program, the xPTLang parser generates a fully-
connected transducer.

5.1.1 Parser algorithm. Recall that, leveraging the transducers’
composition property, the parser builds a transducer incrementally.
First it constructs a sub-transducer for each statement, and then
it connects sub-transducers recursively based on each statement’s
type and on the program’s structure. This allows for nesting of
complex constructs. The parser algorithm follows six steps:

Step 1: Create a root state.

Step 2: Calculate the nesting level of each statement. We denote
a statement’s nesting level as the number of conditional or loop
structures a program has to go through to get to that statement. For
example, a loop body’s statement will have nesting level 1 plus the
nesting level of the loop. The root state is assigned nesting level 0.

Step 3: For each statement, determine its child and peer state-
ments. Statement A is a child of B if A comes after B in program
order and A’s nesting level is 1 below B’s nesting level. Peer state-
ments have the same nesting level.

Step 4: Traverse the list of statements. Each statement A will
be assigned a body list, which contains the states associated to A
and its children. For each statement A, create a start and an end
state (S4s and Sge). If A is an action or print statement, connect
Sas and Sy, according to the diagrams in Tables 2 and 3. Add the
states created to A’s body list.

Step 5: Perform recursive composition by traversing the list of
statements in reverse order. If a statement A has children, insert
the children’s body lists into A’s body list, and connect these states
according to their statement type (see Table 3). For example, if A is

71

Tri Nguyen and Michela Becchi

a condition statement with two children C and D, and C and D’s
body lists are (Scs, Sce) and (Sps, Spe), respectively, performing
recursive composition will cause A’s body list to become: (S4s, Scs,
Sces SDs» SDes Sae) and four transitions to be created: Sq5 — Scs,
SAs g SDS> SCe i SAe> and SDe 4 SAe~

Step 6: Perform recursive composition on the root state. Add
transitions to connect all the children’s body lists in series (body
1 end state to body 2 start state, body 2’s end state to body 3 start
state, etc). This step ensures a fully connected transducer.

5.1.2 Example. Table 4 shows the nesting level, children, peers
and body list of each statement in the RLE code example (Listing 1)
at the end of the execution of the parser’s algorithm. For readability,
we call Ly the body list of state X, and do not enumerate the chil-
dren’s body lists within their parent’s body list. Figure 3 illustrates
the recursive composition process (steps 5 and 6 of the parser’s
algorithm). Specifically, Figures 3a-c show the result of applying
recursive composition on the statements at lines 7, 10, 6 and 4,
while Figure 3d shows the fully connected transducer resulting
from applying recursive composition on the root state.

5.2 Code Generation

Given the transducer IR generated by the parser, the code generator
generates the corresponding traversal engine’s implementation.
Two implementation approaches are possible: memory-based and
code-based engine. In a memory-based engine, the transducer’s
topology (states, transitions and related information) is stored in
memory using a predefined layout. The traversal code is trans-
ducer independent, and the code generator creates and populates
the required memory data structures. In a code-based engine, the
transducer topology is embedded in the traversal code, which is
transducer specific. Here, we take the second approach. We focus
on code-based implementations for performance considerations.
By storing the transducer topology (states and transitions) in mem-
ory, memory-based engines incur additional memory accesses and
require instructions to decode the topology. While our program-
ming interface is generic, our code generator currently supports
deterministic transducers (the parser raises a warning if it can-
not eliminate sources of non-determinism from the transducer, for
example through string disambiguation).

5.2.1 Code generation algorithm. At a high level, we map each
state to a block of code that contains the state’s logic (i.e., the work
executed when the state is active), and we implement transitions as
conditional statements that redirect the program’s execution flow
among these code blocks. The code generation algorithm operates
in 2 steps:

Step 1: Data structure allocation: Allocate the required data
structures, including: stacks, variables, and per-thread context in-
formation (i.e., active state and input/output streams’ pointers). The
required stacks and variables are determined in the stack reduction
optimization step (Section 6.4). On GPU, variables and context in-
formation are stored in registers, while stacks are stored in shared
memory (and offloaded to global memory as needed).

Step 2: Generation of traversal loop: Generate the transducer
traversal loop, which iterates as long as there is an active state
and an input symbol to be processed. The loop body contains an

A Transducers-based Programming Framework for Efficient Data Transformation

(o))
(oo-{arer-Q)-Gar(ize)-Gaap(rao-(ua)-reo)-ioo)

(a) Recursive composition for state-
ments 7 and 10

OGN Pm—
(109)~(119)(1e)-(123)-(120) (139130 }(145)(140)-(0e)

(b) Recursive composition for statement 6

PACT °24, October 14-16, 2024, Long Beach, CA, USA

(d) Fully connected transducer

Figure 3: Operation of steps 5 and 6 of the parser’s algorithm on the RLE code in Listing 1. For the sake of space and readability,

we show only the relevant pieces of the topology.

if-block for each state. The body of the block, which is executed
when the state is active, contains the the state’s actions, its outgoing
transitions, and the required updates to the input/output streams’
and stacks’ pointers. For transitions, there are two options. (1) If
the outgoing transition depends on the content of an input or a
stack, we generate an if-block with the guard being the transition’s
condition. The output and stack updates triggered by the transition
are converted into statements inside that transition’s if-block. The
active state is then set to the transition’s destination state. (2) If the
outgoing transition is executed unconditionally, the statements im-
plementing the output and stack updates triggered by the transition
and the active state’s update are added to the if-block of its source
state. The example in Listing 2 shows a code snippet illustrating
the salient aspects of the transducer traversal code.

Various parallelization approaches are possible: chunk-based par-
allelization (where pre- and post-processing primitives are used
to break input and output in chunks processed in parallel) [34],
input-based parallelization (where different inputs are processed in
parallel) [35], and transducer-level parallelization (where different
transducers are processed concurrently). Here, we take the first
approach, but the code generator can be extended to support the
other schemes. The generated code is parallelized using POSIX
threads on CPU, and CUDA on GPU.

6 Compiler Optimizations

In this section, we describe four optimizations to reduce the trans-
ducer topology and improve execution efficiency.

Listing 2: Transducer traversal pseudocode snippet.

1 void sample_transducer_kernel (....){

2 . > Execution loop
3 while ((state < state_no)&&(input)){

4 if (state ==1){ > Unconditional tx
5 s_O0[top_O++]=input[current_i++];

6 state =2;

7 }

8 else if(state==2) > Conditional tx
9 if (stack_compare(s_0,s_2)) state=4;

10 else state=3;

11 else if (state==3){ > State arithmatic ops
12 s_1[top_1]=s_1[top_1]+1;

13 output[current_o++]=s_1[top_1++];

“} o})

6.1 Topology Reduction

Our parser is designed to easily incorporate changes in the xPTLang
language. Since each statement is logically enclosed in a pair of
start and end states, additional programming constructs can be
easily incorporated in xPTLang without complicating the recursive
transducer composition process. However, this method generates a
large number of unnecessary states and epsilon transitions, limiting
code efficiency.

To address this problem, we introduce a topology reduction com-
piler pass. We call “empty” states the states that don’t have an
action associated to them. If an empty state sy has an outgoing
epsilon transition to state sy, sy and its outgoing transition are
eliminated, and its incoming transitions are connected to state sy.
If all incoming transitions to a state sy are epsilon transitions, state
sx and its incoming transitions are eliminated, and its outgoing
transitions are replicated and connected to each state previously
transitioning to sx. Note that, in deterministic transducers, a state
with an outgoing epsilon transition cannot have additional outgo-
ing transitions. Figure 4a shows the result of applying topology
reduction on the fully connected transducer in Figure 3d.

" Block1 | Block2 ! {

1
. - CAN . v N

e OO0,
OO0

(b) RLE transducer after block coalescing

Figure 4: Topology reduction and block coalescing applied to
the RLE transducer in Figure 3d.

72

PACT °24, October 14-16, 2024, Long Beach, CA, USA

6.2 Block Coalescing

As mentioned in Section 5.2, the xPTLang compiler converts trans-
ducer’s states into blocks of code, and transitions into if-statements
that redirect the program execution from one code blocks to an-
other. In the transducer abstraction, each transition can generate
or consume only one symbol, and each state can contain only one
arithmetic operation. As a result, reading multiple variables and
multi-step calculations require a series of states and transitions.
During code generation, this inflates the number of conditional
statements and creates conditional checks in unconditional execu-
tion paths. Block coalescing aims to eliminate unnecessary con-
ditional statements by bypassing the reference transducer model
and merging together states that are connected by unconditional
transitions. Block coalescing is performed in three steps.

Step 1: States are partitioned in two lists: L1 and L2 . L1 contains
the starting points of a block, namely: (1) the initial state, (2) states
with multiple incoming transitions, and (3) states with multiple
outgoing transitions and their directly connected states. L2 contains
the remaining states.

Step 2: Blocks of states are generated by traversing L1. If a state
in L1 has multiple outgoing transitions, a one-state block is created.
If it has one outgoing transition, a new block is created and the
transducer topology is traversed until another state in L1 is reached.
All states along the traversed path are then removed from their
respective list and added to the newly created block.

Step 3: The resulting blocks are connected by the existing transi-
tions between the end state of a block and the start state of another.

Figure 4b shows the result of applying block coalescing on the
transducer of Figure 4a. This transformation coalesces the 14-state
transducer into a 5-block function.

6.3 String Disambiguation

The if-match construct enables matching multiple strings in par-
allel. The partial or full overlap among the strings can lead to a
non-deterministic transducer (i.e., a transducer with multiple active
states). To handle this scenario, the xPTLang compiler performs
string disambiguation and constructs a transducer that performs
multiple string matching in a deterministic manner. This optimiza-
tion consists of four steps:

Step 1: The compiler identifies any user-introduced ambiguity
in the matching conditions. These are instances where a match is
fully contained within another match (for example, “apple” and
“apples”). In these cases, the compiler implements a greedy policy
and accepts only the shortest of the overlapping strings.

Step 2: The compiler constructs a tree-like string matching sub-
transducer by merging outgoing transitions on the same symbol
and the corresponding target states. This process is equivalent to
subset construction for automata minimization.

Step 3: If a state of the string-matching sub-transducer from
step 2 has an outgoing transition accepting a symbol ¢, the compiler
connects that state to the sub-transducer implementing the else-
block via a transition corresponding to the mismatch of c.

Step 4: Note that a leaf state in the matching sub-transducer
corresponds to the matching of a string. Accordingly, each leaf state
is connected to the sub-transducer implementing the block of code
to be executed upon a match.

73

Tri Nguyen and Michela Becchi

-

@ Output Path™,
outfut =‘N’'___output= 'f’

if-match (input)
case (cat)
s_1=s_1+1
case (car)
print (output, 'NA’)
case (fish)
s_1=s_1+1
else
output = s_1

Figure 5: String disambiguation example: xPTLang code snip-
pet and corresponding transducer.

Figure 5 illustrates string disambiguation on a code snippet per-
forming the match of three strings: ‘cat’, ‘car’ and ‘fish’. The code
increments a counter if the input matches ‘cat’ or ‘fish’, writes ‘NA’
to the output if the input matches ‘car’, and outputs the value of
the counter if the input does not match any of the three strings.
The transducer constructed by the xPTLang compiler is shown next
to the code. The ‘matching machine’ sub-transducer (green box)
is constructed by enumerating the three strings and merging the
outgoing transitions on the same character (e.g., ¢ and a) and their
target states. Each state of the ‘matching machine’ is then connected
to the sub-transducer implementing the ‘else’ path (red block) via a
mismatch transition. Finally, each accepting state of the ‘matching
machine’ is connected to the sub-transducer to be executed upon
a match, depicted as part of the ‘output path’ (blue block). The
constructed transducer follows the topology shown in Table 3 and
the recursive composition process described in Section 5.1.

6.4 Stack Reduction

Building on the PDT abstraction, the xPTLang language represents
variables as stacks. However, implementing scalar variables us-
ing stacks in the transducer processing code is inefficient, since
it increases the memory requirements and adds the overhead of
managing stack operations (e.g., stack pointer updates). The stack
reduction optimization aims to identify all the stacks whose depth
never increases beyond 1 and replace them with scalar variables.
We adopt a conservative approach, and use static analysis to iden-
tify stacks that can safely be reduced to variables. For each stack,
we trace all push and pop actions performed on it, and verify that
the sequence of stack manipulation actions does not cause the stack
depth to increase beyond 1. For example, a push and a pop action
to the same stack within a basic block are safe. This rule can be
generalized to statements with the same nesting level. If one of the
statements is a condition, we check that the opposite stack action is
performed in each branch of the if-statement. When modified with
a pushall action, a stack cannot be reduced to a variable, since the
number of symbols pushed on it is generally not known at compile
time. When replacing a stack with a variable, we eliminate all the
associated push and pop operations, and replace them with simple
assignment statements.

7 Experimental Setup

Benchmarks. We select 15 data transformation workloads from six
classes of applications: (1) data encoding/decoding, (2) sparse matrix

A Transducers-based Programming Framework for Efficient Data Transformation

Table 5: Benchmarks and baseline library implementations.

Application | Input Dataset CPU GPU

Data Cantebery Corpus,

Enc/Dec Artifical Corpus [1] Parquet [37] | Cub [2]

Matrix Texas A&M Sparse Intel s 2]

Transform Matrix [42] MKL [5] cuoparse

L. RDU Accident and GSL

Statistics Crime Report [9] Hist [4] Cub [2]

Data Query .

Prediction NY City Water Pandas [8] Rapids [6]
— Consumption [11]

Filtering

transformation, (3) data statistics, (4) data querying, (5) data predic-
tion and (6) data filtering. For data encoding/decoding, we consider
bit-packing (BPE/BPD), run-length (RLE/RLD) and variable-length
(VLE/VLD) encoding/decoding. For sparse matrix transformation,
we select the transformation from the COO to the CSR format
(COO), and the transformation from dense to CSR format (Dense).
For data statistics, we select the generation of histograms (HIST)
and accumulations (ACC). For data querying, we use the JSON and
CSV formats. The queries aim to extract a subset of a CSV and JSON
file based on a specified user condition. We conduct our experiments
on raw, unedited and dictionary-encoded data (JSON_R CSV_R and
CSV_E, respectively). For data filtering, we perform range filtering
(RF) to curate a subset of CSV and JSON data based on range data
of member fields. For data prediction, we use data interpolation
(ITPL) to fill out missing data point using linear interpolation.

Baselines. We compare xPTLang against custom library implemen-
tations of the benchmarks above, as well as two existing memory-
based transducer processing engines for CPU and GPU (DFST+ [35]
and effPDT [34], see Section 2). The considered application-specific
libraries are: Parquet[37], GNU Scientific Library [4], Pandas [8],
NVIDIA cub, cuSparse, and Rapids [2]. We time the execution of
the data transformation kernels in these libraries.

Input datasets. We use textual data from the Canterbury Corpus and
Artificial Corpus Datasets [1], with file sizes ranging from 4KB to
2MB, sparse matrix data from the Texas A&M Open Source sparse
matrix collection [42] (g7jac160, xenon1l). For query, prediction and
statistics data, we use the Raleigh Sustainable Project [9] (longitude
and latitude) and the Crash Location dataset (FeetFromRoad) and
New York city’s water consumption [11]. Table 5 summarizes the
datasets used in our experiments, as well as the CPU and GPU
library implementations that we use as baselines. The input streams
used in our experiments are constructed by replicating the content
of the datasets of Table 5 until reaching a stream size of 1GB on
CPU and of 10GB on GPU. Setup time and data transfer time for
the baselines are not included in the timing - we measure only the
execution time of the main data transformation kernels/functions.

System configuration. We run our experiments on a system equipped
with two Intel Xeon processors running at 2.2GHz, each with
ten physical cores and a total 25MB of cache. The system is also
equipped with an NVIDIA A30 GPU, with 24GB global memory,
64KB constant memory and 48KB shared memory per streaming
multi-processor (SM). The GPU has 56 SMs operating at a maximum
clock rate of 1.44GHz. In addition, our system has 130GB RAM and
a 1TB SSD. We use Ubuntu 18.04, gce 7.5 and CUDA toolkit 12.1.

74

PACT °24, October 14-16, 2024, Long Beach, CA, USA

4000 mmm Baseline mmm xPTLang
3500
% 3000
o
Z 2500
5
22000
s
3 1500
=
1000
3?0 s Q\D WE P @& Coo E“s?‘,\\sf RCCeaN Eon }go“ [ER\E
(a) CPU
200

mmm Baseline s xPTLang

j=2)
3
o 75
=
£
50
o A m nlin i -

2P0 Pt WO \WE @D & COODE“S??\\ST MCeol %—,\[fﬁsoﬂ P (ev

(b) GPU

Figure 6: Throughput of xPTLang on CPU and GPU againsts
custom library implementations (baseline) in Table 5.

Parallelization. We recall that the xPTLang compiler generates C++
code using POSIX threads for CPU and CUDA code for GPU. In addi-
tion, it performs chunk-based parallelization and uses the pre- and
post-processing primitives from [34]. The custom CPU library im-
plementations used as baseline are single-threaded. We parallelize
CPU execution by launching multiple instances of these libraries
through POSIX threads. We spawn 20 threads for all CPU imple-
mentations, and assign each thread 1GB of the input data. On GPU,
the thread-block configuration is set to utilize all the available SMs.

8 Experimental Evaluation

8.1 Performance Results

CPU throughput. Figure 6a compares the throughput of the CPU
code generated by the xPTLang compiler with the CPU baseline li-
brary implementations listed in Table 5. On average, xPTLang code
performs 66% better than the customized baseline implementations,
offering an average throughput of 1.8 GB/s vs. the 1.1 GB/s baseline
throughput. In particular, xPTLang performs best on data encod-
ing/decoding (1.8 GB/s vs. 612 MB/s), sparse matrix transformation
(1.4 GB/s vs. 576 MB/s) and data prediction workloads (3.9 GB/s
vs. 833 MB/s). xPTLang performs on par with baseline implementa-
tions on data query (1.6 GB/s) and data filtering (1.2GB/s) workloads,
while underperforming baseline code on data statistics workloads
(1.4 GB/s to 2.4 GB/s). Sparse matrix operations are irregular work-
loads. The streaming nature of the transducer model and xPTLang’s
code-based transducer processing engine allow avoiding scattered

PACT °24, October 14-16, 2024, Long Beach, CA, USA

mmm Unoptimized

||

2P0 gPt WP \WE 0 @t Cooows?ﬂ\s‘ PN Eou RgoM £ ov

mmm xPTLang

Number of States
~ Ny ™ N

N

Figure 7: Number of states generated by the xPTLang frame-
work (without and with optimizations).

memory accesses to the input matrices. The data predictions work-
load (ITPL) performs linear interpolation on missing values. In the
Pandas library, this is implemented as a single input to single output
transformation, while our xPTLang implementation uses a second
input stream to quickly iterate through the dataset and identify
missing values. Once a missing value is found, the main stream
performs interpolation at that location. This approach allows us
to overlap data accesses and interpolation as well as bypassing
unnecessary data. On the other hand, the simplicity and regularity
of data statistics workloads (histogram generation and data accu-
mulation) allows for very efficient custom library implementations
outperforming the xPTLang framework.

For the benchmarks using the Rapids library (CSV, CSV_RAW,
JSON and FLT), xPTLang outperforms the Rapids implementations
because the transducer abstraction allows streaming the input and
encoding the execution context in local variables, while Rapids
loads the entire dataset in memory and accesses it using irregular
patterns. We observe that xPTLang and Rapids issue the same num-
ber of load instructions (about 150 millions). However, on average,
xPTLang reports a 99% L1 cache hit rate while Rapids reports a
28% L1 cache hit rate. In addition, transducers allow performing
parallel matching of multiple strings efficiently in a regex-like man-
ner, while Rapids performs serial, string-by-string comparisons.
We observe an average 2.5X reduction in the number of executed
branch instructions when using xPTLang (1.2 and 3.1 billions branch
instructions when using xPTLang and Rapids, respectively).

GPU throughput. Figure 6b compares the throughput of the GPU
code generated by the xPTLang compiler with the GPU baseline
library implementations listed in Table 5. We note that GPU im-
plementations are available only for a subset of the considered
workloads. On average, xPTLang performs about 2X better than
baseline, offering an average throughput of 91GB/s vs. the 46 GB/s
baseline throughput. In particular, xPTLang performs best on data
querying/filtering (147GB/s vs. 42GB/s), sparse matrix transforma-
tion (57GB/s vs. 21GB/s) and data prediction workloads (5.6GB/s
vs. 2.2GB/s). It performs on par with baseline on data statistics
(90GB/s), while underperforming the baseline on data encoding
(38GB/s vs. 56GB/s). Data querying and filtering workloads require
grammar parsing, which involves non GPU-friendly computations
such as nested evaluations and long string matching. xPTLang can

75

Tri Nguyen and Michela Becchi

Table 6: Code size (in LOC) of xPTLang programs (xPTL) and
generated CPU and GPU codes. 21 oc = total LOC; P = stream
partitioning; M = I/O handling, data transfers and allocations,
and kernel setup; K, = core data transformation kernels gen-
erated by the xPTLang compiler; K. = hand-tuned kernels
from the libraries in Table 5 (if open-source).

*PTL CPU code GPU code
2roc =P + M + Kg/Kc Yroc =P +M+ Kg/KC
BPD 22 123 30 64 29/14 180 87 64 29/-
BPE 22 128 30 78 20/15 182 87 75 20/-
VLD 15 147 30 73 44/20 197 87 66 44/-
VLE 25 133 30 69 34/23 183 87 62 34/-
RLD 7 119 30 69 20/20 169 87 62 20/51
RLE 14 134 30 70 34/20 184 87 63 34/52
Coo 26 209 51 83 75/- 251 108 68 75/-
DENSE | 28 175 30 84 61/- 217 87 69 61/-
HIST 15 140 30 71 39/87 191 87 65 39/61
ACC 6 116 30 74 12/6 162 87 63 12/24
CSV_E 33 211 30 70 111/- 262 87 64 111/-
CSV_R 33 235 51 71 113/- 290 108 69 113/-
JSON 33 432 51 74 307/- 486 108 71 307/-
FLT 5 116 30 74 12/87 162 87 63 22/16
ITPL 25 185 51 83 51/- 231 108 72 51/-

leverage stacks (stored in shared memory) to encode complex gram-
mars, and the xPTLang compiler allows efficient string matching
through string disambiguation (see Section 6.3). The sparse matrix
transformation, data prediction and data statistics results follow
considerations made for CPU. RLE (data encoding) is also suited
for GPU acceleration through custom optimizations, allowing the
baseline to outperform xPTLang.

Comparison with memory-based engines. Compared to memory-
based transducer processing engine implementations (DFST+ [35]
and effPDT [34]), xPTLang performs on average about 80% better
(1.7 GB/s vs. 900MB/sec) on CPU and 1.5% better (131GB/sec vs.
50GB/sec) on GPU. Embedding state and transition information in
code has two benefits. First, it avoids frequent memory accesses to
retrieve the transducer’s topological information. On GPU, profil-
ing data show an average 3.15X reduction in the number of load
instructions issued (0.17 vs. 0.6 billions). Second, the optimizations
discussed in Section 6 allow for compact and efficient code. Our pro-
filing data show that xPTLang kernels take about 400 bytes, which
can comfortably fit in the 32KB instruction cache on CPU and 64KB
constant cache on GPU.

8.2 Programmability & Compilation

Transducer size. Figure 7 reports the number of states of the trans-
ducers generated without and with optimizations enabled (Unop-
timized and xPTLang, respectively). We note that, thanks to the
optimizations it performs, the compiler is able to automatically gen-
erate compact transducers, on average 20% smaller than hand-coded
ones from previous work [34], resulting in compact programs.

Code Size. Table 6 shows the code size of the considered xPTLang
programs (xPTL) and of the corresponding CPU and GPU imple-
mentations generated by our compiler. We break down the LOC
of the generated implementations (X7 oc) into: (i) code perform-
ing stream partitioning (P), (ii) miscellaneous code handling I/O
streams, memory allocations, data transfers and kernel setup (M),

A Transducers-based Programming Framework for Efficient Data Transformation

and (iii) core data transformation kernels (Kj). Not all the custom
libraries of Table 5 are open source; when code is available, we also
report the code size of the kernels included in those libraries (K;).
K. indicates the size of the custom data transformation kernels
alone (not including stream and memory handling or setup code).
We recall that xPTLang code is platform agnostic. Moreover,
the xPTLang language allows users to focus solely on encoding
the data transformation task on abstract data streams using sim-
ple programming constructs. The handling of streams (including
I/O operations, buffering and data partitioning), stacks, variables,
memory allocations, data transfers, and platform-specific details
are hidden from the programmer, and the required code is auto-
matically generated by the compiler. This results in compact code:
xPTLang can express the considered transformations in 5 to 33 LOC,
while the generated implementations take from 116 to 432 LOC
on CPU and from 162 to 486 LOC on GPU - a 3X to 30X increase
in code size. Notably, xPTLang programs are comparable in size or
smaller than the generated data transformation kernels alone (Kj).
Data transformations that can be expressed using string operations
(e.g., data query) enjoy significantly smaller xPTLang codes. Finally,
for open-source libraries, xPTLang programs have sizes comparable
to (and in several cases smaller than) custom kernels specialized
for a single data transformation (K;). Note, however, that using
these custom kernels requires the additional data partitioning, data
allocation and I/O handling code. To conclude, building on the trans-
ducers computational abstraction, the xPTLang framework allows
platform-independent optimizations, and the generation of efficient
code for multiple platforms, while hiding implementation details
associated with the transducer abstraction from the programmer.

Extended PDTs vs. FSTs. Existing works focusing on theoretical as-
pects of transducer processing [12, 22, 43] convert extended PDTs
and FSTs into standard FSTs via input/output enumeration, enabling
the use of an FST traversal engine. However, especially on large
alphabets, FST generation can incur state explosion. Here, we evalu-
ate the effect of FST conversion on compilation time and processing
throughout. Figure 8 shows results obtained by using the xPTLang
framework to generate an FST engine and the default extended
PDT engine (xPDT) for RLE. We generate FSTs for alphabet sizes
ranging from 4 to 64 symbols (2- to 6- bit alphabets), leading to
FST ranging from 228 to 55,000 transitions. We plot compilation
time (dashed lines, right axis) and throughput (solid lines, left axis)
when using xPTDs on CPU and GPU, and FSTs on GPU.

For small FSTs (up to 5000 transitions), compilation time remains
limited. The more complex FST topology as the alphabet size in-
creases results in larger code with more divergent branches, nega-
tively affecting the processing throughput. As a result, FST’s perfor-
mance degrades as the alphabet gets larger (from 16GB/s down to
0.4GB/s). Even with a trivial 2-bit alphabet, FST achieves only 27%
of xPDT’s throughput, while with a 6-bit alphabet FST run on GPU
performs worse than xPDT run on CPU. On the other hand, xPDTs
allow constant compilation time (limited to less than a minute) and
throughput (59GB/s and 1.4GB/s on GPU and CPU, respectively).
The use of stacks and arithmetic operations limits the size of the
xPDT and makes its topology independent of the alphabet size. This
results in compact codes and reduced branch divergence.

76

—— XPDT CPU
XPDT GPU

PACT °24, October 14-16, 2024, Long Beach, CA, USA

—— FST GPU

FST Compile Time

XPDT Compile Time

\

\
Ul
o

\

\
s
o

10! ~

\
\
\
w
o

\

\
N
o

Throughput (GB/s)
\\
\
Compile Time (mins)

10° .

\
=
o

0
0 10000 20000 30000 40000 50000
Number of Transitions

Figure 8: Throughtput (GB/s) and compilation time (sec) of
FSTs and xPDTs when using xPTLang framework.

9 Conclusion

We have proposed a portable programming framework for data
transformation tasks based on the transducers abstraction. Our
framework includes a programming language (xPTLang) to express
transducer programs in a serial fashion using intuitive program-
ming constructs, and a compiler that transforms xPTLang programs
into transducer processing engines for CPU and GPU. Our frame-
work includes a set of optimizations that operate on the transducer’s
topology and aim to improve code efficiency. Our experiments, per-
formed on a diverse set of 15 data transformation workloads, show
performance and programmability advantages over custom library
implementations and recently proposed transducer-based process-
ing engines. The performance advantages over custom implemen-
tations vary across applications. Future research directions include
extending our framework to support other platforms and cover-
ing nondeterministic behavior, thus enabling data transformations
requiring back-tracking (e.g., snappy, deflate, and 1z4).

Acknowledgments

This work was supported by National Science Foundation award
CCF-1907863.

References
I

2023. Canterbury Cor. https://corpus.canterbury.ac.nz/.

2023. CUDA Toolkit. https://docs.nvidia.com/cuda/.

2023. Foma. https://fomafst.github.io/.

2023. GNU Scientific Library. https://www.gnu.org/.

2023. Intel MKL. https://www.intel.com/content/www/us/en/develop/
documentation/get-started- with-mkl-for-dpcpp/top.html.

2023. Open GPU Data Science. https://rapids.ai/.

2023. openFST. https://www.openfst.org/twiki/bin/view/FST/WebHome.

2023. Pandas. https://pandas.pydata.org. https://pandas.pydata.org/

2023. Raleigh Open Data. https://data.raleighnc.gov/.

2023. thrax. https://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour.
2023. US Government Data. https://data.gov/.

Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Nondeterministic Streaming
String Transducers. In Proceedings of the 38th International Conference on Au-
tomata, Languages and Programming - Volume Part II (Zurich, Switzerland)
(ICALP’11). Springer-Verlag, Berlin, Heidelberg, 1-20.

Kevin Angstadt, Westley Weimer, and Kevin Skadron. 2016. RAPID Programming
of Pattern-Recognition Processors (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 593-605. https://doi.org/10.1145/2872362.2872393
Michela Becchi and Patrick Crowley. 2008. Efficient Regular Expression Eval-
uation: Theory to Practice. In Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (San Jose, California)
(ANCS °08). Association for Computing Machinery, New York, NY, USA, 50-59.

[14

PACT °24, October 14-16, 2024, Long Beach, CA, USA

https://doi.org/10.1145/1477942.1477950

Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. 1-11. https:
//doi.org/10.1145/1654059.1654078

Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. 2006. A Scalable
Architecture For High-Throughput Regular-Expression Pattern Matching. In
Proceedings of the 33rd Annual International Symposium on Computer Architecture
(ISCA °06). IEEE Computer Society, USA, 191-202. https://doi.org/10.1109/ISCA.
2006.7

Niccolo” Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. 2010.
INFAnt: NFA Pattern Matching on GPGPU Devices. SIGCOMM Comput. Commun.
Rev. 40, 5 (oct 2010), 20-26. https://doi.org/10.1145/1880153.1880157

Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and West-
ley Weimer. 2019. Debugging Support for Pattern-Matching Languages and
Accelerators. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 1073-1086. https://doi.org/10.1145/3297858.3304066

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An Efficient and Scalable Semiconductor Architecture for Parallel
Automata Processing. IEEE Transactions on Parallel and Distributed Systems 25,
12 (2014), 3088-3098. https://doi.org/10.1109/TPDS.2014.8

Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. 2015. Fast
Support for Unstructured Data Processing: The Unified Automata Processor. In
Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,
Hawaii) (MICRO-48). Association for Computing Machinery, New York, NY, USA,
533-545. https://doi.org/10.1145/2830772.2830809

Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien. 2017. UDP: a
programmable accelerator for extract-transform-load workloads and more. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017, Hillery C. Hunter,
Jaime Moreno, Joel S. Emer, and Daniel Sanchez (Eds.). ACM, 55-68.
Emmanuel Filiot, Jean-Francois Raskin, Pierre-Alain Reynier, Frédéric Servais,
and Jean-Marc Talbot. 2018. Visibly pushdown transducers. J. Comput. System
Sci. 97 (2018), 147-181. https://doi.org/10.1016/j.jcss.2018.05.002

Bjorn Bugge Grathwohl, Fritz Henglein, Ulrik Terp Rasmussen, Kristoffer Aalund
Seholm, and Sebastian Paaske Terholm. 2016. Kleenex: Compiling Nondetermin-
istic Transducers to Deterministic Streaming Transducers. SIGPLAN Not. 51, 1
(jan 2016), 284-297.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2016. Profiling a Warehouse-Scale
Computer. IEEE Micro 36, 3 (2016), 54-59. https://doi.org/10.1109/MM.2016.38
Marat F. Khairoutdinov and David A. Randall. 2001. A cloud resolv-
ing model as a cloud parameterization in the NCAR Community Cli-
mate System Model: Preliminary results. Geophysical Research Let-
ters 28, 18 (2001), 3617-3620. https://doi.org/10.1029/2001GL013552
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2001GL013552
Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.
2011. CSX: An Extended Compression Format for Spmv on Shared Memory
Systems. SIGPLAN Not. 46, 8 (feb 2011), 247-256. https://doi.org/10.1145/2038037.
1941587

Daniel Langr and Pavel Tvrdik. 2016. Evaluation Criteria for Sparse Matrix
Storage Formats. IEEE Transactions on Parallel and Distributed Systems 27, 2
(2016), 428-440. https://doi.org/10.1109/TPDS.2015.2401575

Hongyuan Liu, Mohamed Assem Ibrahim, Onur Kayiran, Sreepathi Pai, and
Adwait Jog. 2018. Architectural Support for Efficient Large-Scale Automata
Processing. In 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society,
908-920. https://doi.org/10.1109/MICRO.2018.00078

Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format for
Cross-Platform Sparse Matrix-Vector Multiplication. In Proceedings of the 29th
ACM on International Conference on Supercomputing (Newport Beach, California,
USA). Association for Computing Machinery, New York, NY, USA, 339-350.
https://doi.org/10.1145/2751205.2751209

Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron,
and Kubilay Atasu. 2012. Designing a Programmable Wire-Speed Regular-
Expression Matching Accelerator. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. 461-472. https://doi.org/10.1109/MICRO.2012.
49

Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives,
and Sanjeev Khanna. 2017. StreamQRE: Modular Specification and Efficient
Evaluation of Quantitative Queries over Streaming Data. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 693-708. https://doi.org/10.1145/3062341.3062369

Alexander Meduna. 2000. Automata and languages: theory and applications.
Springer.

Tri Nguyen and Michela Becchi

Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. 2007. Compiling PCRE to FPGA
for Accelerating SNORT IDS. In Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems (Orlando, Florida, USA)
(ANCS °07). Association for Computing Machinery, New York, NY, USA, 127-136.
https://doi.org/10.1145/1323548.1323571

Tri Nguyen and Michela Becchi. 2022. A GPU-accelerated Data Transformation
Framework Rooted in Pushdown Transducers. In 2022 IEEE 29th International
Conference on High Performance Computing, Data, and Analytics (HiPC). 215-225.
https://doi.org/10.1109/HiPC56025.2022.00038

Marziyeh Nourian, Tri Nguyen, Andrew A. Chien, and Michela Becchi. 2022.
Data Transformation Acceleration using Deterministic Finite-State Transducers.
In 2022 IEEE International Conference on Big Data (Big Data). 141-150. https:
//doi.org/10.1109/BigData55660.2022.10020756

Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 293-307.

Apache Parquet. [n.d.]. https://parquet.apache.org/.

Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.
2019. eAP: A Scalable and Efficient In-Memory Accelerator for Automata Pro-
cessing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019. ACM,
87-99. https://doi.org/10.1145/3352460.3358324

R. Sidhu and V.K. Prasanna. 2001. Fast Regular Expression Matching Using FPGAs.
In The 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’01). 227-238.

Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle. 2014.
DaRPC: Data Center RPC. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1-13. https://doi.org/10.1145/2670979.2670994

Bor-Yiing Su and Kurt Keutzer. 2012. CISpMV: A Cross-Platform OpenCL SpMV
Framework on GPUs. In Proceedings of the 26th ACM International Conference
on Supercomputing (San Servolo Island, Venice, Italy) (ICS °12). Association for
Computing Machinery, New York, NY, USA, 353-364. https://doi.org/10.1145/
2304576.2304624

Texas A&M University. [n.d.]. SuiteSparse Matrix Collection. https://sparse.
tamu.edu/

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj
Bjorner. 2012. Symbolic Finite State Transducers: Algorithms and Applications.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for
Computing Machinery, New York, NY, USA, 137-150. https://doi.org/10.1145/
2103656.2103674

Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characterizing and
Mitigating Output Reporting Bottlenecks in Spatial Automata Processing Ar-
chitectures. In IEEE International Symposium on High Performance Computer
Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE Computer
Society, 749-761. https://doi.org/10.1109/HPCA.2018.00069

Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration of Regular Expression
Matching for Large Datasets: Exploring the Implementation Space. In Proceedings
of the ACM International Conference on Computing Frontiers (Ischia, Italy) (CF '13).
Association for Computing Machinery, New York, NY, USA, Article 18, 10 pages.
https://doi.org/10.1145/2482767.2482791

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX Association, San Jose, CA, 15-28.

Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qun-
feng Dong. 2012. GPU-Based NFA Implementation for Memory Efficient High
Speed Regular Expression Matching (PPoPP ’12). Association for Computing Ma-
chinery, New York, NY, USA, 129-140. https://doi.org/10.1145/2145816.2145833

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Formal Definition and Example
	2.2 Related Work

	3 Programming Framework's Design
	3.1 General Design Decisions

	4 Programming Model
	4.1 xPTLang Programming Constructs
	4.2 Streaming Behavior
	4.3 Stack Handling
	4.4 Example

	5 xPTLang Compiler
	5.1 Parser
	5.2 Code Generation

	6 Compiler Optimizations
	6.1 Topology Reduction
	6.2 Block Coalescing
	6.3 String Disambiguation
	6.4 Stack Reduction

	7 Experimental Setup
	8 Experimental Evaluation
	8.1 Performance Results
	8.2 Programmability & Compilation

	9 Conclusion
	Acknowledgments
	References

