
A Transducers-based Programming Framework for E�icient Data
Transformation

Tri Nguyen
North Carolina State University

United States of America
tmnguye7@ncsu.edu

Michela Becchi
North Carolina State University

United States of America
mbecchi@ncsu.edu

Abstract

Many data analytics and scienti�c applications rely on data trans-

formation tasks, such as encoding, decoding, parsing of structured

and unstructured data, and conversions between data formats and

layouts. Previous work has shown that data transformation can rep-

resent a performance bottleneck for data analytics workloads. The

transducers computational abstraction can be used to express a wide

range of data transformations, and recent e�orts have proposed con-

�gurable engines implementing various transducer models (from

�nite state transducers, to pushdown transducers, to extended mod-

els). This line of research, however, is still at an early stage. Notably,

expressing data transformation using transducers requires a para-

digm shift, impacting programmability.

To address this problem, we propose a programming framework

to map data transformation tasks onto a variety of transducer mod-

els. Our framework includes: (1) a platform agnostic programming

language (xPTLang) to code transducer programs using intuitive

programming constructs, and (2) a compiler that, given an xPTLang

program, generates e�cient transducer processing engines for CPU

and GPU. Our compiler includes a set of optimizations to improve

code e�ciency. We demonstrate our framework on a diverse set of

data transformation tasks on an Intel CPU and an Nvidia GPU.

ACM Reference Format:

Tri Nguyen and Michela Becchi. 2024. A Transducers-based Programming

Framework for E�cient Data Transformation. In International Conference

on Parallel Architectures and Compilation Techniques (PACT ’24), October

14–16, 2024, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3656019.3676891

1 Introduction

Data transformation is one of the core processing steps in many

data analytics and scienti�c applications. For example, Extract-

Transform-Load (ETL) workloads require extracting information

from a variety of formats, transforming the data, and loading them

into a target format. Data transformation tasks performed by these

workloads include: data encoding/decoding, data compression and

serialization for communication and storage density, data analy-

sis, and query of structured or unstructured data (using popular

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676891

data formats such as CSV and JSON). In addition, scienti�c appli-

cations operating on matrices often require data conversion be-

tween di�erent matrix formats [25], such as compressed sparse

row (CSR), compressed sparse column (CSC), and coordinate list

(COO) [15, 26, 27, 29, 41]. Performing these data transformations

e�ciently is crucial to application performance.

Due to rapidly increasing data sizes, data transformation has

increasingly become a performance bottleneck for many data an-

alytic applications [24, 36, 40, 46]. At the same time, the use of

hardware heterogeneity to maximize performance and achieve en-

ergy e�ciency has led to the need for portable implementations.

To address these issues, optimized CPU and GPU libraries imple-

menting common data transformations have been made available.

These include: Parquet [37] and Cub [2] (data encoding and de-

coding), Pandas [8] and RapidsAI [6] (parsing), and Intel MKL[5]

and cuSparse [2] (sparse matrices). While e�cient, these libraries

only address speci�c data transformations, and lack generality. As

new data transformations are devised, optimized implementations

tailored to di�erent platforms are needed, leading to signi�cant

programming e�ort.

Broader applicability to diverse data transformation tasks and

portability can be achieved by a programming framework relying

on a solid computational abstraction with e�cient implementa-

tions for diverse hardware platforms. Previous work on transducers

processing [22, 23, 43] has shown the capability of the transducer

model to express a wide range of data transformations, from natu-

ral language processing, to structured data parsing (e.g., XML and

HTML), to image reversal, among others. However, the acceleration

of the transducers computational model has received only limited

consideration. Recent e�orts [34, 35] have proposed accelerated pro-

cessing engines for �nite state and pushdown transducers. To this

end, these works have proposed compact and e�cient transducer

models amenable for hardware acceleration, as well as their imple-

mentation on a variety of platforms, including CPUs, GPUs and

novel accelerators [21]. Their results show that transducers-based

implementations can provide performance on par with popular

custom libraries running on the same hardware, and in some cases

even outperform those libraries.

However, using the transducers abstraction to express data trans-

formation tasks implies a programming paradigm shift. Program-

mers typically view applications in terms of sequences of algorith-

mic steps, often implemented through a Von Neumann language

with intuitive constructs such as program variables, assignment

statements, and control-�ow statements. Implementing a data trans-

formation task using a �nite state or pushdown transducer requires

expressing the computation through a set of states, transitions and

possibly stack operations. Existing proposals either lack a high-level

programming interface, or provide a basic programming interface

66

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

that, while including di�erent constructs, inherently requires the

programmer to think of the computation in terms of states and

transitions [34, 35]. This paradigm shift is a major gatekeeper in

the wider adoption of transducers in general data processing tasks.

In this work, we aim to address this problem by providing a

programming framework for data transformation tasks rooted on

the transducers abstraction. The goals of the framework are: pro-

grammability, portability, e�ciency and extensibility. Speci�cally,

the framework aims to: (1) support a wide range of transducer

models (from �nite state transducers, to pushdown transducers

and extensions), (2) provide an intuitive and platform independent

programming interface that bypasses the paradigm of states and

transitions, (3) generate e�cient transducer engines for CPU and

GPU o�ering performance competitive with hand-tune transducers

and custom data transformation libraries, and (4) be easily extended

to support diverse hardware platforms and transducer models.

In this paper, we make the following contributions:

• xPTLang, a platform agnostic programming language that allows

for expressing transducer programs as sequences of steps using

common and intuitive programming constructs, such as arith-

metic and control-�ow statements;

• A compiler that, given an xPTLang program, constructs a trans-

ducer, optimizes it and generates e�cient CPU and GPU process-

ing engines for it;

• Four compiler optimizations to reduce the transducer’s memory

footprint and improve control-�ow e�ciency;

• An evaluation of our framework on a set of data encoding/decod-

ing, data analytics, matrix transformation and structured data

query tasks [2, 4–6, 8, 37].

Our experiments show that our implementation achieves an aver-

age speedup of 1.6× and 2× over customized library implementa-

tions for CPU and GPU, respectively, while outperforming existing

transducer processing engines by 1.9× and 2.6× on average across

applications and datasets. From the programmability perspective,

not only does xPTLang provide a uni�ed programming interface for

diverse hardware platforms (i.e., CPU and GPU), but it also allows

for compact codes, hiding from the programmer the implementation

details of the transducer engine (e.g., input/output stream handling,

memory management) on the targeted platforms.

2 Background and Motivation

Transducers are computational abstractions that map a streaming

input into a streaming output based on a transition relationship. As

such, they are a natural abstraction to express and implement data

transformation applications. Two basic transducer models are �nite

state tranducers (FSTs) and pushdown transducers (PDTs). FSTs have

a �nite number of states and transitions. Transitions are associated

one (or more) input and output symbols, the former denoting the

symbol(s) triggering the transition, and the latter the output sym-

bol generated when the transition is activated. PDTs extend FSTs

with a stack, inherently adding state. While the theoretical PDT

model includes an in�nite stack, in practice stacks have a �nite

size, and in�nite stacks can be simulated by dynamically allocating

stack space as needed. Independent of the speci�c model, a data

transformation expressed through a transducer can be implemented

by processing the input stream symbol-by-symbol, and traversing

Figure 1: Pushdown transducer that extracts the names of all

female individuals from a CSV �le containing three columns:

name, gender and occupation.

the transducer’s states and transitions based on the sequence of

symbols read.

2.1 Formal De�nition and Example

Formally, a pushdown transducer (PDT) [32] is de�ned as a quintu-

ple P = (Q, Σ, X , s, F) such that:

• Q is a �nite set of states;

• Σ is an alphabet such that Σ = ΣI ∪ ΣO ∪ ΣS, where ΣI, ΣO, and

ΣS are the input, output and stack alphabets, respectively;

• X ⊆ Q × (ΣI ∪ {n}) × (ΣS ∪ {n}) × Q × (ΣO ∪ {n}) × (ΣS ∪ {n}) is a

�nite state transition relationship, n being the empty string;

• s ∈ Q is the start state;

• F ⊆ Q is a set of �nal states.

A �nite state transducer (FST) is similarly de�ned by excluding

stacks from the alphabet and transitions’ de�nition.

Operationally, besides writing to an output stream, a PDT can

pop symbols from a stack and push symbols onto it. A PDT tran-

sition r = (q1, f I1, fS1, q2, fO2 fS2) is triggered when state q1 is

active, the current input symbol is f I1, and symbol fS1 is at the top

of the stack. Upon traversal, the transition will activate a new state

q2, generate output symbol fO2, pop symbol fS1 from the stack

and push symbol fS2 onto it. Transducers can be deterministic or

non-deterministic: the former have only one active state, while the

latter can have multiple states active at the same time.

Figure 1 shows a PDT extracting the names of all the female indi-

viduals from a CSV �le containing three columns: name, gender, and

occupation. This transducer traverses the CSV �le in row-major or-

der using a counter (s_1) to iterate through each column. The states

inherently record the progress of the transformation, while the

transitions check for conditions on stacks and inputs, and generate

the output accordingly. States 0-2 and their connecting transitions

(i.e., green block) read and save the content of the name �eld into

a stack (s_0), while states 3 and 4 and their connecting transitions

(i.e., the blue block) check whether the gender column (column 1)

indicates a female (marked as 1) and, when so, they output the

name of the individual recorded in stack s_0.

2.2 Related Work

Over the past decade, there have been several e�orts focused on

extending the traditional FST and PDT models to support di�erent

classes of applications e�ciently. These works range from theo-

retical contributions to transducer engines deployed on real-world

datasets. Table 1 summarizes the characteristics of several notable

transducers.

67

A Transducers-based Programming Framework for E�icient Data Transformation PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Table 1: Model features and availability of an execution en-

gine implementation for di�erent transducer works.

Model Model Features and Extensions Execution
EngineVar. Stacks Arith. Multi I/O

openFST [7] ✓ - - - -
FOMA [3] ✓ - - - -
Thrax [10] ✓ - - - -
SFST [43] ✓ - ✓ - -
VPT [22] - ✓ - - -
SST [12] ✓ - - - -
DFST+ [35] ✓ - ✓ - CPU
e�PDT [34] ✓ ✓ ✓ ✓ CPU/GPU
SQRE [31] - ✓ - - CPU
xPTLang ✓ ✓ ✓ ✓ CPU/GPU

• openFST [7], FOMA[3] and Thrax[10] are libraries for con-

structing �nite state and weighted transducers from an existing

set of rewrite rules or regular expressions.

• Symbolic Finite State Transducers (SFSTs) [43] extend FSTs

with the concept of registers and arithmetic operations to support

HTML decoding and image blurring.

• Visibly Pushdown Transducers (VPTs) [22] use an input-

aware stack to support nested alphabet translation (for example,

for XML parsing).

• Streaming String Transducers (SSTs) [12] utilize a set of �xed-

length and variable-length registers to perform transformation

of key-value pair data.

• DFST+s [35] extend FSTs with registers and arithmetic opera-

tions to perform data encoding/decoding.

• StreamQREs (SQRE) [31] provide a query language for pat-

terned data.

• e�PDTs [34] extend PDTs with multiple stacks, arithmetic oper-

ations and multiple I/O streams to support a wide range of data

transformations.

The works on SFSTs, VPTs, and SSTs focus on the theoretical sound-

ness of the proposed models, their decidability and expressiveness.

The authors prove that the proposed transducers can support a

wide range of applications: from computation intensive tasks such

as image reversal, to control-�ow heavy tasks such as XML parsing.

In all cases, the underlying processing engine is a standard FST or

PDT. It is shown that the proposed extended transducers can be

converted to standard FSTs and PDTs by performing input/output

enumeration. This conversion, however, can lead to state explosion

when increasing the alphabet size (for example, SFSTs can get to

millions of states on 6-bit alphabets).

More recent work (DFST+s and e�PDTs) has focused on putting

the transducers’ theory to practice by using compact and hardware-

friendly transducer models, and implementing high-throughput

transducer processing engines on GPU and other hardware accel-

erators. DFST+s and e�PDTs extend FSTs and PDTs, respectively,

with arithmetic operations and an addressable memory. They are

capable of expressing data transformations that, when using practi-

cal alphabets, cannot be feasibly supported by standard transducers

on reasonable hardware.

Most of the works discussed above either require users to hand-

code the transducer expressing the target data transformation

(which can be complex and error-prone), or include a low-level in-

terface that requires users to describe data transformations in terms

Figure 2: High-level design of the xPTLang framework.

of states and transitions, limiting programmability and adoption

in practice. While lacking an e�cient execution engine implemen-

tation, openFST, FOMA and Thrax can be used as frontend to our

framework for data transformations that can be easily expressed

through a set of rewrite rules and can be encoded using traditional

models (namely, FSTs and weighted FSTs). Our work aims to pro-

vide a transducers-based programming frameworkwith a high-level

programming interface for general data transformations, while sup-

porting the model features of the extended transducers proposed

in previous work (Table 1).

It is worth noting that the idea of accelerating entire classes of

applications by focusing on the computational abstraction at their

core has been successfully explored in other contexts. For example,

there has been a large body of work on the implementation and

acceleration of automata processing on GPU [17, 45, 47], FPGA [14,

33, 39] and custom hardware [16, 19, 20, 28, 30, 38]. Recent work [13,

18] has proposed a high level automata description language to map

pattern matching programs to Micron’s Automata Processor and

similar spatial architectures. Since automata are computationally

equivalent to regular expressions, these works focus primarily on

search applications that perform various kinds of pattern matching

on textual data. However, they cannot be easily adapted to support

data transformation because they do not provide e�cient support

for dynamic output generation [14, 19, 44].

3 Programming Framework’s Design

Figure 2 illustrates the high-level design of the xPTLang program-

ming toolchain. The parser takes an xPTLang program, constructs

an internal representation of it in the form of an extended trans-

ducer (transducer IR), and performs various compiler optimizations

(stack reduction, string disambiguation, topology reduction, and block

coalescing) aimed to reduce the transducer’s size and improve code

e�ciency. The code generator produces a transducer processing

engine, that is, a program implementing the transducer’s traversal.

The current implementation supports code generation for CPU and

GPU. However, the framework can be extended with additional

code generators targeting other platforms.

68

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

3.1 General Design Decisions

Programming interface: First, the programming language should

hide the underlying transducer abstraction from the programmer.

Second, it should support the data streaming abstraction, which

is intrinsically implemented by transducers and allows limiting

memory and storage requirements. Third, di�erent data transfor-

mation applications process the input at di�erent granularity. For

instance, many data encoding algorithms process the input symbol-

by-symbol, and require a �xed number of read operations (typically

one) on each symbol. On the other hand, text parsing/querying ap-

plications typically process the data token-by-token (where a token

is a string of text). To improve programmability, xPTLang should

support both styles of input processing.

Choice of the underlying transducer abstraction: Our goal

is to support FSTs and PDTs, along with the transducer models

discussed in Section 2.2. To this end, we implement an extended

PDT model incorporating the features and extensions listed in Ta-

ble 1, namely: memory in the form of stacks (we treat variables as

single-element stacks), arithmetic operations associated to states,

and multiple input/output streams. We leverage theoretical results

from prior work. Speci�cally, the work on SFSTs [43] and well-

nested VPTs [22] proves that the addition of memory and arithmetic

operations retains the closure and composition properties of these

transducers. A transducer is considered closed under composition

if its composition operations (concatenation, union, intersection) pro-

duce a transducer of the same class. In practice, given an xPTLang

program, this property allows us to construct a transducer incre-

mentally, by �rst generating small transducers corresponding to

single program statements, and then recursively composing those

transducers using the three transducer composition operations

based on the control �ows in the program.

4 Programming Model

4.1 xPTLang Programming Constructs

xPTLang includes three categories of programming constructs: ac-

tions, conditions and loops. These constructs allow programmers

to describe the computation in a sequential fashion using a set of

unconditional statements, conditional statements and loops. Those

statements operate on stacks, input streams and output streams.

xPTLang provides constructs to process the input symbol-by-symbol

and token-by-token.

4.1.1 Keywords for stacks, input and output streams. We use iden-

ti�ers to refer to stacks, input and output streams. Keywords s_ID,

input_ID, output_ID, where ID is a numeric value, represent stack,

input and output identi�ers, respectively.

4.1.2 Actions. Actions denote changes in the content of stacks,

input streams or output streams. Allowed operations include: (1)

arithmetic operations on the element at the top of a stack, (2) basic

stack operations such as push and pop, and (3) advanced stack

operations such as �ush, popall and write. Table 2 summarizes the

available actions as well as the topology of the sub-transducer

generated by the compiler for each action (recall that the �nal

transducer is built by incrementally composing smaller transducers,

each expressing a portion of the program). The blue coloring is to

indicate that, within the sub-transducer, arithmetic operations will

Table 2: Actions: syntax and corresponding sub-transducers.

Category Action Transducer topology

Arith. op. dst = src1 op src2

Basic stack op.
push (dst, src)
pop (src, dst)

Adv. stack op.
& Output op.

popall (src, dst)
�ush (src, dst)
write (dst, src)

be associated to states while stack and output operations will be

associated to transitions.

Arithmetic operations have two source operands, src1 and src2,

and one destination operand, dst. src1 can be either a stack or an

input stream identi�er, src2 can be a stack identi�er, an input stream

identi�er or a constant value, and dst identi�es the destination stack.

Allowed operators include: addition, subtraction, multiplication,

division, bit-wise operations and bit manipulation operations.

Push and pop actions modify the stack identi�ed by their �rst

argument. The second argument indicates the provenance or the

destination of the symbol pushed onto the stack or popped from

it, respectively, and can be a stack, an input or an output stream

identi�er. In addition, the programmer can use the epsilon symbol

(n) as the destination argument of the pop operation to indicate that

the symbol retrieved from the stack can be discarded. All accesses

to input and output streams cause these streams to be modi�ed.

Advanced stack operations are for enhancing productivity, but

can be expressed using a combination of arithmetic and basic stack

operations. popall and �ush allow programmers to write the entire

content of a stack into a destination (another stack or an output

stream) in top-to-bottom or bottom-to-top order, respectively. The

src operand of thewrite operation can be either a stack or a constant

value. In the �rst case, the write operation allows for copying the

element at the top of a stack to a destination (another stack or an

output stream) without removing it from the source stack.

4.1.3 Conditions. Conditions denote conditional changes in the

program’s execution �ow. Table 3 shows the basic structure of a

condition statement and the corresponding sub-transducer gener-

ated by the compiler. Note that each condition contains nested block

of statements (blockğ). The compiler will generate a sub-transducer

for each blockğ . The topology in Table 3 shows how these sub-

transducers are composed in case of a condition statement.

The if and cond keywords mark the beginning of a conditional

block and of an execution guard, respectively. Execution guards are

statements that evaluate to either true or false, and have the form

([arithmetic comparator][stack/constant value]).

Each guard determines whether a block of statements (which

can include actions, conditions, loops or string operations) will be

executed. The left-hand-side of the guard is speci�ed by the source

in the parent if.

4.1.4 Loops. A loop denotes repeated execution of a block of state-

ments. Table 3 shows the basic structure of a loop and the cor-

responding sub-transducer. Notably, loops introduce backward-

directed transitions. The loop body can include actions, condi-

tions, loops and string operations, and will have an associated

69

A Transducers-based Programming Framework for E�icient Data Transformation PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Table 3: Loops, conditions, and string operations: syntax and

corresponding sub-transducers. Note that blockğ can in turn

be an action, a condition, a loop or a string operation. The

green blocks to the right represent the sub-transducers asso-

ciated to nested code blocks blockğ .

C
on
d
it
io
n
s

if (source)
cond (guard1)

block1
...
cond (guardĊ)

blockĊ
else

else-block

L
oo
p
s while (source)

cond (guard)
block

while-input
block

St
ri
n
g
O
p
er
a
ti
on
s

if-match (source)
case (string1)

block1
...
case (stringĊ)

blockĊ
else

else-block
print (dst,string)

sub-transducer. The while keyword marks the beginning of a loop

structure. The guard operates as in condition statements.

4.1.5 String Operations. String operations allow for de�ning the in-

put and output processing at a “token” granularity, and are suitable

for transformations that require string matching, such as parsing

and querying of semi-structured data. xPTLang includes two string

processing primitives (listed in Table 3): if-match and print.

The if-match primitive allows the comparison of a source (either

an input stream or a stack) with a set of prede�ned strings (denoted

by the case keyword). The code blocks blockğ can include any con-

structs, except nested if-match statements on the same source. The

generated sub-transducer contains a “matching machine”, which

performs string matching against the given set of strings, connected

to the sub-transducers corresponding to the blockğ code blocks.

The print primitive writes a prede�ned string to an output stream.

The generated sub-transducer consists of states connected by non-

consuming transitions, each outputting a symbol of the string.

We note that string operations can be implemented as sequences

of symbol operations, using the condition and action constructs.

However, doing so will signi�cantly increase the program length

and decrease its readability. Finally, these primitives allow express-

ing data transformations through the enumeration of the accepted

input strings and generated outputs, supported by standard FSTs.

4.2 Streaming Behavior

Following the transducer abstraction, the xPTLang language as-

sumes read-only input and write-only output streams. Reading

from an input stream consumes an input symbol, while writing to

an output stream causes a symbol to be appended to the stream.

In both cases, a stream pointer is implicitly incremented. As men-

tioned above, performing a data transformation using a �nite state

or a pushdown transducer requires a transducer traversal guided

Listing 1: xPTLang program implementing RLE.

1 push (s_0 , i npu t_0) ² s_0: run length symbol

2 wr i t e (output_0 , s_0) ² s_1: counter

3 push (s_1 , 1) ² _: current symbol

4 while− input

5 push (s_2 , i npu t_0)

6 i f −source (s_2)

7 cond (== s_0)

8 s_1 = s_1 + 1

9 pop (s_2 , Ċ)

10 cond (! = s_0)

11 pop (s_1 , ou tpu t_0)

12 pop (s_0 , ou tpu t_0)

13 pop (s_2 , s_0)

14 push (s_1 , 1)

by the symbols in the input stream. Thus, during processing, the

input stream is read symbol-by-symbol, and the computation con-

tinues as long as there are input symbols still to be processed. In

the presence of multiple inputs, the processing is considered com-

pleted only when all input streams have become empty. To this

end, xPTLang includes a special loop construct called while-input

(Table 3), which iterates as long as there is a symbol to be processed

in any of the input streams. xPTLang hides from the programmer

the internal handling of input and output streams (i.e., handling

of stream pointers, input/output bu�ering, and data transfers be-

tween host and device). Stream accesses (for example, through push

and pop instructions) implicitly advance the corresponding stream

pointer, and, when necessary, cause operations on internal bu�ers

and host-device data transfers.

4.3 Stack Handling

We recall that arithmetic operations operate solely on the element

on the top of each stack accessed, but do not push elements into the

destination stack or pop elements from the source stack(s). Loop

and condition guards access stacks without modifying their content.

To conform with the pushdown transducers abstraction, a stack’s

depth is modi�ed only by push, pop, popall, and �ush operations

(Table 2). Stack operations involving two stacks modify the depth

of the two stacks in opposite ways. For example, push(s_1, s_2)

causes an element to be inserted into stack B_1 and an element to

be removed from stack B_2. On the other hand, write operations

involving stacks can read or write the element on top of a stack

(depending on whether the stack is the src or dst argument), without

adding or removing stack elements.

In terms of implementation, upon declaration, stacks are initial-

ized to empty. The xPTLang’s implementation handles internally

anymemorymanagement operations required to provide a logically

in�nite stack. Users can de�ne a stack-speci�c maximum depth

(otherwise set to 128 elements by default). Additional bu�ers are

dynamically allocated as needed when the stack’s depth exceeds

the pre-allocated bu�er size.

4.4 Example

Listing 1 shows an xPTLang program that implements run-length

encoding (RLE). This encoding scheme compresses the input data

by recording every symbol in the input followed by the number

70

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

Table 4: Nesting level (NL), peers, children and body list for

RLE program. Line numbers are colored to match Listing 1.

Line NL Peers Children Body List

Root 0 None 1, 2, 3, 4 ďĨĩ , Ĉ1 ,Ĉ2 , Ĉ3 , Ĉ4 , ďĨě
1 1 2, 3, 4 None ď1ĩ , ď1ě
2 1 1, 3, 4 None ď2ĩ , ď2ě
3 1 1, 2, 4 None ď3ĩ , ď3ě
4 1 1, 2, 3 5 ď4ĩ , Ĉ5 , ď4ě
5 2 6 None ď5ĩ , ď5ě
6 2 5 7,10 ď6ĩ ,Ĉ7 ,Ĉ10 ď6ě
7 3 10 8, 9 ď7ĩ , Ĉ8 , Ĉ9 , ď7ě
8 4 9 None ď8ĩ ,ď8ě
9 4 8 None ď9ĩ , ď9ě
10 3 7 11, 12, 13, 14 ď10ĩ , Ĉ11 , Ĉ12 , Ĉ13 , Ĉ14 , ď10ě
11 4 12, 13, 14 None ď11ĩ , ď11ě
12 4 11, 13, 14 None ď12ĩ , ď12ě
13 4 11, 12, 14 None ď13ĩ , ď13ě
14 4 11, 12, 13 None ď14ĩ , ď14ě

of its consecutive occurrences (for example, aaabbbbbc → a3b5c1).

Stack B_0 stores the symbol being counted, stack B_1 stores the

run-length counter, while stack B_2 stores the current input symbol.

Lines 1-3 initialize the stacks and output the �rst symbol read. Lines

4 marks the main execution loop. The loop body reads the next

symbol (line 5), checks if it matches the symbol being counted (lines

7-10), and increments the counter (line 8) or outputs the run-length

and resets the counter (lines 11-14).

5 xPTLang Compiler

5.1 Parser

Given an xPTLang program, the xPTLang parser generates a fully-

connected transducer.

5.1.1 Parser algorithm. Recall that, leveraging the transducers’

composition property, the parser builds a transducer incrementally.

First it constructs a sub-transducer for each statement, and then

it connects sub-transducers recursively based on each statement’s

type and on the program’s structure. This allows for nesting of

complex constructs. The parser algorithm follows six steps:

Step 1: Create a root state.

Step 2: Calculate the nesting level of each statement. We denote

a statement’s nesting level as the number of conditional or loop

structures a program has to go through to get to that statement. For

example, a loop body’s statement will have nesting level 1 plus the

nesting level of the loop. The root state is assigned nesting level 0.

Step 3: For each statement, determine its child and peer state-

ments. Statement A is a child of B if A comes after B in program

order and A’s nesting level is 1 below B’s nesting level. Peer state-

ments have the same nesting level.

Step 4: Traverse the list of statements. Each statement A will

be assigned a body list, which contains the states associated to A

and its children. For each statement A, create a start and an end

state ((ýĩ and (ýě). If A is an action or print statement, connect

(ýĩ and (ýě according to the diagrams in Tables 2 and 3. Add the

states created to A’s body list.

Step 5: Perform recursive composition by traversing the list of

statements in reverse order. If a statement A has children, insert

the children’s body lists into A’s body list, and connect these states

according to their statement type (see Table 3). For example, if A is

a condition statement with two children C and D, and C and D’s

body lists are ((ÿĩ , (ÿě) and ((Āĩ , (Āě), respectively, performing

recursive composition will cause A’s body list to become: ((ýĩ , (ÿĩ ,

(ÿě , (Āĩ , (Āě , (ýě) and four transitions to be created: (ýĩ → (ÿĩ ,

(ýĩ → (Āĩ , (ÿě → (ýě , and (Āě → (ýě .

Step 6: Perform recursive composition on the root state. Add

transitions to connect all the children’s body lists in series (body

1 end state to body 2 start state, body 2’s end state to body 3 start

state, etc). This step ensures a fully connected transducer.

5.1.2 Example. Table 4 shows the nesting level, children, peers

and body list of each statement in the RLE code example (Listing 1)

at the end of the execution of the parser’s algorithm. For readability,

we call !Ĕ the body list of state - , and do not enumerate the chil-

dren’s body lists within their parent’s body list. Figure 3 illustrates

the recursive composition process (steps 5 and 6 of the parser’s

algorithm). Speci�cally, Figures 3a-c show the result of applying

recursive composition on the statements at lines 7, 10, 6 and 4,

while Figure 3d shows the fully connected transducer resulting

from applying recursive composition on the root state.

5.2 Code Generation

Given the transducer IR generated by the parser, the code generator

generates the corresponding traversal engine’s implementation.

Two implementation approaches are possible: memory-based and

code-based engine. In a memory-based engine, the transducer’s

topology (states, transitions and related information) is stored in

memory using a prede�ned layout. The traversal code is trans-

ducer independent, and the code generator creates and populates

the required memory data structures. In a code-based engine, the

transducer topology is embedded in the traversal code, which is

transducer speci�c. Here, we take the second approach. We focus

on code-based implementations for performance considerations.

By storing the transducer topology (states and transitions) in mem-

ory, memory-based engines incur additional memory accesses and

require instructions to decode the topology. While our program-

ming interface is generic, our code generator currently supports

deterministic transducers (the parser raises a warning if it can-

not eliminate sources of non-determinism from the transducer, for

example through string disambiguation).

5.2.1 Code generation algorithm. At a high level, we map each

state to a block of code that contains the state’s logic (i.e., the work

executed when the state is active), and we implement transitions as

conditional statements that redirect the program’s execution �ow

among these code blocks. The code generation algorithm operates

in 2 steps:

Step 1: Data structure allocation: Allocate the required data

structures, including: stacks, variables, and per-thread context in-

formation (i.e., active state and input/output streams’ pointers). The

required stacks and variables are determined in the stack reduction

optimization step (Section 6.4). On GPU, variables and context in-

formation are stored in registers, while stacks are stored in shared

memory (and o�oaded to global memory as needed).

Step 2: Generation of traversal loop: Generate the transducer

traversal loop, which iterates as long as there is an active state

and an input symbol to be processed. The loop body contains an

71

A Transducers-based Programming Framework for E�icient Data Transformation PACT ’24, October 14–16, 2024, Long Beach, CA, USA

(a) Recursive composition for state-

ments 7 and 10 (b) Recursive composition for statement 6 (c) Recursive composition for statement 4

(d) Fully connected transducer

Figure 3: Operation of steps 5 and 6 of the parser’s algorithm on the RLE code in Listing 1. For the sake of space and readability,

we show only the relevant pieces of the topology.

if-block for each state. The body of the block, which is executed

when the state is active, contains the the state’s actions, its outgoing

transitions, and the required updates to the input/output streams’

and stacks’ pointers. For transitions, there are two options. (1) If

the outgoing transition depends on the content of an input or a

stack, we generate an if-block with the guard being the transition’s

condition. The output and stack updates triggered by the transition

are converted into statements inside that transition’s if-block. The

active state is then set to the transition’s destination state. (2) If the

outgoing transition is executed unconditionally, the statements im-

plementing the output and stack updates triggered by the transition

and the active state’s update are added to the if-block of its source

state. The example in Listing 2 shows a code snippet illustrating

the salient aspects of the transducer traversal code.

Various parallelization approaches are possible: chunk-based par-

allelization (where pre- and post-processing primitives are used

to break input and output in chunks processed in parallel) [34],

input-based parallelization (where di�erent inputs are processed in

parallel) [35], and transducer-level parallelization (where di�erent

transducers are processed concurrently). Here, we take the �rst

approach, but the code generator can be extended to support the

other schemes. The generated code is parallelized using POSIX

threads on CPU, and CUDA on GPU.

6 Compiler Optimizations

In this section, we describe four optimizations to reduce the trans-

ducer topology and improve execution e�ciency.

Listing 2: Transducer traversal pseudocode snippet.

1 void s amp l e _ t r an s du c e r _ k e r n e l (. . . .) {

2 . . . ² Execution loop

3 while ((s t a t e < s t a t e _ no)&&(inpu t)) {

4 i f (s t a t e ==1) { ² Unconditional tx

5 s_0 [top_0 ++]= inpu t [c u r r e n t _ i ++] ;

6 s t a t e =2 ;

7 }

8 e l se i f (s t a t e ==2) ² Conditional tx

9 i f (s t ack_compare (s_0 , s_2)) s t a t e =4 ;

10 e l se s t a t e =3 ;

11 e l se i f (s t a t e ==3) { ² State arithmatic ops

12 s_1 [top_1]= s_1 [top_1] + 1 ;

13 ou tpu t [cu r r en t _o ++]= s_1 [top_1 ++] ;

14 } } }

6.1 Topology Reduction

Our parser is designed to easily incorporate changes in the xPTLang

language. Since each statement is logically enclosed in a pair of

start and end states, additional programming constructs can be

easily incorporated in xPTLang without complicating the recursive

transducer composition process. However, this method generates a

large number of unnecessary states and epsilon transitions, limiting

code e�ciency.

To address this problem, we introduce a topology reduction com-

piler pass. We call “empty” states the states that don’t have an

action associated to them. If an empty state BĔ has an outgoing

epsilon transition to state Bĕ , BĔ and its outgoing transition are

eliminated, and its incoming transitions are connected to state Bĕ .

If all incoming transitions to a state BĔ are epsilon transitions, state

BĔ and its incoming transitions are eliminated, and its outgoing

transitions are replicated and connected to each state previously

transitioning to BĔ . Note that, in deterministic transducers, a state

with an outgoing epsilon transition cannot have additional outgo-

ing transitions. Figure 4a shows the result of applying topology

reduction on the fully connected transducer in Figure 3d.

(a) RLE transducer after topology reduction

(b) RLE transducer after block coalescing

Figure 4: Topology reduction and block coalescing applied to

the RLE transducer in Figure 3d.

72

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

6.2 Block Coalescing

As mentioned in Section 5.2, the xPTLang compiler converts trans-

ducer’s states into blocks of code, and transitions into if-statements

that redirect the program execution from one code blocks to an-

other. In the transducer abstraction, each transition can generate

or consume only one symbol, and each state can contain only one

arithmetic operation. As a result, reading multiple variables and

multi-step calculations require a series of states and transitions.

During code generation, this in�ates the number of conditional

statements and creates conditional checks in unconditional execu-

tion paths. Block coalescing aims to eliminate unnecessary con-

ditional statements by bypassing the reference transducer model

and merging together states that are connected by unconditional

transitions. Block coalescing is performed in three steps.

Step 1: States are partitioned in two lists: L1 and L2 . L1 contains

the starting points of a block, namely: (1) the initial state, (2) states

with multiple incoming transitions, and (3) states with multiple

outgoing transitions and their directly connected states. L2 contains

the remaining states.

Step 2: Blocks of states are generated by traversing L1. If a state

in L1 has multiple outgoing transitions, a one-state block is created.

If it has one outgoing transition, a new block is created and the

transducer topology is traversed until another state in L1 is reached.

All states along the traversed path are then removed from their

respective list and added to the newly created block.

Step 3: The resulting blocks are connected by the existing transi-

tions between the end state of a block and the start state of another.

Figure 4b shows the result of applying block coalescing on the

transducer of Figure 4a. This transformation coalesces the 14-state

transducer into a 5-block function.

6.3 String Disambiguation

The if-match construct enables matching multiple strings in par-

allel. The partial or full overlap among the strings can lead to a

non-deterministic transducer (i.e., a transducer with multiple active

states). To handle this scenario, the xPTLang compiler performs

string disambiguation and constructs a transducer that performs

multiple string matching in a deterministic manner. This optimiza-

tion consists of four steps:

Step 1: The compiler identi�es any user-introduced ambiguity

in the matching conditions. These are instances where a match is

fully contained within another match (for example, “apple” and

“apples”). In these cases, the compiler implements a greedy policy

and accepts only the shortest of the overlapping strings.

Step 2: The compiler constructs a tree-like string matching sub-

transducer by merging outgoing transitions on the same symbol

and the corresponding target states. This process is equivalent to

subset construction for automata minimization.

Step 3: If a state of the string-matching sub-transducer from

step 2 has an outgoing transition accepting a symbol 2 , the compiler

connects that state to the sub-transducer implementing the else-

block via a transition corresponding to the mismatch of 2 .

Step 4: Note that a leaf state in the matching sub-transducer

corresponds to the matching of a string. Accordingly, each leaf state

is connected to the sub-transducer implementing the block of code

to be executed upon a match.

’)
output = 8N9 output = 8A9

Figure 5: String disambiguation example: xPTLang code snip-

pet and corresponding transducer.

Figure 5 illustrates string disambiguation on a code snippet per-

forming the match of three strings: ‘cat’, ‘car’ and ‘�sh’. The code

increments a counter if the input matches ‘cat’ or ‘�sh’, writes ‘NA’

to the output if the input matches ‘car’, and outputs the value of

the counter if the input does not match any of the three strings.

The transducer constructed by the xPTLang compiler is shown next

to the code. The ‘matching machine’ sub-transducer (green box)

is constructed by enumerating the three strings and merging the

outgoing transitions on the same character (e.g., 2 and 0) and their

target states. Each state of the ‘matchingmachine’ is then connected

to the sub-transducer implementing the ‘else’ path (red block) via a

mismatch transition. Finally, each accepting state of the ‘matching

machine’ is connected to the sub-transducer to be executed upon

a match, depicted as part of the ‘output path’ (blue block). The

constructed transducer follows the topology shown in Table 3 and

the recursive composition process described in Section 5.1.

6.4 Stack Reduction

Building on the PDT abstraction, the xPTLang language represents

variables as stacks. However, implementing scalar variables us-

ing stacks in the transducer processing code is ine�cient, since

it increases the memory requirements and adds the overhead of

managing stack operations (e.g., stack pointer updates). The stack

reduction optimization aims to identify all the stacks whose depth

never increases beyond 1 and replace them with scalar variables.

We adopt a conservative approach, and use static analysis to iden-

tify stacks that can safely be reduced to variables. For each stack,

we trace all push and pop actions performed on it, and verify that

the sequence of stack manipulation actions does not cause the stack

depth to increase beyond 1. For example, a push and a pop action

to the same stack within a basic block are safe. This rule can be

generalized to statements with the same nesting level. If one of the

statements is a condition, we check that the opposite stack action is

performed in each branch of the if-statement. When modi�ed with

a pushall action, a stack cannot be reduced to a variable, since the

number of symbols pushed on it is generally not known at compile

time. When replacing a stack with a variable, we eliminate all the

associated push and pop operations, and replace them with simple

assignment statements.

7 Experimental Setup

Benchmarks. We select 15 data transformation workloads from six

classes of applications: (1) data encoding/decoding, (2) sparse matrix

73

A Transducers-based Programming Framework for E�icient Data Transformation PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Table 5: Benchmarks and baseline library implementations.

Application Input Dataset CPU GPU

Data
Enc/Dec

Cantebery Corpus,
Arti�cal Corpus [1]

Parquet [37] Cub [2]

Matrix
Transform

Texas A&M Sparse
Matrix [42]

Intel
MKL [5]

cuSparse [2]

Statistics
RDU Accident and
Crime Report [9]

GSL
Hist [4]

Cub [2]

Data Query
NY City Water
Consumption [11]

Pandas [8] Rapids [6]Prediction
Filtering

transformation, (3) data statistics, (4) data querying, (5) data predic-

tion and (6) data �ltering. For data encoding/decoding, we consider

bit-packing (BPE/BPD), run-length (RLE/RLD) and variable-length

(VLE/VLD) encoding/decoding. For sparse matrix transformation,

we select the transformation from the COO to the CSR format

(COO), and the transformation from dense to CSR format (Dense).

For data statistics, we select the generation of histograms (HIST)

and accumulations (ACC). For data querying, we use the JSON and

CSV formats. The queries aim to extract a subset of a CSV and JSON

�le based on a speci�ed user condition.We conduct our experiments

on raw, unedited and dictionary-encoded data (JSON_R CSV_R and

CSV_E, respectively). For data �ltering, we perform range �ltering

(RF) to curate a subset of CSV and JSON data based on range data

of member �elds. For data prediction, we use data interpolation

(ITPL) to �ll out missing data point using linear interpolation.

Baselines. We compare xPTLang against custom library implemen-

tations of the benchmarks above, as well as two existing memory-

based transducer processing engines for CPU and GPU (DFST+ [35]

and e�PDT [34], see Section 2). The considered application-speci�c

libraries are: Parquet[37], GNU Scienti�c Library [4], Pandas [8],

NVIDIA cub, cuSparse, and Rapids [2]. We time the execution of

the data transformation kernels in these libraries.

Input datasets. We use textual data from the Canterbury Corpus and

Arti�cial Corpus Datasets [1], with �le sizes ranging from 4KB to

2MB, sparse matrix data from the Texas A&M Open Source sparse

matrix collection [42] (g7jac160, xenon1). For query, prediction and

statistics data, we use the Raleigh Sustainable Project [9] (longitude

and latitude) and the Crash Location dataset (FeetFromRoad) and

New York city’s water consumption [11]. Table 5 summarizes the

datasets used in our experiments, as well as the CPU and GPU

library implementations that we use as baselines. The input streams

used in our experiments are constructed by replicating the content

of the datasets of Table 5 until reaching a stream size of 1GB on

CPU and of 10GB on GPU. Setup time and data transfer time for

the baselines are not included in the timing - we measure only the

execution time of the main data transformation kernels/functions.

System configuration. We run our experiments on a system equipped

with two Intel Xeon processors running at 2.2GHz, each with

ten physical cores and a total 25MB of cache. The system is also

equipped with an NVIDIA A30 GPU, with 24GB global memory,

64KB constant memory and 48KB shared memory per streaming

multi-processor (SM). The GPU has 56 SMs operating at a maximum

clock rate of 1.44GHz. In addition, our system has 130GB RAM and

a 1TB SSD. We use Ubuntu 18.04, gcc 7.5 and CUDA toolkit 12.1.

(a) CPU

(b) GPU

Figure 6: Throughput of xPTLang on CPU and GPU againsts

custom library implementations (baseline) in Table 5.

Parallelization. We recall that the xPTLang compiler generates C++

code using POSIX threads for CPU and CUDA code for GPU. In addi-

tion, it performs chunk-based parallelization and uses the pre- and

post-processing primitives from [34]. The custom CPU library im-

plementations used as baseline are single-threaded. We parallelize

CPU execution by launching multiple instances of these libraries

through POSIX threads. We spawn 20 threads for all CPU imple-

mentations, and assign each thread 1GB of the input data. On GPU,

the thread-block con�guration is set to utilize all the available SMs.

8 Experimental Evaluation

8.1 Performance Results

CPU throughput. Figure 6a compares the throughput of the CPU

code generated by the xPTLang compiler with the CPU baseline li-

brary implementations listed in Table 5. On average, xPTLang code

performs 66% better than the customized baseline implementations,

o�ering an average throughput of 1.8 GB/s vs. the 1.1 GB/s baseline

throughput. In particular, xPTLang performs best on data encod-

ing/decoding (1.8 GB/s vs. 612 MB/s), sparse matrix transformation

(1.4 GB/s vs. 576 MB/s) and data prediction workloads (3.9 GB/s

vs. 833 MB/s). xPTLang performs on par with baseline implementa-

tions on data query (1.6 GB/s) and data �ltering (1.2GB/s) workloads,

while underperforming baseline code on data statistics workloads

(1.4 GB/s to 2.4 GB/s). Sparse matrix operations are irregular work-

loads. The streaming nature of the transducer model and xPTLang’s

code-based transducer processing engine allow avoiding scattered

74

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

Figure 7: Number of states generated by the xPTLang frame-

work (without and with optimizations).

memory accesses to the input matrices. The data predictions work-

load (ITPL) performs linear interpolation on missing values. In the

Pandas library, this is implemented as a single input to single output

transformation, while our xPTLang implementation uses a second

input stream to quickly iterate through the dataset and identify

missing values. Once a missing value is found, the main stream

performs interpolation at that location. This approach allows us

to overlap data accesses and interpolation as well as bypassing

unnecessary data. On the other hand, the simplicity and regularity

of data statistics workloads (histogram generation and data accu-

mulation) allows for very e�cient custom library implementations

outperforming the xPTLang framework.

For the benchmarks using the Rapids library (CSV, CSV_RAW,

JSON and FLT), xPTLang outperforms the Rapids implementations

because the transducer abstraction allows streaming the input and

encoding the execution context in local variables, while Rapids

loads the entire dataset in memory and accesses it using irregular

patterns. We observe that xPTLang and Rapids issue the same num-

ber of load instructions (about 150 millions). However, on average,

xPTLang reports a 99% L1 cache hit rate while Rapids reports a

28% L1 cache hit rate. In addition, transducers allow performing

parallel matching of multiple strings e�ciently in a regex-like man-

ner, while Rapids performs serial, string-by-string comparisons.

We observe an average 2.5× reduction in the number of executed

branch instructions when using xPTLang (1.2 and 3.1 billions branch

instructions when using xPTLang and Rapids, respectively).

GPU throughput. Figure 6b compares the throughput of the GPU

code generated by the xPTLang compiler with the GPU baseline

library implementations listed in Table 5. We note that GPU im-

plementations are available only for a subset of the considered

workloads. On average, xPTLang performs about 2× better than

baseline, o�ering an average throughput of 91GB/s vs. the 46 GB/s

baseline throughput. In particular, xPTLang performs best on data

querying/�ltering (147GB/s vs. 42GB/s), sparse matrix transforma-

tion (57GB/s vs. 21GB/s) and data prediction workloads (5.6GB/s

vs. 2.2GB/s). It performs on par with baseline on data statistics

(90GB/s), while underperforming the baseline on data encoding

(38GB/s vs. 56GB/s). Data querying and �ltering workloads require

grammar parsing, which involves non GPU-friendly computations

such as nested evaluations and long string matching. xPTLang can

Table 6: Code size (in LOC) of xPTLang programs (G%)!) and

generated CPU and GPU codes. ΣĈċÿ = total LOC; % = stream

partitioning;" = I/O handling, data transfers and allocations,

and kernel setup; ĝ = core data transformation kernels gen-

erated by the xPTLang compiler; ę = hand-tuned kernels

from the libraries in Table 5 (if open-source).

xPTL
CPU code GPU code
ΣĈċÿ = P + M + ćĝ/ćę ΣĈċÿ = P + M + ćĝ/ćę

BPD 22 123 30 64 29/14 180 87 64 29/-
BPE 22 128 30 78 20/15 182 87 75 20/-
VLD 15 147 30 73 44/20 197 87 66 44/-
VLE 25 133 30 69 34/23 183 87 62 34/-
RLD 7 119 30 69 20/20 169 87 62 20/51
RLE 14 134 30 70 34/20 184 87 63 34/52
COO 26 209 51 83 75/- 251 108 68 75/-
DENSE 28 175 30 84 61/- 217 87 69 61/-
HIST 15 140 30 71 39/87 191 87 65 39/61
ACC 6 116 30 74 12/6 162 87 63 12/24
CSV_E 33 211 30 70 111/- 262 87 64 111/-
CSV_R 33 235 51 71 113/- 290 108 69 113/-
JSON 33 432 51 74 307/- 486 108 71 307/-
FLT 5 116 30 74 12/87 162 87 63 22/16
ITPL 25 185 51 83 51/- 231 108 72 51/-

leverage stacks (stored in shared memory) to encode complex gram-

mars, and the xPTLang compiler allows e�cient string matching

through string disambiguation (see Section 6.3). The sparse matrix

transformation, data prediction and data statistics results follow

considerations made for CPU. RLE (data encoding) is also suited

for GPU acceleration through custom optimizations, allowing the

baseline to outperform xPTLang.

Comparison with memory-based engines. Compared to memory-

based transducer processing engine implementations (DFST+ [35]

and e�PDT [34]), xPTLang performs on average about 80% better

(1.7 GB/s vs. 900MB/sec) on CPU and 1.5× better (131GB/sec vs.

50GB/sec) on GPU. Embedding state and transition information in

code has two bene�ts. First, it avoids frequent memory accesses to

retrieve the transducer’s topological information. On GPU, pro�l-

ing data show an average 3.15× reduction in the number of load

instructions issued (0.17 vs. 0.6 billions). Second, the optimizations

discussed in Section 6 allow for compact and e�cient code. Our pro-

�ling data show that xPTLang kernels take about 400 bytes, which

can comfortably �t in the 32KB instruction cache on CPU and 64KB

constant cache on GPU.

8.2 Programmability & Compilation

Transducer size. Figure 7 reports the number of states of the trans-

ducers generated without and with optimizations enabled (Unop-

timized and xPTLang, respectively). We note that, thanks to the

optimizations it performs, the compiler is able to automatically gen-

erate compact transducers, on average 20% smaller than hand-coded

ones from previous work [34], resulting in compact programs.

Code Size. Table 6 shows the code size of the considered xPTLang

programs (xPTL) and of the corresponding CPU and GPU imple-

mentations generated by our compiler. We break down the LOC

of the generated implementations (ΣĈċÿ) into: (i) code perform-

ing stream partitioning (%), (ii) miscellaneous code handling I/O

streams, memory allocations, data transfers and kernel setup ("),

75

A Transducers-based Programming Framework for E�icient Data Transformation PACT ’24, October 14–16, 2024, Long Beach, CA, USA

and (iii) core data transformation kernels (ĝ). Not all the custom

libraries of Table 5 are open source; when code is available, we also

report the code size of the kernels included in those libraries (ę).

 ę indicates the size of the custom data transformation kernels

alone (not including stream and memory handling or setup code).

We recall that xPTLang code is platform agnostic. Moreover,

the xPTLang language allows users to focus solely on encoding

the data transformation task on abstract data streams using sim-

ple programming constructs. The handling of streams (including

I/O operations, bu�ering and data partitioning), stacks, variables,

memory allocations, data transfers, and platform-speci�c details

are hidden from the programmer, and the required code is auto-

matically generated by the compiler. This results in compact code:

xPTLang can express the considered transformations in 5 to 33 LOC,

while the generated implementations take from 116 to 432 LOC

on CPU and from 162 to 486 LOC on GPU - a 3× to 30× increase

in code size. Notably, xPTLang programs are comparable in size or

smaller than the generated data transformation kernels alone (ĝ).

Data transformations that can be expressed using string operations

(e.g., data query) enjoy signi�cantly smaller xPTLang codes. Finally,

for open-source libraries, xPTLang programs have sizes comparable

to (and in several cases smaller than) custom kernels specialized

for a single data transformation (ę). Note, however, that using

these custom kernels requires the additional data partitioning, data

allocation and I/O handling code. To conclude, building on the trans-

ducers computational abstraction, the xPTLang framework allows

platform-independent optimizations, and the generation of e�cient

code for multiple platforms, while hiding implementation details

associated with the transducer abstraction from the programmer.

Extended PDTs vs. FSTs. Existing works focusing on theoretical as-

pects of transducer processing [12, 22, 43] convert extended PDTs

and FSTs into standard FSTs via input/output enumeration, enabling

the use of an FST traversal engine. However, especially on large

alphabets, FST generation can incur state explosion. Here, we evalu-

ate the e�ect of FST conversion on compilation time and processing

throughout. Figure 8 shows results obtained by using the xPTLang

framework to generate an FST engine and the default extended

PDT engine (xPDT) for RLE. We generate FSTs for alphabet sizes

ranging from 4 to 64 symbols (2- to 6- bit alphabets), leading to

FST ranging from 228 to 55,000 transitions. We plot compilation

time (dashed lines, right axis) and throughput (solid lines, left axis)

when using xPTDs on CPU and GPU, and FSTs on GPU.

For small FSTs (up to 5̃000 transitions), compilation time remains

limited. The more complex FST topology as the alphabet size in-

creases results in larger code with more divergent branches, nega-

tively a�ecting the processing throughput. As a result, FST’s perfor-

mance degrades as the alphabet gets larger (from 16GB/s down to

0.4GB/s). Even with a trivial 2-bit alphabet, FST achieves only 27%

of xPDT’s throughput, while with a 6-bit alphabet FST run on GPU

performs worse than xPDT run on CPU. On the other hand, xPDTs

allow constant compilation time (limited to less than a minute) and

throughput (59GB/s and 1.4GB/s on GPU and CPU, respectively).

The use of stacks and arithmetic operations limits the size of the

xPDT and makes its topology independent of the alphabet size. This

results in compact codes and reduced branch divergence.

Figure 8: Throughtput (GB/s) and compilation time (sec) of

FSTs and xPDTs when using xPTLang framework.

9 Conclusion

We have proposed a portable programming framework for data

transformation tasks based on the transducers abstraction. Our

framework includes a programming language (xPTLang) to express

transducer programs in a serial fashion using intuitive program-

ming constructs, and a compiler that transforms xPTLang programs

into transducer processing engines for CPU and GPU. Our frame-

work includes a set of optimizations that operate on the transducer’s

topology and aim to improve code e�ciency. Our experiments, per-

formed on a diverse set of 15 data transformation workloads, show

performance and programmability advantages over custom library

implementations and recently proposed transducer-based process-

ing engines. The performance advantages over custom implemen-

tations vary across applications. Future research directions include

extending our framework to support other platforms and cover-

ing nondeterministic behavior, thus enabling data transformations

requiring back-tracking (e.g., snappy, de�ate, and lz4).

Acknowledgments

This work was supported by National Science Foundation award

CCF-1907863.

References
[1] 2023. Canterbury Cor. https://corpus.canterbury.ac.nz/.
[2] 2023. CUDA Toolkit. https://docs.nvidia.com/cuda/.
[3] 2023. Foma. https://fomafst.github.io/.
[4] 2023. GNU Scienti�c Library. https://www.gnu.org/.
[5] 2023. Intel MKL. https://www.intel.com/content/www/us/en/develop/

documentation/get-started-with-mkl-for-dpcpp/top.html.
[6] 2023. Open GPU Data Science. https://rapids.ai/.
[7] 2023. openFST. https://www.openfst.org/twiki/bin/view/FST/WebHome.
[8] 2023. Pandas. https://pandas.pydata.org. https://pandas.pydata.org/
[9] 2023. Raleigh Open Data. https://data.raleighnc.gov/.
[10] 2023. thrax. https://www.openfst.org/twiki/bin/view/GRM/ThraxQuickTour.
[11] 2023. US Government Data. https://data.gov/.
[12] Rajeev Alur and Jyotirmoy V. Deshmukh. 2011. Nondeterministic Streaming

String Transducers. In Proceedings of the 38th International Conference on Au-
tomata, Languages and Programming - Volume Part II (Zurich, Switzerland)
(ICALP’11). Springer-Verlag, Berlin, Heidelberg, 1–20.

[13] Kevin Angstadt, Westley Weimer, and Kevin Skadron. 2016. RAPID Programming
of Pattern-Recognition Processors (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 593–605. https://doi.org/10.1145/2872362.2872393

[14] Michela Becchi and Patrick Crowley. 2008. E�cient Regular Expression Eval-
uation: Theory to Practice. In Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (San Jose, California)
(ANCS ’08). Association for Computing Machinery, New York, NY, USA, 50–59.

76

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Tri Nguyen and Michela Becchi

https://doi.org/10.1145/1477942.1477950
[15] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-vector

multiplication on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. 1–11. https:
//doi.org/10.1145/1654059.1654078

[16] Benjamin C. Brodie, David E. Taylor, and Ron K. Cytron. 2006. A Scalable
Architecture For High-Throughput Regular-Expression Pattern Matching. In
Proceedings of the 33rd Annual International Symposium on Computer Architecture
(ISCA ’06). IEEE Computer Society, USA, 191–202. https://doi.org/10.1109/ISCA.
2006.7

[17] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. 2010.
INFAnt: NFA Pattern Matching on GPGPU Devices. SIGCOMM Comput. Commun.
Rev. 40, 5 (oct 2010), 20–26. https://doi.org/10.1145/1880153.1880157

[18] Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and West-
ley Weimer. 2019. Debugging Support for Pattern-Matching Languages and
Accelerators. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (Provi-
dence, RI, USA) (ASPLOS ’19). Association for Computing Machinery, New York,
NY, USA, 1073–1086. https://doi.org/10.1145/3297858.3304066

[19] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An E�cient and Scalable Semiconductor Architecture for Parallel
Automata Processing. IEEE Transactions on Parallel and Distributed Systems 25,
12 (2014), 3088–3098. https://doi.org/10.1109/TPDS.2014.8

[20] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. 2015. Fast
Support for Unstructured Data Processing: The Uni�ed Automata Processor. In
Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,
Hawaii) (MICRO-48). Association for Computing Machinery, New York, NY, USA,
533–545. https://doi.org/10.1145/2830772.2830809

[21] Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien. 2017. UDP: a
programmable accelerator for extract-transform-load workloads and more. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017, Hillery C. Hunter,
Jaime Moreno, Joel S. Emer, and Daniel Sánchez (Eds.). ACM, 55–68.

[22] Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais,
and Jean-Marc Talbot. 2018. Visibly pushdown transducers. J. Comput. System
Sci. 97 (2018), 147–181. https://doi.org/10.1016/j.jcss.2018.05.002

[23] Bjørn Bugge Grathwohl, Fritz Henglein, Ulrik Terp Rasmussen, Kristo�er Aalund
Søholm, and Sebastian Paaske Tørholm. 2016. Kleenex: Compiling Nondetermin-
istic Transducers to Deterministic Streaming Transducers. SIGPLAN Not. 51, 1
(jan 2016), 284–297.

[24] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-YeonWei, and David Brooks. 2016. Pro�ling aWarehouse-Scale
Computer. IEEE Micro 36, 3 (2016), 54–59. https://doi.org/10.1109/MM.2016.38

[25] Marat F. Khairoutdinov and David A. Randall. 2001. A cloud resolv-
ing model as a cloud parameterization in the NCAR Community Cli-
mate System Model: Preliminary results. Geophysical Research Let-
ters 28, 18 (2001), 3617–3620. https://doi.org/10.1029/2001GL013552
arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2001GL013552

[26] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.
2011. CSX: An Extended Compression Format for Spmv on Shared Memory
Systems. SIGPLAN Not. 46, 8 (feb 2011), 247–256. https://doi.org/10.1145/2038037.
1941587

[27] Daniel Langr and Pavel Tvrdík. 2016. Evaluation Criteria for Sparse Matrix
Storage Formats. IEEE Transactions on Parallel and Distributed Systems 27, 2
(2016), 428–440. https://doi.org/10.1109/TPDS.2015.2401575

[28] Hongyuan Liu, Mohamed Assem Ibrahim, Onur Kayiran, Sreepathi Pai, and
Adwait Jog. 2018. Architectural Support for E�cient Large-Scale Automata
Processing. In 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society,
908–920. https://doi.org/10.1109/MICRO.2018.00078

[29] Weifeng Liu and Brian Vinter. 2015. CSR5: An E�cient Storage Format for
Cross-Platform Sparse Matrix-Vector Multiplication. In Proceedings of the 29th
ACM on International Conference on Supercomputing (Newport Beach, California,
USA). Association for Computing Machinery, New York, NY, USA, 339–350.
https://doi.org/10.1145/2751205.2751209

[30] Jan Van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron,
and Kubilay Atasu. 2012. Designing a Programmable Wire-Speed Regular-
Expression Matching Accelerator. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. 461–472. https://doi.org/10.1109/MICRO.2012.
49

[31] Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives,
and Sanjeev Khanna. 2017. StreamQRE: Modular Speci�cation and E�cient
Evaluation of Quantitative Queries over Streaming Data. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,
NY, USA, 693–708. https://doi.org/10.1145/3062341.3062369

[32] Alexander Meduna. 2000. Automata and languages: theory and applications.
Springer.

[33] AbhishekMitra,Walid Najjar, and Laxmi Bhuyan. 2007. Compiling PCRE to FPGA
for Accelerating SNORT IDS. In Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems (Orlando, Florida, USA)
(ANCS ’07). Association for Computing Machinery, New York, NY, USA, 127–136.
https://doi.org/10.1145/1323548.1323571

[34] Tri Nguyen and Michela Becchi. 2022. A GPU-accelerated Data Transformation
Framework Rooted in Pushdown Transducers. In 2022 IEEE 29th International
Conference on High Performance Computing, Data, and Analytics (HiPC). 215–225.
https://doi.org/10.1109/HiPC56025.2022.00038

[35] Marziyeh Nourian, Tri Nguyen, Andrew A. Chien, and Michela Becchi. 2022.
Data Transformation Acceleration using Deterministic Finite-State Transducers.
In 2022 IEEE International Conference on Big Data (Big Data). 141–150. https:
//doi.org/10.1109/BigData55660.2022.10020756

[36] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 293–307.

[37] Apache Parquet. [n. d.]. https://parquet.apache.org/.
[38] Elaheh Sadredini, Reza Rahimi, Vaibhav Verma, Mircea Stan, and Kevin Skadron.

2019. eAP: A Scalable and E�cient In-Memory Accelerator for Automata Pro-
cessing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-16, 2019. ACM,
87–99. https://doi.org/10.1145/3352460.3358324

[39] R. Sidhu and V.K. Prasanna. 2001. Fast Regular ExpressionMatching Using FPGAs.
In The 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’01). 227–238.

[40] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfe�erle. 2014.
DaRPC: Data Center RPC. In Proceedings of the ACM Symposium on Cloud Com-
puting (Seattle, WA, USA) (SOCC ’14). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/2670979.2670994

[41] Bor-Yiing Su and Kurt Keutzer. 2012. ClSpMV: A Cross-Platform OpenCL SpMV
Framework on GPUs. In Proceedings of the 26th ACM International Conference
on Supercomputing (San Servolo Island, Venice, Italy) (ICS ’12). Association for
Computing Machinery, New York, NY, USA, 353–364. https://doi.org/10.1145/
2304576.2304624

[42] Texas A&M University. [n. d.]. SuiteSparse Matrix Collection. https://sparse.
tamu.edu/

[43] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj
Bjorner. 2012. Symbolic Finite State Transducers: Algorithms and Applications.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for
Computing Machinery, New York, NY, USA, 137–150. https://doi.org/10.1145/
2103656.2103674

[44] Jack Wadden, Kevin Angstadt, and Kevin Skadron. 2018. Characterizing and
Mitigating Output Reporting Bottlenecks in Spatial Automata Processing Ar-
chitectures. In IEEE International Symposium on High Performance Computer
Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018. IEEE Computer
Society, 749–761. https://doi.org/10.1109/HPCA.2018.00069

[45] Xiaodong Yu and Michela Becchi. 2013. GPU Acceleration of Regular Expression
Matching for Large Datasets: Exploring the Implementation Space. In Proceedings
of the ACM International Conference on Computing Frontiers (Ischia, Italy) (CF ’13).
Association for Computing Machinery, New York, NY, USA, Article 18, 10 pages.
https://doi.org/10.1145/2482767.2482791

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In 9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12). USENIX Association, San Jose, CA, 15–28.

[47] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qun-
feng Dong. 2012. GPU-Based NFA Implementation for Memory E�cient High
Speed Regular Expression Matching (PPoPP ’12). Association for Computing Ma-
chinery, New York, NY, USA, 129–140. https://doi.org/10.1145/2145816.2145833

77

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Formal Definition and Example
	2.2 Related Work

	3 Programming Framework's Design
	3.1 General Design Decisions

	4 Programming Model
	4.1 xPTLang Programming Constructs
	4.2 Streaming Behavior
	4.3 Stack Handling
	4.4 Example

	5 xPTLang Compiler
	5.1 Parser
	5.2 Code Generation

	6 Compiler Optimizations
	6.1 Topology Reduction
	6.2 Block Coalescing
	6.3 String Disambiguation
	6.4 Stack Reduction

	7 Experimental Setup
	8 Experimental Evaluation
	8.1 Performance Results
	8.2 Programmability & Compilation

	9 Conclusion
	Acknowledgments
	References

