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Abstract—A problem extension of the longest common sub-
string (LCS) between two texts is the enumeration of all LCSs
given a minimum length & (ALCS-k), along with their positions in
each text. In bioinformatics, an efficient solution to the ALCS-
k for very long texts —genomes or metagenomes— can provide
useful insights to discover genetic signatures responsible for
biological mechanisms. The ALCS-k problem has two additional
requirements compared to the LCS problem: one is the minimum
length k&, and the other is that all common strings longer than
k must be reported. We present an efficient, two-stage ALCS-k
algorithm exploiting the spectrum of text substrings of length
k (k-mers). Our approach yields a worst-case time complexity
loglinear in the number of k-mers for the first stage, and an
average-case loglinear in the number of common k-mers for
the second stage (several orders of magnitudes smaller than the
total k-mer spectrum). The space complexity is linear in the
first phase (disk-based), and on average linear in the second
phase (disk- and memory-based). Tests performed on genomes
for different organisms (including viruses, bacteria and animal
chromosomes) show that run times are consistent with our
theoretical estimates; further, comparisons with MUMmer4 show
an asymptotic advantage with divergent genomes.

Index Terms—Computational Biology, Bioinformatics, Algo-
rithms, Biological Sequences

I. INTRODUCTION

The longest common substring (LCS) problem is defined as
to find the longest string —which might not exist or be unique—
in common between two or more texts. Applications of LCS
algorithms include plagiarism detection, text clustering, and
several uses in bioinformatics, e.g., finding common genes, or
conserved gene signatures among species. Dynamic program-
ming solves the problem with a runtime complexity quadratic
in the text length, while the space complexity varies between
quadratic and linear depending on optimization. Subquadratic
and linear algorithms exist, e.g., rolling hashes and suffix trees
[1]. The rolling hash time complexity is quadratic loglinear,
but the algorithm is limited to very short strings due to
collisions, as hash codes are integer types. The LCS search
in the suffix tree runs in linear time and theoretically in linear
space, but in-memory implementations have large multipliers,
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and disk/distributed ones often increase space complexity
to quadratic. An extension of the LCS problem is to find
all longest common substrings between two texts, given a
minimum length k£ (ALCS-k), along with their positions in
each text. While general solutions for more than two texts
and for enumerating ALCS exist, to date we are not aware of
available approaches or implemented tools solving the ALCS-
k problem with well-characterized time and space complexity.
However, the constraint of a minimum string length k£ and the
overlap conditions of all strings of length £, i.e., k-mers, open
room for devising efficient approaches that reduce the number
of the strings to be considered in the search or indexed into a
suffix-based structure. As with LCS, an efficient solution to the
ALCS-k can provide useful insights for many bioinformatics
use cases at large, e.g., for motif finding, or identifying
mobile elements, cargo genes, antimicrobial resistance genes
in bacteria.

We here propose an ALCS-k solution and a software
implementation. Our approach is a two-stage method that first
filters out all non-common k-mers between two text (using
external sort and merge), and then elongates the remaining
k-mers to identify the longest in common (eliminating those
that do not appear in both texts after elongation). We will
show that the worst-case time complexity of our approach is
loglinear in the number of k-mers for the first stage, and then
average-case loglinear in the number of common k-mers for
the second stage (several order of magnitudes smaller than
the total k-mer spectrum). We also we provide a theoretical
proof of the expected size for the ALCS-£ set, which is an
alphabet-dependent fraction of the number of shared k-mers.
The space complexity for the first phase is equivalent to the
k-mer spectrum (implemented as disk-based), naively linear
in the text lengths, while for the second phase is linear in the
number of common k-mers (disk- and memory-based).

II. METHODS

A. Problem Definition

Let A be an alphabet (finite set) composed by a = |A]
symbols, e.g., A can be the set of nucleotide bases A ={A,
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C, G, T} for genetic sequences. Let there be ¢, a text of length
l; generated upon A, and s; a substring of ¢, i.e., a subsequence
of ¢ made of consecutive characters, with an associated length
0 <5 < ;. Recursively, we can define s;, as a substring of
s¢, with associated length lsst- We also define the location p
of s; in ¢t where the substring starts, i.e., with the position of
the first character; if the substring appears multiple times, it
will be located in multiple positions. Given two texts ¢; and
ta, we define sy 2 any substring that is a substring of both
t; and to. A string s;2 can appear f; and fo times in ¢;
and t,, respectively. The number of substrings in common is
bounded between 0 and min(l; — I, , + 1,13 — 5, , + 1), and
the maximum can be reached only when ¢;is a Substring of
ta.

By choosing a minimum length k, we define the set SF,
made of all substrings of length k from ¢, indexed by their
positions p,s, where |SF| = I;—k+1, i.e., the generic element
sk € SF is the tuple < s*, p > made by the k-mer s* and its
position p. Upon SF, we further define the set Sﬁ the set of
all substrings of a text ¢; that appear at least once also in a
text t9, and Sé“l as the set of all ¢o substrings that are found in
t1. The two sets Sq, and Sy, contain the same distinct k-mers,
but they can have different multiplicity and different positions
in the respective texts. We thus define ng as the union of
S1, and Sy, .

Let S; = {52’,1-~~5i,k} and S5 = {8.7'71...81',]6} be two
strings in ng, and p;,p; their respective starting positions.
If pj = p; + 1, we define the elongated string s. =
{Si1 .- Sik,Sjk} when s; = sjp41,Yw = 2... k. The
string elongation can be iteratively applied until p; # p; + 1.
For instance, given the text ¢ and the set Sf, k=18

position p; string s;

000101573337 AAAGAAAAAATATAAATT
000101573338 AAGAAAAAATATAAATTC
000101573339 AGAAAAAATATAAATTCT
000101573340 GAAAAAATATAAATTCTG
000101580000 TTTGGCCTTAGCTAAAAG

Se = AAAGAAAAAATATAAATTCTG will be an elongated
string of ¢, with p. = 000101573337 and l5, = 21.

In the next sections we will show how, by elongating
all strings in Sﬁ and all strings in Sgl, we can create the
elongated sets S7, and S5 , where the elongated strings from
one set do not necessarily coincide from the other, and then
reduce them to have the same length, deriving the set SiQ,
i.e., the solution to the ALCS-k problem.

B. Related Work

The classic solution to the LCS is by dynamic programming
and has a quadratic complexity of O(lnin * lmaz) [2], Where
Imin 18 the length of the shortest text, and [,,4, is the length
of the longest, among the two. The space complexity is also
quadratic, since a [,y - lmae, matrix is used in the algorithm.
Optimizations of the lookup matrix can reduce the space
complexity up to linear, e.g., O(l,,in ), but the time complexity
remains quadratic [3].
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Several subquadratic time algorithms exist. The rolling hash
algorithm has a quadratic loglinear time complexity and linear
space complexity. Similarly to ours, this approach operates on
k-mers, by finding first common substrings of length %, and
then searching for the maximum k. In detail, the rolling hash
can be computed in linear time, sorting the hashes requires
O(lmazlog(lmas)) time, and the binary search requires another
O(log(lmas) time. Therefore, the total time complexity of
finding the LCS is O(l,,,4(10glmaz)?). Since the prefixes and
hashes must be stored, the space complexity is O(l,qz). As a
serious drawback, the rolling hash can produce hash collision
as soon as the number of possible strings exceeds the available
integers that can be stored in memory. In practice, even with
128-bit integers, the maximum string length handled by rolling
hashes over a 4-letter alphabet (genomes) is 64, which makes
the approach inapplicable in many real-world use cases. Also,
the search on hash matches need to be implemented and stored
efficiently, e.g., with hash tables, binary search trees, posing
further issues with large texts.

The most efficient approaches use suffix-based data struc-
tures and yield linear time/space complexity, i.e., O(lnax)
with Ukkonen’s online algorithm [4], or even sublinear, i.e.,
O(lmazloga/ /108l maz) (Where a is alphabet size) time and
O(lmazloga/10gl,q:) space, when word RAM models are
used [5]. However, even if the space requirement is linear
in the size of the text, the large amount of information
required at each node of the suffix tree makes the memory
requirements very expensive (20x), even with optimized im-
plementations [6]. Suffix arrays are more efficient (4x) [7], and
succinct/compressed structures have been lately introduced
improving by several order of magnitudes the storage needs,
e.g., FM-index [8], [9], at a slight price of increased querying
complexity [10].

For large texts, disk-based and parallel algorithms have
been proposed [11], [12]. Notably, most of the disk-based
approaches yield quadratic complexity for the construction and
the same holds for distributed ones [13], [14], with recent
improvements using Cartesian trees (linear work and space,
and polylogarithmic time) by Shun and Blelloch [15].

The ALCS-k problem has two additional requirements
compared to the LCS problem: one is the minimum length
k, and the other is that all common strings longer than k£ must
be reported. The problem is solved efficiently with suffix-
based structures [16]. However, highly dissimilar texts can
still pose memory and run time issues. The pre-specification
of k can be used to reduce search space in such cases.
In fact, our approach exploits k-merization, which can be
done very efficiently, with a plethora of in-memory, disk-
based, distributed, and compressed solutions (loglinear time
and linear space complexity for basic serial implementation),
thus a very valid alternative to using suffix-based structures.
Once the k-mers are extracted, compared and filtered, we work
only on the space of common k-mers, finding the ALKS-£ set
within a lower-dimensional space and time complexity, i.e., a
constant fraction of the expected number of common k-mers,
well-manageable as an in-memory process.
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Since it is related to our idea, we believe it is worth
mentioning the Hunt-Szymanski approach [17] for solving the
more general problem of the longest common subsequence,
which relaxes the criterion of character contiguity from the
LCS. Similarly to ours, the algorithm breaks the two texts into
smaller chunks —in its implementation for the UNIX/Linux
diff command these are file lines— and then creates k-bit
integer hashes, which are used in the dynamic programming
steps. If the chunks do not repeat often, the integer hashes
will resemble random strings from an alphabet of size 2¥, and
the algorithm will be efficient as expected. The algorithm is
subquadratic in the average case, i.e., O((r+lmnaz)10g(Lnaz)),
where 7 is the number of character pairs where the two texts
match. Since 7 is at maximum [;l, in the worst case the
algorithm has a time complexity of O(12,,,10g(l;naz)) and a
space of O(r + lynqz ). However, for strings whose characters
are drawn uniformly at random from an alphabet of size a, on
average 1 ~ lynqz, and a running time of O(l,,4.102(lnaz))
can be expected [17]. As a drawback, the Hunt-Szymanski
algorithm needs a good hashing function, which limits the
maximum length of a chunk, and a few repeats over the texts
—unfortunately uncommon in genomes. The repeats issue has
been lately improved by Apostolico [18].

Finally, we reference also the Chvatal-Sankoff constants
[19] that estimate the lengths of longest common subsequences
of random strings, since there is a relationship between the
average length of the LCS and the number of common k-
length strings.

C. Proposed Approach

Let t; and t5 be the two texts to be considered for the
ALCS-k problem. The algorithm solving the problem will
output all strings longer than £ in common between the two
texts, i.e., the set Sf,Q. Let us make an example as follows:

text
ty
ty
t1
ty
ty
to
to
to

position
000000000010
000000000030
000000000045
000000000060
000000000077
000000000005
000000000024
000000000040

string
CTTCCCGGAAAGG
AGTTCCCGGAAA
GAGTTCCCGGAAA
GGAGTTCCCGGAAA
GGAGTTCCCGGAAAT
CTTCCCGGAAAGG
GGAGTTCCCGGAAAT
GGAGTTCCCGGAAA

From the example, the second string of ¢,
AGTTCCCGGAAA at position 30, is a substring of the
t; strings at positions 45, 60, and 77; however, it is included
because it has a different starting position (and the same
applies in turn for those at positions 45 and 60). Instead,
we will not consider any substring of a shared string if its
starting and ending positions are within the starting and the
ending position of the longer one.

The inclusion of substrings that are found in different
positions is a positional extension to the classical ALCS-k
problem. Since in order to derive SY,, our algorithm also
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Fig. 1. Flowchart of the two-stage ALCS-k algorithm.
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calculates SY, and Sf , it is easy to find all the strings of
one text that are substrings of one of the longest common
substrings, yet are also found in other positions only in one of
the two texts. These strings can have an importance in certain
genomic domains, e.g., gene duplication, mobile elements,
promoters, miRNA, sncRNA.

The two-stage procedure is illustrated in Figure 1. The
first stage reads the two input texts ¢; and o and prints all
their k-mers along with the starting positions, which takes
O(ly, +1i,) time. The two files are then sorted independently
in O(ly,log(ls,) + l1,10g(l:,)) and then merged into a single
k-mer set file filtering out k-mers that are not in common in
O(ly, +11,), obtaining the SfQ set. Thus, the overall time com-
plexity of the first stage O(ly, + ls, + ¢, 1l0g(ly, ) + 1, 10g(ls,))
is bounded by the O(l;,42108lm42) superset. The space com-
plexity is at best linear, since all k-mers from both texts are
stored in a file at some point is k(l¢, +11,), i.e., O(las), and
quick sort or merge sort take linear space. The second stage
starts by sorting positionally the SfQ set, which yields again
loglinear time complexity and linear space, but is bounded by
the time complexity of stage one, since |ST,| < |SF |+ [SF].
After positional sorting, all the common k-mer strings are
elongated, constructing and filtering the SY, and S5 sets, and
then retaining the ALCS-k set. In the following paragraphs, we
will provide the theoretical proof that the number of elongated
strings |S7,| and their substrings on average are a fraction
of |Sf72|, and thus the average time/space complexities are
bounded by the prior loglinear/linear superset.
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a) Estimation of the average number of shared k-mers.:
The calculation of occurrence distribution of strings within a
text has been largely studied, and several exact and approx-
imated formulae exist, for both Bernoullian and Markovian
assumptions [20]. According to the formula by Prosperi et
al. [21], the probability distribution for a string s of length &,
s ={ai,...,ar}, within a text ¢ of length n, over an alphabet
of size a, for j occurrences under the Markovian model is

[Chyn, il j+1

Pr([s N Sf|=j) =Pr(s)’ > []Pr(soa,.), (D
z=1 y=1

where Pr(s) = Pr(ay)-Pr(az|ay)----- Pr(ag—1|ax), Pr(son) =
Pr(so,n—1) — Pr(s) - Pr(so.n—k), So.n = So,n—1-a — Pr(s) -
ak - 50,n—k» d1 ...djy1 are the lengths of the j 4 1 segments
where the j strings divide the text of length n in exact
configurations with dy + --- +dj;1 = n — kj, d; € N,
C = {(d1,ds,...,dj11)|di}, and |,y = ("H0-0).
In other words, the set C' represents all the ways in which
n — kj characters can be distributed in j + 1 positions, where
Ce = {dic...d¢j41).} corresponds to the cth element of the
whole set.

Thus, given Eq. 1 and the probability that a string s of
length &k appears j times in t; (or equivalently in ¢3), we can
define the average number of occurrences of a k-mer in 1,
and consequently how many times one k-mer is repeated in a
text, as

ElsnSEIl=>j Pr(lsn Sf| = ).

=0

@)

There are several efficient ways and implementations to cal-
culate Eq. 1 [22]. Since only the average number is needed
here, E[|s N Sf|] can also be obtained directly through an
approximated formula that is (I3 — k + 1)ng, where 7y, is the
probability of the string given the the underlying generative
model [23]. For a string over a a-letter alphabet with equiprob-
able characters and Bernoullian model, 7, = a~*. Note
that the approximated formula assumes string independence
and non-clumpability (i.e., when strings overlap), but such
assumption is robust for large values of k and [;. Instead,
Eq. 1 and Eq. 2 are more generic because they can use the
Markovian assumption as well as clumpability through a char-
acter switch [22]. As an example, illustrated in Figure 2, using
a 4-letter alphabet, & = 11, and a 10,000,000 equiprobable
bases genome, the mass probability is centered at j = 2
and the average number of occurrences following Eq. 2 is
2.38, which matches the simplified equation; if we increase
the genome length to 50,000,000 the center of mass becomes
11 and the average number of occurrences is 11.92, and again
both equations match.

Let us now consider the two texts ¢; and ¢y of length [y
and Iy, respectively, and their k-mer sets S and S}, with
|Sf| = (Iy —k+1) and |SF| = (I — k + 1). We can use
Eq. 2 or the approximated formula to estimate the expected
number of occurrences of a string s € ¢; within the text to, i.e.,
E[|lsN S{"Z ], as well as the vice versa. Since the total number
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Fig. 2. Probability distribution of j occurrences for k-mer strings within texts
of length n (alphabet size of 4) using the equiprobable Bernoullian model.
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of k-mers in ¢ is | S} | = (I —k+1), the expected number of
common k-mers with t5 could be (I; —k-+1)-E[|sNSF [], but
this does not consider string multiplicity in ¢;. If we consider
multiplicity, we need to find the average frequency for distinct
k-mers within Sfl, which we define as \Sfl |. Since all k-mers
in t; are found at least once, the probability of each of these
string to occur zero times, i.e., Pr(|s € Sf | = 0), is in fact the
probability to occur exactly one time. Thus, the probability of
occurring j times for any k-mer s € ¢; is the probability of
occurring j — 1 times. Hence, we can formalize \S'fl | as

. Z Pr(lseSk|=(j—1
s1=3 ;1|+1(J D 3)

Jj=1

For ease of reading and notation, let us rename E[|sN.SF|] as
11§ . The number of k-mer strings of ¢1 found in t2, i.e., |55 |,
will be then |S’f1\ - pif, and equivalently |S} | = \5’{2 pf

We now have all components to calculate |S} ,| as

B R ARTAE AR @)

In Figure 3 we show how |ST,| change by varying text
lengths and k-mer lengths. The number of shared k-mers
increases when the text length increases, and decreases when
k increases; we will show that the complexity of the second
phase also decreases inversely to k,

1) String elongation and comparison.: The second phase
elongates the k-mers in common between ¢; and t», i.e., SfQ
into SY, and S5 , then compares all elongated strings, finding
the LCS, and yielding the final S7 5 as a solution to the ALCS-
k problem.

The determination of the LCS for two elongated strings
—whose starting positions are known, and thus are already
aligned- can be categorized into a base case A, and combina-
tion cases B, C, and D. Figure 4 gives a graphical illustration
of the basic elongation type A, with the combined B, C, and
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Fig. 3. Cardinality of the set of shared k-mers over two texts, increasing k
and the length of the second text.
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D cases (assuming the LCS is longer than k). The A and C
case can be divided into two sub-configurations depending on
the elongation direction, but they are basically the same if the
elongation direction, or the two sequences, are switched. Case
D can result in more than one LCS candidate from the two
elongated strings, and thus the resulting set has to be cross-
compared to remove substrings (either with a quadratic brute
force or using a more efficient procedure such as the suffix-
based LCS search).

Let us make some examples for the different categories.
Suppose we have the following common k-mer space for .S 11%:

text position string

tq
to
ty
ta
1
to
ty
to
ty
2
ty
to

010333999
000004065
010333400
000004066
010333401
000004067
026257228
000004068
026257229
000004069
026257230
000004070

CAGCATATTTTCTITTTAA
CAGCATATTTTCTTTTAA
AGCATATTTTCTTTTAAA
AGCATATTTTICTTTTAAA
GCATATTTTCTTTTAAAA
GCATATTTTCTTTTAAAA
CATATTTTICTTTTAAAAT
CATATTTTCTTTTAAAAT
ATATTTTCTTTTAAAATT
ATATTTTCTTTTAAAATT
TATTTTCTTTTAAAATTA
TATTTTCTTTTAAAATTA

After elongation, we obtain the string 010333999
CAGCATATTTTCTTTTAAAA (length of 20) from ¢;, and
the string 000004065 CAGCATATTTTICTTTTAAAATTA
(Iength of 23) from t5. The t2 substring is more elongated
to the right, and we retain the one elongated from ¢;, thus this
corresponds to case A.1. Case A.2 would be instead happening
with the following k-mer space:

text position string
to 000444789 TTTTTAAAAGAAAAGGGG

97

ty
to
ty
to
31

Here,

000000602
000444790
000000918
000444791
000000919

after elongation,

TTTTTAAAAGAAAAGGGG
TTTTAAAAGAAAAGGGGG
TTTTAAAAGAAAAGGGGG
TTTAAAAGAAAAGGGGGG
TTTAAAAGAAAAGGGGGG

we would get

000444789

TTTTTAAAAGAAAAGGGGGG (length of 20) from ¢y, and

000000918 TTTTAAAAGAAAAGGGGGG (length of

19)

from ¢;. The ¢2 substring has extra characters to the left, and
we choose the one from ¢;.
For case C we can make the following example:

text
ty
t1
31
131
to
to
to
)

position
000015790
000015791
000015792
000015793
000010000
000010001
000010002
000010003

string
TGAAAAAAATTTTTTTTC
GAAAAAAATTTTTTTTCC
AAAAAAATTTTTTTTCCG
AAAAAATTTTTTTTCCGT
CTGAAAAAAATTTTTTTT
TGAAAAAAATTTTTTTTC
GAAAAAAATTTTTTTTCC
AAAAAAATTTTTTTTCCG

From t; we obtain the
TGAAAAAAATTTTTTTTCCGT at poﬁﬁon 000015790,
while for ¢, we obtain the left-elongated string
CTGAAAAAAATTTTTTTTCCG at position 000010000.

Case D is a combination of the previous ones, but each
overlap can be treated separately, updating the LCS at each
step. Case D is actually biologically plausible and not expected
to be a rare case. For instance, a mobile element in a
bacterium, such as a plasmid, could carry a resistance gene
and transfer it to other bacteria.

More formally, let be s, € ST, and s5, € S5 two strings
of the elongated sets from ¢; and ¢5. They can be identical,
with length ls% = lsgl =: Iy, or different. If they are different,
they will share a substring whose length is between £k and
lm. In a brute force determination of the LCS, all substrings
longer than k for a current elongated unmatched string are
calculated, compared with the other elongated string, and the
longest is retained. The procedure requires at most cfm =
Zi;":k-s-l(lm —y+1) comparisons, i.e., W that is
O((Im — k)?). However, the procedure can be stopped as soon
as one of the substrings matches both texts. In addition, one
can use a more efficient way to perform the search, e.g., via
a suffix tree. Yet, for our objective, we show that even with
a brute force search, the average case is not quadratic, and
reduces to a fraction of the number of common k-mers. Since
we are looking for the ALCS-£ set, the cf‘m comparisons must
be performed for all elements in S{, and S5, .

We can write the total number of comparisons needed to
identify the ALCS-k as:

right-elongated ~ string

chres =i, - (IS5, +155,1)-

®)

We will demonstrate that actually the quadratic term cf
reduces to a constant multiplied by the number of common
k-mers, i.e., \Sf72|, which also decreases when £ increases.
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Fig. 4. String elongation and LCS selection, with breakdown of the basic case A and the combined cases B, C, and D.
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2) Derivation of time complexity for phase two.: We derive
the complexity for the generic alphabet of size a, and then we
provide the estimate of the constant for the 4-letter alphabet
of genomes. Let s1,55 € Sﬁ be two strings of ¢; found at
least once in ?3. They will be elongated into a string s3 of
length k + 1 if s; starts at p and s, starts at p + 1 position.
Let us suppose that there are two other strings equal to s;
and so in to, i.e., S4,85 € Sgl, with starting positions at ¢
and ¢ + 1. The elongated string sg will be identical to s3.
The probability of the elongation match to happen is 1/a in
both texts (using the equiprobable assumption). From Eq. 4,
we have estimated the total number of common k-mers |Sf2|.
Let us consider now only one component and its elongated set,

g., |S¥ | and |S§,|. Each time, by increasing k of one unit
and adding a random character to the right of a k-mer shared
by both texts, the probability that a match occurs and that two
elongated strings are identical will be always 1/a. Thus, the
number of shared (k + 1)-mers will be 1/a of the number of
shared k-mers. In the next step, i.e., the k£ + 2 elongated set
will contain 1/a of the prior one, and at this point the number
of shared (k+1)-mers will be reduced to +-|S¥ |- L |St | =
ISE |- (% — &) = [SE |- %L We can “continue iteratively,
and for k +n elongatlons where (k4 n) < max(ly,,l:,), we
obtain:

1

ISE = (a=1)- Ik =

1

SE2 = (a=1)- Ik =5
1

St = (a=1) |8, (©)

For example, if n = 3, the number of strings that have at
least k + 3 length is |SY,| - %, and thus the total number of
strings that include exact k+1, k+2 lengths, and at least k43,
is [SF,|- ((a—1)/a? + (a — 1)/a* + 1/a*) = (a(a—1)/a® +
(a—1)/a’+1/a® = |S¥ |-(a®*—a+a—141)/a® = |S} |-1/a.

Eq. 6 can be rewritten as:
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LCS

1 1
ISE = SIS |- =
a—1 1 1
ST = ISt |- ol
1
|STE| = |812| - )

The cardinality of the fully elongated set, i.e., |Sf,| is the
sum of all sets above. This sum behaves akin to a geometric
series of 1/a ratio that converge to 1/(1 — 7) In our case the
first (zero) term is missing, and we can write:

n

St = S 1kl Y

|Sf2|=‘il~|sm<l_%—1>

S5 = ISkl (g = D
S = - ISk ®

For the 4-letter alphabet, |57, | = 0.25 - [ST |.
ko

Now we can derive ¢, g by considering the sum o
(Un—k)-(ln—k+1)
2

, and writing

& . (k+1—-k)- (k+1-k+1) 1 (a—1) &
Clp 1, — 2 ! 5 ' a ! ‘512|
(k+2-k)-(k+2—k+2) 1 (a—1) .
+ 2 @ a 19|
(k+3—k) (k+3—k+3) 1 (a—1) .
+ 9 ﬁ "Sl2|
C(a=1) e = 1 (4142
=184 ;a 5 O
Eq. 9 can be rewritten as (“71) - |st %(Zlez?i+

s 1% 4r). Since YT 0 -

=z then Dim i =

sz Also, 350 xi = 9(01(:2)12 thus >0 %L =
‘(’(5‘1'5)13) The final formula for ¢ - S§, then becomes
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kooge _e—1) 1 a ala+1)
clm Slg_ a |512| 2 ((a_1)2+(a_1)3)
k e k a
e, ST, = IS5, (@172 (10)

Let us look in detail now at the time complexity. The
positional sorting of St 5 is O(] ST 5 |log(| ST 5])) since it orders
both Sf and S% . ie., O(|SY, [log(|SE,[) + | S5 [log(|S5 |).
In the average case, this step is the superset of all the
subsequent ones, because they all include elongated strings,
which are a fraction of the set of common k-mers. The string
elongation step takes on average O(L(|S},|+|S5 |), the elon-
gated substring creation, matching, and elimination takes each
Oz (ISE,] + 153, 1), while the elongated substring sort-
ing takes Oy (1S5, + 55, log( -2z (1%, + 155, 1))-
The space complexity is the original input SfQ with the
addition of S7, and S§ along with their substrings, thus
O(L (IS, + 1S5, 1) and O3z (1%, + |35, -

3) Implementation.: The stage one and stage two proce-
dures were implemented using C++, and then in Perl by
another coder for validation. The first phase reads input
genomes in FASTA format, and uses standard i/o libraries and
primitive (string, integer) types to write the k-mer spectrum
into files, along with their positions. The k-mer files are
then ordered alphabetically using an external disk sort, and
then merged through a third script, retaining common k-mers
and positions. The second phase reads the file of common
k-mers, performs positional sorting, and finds the ALC'S-k
set by the elongation, substring ordering/filtering/elimination,
and LCS calculation procedures. The C++ and the Perl al-
gorithms differ slightly in the second phase, since the C++
elongates the common k-mers and creates their substrings
on the fly, while the Perl version performs elongation first,
writes to file, and then performs the substring creation and
elimination. The C++ code is available under the MIT license
at: https://github.com/DatalntellSystLab/ALCS-k. Binaries for
Mac, Windows and Linux/UNIX are provided.

D. Experimental Setup

We selected a variety of organisms from different realms —
viruses, bacteria, and animals— with genome lengths spanning
tens of thousands to hundreds of millions, and different
evolutionary relationships. Table I lists the organisms, their
genome sizes and the GenBank accession numbers.

For instance, H. Sapiens and P. troglodytes (chimpanzee)
genomes are ~98% similar, bacteria can share several genes
and mobile elements, some viruses can be found integrated
in host genomes, while on the contrary SARS-CoV-2 and
HIV-1 have very different gene contents. The variety of the
selected genomes should therefore guarantee a comprehensive
characterization of the algorithm’s efficiency, especially in
relation to the time complexity of the second stage.

All genome pairs were analyzed with both the C++ and
Perl implementations. As a comparison with state-of-the-art
tools, we used MUMmer v.4.0 [16]. Tests were performed
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Organism Phylum, family | Abbr. | L Accession
no.
HIV-1 Artverviricota, hiv 9.1k | NC_001802.1
Retroviridae
SARS-CoV-2 Pisuviricota, covid | 30k | NC_045512.2
Coronaviridae
Acanthamoeba | Nucleocyto- mimi | 1.2m| HQ336222.2
polyphaga viricota,
Mimiviridae
Citrobacter fre- | Proteobacteria, citro 5.1m| CP056256.1
undii Enterobacteri-
aceae
Sorangium cel- | Proteobacteria, sora 13m | NC_010162.1
lulosum Myxococcales
Caenorhabditis | Nematoda, caeno | 15m | NC_003279.8
elegans (Chr.1) | Rhabditidae
Pan troglodytes | Chordata, Ho- | chimp | 224.2 NC_036879.1
(Chr.1) minidae
Homo sapiens | Chordata, Ho- | homo | 249m NC_000001.11
(Chr.1) minidae
TABLE 1

ORGANISMS USED IN THE EXPERIMENTAL SETUP. L = GENOME LENGTH

on an Intel i7 machine at 2.6 GHz with 16 GB RAM,
except when we compared our tool with MUMmer, which
can be RAM-intensive for large genomes, where we used the
University of Florida’s HiPerGator3 ‘bigmem’ allocation with
Intel Xeon E7 machines at 2.0 Ghz with 1TB RAM. As our
implementation is serial, MUMmer was also run with 1 single
thread, printing all non-unique maximal exact matches, i.e.,
mummer -maxmatch —-threads 1 —-gthreads 1 -n
-s ref.fasta query.fasta. Run time (as wall time
unless otherwise specified) and memory usage were measured
using the UNIX/Linux command usr/bin/time.

ITI. RESULTS

The C++ and Perl implementations yielded identical ALCS-
k solutions on all jobs that completed successfully. The
program outputs also matched the maximum matches’ (non-
unique) positions reported by MUMmer. In terms of run times,
the C++ code was 1-5x (interquartile range) faster than the
Perl, but the Perl implementation outputs also the exact counts
of the elongated strings, since the elongation step is decoupled
from the LCS selection step. For validation of the theoretical
complexity, we thus report the run times only from Perl, while
for comparison with MUMmer, we report the C++ ones.

We first empirically verified the theoretical complexity
of phase 2 on simulated genomic data (4-letter alphabet),
using the Bernoullian model. Table II reports the run times
for different text combinations (10 million to 100 million
character lengths) and values of & (12 to 16). The linear
correlation between the run times and theoretical complexity
was p? = 0.96 across all trials. Only for low values of £ and
longer text lengths (e.g., & = 12,14, = 100M), the phase
2 actual complexity and run times deviate from the average
case, approaching the worst case limit, since the number of
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liyy Lty k| |ST,] 1S5, | theor. Runtime
compl. (s)

10M, 10M 12| 4,495,658 | 4,493,116 | 143,485,779 114

10M, 10M 13| 1,383,709 | 1,382,706 | 41,486,622 | 25

10M, 10M 14| 364,645 | 364,573 10,138,510 | 6

10M, 10M | 15| 91,805 91,821 2,345,362 | 2

10M, 10M 16| 21,656 21,660 501,954 1

10M, 50M | 12| 9,490,871 | 22,468,950 545,110,250, 521

10M, 50M 13| 5,248,506 | 6,911,641 | 197,194,259 151

10M, 50M 14| 1,692,054 | 1,819,771 | 53,353,646 | 31

10M, 50M 15| 448,672 457,045 12,753,417 | 9

10M, 50M 16| 107,908 108,343 2,791,063 2

10M, 100M | 12| 9,973,381 | 44,939,254| 965,595,799 >3,600

10M, 100M | 13| 7,745,144 | 13,817,010| 360,204,486| 394

10M, 100M | 14| 3,094,411 | 3,633,306 | 105,808,265| 62

10M, 100M | 15| 875,220 911,015 26,146,863 | 14

10M, 100M | 16| 214,302 216,223 5,799,681 3

TABLE 11

EXPERIMENTAL VALIDATION OF PHASE 2 TIME COMPLEXITY USING
SIMULATED GENOMES.

Fig. 5. Run time ratio (simulated genomes) between phase 1 and phase 2,
varying text (10, 50, and 100 million) and k-mer (12 to 16) lengths.
- —t2=50M — -t2=100M
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o N o w
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k-mer length (t1=10M)
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strings in common increases by several orders of magnitude,
concomitantly to the expected difference between the LCS
length and k, and the number of substrings to be calculated.
Second, we compared the ratio between the complexity
of phase 1 and phase 2, using again simulated genomes,
verifying that the actual run times would match the theoretical
complexity ratio. Figure 5 shows the run time ratios by varying
text (10, 50, and 100 million nucleotide bases) and k-mer (12
to 16) lengths. The graph clearly indicates that only for £ = 12
the second phase approaches the worst case and takes more
time than the first phase (i.e., the ratio is lager than 1).
Third, we run the algorithms on the real datasets presented
in Table I. Table IIl provides, for each genome pair, the
theoretical and actual number of shared k-mers (kK = 12),
along with real time complexity for phase 2 (based on actual
k-mers), and the run times for both phase 1 and 2. The actual
number of shared k-mers slightly deviates from the theoretical
one (p?> = 0.61) because the nucleotide frequencies are not
equiprobable and the Bernoullian model does not necessarily
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hold —we have shown in a prior work that the Markovian
model is more accurate [21]. Likewise, the correlation between
expected complexity and run times (p?> = 0.71) is slightly
lower than what observed in simulations. In 5/25 = 20% of
the experiments, the phase 2 run time was higher than that
of phase 1 (only Acanthamoeba polyphaga and Citrobacter
freundii), but the ratio was never higher than 1.5. We repeated
analyses for £ = 20, and in no cases the run time of phase 2
surpassed that of phase 1, with an average ratio of 0.01.

Fourth, we compared run times of our C++ implementation
with MUMmer, using the real genomes. We used Caenorhab-
ditis elegans (Chr.1) as the reference (15 million), and all
other genomes as queries, from 9 thousand base pairs of HIV
to 234.5 million base pairs of the Homo sapiens (Chr.1). On
the shorter query genomes, MUMmer was over 1000x faster,
and used 10x less RAM, but both the run time and RAM
ratios rapidly decreased as the genome size increased. With
the Homo sapiens (Chr.1) genome, our tool had a peak usage
of 37 GB of RAM vs. 135 GB used by MUMmer, i.e., ~ 1/4
of the RAM, and the run time ratio was reduced to 3x (Figure
6). Since our method is heavily disk-based (all sort and merge
procedures are not performed in memory), higher run times
are expected, yet it is able to quickly catch up on MUMmer
. Of note, the genomes pairs compared are highly divergent,
which is the ideal case for our algorithm.

Fig. 6. Run time ratio and RAM usage ration between our algorithm and
MUMmer, on a reference genome length of 15 million base pairs, varying
query length from 9 thousand to 234.5 million base pairs.
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Fifth, we used the first stage and the string elongation of
the second stage to mark the original texts’ character positions
that would be included in the ALCS-k search. For instance, a
suffix tree could be constructed only considering these marked
portions of the two texts, with reduction in memory footprint
and run time. We simulated genomes between 1 million and
50 million base pairs each, and evaluated £ = 13 and £ = 19.
Figure 7 shows how the procedure reduces the lengths, after
filtering and elongation, depending on the value of %k and the
original lengths. The graphs show that k& tremendously affects
the reduction, and complements what we showed in Figure 3.
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Genome pairs | s, ley |SF 5| (theor.) | |Sf,| (actual) | Real comp. P2 | Runtime | Runtime
(s)P1 | (s) P2
hiv—covid 9E+3 | 3E+4 33 64 400 1 1
hiv—mimi 9E+3 | 1E+6 1,271 2,283 20,947 5 1
hiv—citro 9E+3 | 5E+6 5,205 4,721 46,147 22 0
hiv—sora 9E+3 | 1E+7 12,089 3,856 37,199 59 0
hiv—caeno 9E+3 | 2E+7 13,688 16,947 184,666 59 1
hiv—chimp 9E+3 | 2E+8 130,211 323,855 4,402,102 844 22
hiv-homo 9E+3 | 2E+8 135,265 348,073 4,753,388 1,094 25
covid—mimi 3E+4 | 1E+6 4,138 11,251 118,110 5 0
covid—citro 3E+4 | 5E+6 16,947 4,983 48,948 23 1
covid—sora 3E+4 | 1E+7 39,362 8,504 87,462 60 0
covid—caeno | 3E+4 | 2E+7 44,566 80,892 987,777 70 1
covid—chimp | 3E+4 | 2E+8 423,875 1,019,691 14,818,135 1,042 35
covid~homo | 3E+4 | 2E+8 440,329 1,062,552 15,479,525 1,089 35
mimi—citro 1E+6 | 5E+6 657,565 685,275 9,493,123 27 10
mimi-sora 1E+6 | 1E+7 1,524,562 162,174 2,056,320 65 9
mimi—caeno 1E+6 | 2E+7 1,725,364 4,559,530 70,752,695 95 146
mimi—chimp | 1E+6 | 2E+8 16,226,540 33,508,960 582,482,745 1,049 1,588
mimi—-homo 1E+6 | 2E+8 16,854,861 34,715,475 604,547,328 1,102 1,710
citro—sora SE+6 | 1E+7 6,180,891 6,102,061 95,901,841 84 119
citro—caeno SE+6 | 2E+7 6,984,838 6,738,615 106,280,217 93 116
citro—chimp SE+6 | 2E+8 63,184,636 59,606,500 1,060,435,451 1,401 1,325
citro-homo SE+6 | 2E+8 65,610,051 61,887,060 1,103,147,272 | 1,468 1,100
sora—caeno 1E+7 | 2E+7 15,867,593 5,275,650 82,021,390 134 79
sora—chimp 1E+7 | 2E+8 132,538,334 37,827,767 658,055,947 1,117 967
sora—homo 1E+7 | 2E+8 137,529,180 45,124,692 785,318,909 1,304 369
TABLE III

EVALUATION OF THE TWO-PHASE ALCS-k APPROACH ON REAL DATASETS. FOR EACH PAIR OF GENOMES, THE THEORETICAL AND ACTUAL NUMBER OF
SHARED k-MERS (k = 12) IS REPORTED, ALONG WITH RUN TIMES FOR BOTH PHASE 1 AND 2 (P1, P2), AND REAL TIME COMPLEXITY FOR PHASE 2
(BASED ON ACTUAL k-MERS).

Fig. 7. Reduction of genome content and length that would need to be
considered for ALCS-k search using the first stage and string elongation
procedure..
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Finally, to examine a worst-case scenario for our tool,
we run it on two highly redundant bacterial databases of

mobile genetic elements (MGEs), namely ICEberg (https:
//bioinfo-mml.sjtu.edu.cn/ICEberg2/index.php) and ACLAME
(http://aclame.ulb.ac.be/), containing bacterial integrative and
conjugative elements, and prokaryotic MGEs, such as phage
genomes, plasmids and transposons. ICEberg contains 552
sequences (28.9 MB), while ACLAME counts 125,190 se-
quences (119.9 MB). We focused on genes longer than 1,500
bases. As expected, the run time of the second stage surpassed
that of the first stage: the algorithm completed in 5 hours
with a RAM peak of 173 GB. Instead, MUMmer —which —
completed the job in about a minute, with a RAM peak of 18
GB.The final ALCS-1500 set included 84 unique sequences,
replicated over 225 positions (74 in ICEberg and 151 in
ACLAME).

IV. CONCLUSIONS

We presented a two-stage solution to the ALCS-k problem
for two texts based on sort-merge of their k-mer spectra
and elongation of common k-mers, providing characterization
of computational complexity. Our two-stage approach is of
practical utility for long, highly divergent genomes as an al-
ternative to or pre-processing step for suffix-based approaches,
given the widespread availability of efficient k-mer tools (both
disk-based and in-memory), and a low average complexity
footprint of our second stage even by using brute force. In our
experiments, we showed that for sufficiently large and highly
divergent genomes, our tool uses less RAM than MUMmer
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(although MUMmer can be set up to switch on disk-based
processing) and has potentially shorter run time.

One limitation of the implementation we provide is that
it does not make use of code optimization or efficient data
structures. On the one hand, the code was written to validate
the theoretical complexity; on the other hand, the software
should be usable in real-world applications and use cases.
Nonetheless, the first stage involves k-mer parsing, counting
and sorting, with additional indexing of positions; several
efficient software and library exist that can be used for the
purpose. For this reason, we organized our code into modules
for which the first stage and the second stage can be run
separately. Our novel algorithms implemented in the second
stage —given its average complexity that is loglinear in the frac-
tion of the number of shared k-mers— is usable in real-world
applications, and for divergent genomes it can be advantageous
with respect to tools like MUMmer. In the future, we foresee
opportunity to develop ad hoc data structures that can further
minimize time/space complexity of the second stage to better
handle highly similar genomes, e.g., a suffix-based structure on
the subset of elongated k-mers. For instance, MUMmer could
be applied to two input genomes where only the elongated
strings calculated in phase two are considered, by masking all
other positions with unallowable characters.
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