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Abstract—A problem extension of the longest common sub-
string (LCS) between two texts is the enumeration of all LCSs
given a minimum length k (ALCS-k), along with their positions in
each text. In bioinformatics, an efficient solution to the ALCS-
k for very long texts –genomes or metagenomes– can provide
useful insights to discover genetic signatures responsible for
biological mechanisms. The ALCS-k problem has two additional
requirements compared to the LCS problem: one is the minimum
length k, and the other is that all common strings longer than
k must be reported. We present an efficient, two-stage ALCS-k
algorithm exploiting the spectrum of text substrings of length
k (k-mers). Our approach yields a worst-case time complexity
loglinear in the number of k-mers for the first stage, and an
average-case loglinear in the number of common k-mers for
the second stage (several orders of magnitudes smaller than the
total k-mer spectrum). The space complexity is linear in the
first phase (disk-based), and on average linear in the second
phase (disk- and memory-based). Tests performed on genomes
for different organisms (including viruses, bacteria and animal
chromosomes) show that run times are consistent with our
theoretical estimates; further, comparisons with MUMmer4 show
an asymptotic advantage with divergent genomes.

Index Terms—Computational Biology, Bioinformatics, Algo-
rithms, Biological Sequences

I. INTRODUCTION

The longest common substring (LCS) problem is defined as

to find the longest string –which might not exist or be unique–

in common between two or more texts. Applications of LCS

algorithms include plagiarism detection, text clustering, and

several uses in bioinformatics, e.g., finding common genes, or

conserved gene signatures among species. Dynamic program-

ming solves the problem with a runtime complexity quadratic

in the text length, while the space complexity varies between

quadratic and linear depending on optimization. Subquadratic

and linear algorithms exist, e.g., rolling hashes and suffix trees

[1]. The rolling hash time complexity is quadratic loglinear,

but the algorithm is limited to very short strings due to

collisions, as hash codes are integer types. The LCS search

in the suffix tree runs in linear time and theoretically in linear

space, but in-memory implementations have large multipliers,

Identify applicable funding agency here. If none, delete this.

and disk/distributed ones often increase space complexity

to quadratic. An extension of the LCS problem is to find

all longest common substrings between two texts, given a

minimum length k (ALCS-k), along with their positions in

each text. While general solutions for more than two texts

and for enumerating ALCS exist, to date we are not aware of

available approaches or implemented tools solving the ALCS-

k problem with well-characterized time and space complexity.

However, the constraint of a minimum string length k and the

overlap conditions of all strings of length k, i.e., k-mers, open

room for devising efficient approaches that reduce the number

of the strings to be considered in the search or indexed into a

suffix-based structure. As with LCS, an efficient solution to the

ALCS-k can provide useful insights for many bioinformatics

use cases at large, e.g., for motif finding, or identifying

mobile elements, cargo genes, antimicrobial resistance genes

in bacteria.

We here propose an ALCS-k solution and a software

implementation. Our approach is a two-stage method that first

filters out all non-common k-mers between two text (using

external sort and merge), and then elongates the remaining

k-mers to identify the longest in common (eliminating those

that do not appear in both texts after elongation). We will

show that the worst-case time complexity of our approach is

loglinear in the number of k-mers for the first stage, and then

average-case loglinear in the number of common k-mers for

the second stage (several order of magnitudes smaller than

the total k-mer spectrum). We also we provide a theoretical

proof of the expected size for the ALCS-k set, which is an

alphabet-dependent fraction of the number of shared k-mers.

The space complexity for the first phase is equivalent to the

k-mer spectrum (implemented as disk-based), naively linear

in the text lengths, while for the second phase is linear in the

number of common k-mers (disk- and memory-based).

II. METHODS

A. Problem Definition

Let A be an alphabet (finite set) composed by a = |A|
symbols, e.g., A can be the set of nucleotide bases A ={A,
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C, G, T} for genetic sequences. Let there be t, a text of length

lt generated upon A, and st a substring of t, i.e., a subsequence

of t made of consecutive characters, with an associated length

0 ≤ ls ≤ lt. Recursively, we can define sst as a substring of

st, with associated length lsst . We also define the location p
of st in t where the substring starts, i.e., with the position of

the first character; if the substring appears multiple times, it

will be located in multiple positions. Given two texts t1 and

t2, we define s1,2 any substring that is a substring of both

t1 and t2. A string s1,2 can appear f1 and f2 times in t1
and t2, respectively. The number of substrings in common is

bounded between 0 and min(l1 − ls1,2 +1, l2 − ls1,2 +1), and

the maximum can be reached only when t1is a substring of

t2.

By choosing a minimum length k, we define the set Sk
t ,

made of all substrings of length k from t, indexed by their

positions pss, where |Sk
t | = lt−k+1, i.e., the generic element

skt ∈ Sk
t is the tuple < sk, p > made by the k-mer sk and its

position p. Upon Sk
t , we further define the set Sk

12 the set of

all substrings of a text t1 that appear at least once also in a

text t2, and Sk
21 as the set of all t2 substrings that are found in

t1. The two sets S12 and S21 contain the same distinct k-mers,

but they can have different multiplicity and different positions

in the respective texts. We thus define Sk
1,2 as the union of

S12 and S21 .

Let si = {si,1 . . . si,k} and sj = {sj,1 . . . sj,k} be two

strings in Sk
12 , and pi, pj their respective starting positions.

If pj = pi + 1, we define the elongated string se =
{si,1 . . . si,k, sj,k} when si,w = sj,w+1, ∀w = 2 . . . k. The

string elongation can be iteratively applied until pj �= pi + 1.

For instance, given the text t and the set Sk
t , k = 18

position pi string si
000101573337 AAAGAAAAAATATAAATT

000101573338 AAGAAAAAATATAAATTC

000101573339 AGAAAAAATATAAATTCT

000101573340 GAAAAAATATAAATTCTG

000101580000 TTTGGCCTTAGCTAAAAG

se = AAAGAAAAAATATAAATTCTG will be an elongated

string of t, with pe = 000101573337 and lse = 21.

In the next sections we will show how, by elongating

all strings in Sk
12 and all strings in Sk

21 , we can create the

elongated sets Se
12 and Se

21 , where the elongated strings from

one set do not necessarily coincide from the other, and then

reduce them to have the same length, deriving the set Se
1,2,

i.e., the solution to the ALCS-k problem.

B. Related Work

The classic solution to the LCS is by dynamic programming

and has a quadratic complexity of O(lmin · lmax) [2], where

lmin is the length of the shortest text, and lmax is the length

of the longest, among the two. The space complexity is also

quadratic, since a lmin · lmax matrix is used in the algorithm.

Optimizations of the lookup matrix can reduce the space

complexity up to linear, e.g., O(lmin), but the time complexity

remains quadratic [3].

Several subquadratic time algorithms exist. The rolling hash

algorithm has a quadratic loglinear time complexity and linear

space complexity. Similarly to ours, this approach operates on

k-mers, by finding first common substrings of length k, and

then searching for the maximum k. In detail, the rolling hash

can be computed in linear time, sorting the hashes requires

O(lmaxlog(lmax)) time, and the binary search requires another

O(log(lmax) time. Therefore, the total time complexity of

finding the LCS is O(lmax(loglmax)
2). Since the prefixes and

hashes must be stored, the space complexity is O(lmax). As a

serious drawback, the rolling hash can produce hash collision

as soon as the number of possible strings exceeds the available

integers that can be stored in memory. In practice, even with

128-bit integers, the maximum string length handled by rolling

hashes over a 4-letter alphabet (genomes) is 64, which makes

the approach inapplicable in many real-world use cases. Also,

the search on hash matches need to be implemented and stored

efficiently, e.g., with hash tables, binary search trees, posing

further issues with large texts.

The most efficient approaches use suffix-based data struc-

tures and yield linear time/space complexity, i.e., O(lmax)
with Ukkonen’s online algorithm [4], or even sublinear, i.e.,

O(lmaxloga/
√

loglmax) (where a is alphabet size) time and

O(lmaxloga/loglmax) space, when word RAM models are

used [5]. However, even if the space requirement is linear

in the size of the text, the large amount of information

required at each node of the suffix tree makes the memory

requirements very expensive (20x), even with optimized im-

plementations [6]. Suffix arrays are more efficient (4x) [7], and

succinct/compressed structures have been lately introduced

improving by several order of magnitudes the storage needs,

e.g., FM-index [8], [9], at a slight price of increased querying

complexity [10].

For large texts, disk-based and parallel algorithms have

been proposed [11], [12]. Notably, most of the disk-based

approaches yield quadratic complexity for the construction and

the same holds for distributed ones [13], [14], with recent

improvements using Cartesian trees (linear work and space,

and polylogarithmic time) by Shun and Blelloch [15].

The ALCS-k problem has two additional requirements

compared to the LCS problem: one is the minimum length

k, and the other is that all common strings longer than k must

be reported. The problem is solved efficiently with suffix-

based structures [16]. However, highly dissimilar texts can

still pose memory and run time issues. The pre-specification

of k can be used to reduce search space in such cases.

In fact, our approach exploits k-merization, which can be

done very efficiently, with a plethora of in-memory, disk-

based, distributed, and compressed solutions (loglinear time

and linear space complexity for basic serial implementation),

thus a very valid alternative to using suffix-based structures.

Once the k-mers are extracted, compared and filtered, we work

only on the space of common k-mers, finding the ALKS-k set

within a lower-dimensional space and time complexity, i.e., a

constant fraction of the expected number of common k-mers,

well-manageable as an in-memory process.
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Since it is related to our idea, we believe it is worth

mentioning the Hunt-Szymanski approach [17] for solving the

more general problem of the longest common subsequence,

which relaxes the criterion of character contiguity from the

LCS. Similarly to ours, the algorithm breaks the two texts into

smaller chunks –in its implementation for the UNIX/Linux

diff command these are file lines– and then creates k-bit

integer hashes, which are used in the dynamic programming

steps. If the chunks do not repeat often, the integer hashes

will resemble random strings from an alphabet of size 2k, and

the algorithm will be efficient as expected. The algorithm is

subquadratic in the average case, i.e., O((r+lmax)log(lmax)),
where r is the number of character pairs where the two texts

match. Since r is at maximum l1l2, in the worst case the

algorithm has a time complexity of O(l2maxlog(lmax)) and a

space of O(r + lmax). However, for strings whose characters

are drawn uniformly at random from an alphabet of size a, on

average r ∼ lmax, and a running time of O(lmaxlog(lmax))
can be expected [17]. As a drawback, the Hunt-Szymanski

algorithm needs a good hashing function, which limits the

maximum length of a chunk, and a few repeats over the texts

–unfortunately uncommon in genomes. The repeats issue has

been lately improved by Apostolico [18].

Finally, we reference also the Chvátal-Sankoff constants

[19] that estimate the lengths of longest common subsequences

of random strings, since there is a relationship between the

average length of the LCS and the number of common k-

length strings.

C. Proposed Approach

Let t1 and t2 be the two texts to be considered for the

ALCS-k problem. The algorithm solving the problem will

output all strings longer than k in common between the two

texts, i.e., the set Se
1,2. Let us make an example as follows:

text position string

t1 000000000010 CTTCCCGGAAAGG

t1 000000000030 AGTTCCCGGAAA

t1 000000000045 GAGTTCCCGGAAA

t1 000000000060 GGAGTTCCCGGAAA

t1 000000000077 GGAGTTCCCGGAAAT

t2 000000000005 CTTCCCGGAAAGG

t2 000000000024 GGAGTTCCCGGAAAT

t2 000000000040 GGAGTTCCCGGAAA

From the example, the second string of t1,

AGTTCCCGGAAA at position 30, is a substring of the

t1 strings at positions 45, 60, and 77; however, it is included

because it has a different starting position (and the same

applies in turn for those at positions 45 and 60). Instead,

we will not consider any substring of a shared string if its

starting and ending positions are within the starting and the

ending position of the longer one.

The inclusion of substrings that are found in different

positions is a positional extension to the classical ALCS-k
problem. Since in order to derive Se

1,2, our algorithm also

Fig. 1. Flowchart of the two-stage ALCS-k algorithm.

�������� �������	

�
���

�
��

�
���

�
��

����

������

����

������

�����

������

�
����

����� �������
�����

���
�
���������
��

���������

���
�����������
��

������
���

����
�

�
��������

������

����
��

������

�
��������

������
���

�������

������	

calculates Se
12 and Se

21 , it is easy to find all the strings of

one text that are substrings of one of the longest common

substrings, yet are also found in other positions only in one of

the two texts. These strings can have an importance in certain

genomic domains, e.g., gene duplication, mobile elements,

promoters, miRNA, sncRNA.

The two-stage procedure is illustrated in Figure 1. The

first stage reads the two input texts t1 and t2 and prints all

their k-mers along with the starting positions, which takes

O(lt1 + lt2) time. The two files are then sorted independently

in O(lt1 log(lt1) + lt2 log(lt2)) and then merged into a single

k-mer set file filtering out k-mers that are not in common in

O(lt1+lt2), obtaining the Sk
1,2 set. Thus, the overall time com-

plexity of the first stage O(lt1 + lt2 + lt1 log(lt1)+ lt2 log(lt2))
is bounded by the O(lmaxloglmax) superset. The space com-

plexity is at best linear, since all k-mers from both texts are

stored in a file at some point is k(lt1 + lt2), i.e., O(lmax), and

quick sort or merge sort take linear space. The second stage

starts by sorting positionally the Sk
1,2 set, which yields again

loglinear time complexity and linear space, but is bounded by

the time complexity of stage one, since |Sk
1,2| < |Sk

t1
|+ |Sk

t2
|.

After positional sorting, all the common k-mer strings are

elongated, constructing and filtering the Se
12 and Se

21 sets, and

then retaining the ALCS-k set. In the following paragraphs, we

will provide the theoretical proof that the number of elongated

strings |Se
12 | and their substrings on average are a fraction

of |Sk
1,2|, and thus the average time/space complexities are

bounded by the prior loglinear/linear superset.
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a) Estimation of the average number of shared k-mers.:

The calculation of occurrence distribution of strings within a

text has been largely studied, and several exact and approx-

imated formulae exist, for both Bernoullian and Markovian

assumptions [20]. According to the formula by Prosperi et

al. [21], the probability distribution for a string s of length k,

s = {a1, . . . , ak}, within a text t of length n, over an alphabet

of size a, for j occurrences under the Markovian model is

Pr(|s ∩ Sk
t | = j) = Pr(s)j

|Ck,n,j |
∑

z=1

j+1
∏

y=1

Pr(s0,dyz
), (1)

where Pr(s) = Pr(a1) ·Pr(a2|a1) · · · · ·Pr(ak−1|ak), Pr(s0,n) =
Pr(s0,n−1) − Pr(s) · Pr(s0,n−k), s0,n = s0,n−1 · a − Pr(s) ·
ak · s0,n−k, d1 . . . dj+1 are the lengths of the j + 1 segments

where the j strings divide the text of length n in exact

configurations with d1 + · · · + dj+1 = n − kj, di ∈ N,

C = {(d1, d2, . . . , dj+1)|di}, and |Ck,n,j | =
(

n+j(1−k)
n−kj

)

.

In other words, the set C represents all the ways in which

n− kj characters can be distributed in j +1 positions, where

Cc = {d1c . . . d(j+1)c} corresponds to the cth element of the

whole set.

Thus, given Eq. 1 and the probability that a string s of

length k appears j times in t1 (or equivalently in t2), we can

define the average number of occurrences of a k-mer in t1,

and consequently how many times one k-mer is repeated in a

text, as

E[|s ∩ Sk
t1
|] =

∞
∑

j=0

j · Pr(|s ∩ Sk
t | = j). (2)

There are several efficient ways and implementations to cal-

culate Eq. 1 [22]. Since only the average number is needed

here, E[|s ∩ Sk
t1
|] can also be obtained directly through an

approximated formula that is (l1 − k + 1)ηk, where ηk is the

probability of the string given the the underlying generative

model [23]. For a string over a a-letter alphabet with equiprob-

able characters and Bernoullian model, ηk = a−k. Note

that the approximated formula assumes string independence

and non-clumpability (i.e., when strings overlap), but such

assumption is robust for large values of k and l1. Instead,

Eq. 1 and Eq. 2 are more generic because they can use the

Markovian assumption as well as clumpability through a char-

acter switch [22]. As an example, illustrated in Figure 2, using

a 4-letter alphabet, k = 11, and a 10,000,000 equiprobable

bases genome, the mass probability is centered at j = 2
and the average number of occurrences following Eq. 2 is

2.38, which matches the simplified equation; if we increase

the genome length to 50,000,000 the center of mass becomes

11 and the average number of occurrences is 11.92, and again

both equations match.

Let us now consider the two texts t1 and t2 of length l1
and l2, respectively, and their k-mer sets Sk

t1
and Sk

t2
, with

|Sk
t1
| = (l1 − k + 1) and |Sk

t2
| = (l2 − k + 1). We can use

Eq. 2 or the approximated formula to estimate the expected

number of occurrences of a string s ∈ t1 within the text t2, i.e.,

E[|s∩ Sk
t2
|], as well as the vice versa. Since the total number

Fig. 2. Probability distribution of j occurrences for k-mer strings within texts
of length n (alphabet size of 4) using the equiprobable Bernoullian model.g p g q p

of k-mers in t1 is |Sk
t1
| = (l1−k+1), the expected number of

common k-mers with t2 could be (l1−k+1) ·E[|s∩Sk
t2
|], but

this does not consider string multiplicity in t1. If we consider

multiplicity, we need to find the average frequency for distinct

k-mers within Sk
t1

, which we define as |Ŝk
t1
|. Since all k-mers

in t1 are found at least once, the probability of each of these

string to occur zero times, i.e., Pr(|s ∈ Sk
t1
| = 0), is in fact the

probability to occur exactly one time. Thus, the probability of

occurring j times for any k-mer s ∈ t1 is the probability of

occurring j − 1 times. Hence, we can formalize |Ŝk
t1
| as

|Ŝk
t1
| =

∞
∑

j=1

Pr(|s ∈ Sk
t1
| = (j − 1))

j + 1
. (3)

For ease of reading and notation, let us rename E[|s∩Sk
t |] as

μk
t . The number of k-mer strings of t1 found in t2, i.e., |Sk

21 |,

will be then |Ŝk
t1
| · μk

t2
, and equivalently |Sk

12 | = |Ŝk
t2
| · μk

t1
.

We now have all components to calculate |Sk
1,2| as

|Sk
1,2| = |Sk

21 |+ |Sk
12 |

|Sk
1,2| = |Ŝk

t1
| · μk

t2
+ |Ŝk

t2
| · μk

t1
. (4)

In Figure 3 we show how |Sk
1,2| change by varying text

lengths and k-mer lengths. The number of shared k-mers

increases when the text length increases, and decreases when

k increases; we will show that the complexity of the second

phase also decreases inversely to k,

1) String elongation and comparison.: The second phase

elongates the k-mers in common between t1 and t2, i.e., Sk
1,2

into Se
12 and Se

21 , then compares all elongated strings, finding

the LCS, and yielding the final Se
1,2 as a solution to the ALCS-

k problem.

The determination of the LCS for two elongated strings

–whose starting positions are known, and thus are already

aligned– can be categorized into a base case A, and combina-

tion cases B, C, and D. Figure 4 gives a graphical illustration

of the basic elongation type A, with the combined B, C, and
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Fig. 3. Cardinality of the set of shared k-mers over two texts, increasing k

and the length of the second text.g

D cases (assuming the LCS is longer than k). The A and C

case can be divided into two sub-configurations depending on

the elongation direction, but they are basically the same if the

elongation direction, or the two sequences, are switched. Case

D can result in more than one LCS candidate from the two

elongated strings, and thus the resulting set has to be cross-

compared to remove substrings (either with a quadratic brute

force or using a more efficient procedure such as the suffix-

based LCS search).

Let us make some examples for the different categories.

Suppose we have the following common k-mer space for S18
1,2:

text position string

t1 010333999 CAGCATATTTTCTTTTAA

t2 000004065 CAGCATATTTTCTTTTAA

t1 010333400 AGCATATTTTCTTTTAAA

t2 000004066 AGCATATTTTCTTTTAAA

t1 010333401 GCATATTTTCTTTTAAAA

t2 000004067 GCATATTTTCTTTTAAAA

t1 026257228 CATATTTTCTTTTAAAAT

t2 000004068 CATATTTTCTTTTAAAAT

t1 026257229 ATATTTTCTTTTAAAATT

t2 000004069 ATATTTTCTTTTAAAATT

t1 026257230 TATTTTCTTTTAAAATTA

t2 000004070 TATTTTCTTTTAAAATTA

After elongation, we obtain the string 010333999

CAGCATATTTTCTTTTAAAA (length of 20) from t1, and

the string 000004065 CAGCATATTTTCTTTTAAAATTA

(length of 23) from t2. The t2 substring is more elongated

to the right, and we retain the one elongated from t1, thus this

corresponds to case A.1. Case A.2 would be instead happening

with the following k-mer space:

text position string

t2 000444789 TTTTTAAAAGAAAAGGGG

t1 000000602 TTTTTAAAAGAAAAGGGG

t2 000444790 TTTTAAAAGAAAAGGGGG

t1 000000918 TTTTAAAAGAAAAGGGGG

t2 000444791 TTTAAAAGAAAAGGGGGG

t1 000000919 TTTAAAAGAAAAGGGGGG

Here, after elongation, we would get 000444789

TTTTTAAAAGAAAAGGGGGG (length of 20) from t2, and

000000918 TTTTAAAAGAAAAGGGGGG (length of 19)

from t1. The t2 substring has extra characters to the left, and

we choose the one from t1.

For case C we can make the following example:

text position string

t1 000015790 TGAAAAAAATTTTTTTTC

t1 000015791 GAAAAAAATTTTTTTTCC

t1 000015792 AAAAAAATTTTTTTTCCG

t1 000015793 AAAAAATTTTTTTTCCGT

t2 000010000 CTGAAAAAAATTTTTTTT

t2 000010001 TGAAAAAAATTTTTTTTC

t2 000010002 GAAAAAAATTTTTTTTCC

t2 000010003 AAAAAAATTTTTTTTCCG

From t1 we obtain the right-elongated string

TGAAAAAAATTTTTTTTCCGT at position 000015790,

while for t2 we obtain the left-elongated string

CTGAAAAAAATTTTTTTTCCG at position 000010000.

Case D is a combination of the previous ones, but each

overlap can be treated separately, updating the LCS at each

step. Case D is actually biologically plausible and not expected

to be a rare case. For instance, a mobile element in a

bacterium, such as a plasmid, could carry a resistance gene

and transfer it to other bacteria.

More formally, let be se12 ∈ Se
12 and se21 ∈ Se

21 two strings

of the elongated sets from t1 and t2. They can be identical,

with length lse
12

= lse
21

=: lm, or different. If they are different,

they will share a substring whose length is between k and

lm. In a brute force determination of the LCS, all substrings

longer than k for a current elongated unmatched string are

calculated, compared with the other elongated string, and the

longest is retained. The procedure requires at most cklm =
∑lm

y=k+1(lm − y+1) comparisons, i.e.,
(lm−k)·(lm−k+1)

2 that is

O((lm −k)2). However, the procedure can be stopped as soon

as one of the substrings matches both texts. In addition, one

can use a more efficient way to perform the search, e.g., via

a suffix tree. Yet, for our objective, we show that even with

a brute force search, the average case is not quadratic, and

reduces to a fraction of the number of common k-mers. Since

we are looking for the ALCS-k set, the cklm comparisons must

be performed for all elements in Se
12 and Se

21 .

We can write the total number of comparisons needed to

identify the ALCS-k as:

ckALCS = cklm · (|Se
12 |+ |Se

21 |). (5)

We will demonstrate that actually the quadratic term cklm
reduces to a constant multiplied by the number of common

k-mers, i.e., |Sk
1,2|, which also decreases when k increases.
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Fig. 4. String elongation and LCS selection, with breakdown of the basic case A and the combined cases B, C, and D.

2) Derivation of time complexity for phase two.: We derive

the complexity for the generic alphabet of size a, and then we

provide the estimate of the constant for the 4-letter alphabet

of genomes. Let s1, s2 ∈ Sk
12 be two strings of t1 found at

least once in t2. They will be elongated into a string s3 of

length k + 1 if s1 starts at p and s2 starts at p + 1 position.

Let us suppose that there are two other strings equal to s1
and s2 in t2, i.e., s4, s5 ∈ Sk

21 , with starting positions at q
and q + 1. The elongated string s6 will be identical to s3.

The probability of the elongation match to happen is 1/a in

both texts (using the equiprobable assumption). From Eq. 4,

we have estimated the total number of common k-mers |Sk
1,2|.

Let us consider now only one component and its elongated set,

e.g., |Sk
12 | and |Se

12 |. Each time, by increasing k of one unit

and adding a random character to the right of a k-mer shared

by both texts, the probability that a match occurs and that two

elongated strings are identical will be always 1/a. Thus, the

number of shared (k + 1)-mers will be 1/a of the number of

shared k-mers. In the next step, i.e., the k + 2 elongated set

will contain 1/a of the prior one, and at this point the number

of shared (k+1)-mers will be reduced to 1
a
·|Sk

12 |−
1
a2 ·|S

k
12 | =

|Sk
12 | · (

a
a2 − 1

a2 ) = |Sk
12 | ·

a−1
a2 . We can continue iteratively,

and for k + n elongations, where (k + n) ≤ max(lt1 , lt2), we

obtain:

|Sk+1
12

| = (a− 1) · |Sk
12 | ·

1

a2

|Sk+2
12

| = (a− 1) · |Sk
12 | ·

1

a3
...

|Sk+n
12

| = (a− 1) · |Sk
12 | ·

1

an+1
. (6)

For example, if n = 3, the number of strings that have at

least k + 3 length is |Sk
12 | ·

1
a3 , and thus the total number of

strings that include exact k+1, k+2 lengths, and at least k+3,

is |Sk
12 | · ((a− 1)/a2 + (a− 1)/a3 +1/a3) = (a(a− 1)/a3 +

(a−1)/a3+1/a3 = |Sk
12 |·(a

2−a+a−1+1)/a3 = |Sk
12 |·1/a.

Eq. 6 can be rewritten as:

|Sk+1
12

| =
a− 1

a
· |Sk

12 | ·
1

a

|Sk+2
12

| =
a− 1

a
· |Sk

12 | ·
1

a2
...

|Sk+n
12

| =
a− 1

a
· |Sk

12 | ·
1

an
. (7)

The cardinality of the fully elongated set, i.e., |Se
12 | is the

sum of all sets above. This sum behaves akin to a geometric

series of 1/a ratio that converge to 1/(1− 1
a
). In our case the

first (zero) term is missing, and we can write:

|Se
12 | =

a− 1

a
· |Sk

12 | ·
n
∑

k=1

1

ak

|Se
12 | =

a− 1

a
· |Sk

12 | · (
1

1− 1
a

− 1)

|Se
12 | =

a− 1

a
· |Sk

12 | · (
a

(a− 1)
− 1)

|Se
12 | =

1

a
· |Sk

12 |. (8)

For the 4-letter alphabet, |Se
12 | = 0.25 · |Sk

12 |.
Now we can derive ckALCS by considering the sum cklm =

(lm−k)·(lm−k+1)
2 , and writing

cklm · Se
12 =

(k + 1− k) · (k + 1− k + 1)

2
·
1

a
·
(a− 1)

a
· |Sk

12 |

+
(k + 2− k) · (k + 2− k + 2)

2
·
1

a2
·
(a− 1)

a
· |Sk

12 |

+
(k + 3− k) · (k + 3− k + 3)

2
·
1

a2
·
(a− 1)

a
· |Sk

12 |

...

=
(a− 1)

a
· |Sk

12 | ·
n
∑

i=1

1

ai
(i+ i2)

2
. (9)

Eq. 9 can be rewritten as
(a−1)

a
· |Sk

12 | ·
1
2 · (

∑n

i=1 i
1
ai +

∑n

i=1 i
2 1
ai ). Since

∑n

i=1 i · x
i = x

(1−x)2 , then
∑n

i=1 i
1
ai =

a
(a−1)2 . Also,

∑n

i=1 i
2 · xi = x(1+x)

(1−x)3 , thus
∑n

i=1 i
2 1
ai =

a(a+1)
(a−1)3 . The final formula for cklm · Se

12 then becomes
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cklm · Se
12 =

(a− 1)

a
· |Sk

12 | ·
1

2
· (

a

(a− 1)2
+

a(a+ 1)

(a− 1)3
)

cklm · Se
12 = |Sk

12 | ·
a

(a− 1)2
. (10)

Let us look in detail now at the time complexity. The

positional sorting of Sk
1,2 is O(|Sk

1,2|log(|Sk
1,2|)) since it orders

both Sk
12 and Sk

21 , i.e., O(|Sk
12 |log(|Sk

12 |) + |Sk
21 |log(|Sk

21 |).
In the average case, this step is the superset of all the

subsequent ones, because they all include elongated strings,

which are a fraction of the set of common k-mers. The string

elongation step takes on average O( 1
a
(|Sk

12 |+ |Sk
21 |), the elon-

gated substring creation, matching, and elimination takes each

O( a
(a−1)2 (|S

k
12 | + |Sk

21 |), while the elongated substring sort-

ing takes O( a
(a−1)2 (|S

k
12 |+ |Sk

21 |)log( a
(a−1)2 (|S

k
12 |+ |Sk

21 |)).

The space complexity is the original input Sk
1,2 with the

addition of Se
12 and Se

21 along with their substrings, thus

O( 1
a
(|Sk

12 |+ |Sk
21 |) and O( a

(a−1)2 (|S
k
12 |+ |Sk

21 |).
3) Implementation.: The stage one and stage two proce-

dures were implemented using C++, and then in Perl by

another coder for validation. The first phase reads input

genomes in FASTA format, and uses standard i/o libraries and

primitive (string, integer) types to write the k-mer spectrum

into files, along with their positions. The k-mer files are

then ordered alphabetically using an external disk sort, and

then merged through a third script, retaining common k-mers

and positions. The second phase reads the file of common

k-mers, performs positional sorting, and finds the ALCS-k
set by the elongation, substring ordering/filtering/elimination,

and LCS calculation procedures. The C++ and the Perl al-

gorithms differ slightly in the second phase, since the C++

elongates the common k-mers and creates their substrings

on the fly, while the Perl version performs elongation first,

writes to file, and then performs the substring creation and

elimination. The C++ code is available under the MIT license

at: https://github.com/DataIntellSystLab/ALCS-k. Binaries for

Mac, Windows and Linux/UNIX are provided.

D. Experimental Setup

We selected a variety of organisms from different realms –

viruses, bacteria, and animals– with genome lengths spanning

tens of thousands to hundreds of millions, and different

evolutionary relationships. Table I lists the organisms, their

genome sizes and the GenBank accession numbers.

For instance, H. Sapiens and P. troglodytes (chimpanzee)

genomes are ∼98% similar, bacteria can share several genes

and mobile elements, some viruses can be found integrated

in host genomes, while on the contrary SARS-CoV-2 and

HIV-1 have very different gene contents. The variety of the

selected genomes should therefore guarantee a comprehensive

characterization of the algorithm’s efficiency, especially in

relation to the time complexity of the second stage.

All genome pairs were analyzed with both the C++ and

Perl implementations. As a comparison with state-of-the-art

tools, we used MUMmer v.4.0 [16]. Tests were performed

Organism Phylum, family Abbr. L Accession
no.

HIV-1 Artverviricota,
Retroviridae

hiv 9.1k NC 001802.1

SARS-CoV-2 Pisuviricota,
Coronaviridae

covid 30k NC 045512.2

Acanthamoeba
polyphaga

Nucleocyto-
viricota,
Mimiviridae

mimi 1.2m HQ336222.2

Citrobacter fre-
undii

Proteobacteria,
Enterobacteri-
aceae

citro 5.1m CP056256.1

Sorangium cel-
lulosum

Proteobacteria,
Myxococcales

sora 13m NC 010162.1

Caenorhabditis
elegans (Chr.1)

Nematoda,
Rhabditidae

caeno 15m NC 003279.8

Pan troglodytes
(Chr.1)

Chordata, Ho-
minidae

chimp 224.2 NC 036879.1

Homo sapiens
(Chr.1)

Chordata, Ho-
minidae

homo 249m NC 000001.11

TABLE I
ORGANISMS USED IN THE EXPERIMENTAL SETUP. L = GENOME LENGTH

on an Intel i7 machine at 2.6 GHz with 16 GB RAM,

except when we compared our tool with MUMmer, which

can be RAM-intensive for large genomes, where we used the

University of Florida’s HiPerGator3 ‘bigmem’ allocation with

Intel Xeon E7 machines at 2.0 Ghz with 1TB RAM. As our

implementation is serial, MUMmer was also run with 1 single

thread, printing all non-unique maximal exact matches, i.e.,

mummer -maxmatch -threads 1 -qthreads 1 -n

-s ref.fasta query.fasta. Run time (as wall time

unless otherwise specified) and memory usage were measured

using the UNIX/Linux command usr/bin/time.

III. RESULTS

The C++ and Perl implementations yielded identical ALCS-

k solutions on all jobs that completed successfully. The

program outputs also matched the maximum matches’ (non-

unique) positions reported by MUMmer. In terms of run times,

the C++ code was 1-5x (interquartile range) faster than the

Perl, but the Perl implementation outputs also the exact counts

of the elongated strings, since the elongation step is decoupled

from the LCS selection step. For validation of the theoretical

complexity, we thus report the run times only from Perl, while

for comparison with MUMmer, we report the C++ ones.

We first empirically verified the theoretical complexity

of phase 2 on simulated genomic data (4-letter alphabet),

using the Bernoullian model. Table II reports the run times

for different text combinations (10 million to 100 million

character lengths) and values of k (12 to 16). The linear

correlation between the run times and theoretical complexity

was ρ2 = 0.96 across all trials. Only for low values of k and

longer text lengths (e.g., k = 12, lmax = 100M), the phase

2 actual complexity and run times deviate from the average

case, approaching the worst case limit, since the number of
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lt1 , lt2 k |Sk
12
| |Sk

21
| theor.

compl.
Runtime
(s)

10M, 10M 12 4,495,658 4,493,116 143,485,779 114
10M, 10M 13 1,383,709 1,382,706 41,486,622 25
10M, 10M 14 364,645 364,573 10,138,510 6
10M, 10M 15 91,805 91,821 2,345,362 2
10M, 10M 16 21,656 21,660 501,954 1
10M, 50M 12 9,490,871 22,468,950 545,110,250 521
10M, 50M 13 5,248,506 6,911,641 197,194,259 151
10M, 50M 14 1,692,054 1,819,771 53,353,646 31
10M, 50M 15 448,672 457,045 12,753,417 9
10M, 50M 16 107,908 108,343 2,791,063 2
10M, 100M 12 9,973,381 44,939,254 965,595,799 >3,600
10M, 100M 13 7,745,144 13,817,010 360,204,486 394
10M, 100M 14 3,094,411 3,633,306 105,808,265 62
10M, 100M 15 875,220 911,015 26,146,863 14
10M, 100M 16 214,302 216,223 5,799,681 3

TABLE II
EXPERIMENTAL VALIDATION OF PHASE 2 TIME COMPLEXITY USING

SIMULATED GENOMES.

Fig. 5. Run time ratio (simulated genomes) between phase 1 and phase 2,
varying text (10, 50, and 100 million) and k-mer (12 to 16) lengths.

strings in common increases by several orders of magnitude,

concomitantly to the expected difference between the LCS

length and k, and the number of substrings to be calculated.

Second, we compared the ratio between the complexity

of phase 1 and phase 2, using again simulated genomes,

verifying that the actual run times would match the theoretical

complexity ratio. Figure 5 shows the run time ratios by varying

text (10, 50, and 100 million nucleotide bases) and k-mer (12

to 16) lengths. The graph clearly indicates that only for k = 12
the second phase approaches the worst case and takes more

time than the first phase (i.e., the ratio is lager than 1).

Third, we run the algorithms on the real datasets presented

in Table I. Table III provides, for each genome pair, the

theoretical and actual number of shared k-mers (k = 12),

along with real time complexity for phase 2 (based on actual

k-mers), and the run times for both phase 1 and 2. The actual

number of shared k-mers slightly deviates from the theoretical

one (ρ2 = 0.61) because the nucleotide frequencies are not

equiprobable and the Bernoullian model does not necessarily

hold –we have shown in a prior work that the Markovian

model is more accurate [21]. Likewise, the correlation between

expected complexity and run times (ρ2 = 0.71) is slightly

lower than what observed in simulations. In 5/25 = 20% of

the experiments, the phase 2 run time was higher than that

of phase 1 (only Acanthamoeba polyphaga and Citrobacter

freundii), but the ratio was never higher than 1.5. We repeated

analyses for k = 20, and in no cases the run time of phase 2

surpassed that of phase 1, with an average ratio of 0.01.

Fourth, we compared run times of our C++ implementation

with MUMmer, using the real genomes. We used Caenorhab-

ditis elegans (Chr.1) as the reference (15 million), and all

other genomes as queries, from 9 thousand base pairs of HIV

to 234.5 million base pairs of the Homo sapiens (Chr.1). On

the shorter query genomes, MUMmer was over 1000x faster,

and used 10x less RAM, but both the run time and RAM

ratios rapidly decreased as the genome size increased. With

the Homo sapiens (Chr.1) genome, our tool had a peak usage

of 37 GB of RAM vs. 135 GB used by MUMmer, i.e., ∼ 1/4
of the RAM, and the run time ratio was reduced to 3x (Figure

6). Since our method is heavily disk-based (all sort and merge

procedures are not performed in memory), higher run times

are expected, yet it is able to quickly catch up on MUMmer

. Of note, the genomes pairs compared are highly divergent,

which is the ideal case for our algorithm.

Fig. 6. Run time ratio and RAM usage ration between our algorithm and
MUMmer, on a reference genome length of 15 million base pairs, varying
query length from 9 thousand to 234.5 million base pairs.q y g p

Fifth, we used the first stage and the string elongation of

the second stage to mark the original texts’ character positions

that would be included in the ALCS-k search. For instance, a

suffix tree could be constructed only considering these marked

portions of the two texts, with reduction in memory footprint

and run time. We simulated genomes between 1 million and

50 million base pairs each, and evaluated k = 13 and k = 19.

Figure 7 shows how the procedure reduces the lengths, after

filtering and elongation, depending on the value of k and the

original lengths. The graphs show that k tremendously affects

the reduction, and complements what we showed in Figure 3.
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Genome pairs lt1 lt2 |Sk
1,2| (theor.) |Sk

1,2| (actual) Real comp. P2 Runtime
(s) P1

Runtime
(s) P2

hiv–covid 9E+3 3E+4 33 64 400 1 1
hiv–mimi 9E+3 1E+6 1,271 2,283 20,947 5 1
hiv–citro 9E+3 5E+6 5,205 4,721 46,147 22 0
hiv–sora 9E+3 1E+7 12,089 3,856 37,199 59 0

hiv–caeno 9E+3 2E+7 13,688 16,947 184,666 59 1
hiv–chimp 9E+3 2E+8 130,211 323,855 4,402,102 844 22
hiv–homo 9E+3 2E+8 135,265 348,073 4,753,388 1,094 25

covid–mimi 3E+4 1E+6 4,138 11,251 118,110 5 0
covid–citro 3E+4 5E+6 16,947 4,983 48,948 23 1
covid–sora 3E+4 1E+7 39,362 8,504 87,462 60 0

covid–caeno 3E+4 2E+7 44,566 80,892 987,777 70 1
covid–chimp 3E+4 2E+8 423,875 1,019,691 14,818,135 1,042 35
covid–homo 3E+4 2E+8 440,329 1,062,552 15,479,525 1,089 35
mimi–citro 1E+6 5E+6 657,565 685,275 9,493,123 27 10
mimi–sora 1E+6 1E+7 1,524,562 162,174 2,056,320 65 9

mimi–caeno 1E+6 2E+7 1,725,364 4,559,530 70,752,695 95 146
mimi–chimp 1E+6 2E+8 16,226,540 33,508,960 582,482,745 1,049 1,588
mimi–homo 1E+6 2E+8 16,854,861 34,715,475 604,547,328 1,102 1,710
citro–sora 5E+6 1E+7 6,180,891 6,102,061 95,901,841 84 119

citro–caeno 5E+6 2E+7 6,984,838 6,738,615 106,280,217 93 116
citro–chimp 5E+6 2E+8 63,184,636 59,606,500 1,060,435,451 1,401 1,325
citro–homo 5E+6 2E+8 65,610,051 61,887,060 1,103,147,272 1,468 1,100
sora–caeno 1E+7 2E+7 15,867,593 5,275,650 82,021,390 134 79
sora–chimp 1E+7 2E+8 132,538,334 37,827,767 658,055,947 1,117 967
sora–homo 1E+7 2E+8 137,529,180 45,124,692 785,318,909 1,304 369

TABLE III
EVALUATION OF THE TWO-PHASE ALCS-k APPROACH ON REAL DATASETS. FOR EACH PAIR OF GENOMES, THE THEORETICAL AND ACTUAL NUMBER OF

SHARED k-MERS (k = 12) IS REPORTED, ALONG WITH RUN TIMES FOR BOTH PHASE 1 AND 2 (P1, P2), AND REAL TIME COMPLEXITY FOR PHASE 2
(BASED ON ACTUAL k-MERS).

Fig. 7. Reduction of genome content and length that would need to be
considered for ALCS-k search using the first stage and string elongation
procedure..

Finally, to examine a worst-case scenario for our tool,

we run it on two highly redundant bacterial databases of

mobile genetic elements (MGEs), namely ICEberg (https:

//bioinfo-mml.sjtu.edu.cn/ICEberg2/index.php) and ACLAME

(http://aclame.ulb.ac.be/), containing bacterial integrative and

conjugative elements, and prokaryotic MGEs, such as phage

genomes, plasmids and transposons. ICEberg contains 552

sequences (28.9 MB), while ACLAME counts 125,190 se-

quences (119.9 MB). We focused on genes longer than 1,500

bases. As expected, the run time of the second stage surpassed

that of the first stage: the algorithm completed in 5 hours

with a RAM peak of 173 GB. Instead, MUMmer –which –

completed the job in about a minute, with a RAM peak of 18

GB.The final ALCS-1500 set included 84 unique sequences,

replicated over 225 positions (74 in ICEberg and 151 in

ACLAME).

IV. CONCLUSIONS

We presented a two-stage solution to the ALCS-k problem

for two texts based on sort-merge of their k-mer spectra

and elongation of common k-mers, providing characterization

of computational complexity. Our two-stage approach is of

practical utility for long, highly divergent genomes as an al-

ternative to or pre-processing step for suffix-based approaches,

given the widespread availability of efficient k-mer tools (both

disk-based and in-memory), and a low average complexity

footprint of our second stage even by using brute force. In our

experiments, we showed that for sufficiently large and highly

divergent genomes, our tool uses less RAM than MUMmer
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(although MUMmer can be set up to switch on disk-based

processing) and has potentially shorter run time.

One limitation of the implementation we provide is that

it does not make use of code optimization or efficient data

structures. On the one hand, the code was written to validate

the theoretical complexity; on the other hand, the software

should be usable in real-world applications and use cases.

Nonetheless, the first stage involves k-mer parsing, counting

and sorting, with additional indexing of positions; several

efficient software and library exist that can be used for the

purpose. For this reason, we organized our code into modules

for which the first stage and the second stage can be run

separately. Our novel algorithms implemented in the second

stage –given its average complexity that is loglinear in the frac-

tion of the number of shared k-mers– is usable in real-world

applications, and for divergent genomes it can be advantageous

with respect to tools like MUMmer. In the future, we foresee

opportunity to develop ad hoc data structures that can further

minimize time/space complexity of the second stage to better

handle highly similar genomes, e.g., a suffix-based structure on

the subset of elongated k-mers. For instance, MUMmer could

be applied to two input genomes where only the elongated

strings calculated in phase two are considered, by masking all

other positions with unallowable characters.
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