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Abstract When different flooding drivers co-occur, they can cause compound floods. Despite the potential
impact of compound flooding, few studies have projected how the joint probability of flooding drivers may
change. Furthermore, existing projections may not be very robust, as they are based on only 5 to 6 climate model
simulations. Here, we use a large ensemble of simulations from the Coupled Model Intercomparison Project 6
(CMIP6) to project changes in the joint probability of extreme storm surges and precipitation at European tide
gauges under a medium and high emissions scenario, enabled by data-proximate cloud computing and statistical
storm surge modeling. We find that the joint probability will increase in the northwest and decrease in most of
the southwest of Europe. Averaged over Europe, the absolute magnitude of these changes is 36%-49% by 2080,
depending on the scenario. The large-scale changes in the joint probability of extreme storm surges and
precipitation are similar to those in the joint probability of extreme wind speeds and precipitation, but locally,
differences can exceed the changes themselves. Due to internal climate variability and inter-model differences,
projections based on simulations of only 5 to 6 randomly chosen CMIP6 models have a probability of higher
than 10% to differ qualitatively from projections based on all CMIP6 simulations in multiple regions, especially
under the medium emissions scenario and earlier in the twenty-first century. Therefore, our results provide a
more robust and less uncertain representation of changes in the potential for compound flooding in Europe than
previous projections.

Plain Language Summary Extreme storm surges, rainfall or river discharge can cause flooding.
When these events happen at the same time, even more severe flooding may follow. Climate change could affect
the odds that drivers of flooding coincide, potentially leading to larger flood risk. However, few scientists have
tried to compute such changes, using only a few different computer models of our climate. Here, we use a much
larger set of climate models to compute how the odds that an extreme storm surge coincides with extreme
precipitation could change in the future. We find that at the coasts of northwestern Europe, those odds will
increase, whereas in southwestern Europe, they will mostly decrease. On average, the changes will be as large as
36%—-49% of the current odds, depending on whether the concentration of greenhouse gases in the atmosphere
will increase by a medium or a large amount. When we use smaller sets of climate models for our calculations,
we get substantially different results in some cases. In conclusion, by using a larger set of climate models than
previous studies, we have made more robust computations of how the odds that extreme storm surges and
precipitation coincide will change in Europe.

1. Introduction

The co-occurrence or close succession of different flooding drivers like storm surges, rainfall and river discharge
has the potential to affect coastal communities more severely than the separate occurrence of these drivers (e.g.,
Bevacqua et al., 2017; Emanuel, 2017; Kumbier et al., 2018; Paprotny et al., 2018; Ruocco et al., 2011; van den
Hurk et al., 2015). For instance, extreme precipitation or river discharge may increase the depth and/or area of
flooding due to storm surges and high coastal water levels may hamper storm-water drainage and cause backwater
effects. Such combinations of hazard drivers are called compound events (Zscheischler et al., 2018). Since the
more traditional univariate analyses that neglect the compounding effects of flooding drivers may underestimate
flood risk and the lifetime of adaptation measures to flooding (e.g., Leonard et al., 2014; Moftakhari et al., 2017,
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Wahl et al., 2015), compound events have received increased attention in the past decade. For instance, the
historical dependence between and joint probability of various combinations of flooding drivers has been assessed
at local (e.g., Couasnon et al., 2022; Kew et al., 2013; Santos et al., 2021; Zheng et al., 2014), national (e.g.,
Hendry et al., 2019; W. Wu et al., 2018), continental (e.g., Camus et al., 2021; Ganguli & Merz, 2019; Nasr
etal., 2021; Paprotny et al., 2018, 2020; Wahl et al., 2015) and global scales (e.g., Bevacqua, Vousdoukas, Zappa,
et al., 2020; Couasnon et al., 2019; Eilander et al., 2020; Lambert et al., 2020; Ridder et al., 2020; Ward
et al., 2018), using observations and/or model hindcasts.

In comparison, fewer studies have projected how the potential for compound flooding may change in the future.
For instance, a global study projected the joint probability of extreme storm surges and precipitation to decrease in
parts of the subtropics and to increase at higher latitudes (Bevacqua, Vousdoukas, Zappa, et al., 2020). For the
United States, the joint probabilities of various flooding drivers were projected to increase due to sea-level rise,
changes in extreme river discharge and changes in tropical cyclones (Ghanbari et al., 2019; Gori et al., 2022;
Moftakhari et al., 2017). For most of Europe, the joint probability of extreme storm surges and precipitation was
projected to increase by Bevacqua et al. (2019), predominantly due to the increasing probability of extreme
precipitation. However, Ganguli et al. (2020) projected a decrease in the dependence and joint probability of
extreme storm surges and river discharge in northwestern Europe. The differences between the projections of
these studies are inconsistent with the finding that the joint probability of extreme storm surges and precipitation
is generally comparable to that of extreme storm surges and river discharge at small to medium river catchments
(Bevacqua, Vousdoukas, Shepherd, & Vrac, 2020).

A common limitation of existing projections of the joint probability of flooding drivers is the small ensembles of
global and/or regional climate model simulations on which they are based. For instance, Bevacqua, Vousdoukas,
Zappa, et al. (2020) and Ganguli et al. (2020) based their projections on only 5 to 6 models from the Coupled
Model Intercomparison Project 5 (CMIPS; Taylor et al., 2012), using only a single, high-emissions scenario
simulation per model. Consequently, these projections may be sensitive to the specific models that were used and
provide a limited view of the uncertainties related to future emissions, internal climate variability and structural
differences between models, especially since the skill of climate models in capturing the atmospheric conditions
that may cause compound flooding varies (Ridder et al., 2021; Y. Wu et al., 2021). Some studies used larger
multi-model ensembles to project changes in the joint probability of extremes (e.g., Bevacqua et al., 2023; Ridder
et al., 2022; Sun et al., 2023), but none included storm surges as a driver.

Furthermore, most projections of the joint probability of extremes in general are based on climate model en-
sembles that include only one initial-condition simulation per model. However, since co-occurring extremes are
rare, estimates of their joint probability are sensitive to internal climate variability when derived from a single
simulation, even when using a 50-year period from that simulation (Santos et al., 2021). Hence, as advocated by
Bevacqua et al. (2023), projections of the potential for compound extremes would benefit from using single model
initial-condition large ensembles (SMILEs). These are ensembles of simulations generated with the same external
forcing but initialized at different times, so that internal climate variability has a different phase in each simulation
and can be partially averaged out. Consequently, SMILEs can be used to develop more robust projections of the
joint probability of extremes (Bevacqua et al., 2023) and to partition the total uncertainty of projections into
uncertainties due to emissions scenarios, inter-model differences and internal climate variability (Lehner
et al., 2020).

Many global climate models from the current, sixth Coupled Model Intercomparison Project (CMIP6) (Eyring
et al., 2016) provide simulations for multiple initial-condition members. Including all these simulations for the
analysis of compound flooding is challenging as storm surges and river discharge are not a direct output of global
climate models but need to be derived from their simulations offline. This is typically done using computationally
demanding hydrodynamic and hydrological models, respectively (e.g., Bevacqua, Vousdoukas, Zappa,
et al., 2020; Ganguli et al., 2020). However, as a computationally more efficient alternative to hydrodynamic
modeling, data-driven models have recently been developed to compute storm surges at large spatial scales
(Bellinghausen et al., 2023; Bruneau et al., 2020; Tadesse & Wahl, 2021; Tadesse et al., 2020; Tiggeloven
et al., 2021). Such statistical models, based on multi-linear regression (MLR) or other machine learning tech-
niques, have been shown to perform similarly to or better than high-resolution hydrodynamic models such as the
Global Tide and Surge Model (GTSM) of Muis et al. (2016, 2020, 2023) (Tadesse et al., 2020; Tiggeloven

HERMANS ET AL.

2 0f 22

d ‘S YTOT ‘LLTYSTET

:sdyy wouy papeo|

ASULDI'] suOWWO)) dANEa1) d[qedrjdde ayy £q pouIoAo aie sa[oIIE () (28N JO SI[NI 10§ KIRIQIT dUI[UQ) A3[IA) UO (SUONIPUOD-PUB-SULI)/W0d" K[ 1M’ KIeaqi[aur[uoy/:sdny) suonipuo) pue sua ], oyl 99 *[$207/01/#1] uo Areiqry aurjuQ A2[IA\ ‘o[ [1UD) JO ANsIdAIun snS-[4 £q 88 [+004TET0T/620101/10p/WOd K[1m".



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Earth's Future 10.1029/2023EF004 188

et al., 2021). Therefore, they may also be useful for projecting changes in the joint probability of extreme storm
surges and other flooding drivers.

Here, we project changes in the joint probability of extreme storm surges and precipitation and analyze their
uncertainty using the simulations of a large ensemble of CMIP6 models, including all initial-condition members
available for each model. To derive storm surge information from each simulation, we use the data-driven sta-
tistical model of Tadesse et al. (2020), which we will show is well suited for the analysis of the joint probability of
storm surge and precipitation extremes. We limit our study to Europe, where data-driven storm surge models
generally perform well (Bruneau et al., 2020; Tadesse et al., 2020; Tiggeloven et al., 2021). Storm surges are
mainly caused by wind and sea-level pressure. Therefore, the probability of joint extreme wind speed and pre-
cipitation events, which can disrupt transport and power systems (e.g., Jaroszweski et al., 2015), is closely related
to that of joint storm surge and precipitation extremes and helps to interpret the changes in the latter physically.
Therefore, we consider changes in the probability of joint wind speed and precipitation extremes alongside
changes in the probability of joint storm surge and precipitation extremes and compare them. Finally, we exploit
the large ensemble of CMIP6 simulations to compare the ensemble mean changes to the effect of internal climate
variability, partition the uncertainty of our projections and compute the ensemble size required for qualitatively
robust projections in different locations.

2. CMIP6 Data and Joint Extremes Analysis

In this section, we explain which CMIP6 simulations we use and how we analyze the changes in the joint
probability of extremes in these simulations.

2.1. CMIP6 Data Used

We analyze future changes in the joint probability of extremes for an intermediate and a high emissions scenario
(shared socio-economic pathway scenarios SSP2-4.5 & SSP8.5, respectively; Meinshausen et al., 2020). As only
few CMIP6 models provide simulations at a sub-daily frequency, we use daily mean CMIP6 simulations. Models
are required to provide daily mean sea-level pressure (variable “psl”), surface wind speed (variable “sfcWind”)
and precipitation flux (variable “pr”) output for the historical period (1850-2014) and at least one of the SSP2-4.5
and SSP5-8.5 scenarios (2015-2100). To obtain time series for 1850-2100, each SSP simulation is appended to
its corresponding historical simulation. Daily mean wind speed and precipitation flux time series (converted to
daily accumulated precipitation) are used to analyze (changes in) the joint probability of wind speed and pre-
cipitation extremes (as explained in Sections 2.2 and 2.3), whereas daily mean wind speed and sea-level pressure
time series are used as input to the statistical storm surge model (as explained in Section 3). Like Ridder
et al. (2022), we use daily mean instead of daily maximum wind speed, as more CMIP6 simulations are available
for the former.

For several CMIP6 models, multiple realizations (denoted with “7” in the “ripf’ variant label) are available that
have been branched off from their preindustrial control run at different times. Because the phase of internal
climate variability differs between these realizations, they can be used to average out part of the changes due to
internal climate variability and better isolate the changes due to increasing greenhouse gas concentrations. In
contrast to previous projections, we therefore include all available realizations of each CMIP6 model providing
the output described above. The resulting data set includes over 20 terabytes of data from 27 different CMIP6
models (see Table 1 for an overview). To process this data efficiently and reproducibly, we use the Analysis-
Ready Cloud Optimized CMIP6 data produced by the Pangeo/Earth System Grid Federation (ESGF) Cloud
Data Working Group (https://pangeo-data.github.io/pangeo-cmip6-cloud/), held in public Google Cloud Storage.
The data sets summarized in Table 1 reflect data sets that were available to download and ingest via the pangeo-
forge feedstock (Busecke & Stern, 2023) at the time of writing of this manuscript. The data is analyzed using the
code in the CMIP6cex repository (Hermans & Busecke, 2024a), for which the xarray (Hoyer & Hamman, 2017)
and xMIP (Busecke et al., 2023) python packages are important building blocks.

Prior to the analysis, we bilinearly interpolated the simulations of each model to a common grid witha 1.5° X 1.5°
resolution, using XESFM (Zhuang et al., 2023). A 1.5° x 1.5° grid roughly corresponds with the average reso-
lution of the CMIP6 models (Table 1). The effects of orography and coastlines and mesoscale processes such as
fronts and convection may be better resolved by models with a higher resolution, but these typically provide fewer
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Table 1
Coupled Model Intercomparison Project 6 Simulations Used

Model SSP2-4.5 [#]  SSP5-8.5 [#]  Both [#] °Lon X °Lat Reference
1 ACCESS-CM2 5 6 4 1.875 x 1.25 Bi et al. (2020)
2 ACCESS-ESM1-5 38 35 33 1.875 x 1.25 Bi et al. (2020)
3 CanESM5 25 25 25 2.8x2.8 Swart et al. (2019)
4 CESM2 2 2 2 1.25 x 0.9 Danabasoglu et al. (2020)
5 CESM2-WACCM 3 3 3 1.25 x 0.9 Danabasoglu et al. (2020)
6 CMCC-ESM2 1 1 1 1.25 x 0.9 Lovato et al. (2022)
7 CMCC-CM2-SR5 1 1 1 1.25x 0.9 Cherchi et al. (2019)
8 EC-Earth3 59 1 1 0.75 x 0.75 Ddoscher et al. (2022)
9 EC-Earth3-Veg 1 0 0 0.75 x 0.75 Doscher et al. (2022)
10 FGOALS-g3 1 0 0 2x2 L. Li et al. (2020)
11  GFDL-CM4 1 1 1 1x1 Held et al. (2019)
12 GFDL-ESM4 1 1 1 1x1 Dunne et al. (2020)
13 HadGEM3-GC31-LL 5 4 4 1.875 x 1.25 Andrews et al. (2020)
14 HadGEM3-GC31-MM 0 4 0 0.83 x 0.56 Andrews et al. (2020)
15 INM-CM4-8 1 1 1 2x1.5 Volodin and Gritsun (2018)
16 INM-CM5-8 1 1 1 2x 1.5 Volodin et al. (2017)
17 IPSL-CM6A-LR 11 7 6 25%x 13 Boucher et al. (2020)
18  KACE-1-0-G 3 3 3 Not reported Lee et al. (2020)
19  MIROC6 43 50 43 14x 14 Tatebe et al. (2019)
20 MIROC6-ES2L 10 1 1 2.8x2.8 Hajima et al. (2020)
21  MPI-ESM1-2-LR 24 24 24 1.88 x 1.88 Mauritsen et al. (2019)
22  MPI-ESM1-2-HR 2 2 2 0.93 x 0.93 Mauritsen et al. (2019)
23 MRI-ESM2-0 1 1 1 0.75 x 0.75 Yukimoto et al. (2019)
24 NorESM2-LL 3 1 1 2.5 % 1.88 Seland et al. (2020)
25  NorESM2-MM 2 1 1 1.25 x 0.94 Seland et al. (2020)
26  TailESMI 1 1 1 1.25%x 0.9 Wang et al. (2021)
27 UKESMI1-0-LL 5 5 5 1.875 x 1.25 Sellar et al. (2020)

simulations. Ensemble statistics are computed and displayed on the common 1.5° X 1.5° grid. The regridded
simulations are also used as input to the statistical storm surge model (as described in Section 3).

2.2. Definition of Joint Extremes

In this study, we consider two types of compound extremes: (a) the combination of extreme daily mean wind
speed and extreme daily accumulated precipitation, and (b) the combination of extreme daily maximum storm
surge and extreme daily accumulated precipitation. While compound events can already be impactful if only one
of their drivers is extreme (Wahl et al., 2015), we focus on the case in which both drivers are extreme, similar to
previous studies (Bevacqua et al., 2019; Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli et al., 2020; Ridder
et al., 2022). We define extreme events using a peak-over-threshold (POT) analysis instead of using annual
maxima, because this allows us to consider multiple extremes occurring in a single year and avoids including
annual maxima that are not extreme.

Previous POT analyses have often used the same threshold percentile or used thresholds resulting in the same
number of declustered extremes for each location and variable (e.g., Bevacqua, Vousdoukas, Zappa, et al., 2020;
Camus et al., 2021; Ganguli et al., 2020; Hendry et al., 2019; Ridder et al., 2020); a pragmatic approach which we
also adopt here. For Europe, Camus et al. (2021) found that using 3 vs 6 declustered extremes per year resulted in
similar bivariate dependence patterns for several combinations of compound flooding drivers. Therefore, we use
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the 98th percentile of daily values as a threshold, which results in a number of extremes slightly higher than 6 per
year. Hence, wind speed (w), storm surge (s) and precipitation (p) extremes are defined as P = p > pog,
W=w >wggand § = s > s9g, respectively, and joint extreme wind speed and precipitation and joint extreme storm
surges and precipitation events as days on which those extremes co-occur (W A P and S A P, respectively). As a
baseline, we only consider extremes that occur on the same day and do not decluster the extremes prior to the
analysis. The sensitivity of our projections to these methods is discussed in Section 5.

2.3. Future Changes in the Joint Probability of Extremes

We analyze the joint probability of extremes empirically by counting the number of joint extremes (Ny,,p and
Ng,p) and standardizing those numbers by the length of the time period considered, as done by Camus
et al. (2021), Couasnon et al. (2019), Hendry et al. (2019), and Ridder et al. (2020, 2022).

2.3.1. Computing Future Changes

To compute the changes in the number of joint extremes that the CMIP6 models simulate (ANy,, p and AN, p), we
define two 40-year periods centered around 2000 (1981-2020) and 2080 (2061-2100) as the historical and future
periods, respectively. We then compute ANy, p (and similarly, ANy, p) as the difference in the number of joint
extremes between these periods:

ANyrp = Nigpp = N, @

in which the superscripts™ and " mean “evaluated in” the future and historical period, respectively. Importantly,

for both the historical and future periods, the number of joint extremes that exceed the historical thresholds wii!
and p' are counted. Therefore,
Nful‘ _ wﬁtr > hist p/‘ut > hist (2)
wap = W 2 wog AP 2 pog”|
and
N}‘f\l/i{p — |Whist > Wgésr/\phist Zpgésr| (3)

The same equations are applied to compute AN, » by replacing wind speed (w) with storm surges (s).

2.3.2. Decomposing Future Changes

Changes in the joint probability of extremes can be decomposed into changes in the marginal distributions of each
of the considered variables and changes in the dependence structure between them (see Figure S2 in Supporting
Information S1 for a graphical explanation). Using methods similar to those of Bevacqua et al. (2019) and
Bevacqua, Vousdoukas, Zappa, et al. (2020), we compute the changes in Ny, p (and similarly, Ng,p) due to
changes in the marginal distribution of wind and precipitation (denoted AN}y, , and ANY,, ,, respectively) as

AN“K//\P — |Whist > Wﬁ[z]ijt,\phist Zpézést _ N"f\’/‘/{[»‘ (4)
and

AN[;V/\P — |Whist > Wgéx‘t/\phi.rt Zpil/:tl _ N};ll/'XP (5)
Put more simply, we compute how changing the threshold percentile for either wind speed or precipitation ex-
tremes affects the number of joint extremes in the historical period. In Equations 4 and 5, the changed threshold
percentiles are defined as U,, = F/“(whi") and U, = Fﬁ” (phist), where F/“ and Fﬁ” are the empirical cumulative

distribution functions of the wind speed and the precipitation in the future period. Hence, U,, and U, are the
threshold percentiles that the historical threshold values would correspond to in the future. Similarly, we compute
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the changes in Ny, » due to the changes in the two marginal distributions combined, but still with the historical
dependence structure, as

Wop hist hist , _hist hist hist
ANyp = W™ 2 wy,, AP ZPU,, | = Nyrp- (6)

To compute the changes in Ny, due to changes in the dependence between wind speed and precipitation, we
simply subtract the changes due to changes in both marginal distributions from the total change:

AN‘J%DWW = ANwy,p — AN W’XP ™

Given that U,, and U,, are the threshold percentiles that the historical threshold values correspond to in the future

period, the historical threshold values used to compute ANy,p (see Equations 1-3) can be written as

Wit = wy, M and plit = Py, fut_ Therefore, by using Equation 7 to compute AN{Z%“" we essentially compute

the difference in the number of joint extremes between the historical and future periods using the same threshold
percentiles to define extremes in both periods, instead of using the same threshold values (as is done to compute
ANy,.p). Since using the same threshold percentiles in both periods means that the number of univariate extremes
will not change, the remaining changes in the number of joint extremes must follow from changes in the
dependence between the considered variables. Again, ANy, is decomposed similarly, using s instead of w.
Table 2 summarizes the notations defined in this section.

2.4. Computing Ensemble Statistics

To evaluate the ensemble results, we apply model democracy and weight each CMIP6 model equally. This
disregards potential differences in model performance, but as we will discuss in Section 6, evaluating model
performance in the absence of large initial-condition ensembles for each model is challenging. Indeed, CMIP6
models provide different numbers of initial-condition simulations (see Table 1). To include all initial-condition
simulations while weighting models equally, we first average the (changes in the) number of joint extremes over
all initial-condition simulations of each model before computing the multi-model ensemble mean and standard
deviation. Furthermore, the availability of simulations differs between SSP2-4.5 and SSP5-8.5. To be able to
directly compare the projections between the scenarios, we only use the initial-condition simulations that are
available for both emissions scenarios in the main text, and provide the projections based on all available sim-
ulations per SSP scenario in Supporting Information S1.

In Section 4.4, we compare the magnitude of the ensemble mean changes in the number of joint extremes to the
magnitude of the variability in the historical number of joint extremes. As a metric of the effect of internal
climate variability on the historical number of joint extremes, we compute the average standard deviation of
NSt and NS between initial-condition simulations using the CMIP6 models that have at least five initial-
condition members (see Table 1). To test whether these models are representative for the entire CMIP6
ensemble, more models providing multiple initial-condition simulations are needed. We also use these models
to partition the uncertainty in our projections into the uncertainty due to internal variability (/), differences
between models (M) and differences between emissions scenarios (S), similar to Lehner et al. (2020). To
estimate /, we compute the standard deviation of ANy, and ANy, » between the initial-condition members of
each model, and compute the average of those standard deviations. Next, to estimate M, we compute the
standard deviation of ANy, and AN, between the means of the initial-condition members of each model.
Then, to estimate S, we compute the standard deviation of the member-mean ANy, » and AN, » between SSP2-
4.5 and SSP5-8.5 for all available CMIP6 models, and compute the average of those standard deviations. The
uncertainty due to different emissions scenarios would have likely been larger if we would have also included a
lower emissions scenario like SSP1-2.6.

To study how internal climate variability and inter-model differences affect projections of the joint probability of
extremes based on small climate model ensembles (e.g., Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli
et al., 2020), we compute the probability that the means of such ensembles agree qualitatively with our pro-
jections. To this end, we randomly draw up to 5,000 ensembles of size s from all possible combinations of s
CMIP6 models (using a single default initial-condition member per model), for s = 1 to s = Nype — 1. For each
s, we then compute the fraction of ensembles for which the ensemble mean ANy, (or ANy, p) has the same sign
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Table 2

Notations Defined in Section 2

Notation Definition

w, s, &p Wind speed, storm surge and precipitation

w,S, &P Wind speed, storm surge and precipitation extremes defined as events equal to or

higher than the 98th percentile of all wind speed, storm surge and precipitation
events (W > Wqg, S > Sog and p > pyg), respectively

Nyap Standardized number of days on which both wind speed and precipitation are extreme
Nt Ny np in the period 1981-2020 as simulated by CMIP6 models

va’(,’AP Ny p in the period 2061-2100 as simulated by CMIP6 models

ANy p The difference between vabf,'/\ » and N7t

ANy p ANy, p due to changes in the marginal distribution of wind speed

ANy, p ANy, p due to changes in the marginal distribution of precipitation

ANGE, ANy, p due to changes in the marginal distributions of wind speed and precipitation
AN‘ependence ANy, p due to changes in the dependence between wind speed and precipitation
Ng,p Standardized number of days on which both storm surge and precipitation are extreme
st Ng,p in the period 1981-2020 as simulated by CMIP6 models

N);L;t\P Ng,p in the period 2061-2100 as simulated by CMIP6 models

AN, p The difference between Ng‘ " » and NS,

AN3,p ANy, p due to changes in the marginal distribution of storm surges

AN, ANy, p due to changes in the marginal distribution of precipitation

AN, ANy, p due to changes in the marginal distributions of storm surges and precipitation
AN?ff}f"dem AN, p due to changes in the dependence between storm surges and precipitation

as that of the ensemble including all CMIP6 models and initial-condition members. Finally, as an indication for
how large ensembles need to be for qualitatively robust projections, we compute the minimum s for which the
fraction of ensemble means agreeing in sign is 90% or higher.

3. Modeling Storm Surges
3.1. Training and Application of the Storm Surge Model

To compute storm surges for each CMIP6 simulation in Table 1 we use a MLR model based on the methods of
Tadesse and Wahl (2021) and Tadesse et al. (2020), as running a hydrodynamic model for each simulation is
computationally infeasible. The MLR model of Tadesse et al. (2020) was trained with daily maximum non-tidal
residuals observed at tide gauges (TGs) as predictands and sub-daily surface winds and sea-level pressure from
various reanalyzes as predictors. Predictors were used within either 10° by 10° (Tadesse et al., 2020) or 6° by 6°
(Tadesse & Wahl, 2021) grids around each TG and lags up to 30 hr between the predictands and predictors were
implemented. The daily maximum non-tidal residuals of Tadesse et al. (2020) were obtained by removing the
annual mean sea level and predicted astronomical tides from TG records in the GESLA2 data set (Woodworth
et al., 2016).

A simpler version of the statistical model was previously applied to compute storm surges for a large ensemble of
simulations of the European weather@home atmospheric model (Calafat et al., 2022). This version was trained
using daily mean wind speed and sea-level pressure (without lags) from the ERAS reanalysis (Hersbach
et al., 2020) as predictors, in 2° by 2° grids around each TG. Since we will apply the MLR model to daily mean
CMIP6 data (see Section 2.1), here, we also use daily mean predictors from ERAS5 (1979-2018) to train the MLR
model. However, because a larger grid size around each TG leads to a better performance (Tadesse &
Wahl, 2021), we use 9° by 9° grids around each TG. To ensure traceability to prior validation and application of
the MLR model, we adopted the GESLA?2 predictands used by Calafat et al. (2022), Tadesse and Wahl (2021),
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and Tadesse et al. (2020) for training. The few years of additional data that GESLA3 records (Haigh et al., 2021)
would provide are unlikely to substantially affect our results (see Tadesse et al., 2020, and Section 3.2). The
resolution of ERAS (0.25° by 0.25°) is higher than that of the CMIP6 models (see Table 1). Therefore, prior to
estimating the regression coefficients with the ERAS predictors, we coarsen the ERAS data by bilinearly inter-
polating it to the same 1.5° by 1.5° grid that the CMIP6 simulations were regridded to (Section 2.1). At this
resolution, the 9° by 9° grids around each TG consist of 36 grid cells. Training the storm surge model with
coarsened instead of native-resolution ERAS predictors did not substantially affect its performance.

Other than using different predictor data, we estimate the regression coefficients in the same way as Tadesse and
Wahl (2021) and Tadesse et al. (2020). As the flowchart in Figure S1 in Supporting Information S1 shows, the
gridded ERAS data around each TG, including the wind speed squared and cubed, are normalized by removing the
time-mean of each variable and scaling them to unit variance. To reduce the dimensionality of the gridded data,
the normalized variables are then pooled, after which empirical orthogonal functions (EOFs) are computed. The
first EOFs that together explain at least 95% of the variance of the predictor data are then regressed on the daily
maximum non-tidal residuals from GESLA2.

To apply the statistical storm surge model to the CMIP6 simulations, the regression coefficients that were esti-
mated with the ERAS predictor data are multiplied with predictors derived from the regridded CMIP6 simulations
(see flowchart in Figure S1 in Supporting Information S1). The CMIP6 predictors are prepared like the ERAS
predictors. For each combined historical and SSP simulation (1850-2100), we take the daily mean wind speed and
sea-level pressure gridded around each TG, and also compute the squared and cubed wind speed terms. Sub-
sequently, we normalize these variables, pool them and compute EOFs. As the sign of an EOF is not unique, we
flip the sign of an EOF of the CMIP6 predictor data if its spatial pattern better matches that of the corresponding
EOF of the ERAS predictor data when multiplied by —1. For each TG, the first n EOFs of the CMIP6 predictor
data around that TG are multiplied with the ERAS5-based regression coefficients, where 7 is the number of EOFs
that explained at least 95% of the variance of the ERAS predictor data around that TG (see Figure S1 in Supporting
Information S1). For each simulation, this results in estimates of daily maximum non-tidal residuals at every TG
during 1850-2100, which we refer to as storm surges.

By applying a statistical model that is trained on observations to CMIP6 simulations of the future, we implicitly
assume that the learned relationships between predictors and predictands will not change. Consequently, while
using a statistical model allows us to base our projections on a large ensemble of climate model simulations, we
neglect potential changes in how wind and pressure relate to storm surges, for instance due to changes in mean sea
level. Future work could test how such effects influence model calibration, for instance by comparing statistical
models trained on historical and future hydrodynamic model simulations (e.g., Muis et al., 2020, 2023; Vous-
doukas et al., 2018).

3.2. Evaluating the Storm Surge Model

The purpose of using the storm surge model is to analyze the number of joint storm surge and precipitation
extremes N, p. Therefore, we evaluate the model by comparing N, » based on the statistically modeled storm
surges (N, .Ap) With that based on the observed daily maximum non-tidal residuals from GESLA2 (N, Ap)
(Figure 1). To put this comparison into context, we also evaluate N, based on the daily maximum non-tidal
residuals from the Coastal Data set for the Evaluation of Climate Impact (CoDEC) (N, ,,.Ap)- This data set
was simulated with the high-resolution GTSM driven by atmospheric forcing from ERAS (Muis et al., 2020).
Furthermore, we also compare Ny, » based on daily mean wind speed from ERAS (N, Ap) With N, ,p. In all
cases, precipitation comes from ERAS, and we only use the timesteps at which GESLA?2 data is available (see
Figure S1 in Supporting Information S1 for the temporal coverage).

Ng_, np is relatively large (15-25 joint extremes per decade) at the west and south coasts of Spain, Portugal and
France, and at the southwest coast of the UK, while it is relatively small (0-10 joint extremes per decade) at the
north coast of Spain and along the North Sea (Figure 1a). This pattern is consistent with the results of previous
studies (Bevacqua, Vousdoukas, Zappa, et al., 2020; Couasnon et al., 2019; Hendry et al., 2019; Paprotny
etal., 2018). With a correlation of 0.87 and a normalized root mean square error (nRMSE) of 0.36, N, .p agrees
relatively well with Ng_ ,p (compare Figures la and 1b), which suggests that the statistical storm surge model
predicts the timing of the extremes in the GESLA?2 data well. Using 5-fold cross-validation, we verified that the
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Figure 1. Number of joint extreme (a) storm surges from GESLA2 and precipitation from ERAS (N, p), (b) statistically modeled storm surges and precipitation from
ERAS (N, .Ap). (c) storm surges from Coastal Data set for the Evaluation of Climate Impact (CoDEC) and precipitation from ERAS (N, .np) and (d) wind speed and
precipitation from ERAS (Ny,, . .p) at GESLAZ2 tide gauges [#/decade]. (e) The correlation coefficient r and normalized root mean square error (lRMSE) of (b—d) relative
to () as a function of the extremes threshold percentile. (g—f) N, .aps Ns,,prenr @0d Ny, p minus Ny p, respectively. All nRMSEs are normalized by dividing by the
mean of Ny, ,p. All correlation coefficients are statistically significant (p < 0.05).

agreement between Ng, .p and Ng_ ,p does not change much when only considering days that were not used for
training. The differences between N, 1p and N, ,p are largest at the south and east coasts of Spain (Figure 11),
where Ny, p Overestimates Ny p.

Overall, the number of joint storm surge and precipitation extremes based on the statistically modeled storm
surges is very similar to that based on the storm surges simulated with GTSM (compare Figures 1b and 1c).
Although the biases of N, .p (NRMSE = 0.36, Figure 1f) are moderately larger than those of Ng_ . .Ap
(nRMSE = 0.29, Figure 1g), the pattern correlation coefficients are the same (r = 0.87). Whereas Ng,, .Ap
overestimates Ng_ ,p mostly around Spain, Ng_ . .p underestimates Ng_,,p south of France and in the Bay of
Biscay by several events per decade. The differences between Ny, ,p (Figure 1a) and Ny, . .p (Figure 1d), which
are shown in Figure 1h, are clearly larger. These differences reveal where the joint probability of storm surge and
precipitation extremes differs from that of wind speed and precipitation extremes, and therefore where the in-
formation on sea-level pressure and the direction of the wind that the statistical storm surge model contains adds
value. A comparison between the magnitudes of the biases in Figures 1f and 1h suggests that this is the case for
instance at the north coast of Spain, along the Mediterranean Sea, at the west coast of France and around most of
the UK. The agreement between Ny, . .p and Ny ,p improves when we use daily maximum instead of daily mean
wind speed, but including daily maximum wind speed as a predictor variable of the MLR model does not lead to a
much better performance of Ng,, Ap-
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The temporal coverage of the TG records is limited at several locations (see Figure S1 in Supporting Informa-
tion S1). Consequently, at some of these locations, the evaluation in Figure 1 is based on only a couple of observed
joint storm surge and precipitation extremes. To test whether the results in Figure 1 are robust to using a larger
sample size, we repeated the evaluation with lower threshold percentiles (Figure 1le). Other than that the error
metrics tend to improve for lower thresholds, which may partially reflect the inclusion of less extreme events, the
performance of Ng, p relative to that of Ny, .p is not very sensitive to a larger sample size (Figure le).
Therefore, we conclude that using the statistical storm surge model instead of a hydrodynamic model to analyze
ANg, p in CMIP6 simulations is appropriate, especially since a hydrodynamic model would also have to be forced
with the relatively low-resolution atmospheric forcing from CMIP6 instead of with the ERAS forcing used for
CoDEC.

As an additional test we evaluated the statistical storm surge model trained with the CoDEC data instead of the
daily maxima from GESLA2. We find that with these predictands, the biases of Ny, .p and Ng_  .p are also
relatively similar (Figure S3 in Supporting Information S1). Furthermore, applying this version of the model to
the CMIP6 simulations did not substantially change the results in Section 4.3. Therefore, future research may use
a statistical storm surge model trained with hydrodynamic model simulations to extend our analysis to locations
without TGs.

4. Changes in the Number of Joint Extremes
4.1. Wind Speed and Precipitation (ANyy,p)

Displaying Ny, p for the entire domain, Figure 2a indicates that the observed number of joint wind speed and
precipitation extremes is relatively large mainly over west-facing coasts and mountainous regions such as the
western Iberian Peninsula, western France, parts of the UK and Norway. In contrast, it is relatively low over
Sweden, eastern Spain, southeastern France and the southeastern UK (Figure 2a). To a large degree, Ny, Ap 1S
consistent with the historical extremal dependency between wind speed and precipitation that has been estimated
previously (Martius et al., 2016; Owen et al., 2021). The CMIP6 ensemble mean N’&’}‘A’P well approximates this
large-scale pattern (Figure 2b), but especially the lower-resolution CMIP6 models do not capture the small-scale
imprints of orography and land-sea contrast seen in ERAS (Figure S4 in Supporting Information S1). Conse-
quently, the ensemble mean N’;{}SA’P is smoother and lower than Ny, .p in among others Scotland, Iceland,
Norway and Italy.

For both SSPs, the ensemble mean ANy, shows increases (of up to 4 and 6 per decade under SSP2-4.5 and
SSP5-8.5, respectively) in a band extending from the southwest to the northeast, neighbored by decreases (of up to
7 and 11 per decade under SSP2-4.5 and SSP5-8.5, respectively) in the northwest (Iceland) and the south (Bay of
Biscay & the Mediterranean Sea) of the domain (Figures 2¢ and 2d). Averaged over land, the absolute magnitude
of the changes is approximately 39% (SSP2-4.5) to 51% (SSP5-8.5) of the historical number of joint extremes.
The spatial patterns of ANy, p are similar under SSP2-4.5 and SSP5-8.5, but the magnitude of the changes is
larger under SSP5-8.5, reflecting a larger forced response. Correspondingly, the area in which the magnitude of
the ensemble mean ANy, » exceeds the standard deviation of the change between the CMIP6 models (shown in
Figure S5 in Supporting Information S1) is larger under SSP5-8.5 than under SSP2-4.5 (see stippling in
Figures 2c and 2d). If we only include one randomly selected initial-condition member per model, the standard
deviation between models increases by approximately 15% (SSP2-4.5) and 11% (SSP5-8.5) on average, reflecting
the ensemble uncertainty due to internal variability (see also Section 5). The ANy, » of individual CMIP6 models
with only few initial-condition members is clearly more noisy (less spatially coherent) than that of CMIP6 models
with more members (Figures S6 and S7 in Supporting Information S1). Compared to the projections of Ridder
et al. (2022), our ensemble mean projections seem to indicate larger decreases in southern Spain, larger increases
in the east of the UK and smaller increases in the west of the UK. These differences may be related to the different
CMIP6 ensembles used, but a more systematic comparison would be needed to confirm this.

As shown in Figure 3, a substantial part of the ensemble mean ANy, » under SSP5-8.5 (and under SSP2-4.5, see
Figure S8 in Supporting Information S1) consists of changes in the marginal distribution of precipitation. The
ensemble mean ANy, , (Figure 3a) is positive over most of Europe and negative over the south of the domain; a
pattern that is consistent with projections of the magnitude of extreme precipitation (C. Li et al., 2021; Pfahl
etal., 2017; Seneviratne, 2021). The increases in extreme precipitation over most of Europe, which would lead to
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(a) Historical (ERA5) (b) Historical (CMIP6)
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Figure 2. (a) Ny,,p based on the ERAS reanalysis (1979-2018), (b) Coupled Model Intercomparison Project 6 (CMIP6)
ensemble mean N1, (1981-2020), and (c, d) CMIP6 ensemble mean AN,y , under SSP2-4.5 and SSP5-8.5, respectively
(2061-2100 minus 1981-2020). In (c¢) and (d), the stippling indicates where the absolute ensemble mean change exceeds the
standard deviation of the change between models.

a larger number of precipitation events exceeding the historical threshold, are understood to be caused by the
increasing moisture carrying capacity of the heating atmosphere. The decreases in the Mediterranean, which
would lead to fewer events exceeding the historical threshold in the future, are thought to be caused by dynamic
circulation changes such as the projected shift of the North Atlantic storm track (Pfahl et al., 2017). Except in
between these regions of increases and decreases, the ensemble mean ANY,, , exceeds the standard deviation
between the models.

Changes in the marginal distribution of wind speed, on the other hand, contribute negatively to ANy, » in most of
the domain (Figure 3b), except over the North Sea region and Sweden. The pattern of the ensemble mean re-
sembles previously projected changes in storm track density and the wind intensity of extratropical cyclones
(Priestley & Catto, 2022; Zappa et al., 2013). In several regions with negative ANy, », such as in Spain, Portugal,
Iceland and Norway, the ensemble mean exceeds the standard deviation across models under SSP5-8.5 (and to a
lesser extent under SSP2-4.5, see Figure S8 in Supporting Information S1). Where ANy, , is positive, this is not

the case, similar to what has been found for changes in windstorm damages (Severino et al., 2023).

Together, changes in the marginal distributions of precipitation and wind speed (Figure 3c) explain much but not
all of the total change (ANy,,p, Figure 2d). The remaining differences are caused by changes in the dependence

between extreme winds and precipitation (AN{4 "), which are negative mainly over the northwest of the
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(a) Precipitation-driven (b) Wind-driven
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Figure 3. Coupled Model Intercomparison Project 6 ensemble mean ANy, » (under SSP5-8.5, 2061-2100 minus 1981-2020)
due to (a) changes in the marginal distribution of precipitation (AN%,,,), (b) changes in the marginal distribution of wind
speed (AN}, p), (c) changes in the marginal distributions of both precipitation and wind speed (ANy% ), and (d) changes in the

dependence between precipitation and wind speed (AN‘é‘f’A";izd“"“). The stippling indicates where the absolute value of the
ensemble mean of each component of ANy, , exceeds the standard deviation of that component between models.

domain, the Bay of Biscay, part of Norway and northern Africa, and positive in most other regions (Figure 3d).
While the magnitude of AN%2%"“"* is moderate, it is comparable to or higher than that of the other components of
ANy, in several regions. The ensemble mean of AN%?%"“"“ is lower than its standard deviation between models
except south of Norway, in the southern UK and at a few other grid cells (Figure 3d), indicating that the un-
certainty in this term due to model differences and internal climate variability is relatively large. In contrast to
AN%,, » and AN}, ., the pattern of AN %" does not clearly relate to the atmospheric changes projected in
previous studies. For instance, the dependence-driven increases in Ny, over the Mediterranean appear to be
inconsistent with the projected decrease in the frequency of extratropical cyclones over southern Europe
(Priestley & Catto, 2022; Zappa et al., 2013), given that in Europe, joint wind speed and precipitation extremes are
often associated with extratropical cyclones (Owen et al., 2021). However, as alluded to by Owen et al. (2021), the
co-occurrence of wind speed and precipitation extremes also depends on the seasons in which the extremes tend to
occur. To better understand the dependence-driven changes, we therefore analyze AN‘?%““"“ from a seasonal
perspective in the next section.

4.2. Seasonal Dependence-Driven Changes

Most of the ensemble mean AN(vlﬁf\‘;,"d""“ (Figure 3d) consists of changes in autumn (SON) and winter (DJF)
(Figures 4a and 4d), which are the seasons in which extratropical cyclones in Europe prevail and extreme wind
speed and precipitation are most likely to co-occur (Owen et al., 2021). As explained in Section 2.3.2, to compute
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Figure 4. Coupled Model Intercomparison Project 6 ensemble mean changes (under SSP5-8.5, 2061-2100 minus 1981—
2020) in the number of joint wind and precipitation extremes (ANy,, p), univariate wind speed extremes (ANy,) and univariate
precipitation extremes (AN,), in (a)—(c) winter (DJF) and (d)—(f) autumn (SON), respectively.

ANSPerdence e use the same threshold percentiles in both the historical and future period, so that the total number
of univariate extremes in these periods stays the same. However, the seasons in which the univariate extremes

tend to occur can change between these periods (Figures 4b, 4c, 4e, and 4f). The projected shifts in the number of

o . . . dependence
univariate extremes in autumn and winter seem to explain at least part of the ensemble mean AN/ 5 “"“* in these

seasons (Figure 4). For example, winter AN%?%%"* js negative in the north and northwest of the domain, where

also the numbers of precipitation and wind extremes in winter decrease. Similarly, winter AN “" is positive

over the Mediterranean Sea, where both the numbers of precipitation and wind extremes are simulated to increase

in winter (Figures 4a—4c). Furthermore, autumn AN2%"“" is negative over the Bay of Biscay, consistent with

the decreasing numbers of both wind and precipitation extremes in that region (Figures 4d—4f).

The changes in the number of univariate extremes in winter and autumn (Figures 4b, 4c, 4e, and 4f) reflect the
changes in the magnitude of extremes in these seasons relative to the other seasons. For instance, if the magnitude
of heavy-precipitation events will increase more strongly (or decrease less strongly) in winter than in summer, a
larger fraction of the unchanged total number of extreme precipitation events will occur in winter and a smaller
fraction in summer. Therefore, even if the frequency of the weather phenomena causing joint extremes, which
prevail in autumn and winter, is not projected to increase, a larger fraction of events with strong winds and

precipitation in autumn and winter may be classified as compound extreme events if the magnitude of univariate
. . . . . depend .

extremes in spring and summer decreases relative to that in autumn and winter. In places where ANYZZ“" is less

consistent with the seasonal changes in the number of univariate extremes, such as over the Bay of Biscay in

winter (Figures 4a—4c), changes in the frequency of certain weather types may play a larger role.

4.3. Storm Surges and Precipitation (Ng,p)

Next, we analyze the number of joint storm surge and precipitation extremes, using the storm surges that were
statistically derived from the CMIP6 simulations. The CMIP6 ensemble mean Ngff} (Figure 5a) agrees with
N, np (Figure la) reasonably well (significant pattern correlation of 0.75 and nRMSE of 0.40). Similarly to
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(a) Historical (b) Future - hist. (SSP2-4.5) (c) Future - hist. (SSP5-8.5)

0 10 20 30 -10 -5 0 5 10 -10 -5 0 5 10
Ns p [#/decade] ANs , p [#/decade] ANs , p [#/decade]
(d) Historical (e) Future - hist. (SSP2-4.5) (f) Future - hist. (SSP5-8.5)
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Figure 5. (a) Coupled Model Intercomparison Project 6 (CMIP6) ensemble mean Ngifj, (1981-2020), (b, c) CMIP6 ensemble
mean AN, » under SSP2-4.5 and SSP5-8.5, respectively (2061-2100 minus 1981-2020), (d) the CMIP6 ensemble mean of
NSt minus N1t and (e, f) the CMIP6 ensemble mean of AN, , minus AN, » under SSP2-4.5 and SSP5-8.5, respectively. In
(b) and (c), circles with a gray edge indicate where the absolute ensemble mean change exceeds the standard deviation of the
change between models.

Ng_, np» the ensemble mean Ngﬁfj, is relatively large at west coasts and relatively small at the east coast of the UK
and in northern Spain. However, especially along the northwestern coastline of the Mediterranean Sea and at the
east coasts of the UK and France, the ensemble mean Ngif} tends to underestimate N, »p (Figure S9a in Sup-
porting Information S1). While these biases may partially be inherited from the MLR model (see Figure 1f), the
ensemble mean Ngﬁfj, also tends to underestimate N, _.p in these regions (Figure S9b in Supporting Informa-
tion S1). Furthermore, a similar underestimation was found for an ensemble of CMIP5 models based on hy-
drodynamically modeled storm surges (Bevacqua et al., 2019; Bevacqua, Vousdoukas, Zappa, et al., 2020).
Hence, part of the biases is related to the differences between the atmospheric forcing of global climate models
and ERAS, to which internal variability also contributes. Compared to the ensemble mean N, (Figure 2b), N,
is larger in the northern Mediterranean, south of Spain and in and around the English Channel, and smaller in the
Bay of Biscay and the east of the UK and Spain (Figure 5d). This pattern is very similar to that of the differences
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ANy pp + Oicv [#]

between Ny, .p and Ny, .p (Figures 1b and 1d), suggesting that the MLR
model indeed translates the atmospheric forcing from ERAS5 and CMIP6
models to storm surges similarly.

For both SSPs, we find that the ensemble mean ANy, p (Figures 5b and 5c¢) is
positive at TGs in northwestern Europe and negative at most TGs in south-
western Europe. The largest increases can be seen in the English Channel, at
the east coast of the UK and along the southeastern North Sea coast (up to 4
and 6 per decade, under SSP2-4.5 and SSP5-8.5, respectively), and the largest
decreases south of Spain (up to 6 and 10 per decade, under SSP2-4.5 and
SSP5-8.5, respectively). In these regions, the ensemble mean tends to exceed
the standard deviation between models (see Figure S5 in Supporting Infor-
mation S1), especially under SSP5-8.5 (gray-edged circles in Figures 5b and
5c). If we only include one randomly selected initial-condition member per
model, the standard deviation between models increases by approximately
18% (SSP2-4.5) and 15% (SSP5-8.5) on average. West of the UK, north of
Spain and at the northern coast of Mediterranean Sea, the ensemble mean
ANg,p is relatively small. Averaged over the TGs, the absolute magnitude of
the ensemble mean changes is approximately 36% (SSP2-4.5) to 49% (SSP5-
8.5) of the historical number of joint extremes.

While their large-scale patterns broadly agree, AN, and ANy, p differ by
several events per decade in various regions. For instance, in the Bay of
Biscay, ANg,p is less negative than ANy, p, and at the coast of Scotland,
01 2 3 4 5 AN, p is more positive than ANy, (Figures 5e and 5f). Furthermore, in
AN p + Orcy [#] several locations, the magnitude of the difference between these changes
exceeds that of the changes themselves. Although the differences in

Figure 6. (a) Coupled Model Intercomparison Project 6 (CMIP6) ensemble Figures 5e and 5f inevitably depend on the storm surge model used, their
mean ANy, » under SSP2-4.5 (2061-2100 minus 1981-2020) divided by the magnitude suggests that changes in the joint probability of wind speed and

average standard deviation of N/

st
A

p (1981-2020) between initial-condition precipitation extremes are not a great proxy for changes in the joint proba-

members of CMIP6 models providing at least five members, (b) CMIP6 bility of storm surge and precipitation extremes and that the translation of

ensemble mean ANy, » under SSP2-4.5 (2061-2100 minus 1981-2020) divided
by the average standard deviation of N7, (1981-2020) between initial-
condition members of CMIP6 models providing at least five members, (c, d) as

in (a) and (b), under SSP5-8.5.

wind and pressure to storm surges is important to assess the potential for
compound flooding. Interestingly, the sign of the differences between AN, p
and ANy, p is not consistent between SSP2-4.5 and SSP5-8.5 everywhere,
which could be due to internal variability and/or differences in non-linear
changes between the SSPs. Given that both AN, p and ANy, p are driven by the same large-scale atmospheric
circulation changes described in Sections 4.1 and 4.2, their decomposition into changes in marginal distributions
and dependence-related changes are also broadly similar (Figure S13 in Supporting Information S1).

4.4. Magnitude Relative to Historical Internal Climate Variability

Figures 6a and 6b show that in most regions, the magnitude of the ensemble mean ANy, » and AN, p under SSP2-
4.5 is smaller than one or two times the standard deviation of N%i*', and N%*, due to internal climate variability
(estimated as explained in Section 2.4). In other words, most of the future changes in the average number of joint
extremes projected under SSP2-4.5 are smaller than the temporary deviations from that average that are likely to
be seen due to internal climate variability alone. In contrast, over the eastern North Sea and south of Spain, the
ensemble mean changes in the number of joint extremes tend to be larger than typical unforced variability
(Figures 6a and 6b).

Clearly, the ensemble mean ANy, p and AN, under SSP5-8.5 exceed twice the standard deviation due to in-
ternal climate variability in more locations than under SSP2-4.5 (Figures 6¢ and 6d). For instance, south of Spain,
east of the UK and along the southeastern North Sea coastline, the ensemble mean changes are higher than 3 or 4
standard deviations due to internal climate variability. Around the Mediterranean Sea and northeast of the UK,
however, the ensemble mean ANy, » and AN, p under SSP5-8.5 are still smaller than 2 standard deviations. For
ANg,.p, this is also the case in the Bay of Biscay and west of the English Channel.
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5. Uncertainty in the Projections and Sensitivity to Ensemble Size

Variations in the number of joint extremes due to internal climate variability (see Figure 6), as well as inter-model
differences and differences between emissions scenarios, introduce uncertainties in the projections of ANy, » and
ANg, p (see Figure S14 in Supporting Information S1). Depending on the location, these uncertainties can be large
compared to the ensemble mean future changes (compare Figures 2 and 5 with Figure S14 in Supporting In-
formation S1). Therefore, projections of changes in the joint probability of extremes based on only 5 to 6 climate
model simulations (e.g., Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli et al., 2020) may change sub-
stantially when different models and/or initial-condition members would be used. We investigate this sensitivity
by sub-sampling our large CMIP6 ensemble as described in Section 2.4.

We find that at many locations in the northeast of the domain, in the south and west of the UK, in the southeastern
North Sea and around the south of Spain, projections based on random subsets of CMIP6 models are more than
90% likely to have the same sign as the projections based on the full CMIP6 ensemble even if the subsets consist
of only 5 climate model simulations (Figure 7). This suggests that in these regions, the sign of the projections of
previous studies that used 5 to 6 models (e.g., Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli et al., 2020) is
relatively insensitive to the specific climate models that were included. In contrast, in the north and east of the UK,
over parts of the mainland of Europe, in the Bay of Biscay and along the southern coasts of France and Italy, the
probability that projections based on small ensembles differ in sign is often higher than 10% (Figure 7). Therefore,
in these locations, it is not unlikely that the projections of previous studies could have had the opposite sign if
different climate model simulations would have been used.

Figure 7 also shows that in general, the earlier in the twenty-first century and the lower the emissions scenario, the
larger is the ensemble size required for qualitatively robust projections. For instance, for robust projections of
ANg, p at the east coast of the UK, more than 10 models are required under SSP2-4.5 (Figure 7d), whereas 5 or

(f)

SSP2-4.5

Ensemble size [-]

SSP5-8.5

o0o0ooo0o000O0

POOOOODOCOOOOO

1 5 10 15 20
Ensemble size [-]

Figure 7. The minimum number of random Coupled Model Intercomparison Project 6 models that an ensemble needs to consist of for its mean (a, b) ANy, , and (c, d)
AN, p under SSP2-4.5 to have a 90% or higher probability of having the same sign as the projections in Section 4, for the periods 2041-2080 and 2061-2100 relative to
1981-2020, respectively, and (e)—(h) as in (a)—(d), under SSP5-8.5. The black-edged circles indicate where the minimum ensemble size is 5 or lower. Only one initial-

condition member is used per model.
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fewer models suffice under SSP5-8.5 (Figure 7h). This is consistent with the finding that the future changes in
ANy, p and ANy, p are larger relative to the uncertainties due to inter-model differences and internal climate
variability under stronger increases in emissions at most locations (as indicated by Figure 6 and the stippling in
Figures 2 and 5). However, even under SSP5-8.5, large ensembles are needed in the Bay of Biscay and along the
northern coastline of the Mediterranean Sea (Figures 7g and 7h). We note that the required ensemble sizes may
change if we would weight models based on their performance and/or interdependence instead of applying model
democracy.

While Figure 7 indicates that the climate model simulations used can strongly influence projections of ANy, p and
AN, p (including their sign), different definitions and analyses of compound extremes can also introduce dif-
ferences between studies (Camus et al., 2021). When we re-do our projections with the 99th instead of the 98th
percentile as the threshold for extremes, include a time-lag of up to 2 days between the extremes, or decluster the
extremes using a 3-day window (following Haigh et al., 2016) prior to making the projections, the projections
mainly change in magnitude (Figures S15 and S16 in Supporting Information S1). For instance, using a higher
threshold percentile or declustering the extremes results in smaller ANy, p and AN, p, whereas allowing a time-
lag leads to larger ANy, p and ANy, p. However, the spatial patterns of the changes are not very sensitive to these
methods (Figures S15 and S16 in Supporting Information S1), especially when compared to differences in ANy, p
and AN, between models and initial-condition members.

6. Discussion and Conclusions

Previous projections of changes in the joint probability of drivers of compound flooding in Europe are based on
only 5 to 6 CMIPS5 simulations (Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli et al., 2020). In this study,
we used a large ensemble of CMIP6 simulations, which we have shown to result in more robust and less uncertain
projections. Based on these projections, the joint probability of storm surges and precipitation extremes will
increase in the northwest of Europe (e.g., northwest of France, around the North Sea and in the UK), while it will
decrease further south (e.g., in most of Spain and around the Mediterranean Sea). The spatial patterns of the
ensemble mean change under the two emissions scenarios are similar, but the changes under SSP5-8.5 have a
higher absolute magnitude than under SSP2-4.5 (49% vs 36%, on average). Previous studies for Europe only
included a high emissions scenario (Bevacqua et al., 2019; Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli
et al., 2020).

The changes in the joint probability of storm surge and precipitation extremes have a large-scale pattern similar to
the changes in the joint probability of wind speed and precipitation extremes, but locally the differences can be
large (e.g., in Scotland and in the Bay of Biscay). Therefore, we conclude that changes in the joint probability of
wind speed and precipitation extremes are not always a good indication of changes in the potential for compound
flooding. Nevertheless, they help to understand the latter physically. Namely, we find that changes in the marginal
distributions of wind speed, storm surges and precipitation strongly resemble previously projected
(thermo)dynamic changes of the atmosphere (e.g., Pfahl et al., 2017; Priestley & Catto, 2022; Zappa et al., 2013),
as also concluded by Bevacqua, Vousdoukas, Zappa, et al. (2020). Our results additionally reveal that changes in
the dependence between the extremes are at least partially related to shifts in the seasons in which the extremes
tend to occur (Section 4.2).

Despite several methodological differences, the ensemble mean projections of the joint probability of storm surge
and precipitation extremes under SSP5-8.5 seem to agree qualitatively with the projections of Bevacqua,
Vousdoukas, Zappa, et al. (2020) in most regions, except southeast of Spain, in the Bay of Biscay and in the north
of the Mediterranean Sea. Based on our results in Section 5, it is likely that the differences in these regions are
mainly caused by the different and limited number of climate model simulations used by Bevacqua, Vousdoukas,
Zappa, et al. (2020). We conclude that especially under not so high emissions scenarios and earlier in the twenty-
first century, internal climate variability is large compared to the forced response of the number of joint extremes
and relatively large ensembles are needed for qualitatively robust projections. This may partially explain why
Ganguli et al. (2020) find decreases in the joint probability of storm surge and river discharge extremes in
northwestern Europe for 2055 whereas our results and those of Bevacqua et al. (2019) and Bevacqua, Vous-
doukas, Zappa, et al. (2020) indicate increases in the joint probability of storm surge and precipitation extremes in
that region. However, this discrepancy could also be related to the fact that Ganguli et al. (2020) used downscaled
and bias-corrected instead of raw climate model simulations. We consider it less likely that the differences are
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caused by their analysis of river discharge instead of precipitation extremes, as both are projected to increase in
magnitude over the UK and western Europe (Sante et al., 2021).

As demonstrated in this study, applying large-scale statistical storm surge models such as that of Tadesse
et al. (2020) to climate model simulations opens the door to projecting changes in the magnitude and frequency of
storm surge extremes based on large ensembles of climate model simulations. This is a promising avenue for
future research because projections of extreme storm surges and their co-occurrence with other flooding drivers
are sensitive to internal variability and inter-model differences (Bevacqua, Vousdoukas, Zappa, et al., 2020;
Calafat et al., 2022; Vousdoukas et al., 2017, 2018, & our results). We conclude that statistically modeled storm
surges are appropriate for analyzing the joint probability of storm surge and precipitation extremes, even when
using relatively coarse atmospheric forcing as input. Future work could investigate whether using more so-
phisticated statistical methods and/or weighting the extremes in the training data more strongly (e.g., Belling-
hausen et al., 2023) could further improve the results. As the performance of the statistical storm surge model
improves when using (time-lagged) sub-daily mean atmospheric forcing (Tadesse et al., 2020), it would also be
beneficial if more climate models would provide their output at sub-daily frequencies. Data-proximate cloud
computing could help to leverage such large data sets efficiently.

To compute ensemble statistics we weighted each CMIP6 model equally (Section 2.4). However, the performance
of the models in simulating numbers of joint extremes varies (Ridder et al., 2021; Y. Wu et al., 2021). Assigning
different weights to the CMIP6 models based on their performance may reduce the uncertainty in projections of
compound extremes due to inter-model differences (Ridder et al., 2022). As we have shown, though, the historical
number of joint extremes on which performance indicators are based is also affected by internal climate vari-
ability (Section 4.4). Therefore, skill scores such as those of Ridder et al. (2021) and Y. Wu et al. (2021) would be
more reliable if computed using multiple initial-condition simulations per model, which are unfortunately not
always available (Table 1).

Like several previous studies (e.g., Bevacqua, Vousdoukas, Zappa, et al., 2020; Ganguli et al., 2020; Gori
et al., 2022; Moftakhari et al., 2017), we analyzed changes in the joint probability of two drivers of compound
flooding (storm surges and precipitation) but did not consider how these changes in drivers affect the probability
and risk of flooding itself. For instance, we excluded astronomical tides. Besides that tides are an additional driver
of compound flooding (e.g., Gold et al., 2023; Piecuch et al., 2022), they also modulate the rate of surge-driven
flooding and reduce the effective probability of compound surge-pluvial flooding (Bevacqua et al., 2019; Hague
et al., 2023). Hence, changes in the joint probability of storm surge and precipitation extremes may have a larger
effect on the probability of flooding in the south than in the northwest of Europe, because of the lower tidal ranges
(Hague et al., 2023; Merrifield et al., 2013). We also excluded mean sea-level rise, which can increase the fre-
quency of (compound) flooding if coastal flood protection is not adapted accordingly (e.g., Bevacqua et al., 2019;
Hermans et al., 2023; Moftakhari et al., 2017).

Furthermore, to project changes in flood risk, additional local information such as on socioeconomic activity, land
elevation and protective measures would need to be incorporated. Impact-based thresholds for the absolute
magnitude of storm surges, precipitation and their combined effects could help to facilitate this (e.g., Hague
et al., 2023; Sweet et al., 2018). To use statistical storm surge models in that context, a more extensive validation
in terms of the absolute magnitude of predicted extremes would be warranted. While our projections may not
directly reflect changes in compound flood risk, they do show that the potential for compound flooding due to
extreme storm surges and precipitation in the northwest of Europe could increase under medium and high
emissions scenarios. As we showed, the robustness of such projections hinges on the use of sufficiently large
ensembles of climate model simulations.
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