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A B S T R A C T   

Flooding in low-lying coastal zones arises from coastal (storm surge, tides, and waves), fluvial (excessive river 
discharge), and pluvial (excessive surface runoff) drivers. We analyse changes in compound flooding potential 
around the contiguous United States (CONUS) coastline stemming from select combinations of these flooding 
drivers using long observational records with at least 55 years of data. We assess temporal changes in the tail 
(extremal) dependence (χ) using a 30-year sliding time window. Periods of strong tail dependence are found for 
the windows centered between the 1960s and 1980s/1990s at several locations for surge-discharge (S-Q) and 
surge-precipitation (S–P) combinations. Changes in dependence are associated with large-scale climate indices 
such as the Arctic Oscillation (AO) and El Nino Southern Oscillation indices (Niño 1.2 and Niño 3), among others. 
The significance of potential changes in the dependence structure is subsequently tested using Kullback–Leibler 
(KL) divergence. We find that changes are mostly not significant. Finally, we perform a complete multivariate 
statistical analysis exemplarily for one selected pair of variables at one location (S-Q in Washington, DC), 
allowing for varying dependence strength and structure as well as changes in the marginal distributions. Com
bined changes with increase in the dependence and marginals exacerbate the predicted compound flood po
tential. The comprehensive analysis presented here provides new insights into how and where compound 
flooding potential has changed with time, demonstrates associated links with large-scale climate indices, and 
highlights the effects of changes in the dependence and marginals in a multivariate statistical framework.   

1. Introduction 

Floods are among the most costly and dangerous natural catastro
phes, especially in coastal locations that are densely populated and have 
high socioeconomic importance (Hanson et al., 2011). In the contiguous 
United States (CONUS), 40% of the population resides in coastal 
counties, and 40% of them are exposed to coastal hazards (NOAA Office 
for Coastal Management). In total, 66% of U.S. losses from weather and 
climate extremes between 1980 and 2020 were due to inland floods and 
tropical cyclones causing storm surges, waves, wind, and extreme pre
cipitation (Smith, 2020). 

In coastal areas, flooding can occur from multiple hydro- 
meteorological drivers such as coastal drivers including storm surges 

and waves (coastal/oceanographic), and inland drivers such as excessive 
river discharge (fluvial), and direct runoff due to extreme precipitation 
(pluvial). Flood-related impacts can be exacerbated, depending on local 
conditions, when two or more of these drivers occur at the same time 
(concurrently) or when separated by a short period, such as a few hours 
or days (successively) (Zscheischler et al., 2018, 2020). Traditionally, 
past flood risk assessments accounted for individual drivers and falsely 
assumed independence between them, which can lead to an underesti
mation of flood risk, especially for coastal communities (Wahl et al., 
2015). 

Over the past decade, assessments of the potential for compound 
inland and coastal flooding drivers to co-occur have been undertaken at 
the global scale (e.g., Ward et al., 2018; Couasnon et al., 2020), regional 
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scale (e.g., Wahl et al., 2015; Moftakhari et al., 2017; Paprotny et al., 
2020; Hendry et al., 2019; Camus et al., 2021; Nasr et al., 2021), and for 
local case studies (e.g., Kew et al., 2013; Rueda et al., 2016; Bevacqua 
et al., 2017; Couasnon et al., 2018; Jane et al., 2020, 2022; Kim et al., 
2022; Peña et al., 2023; Santos et al., 2021b). Santos et al. (2021a) 
performed a compound analysis between surge and precipitation in a 
managed water system using a large ensemble of model data to study 
internal climate vriability. Challenges in analysing compound events are 
often related to the availability of longer observation records, in 
particular overlapping records which are required for a dependence 
analysis, which are limited (e.g., Jane et al., 2022; Santos et al., 2021b). 
To overcome this challenge, model/reanalysis data can be used instead 
(e.g., Marcos et al., 2019; Bevacqua et al., 2020; Couasnon et al., 2020; 
Camus et al., 2021). However, results from models should be interpreted 
with care as dependence could be overestimated or underestimated 
depending on the pairs of variables, as shown by Nasr et al. (2021). 
Thus, long overlapping records of observations are favoured to assess 
temporal changes in bivariate time series (e.g., Wahl et al., 2015) 
without introducing additional uncertainty from models (Nasr et al., 
2021). 

Climate change affects variables/drivers of compound flooding (e.g., 
Camelo et al., 2020 and Tabari, 2020). While there are many studies that 
investigate effects of climate change on individual flooding drivers, few 
studies focused on the non-stationary interaction between those drivers 
over time. Wahl et al. (2015) analysed dependence between storm surge 
and precipitation at several coastal locations around the CONUS using 
Kendall’s rank correlation coefficient (τ) calculated on conditional 
samples (two-way sampling) by applying a sliding time window. They 
found that the dependence between storm surge and precipitation had 
changed over time at many of the locations analysed. 

Moftakhari et al. (2017) studied compounding effects of fluvial 
floods and sea level rise at select locations in the U.S. and concluded that 
non-stationarity in coastal water levels due to sea-level rise (change in 
the marginal distribution) increases flood risk. Naseri and Hummel 
(2022) studied dependence between annual maximum precipitation and 
coincident sea-level. They found that sea-level rise and dependence have 
significant effects on joint return periods. Using numerical models, Gori 
et al. (2022) found that by 2 100 the frequency of joint extreme surge 
and rainfall could increase by 7-36-fold in the southern U.S. and by 
30-195-fold in the northeast U.S. due to decreasing translation spend 
and increasing storm intensity of tropical cyclones. 

Earlier studies have shown links between coastal flooding drivers 
and large-scale climate variability (e.g., Rashid and Wahl, 2020). This 
poses the question whether dependence between those drivers could 
also be linked to large-scale climate indices. Variability in extreme 
sea-levels along the U.S. coastlines, for example, was found to be linked 
to large-scale climatic indices at different time scales (e.g., Wahl and 
Chambers, 2016; Rashid and Wahl, 2020). El-Niño Southern Oscillation 
(ENSO) and indices derived from it (e.g., Southern Oscillation Index 
(SOI), Pacific Decadal Oscillation (PDO), North Pacific Index (NPI), 
Multivariate ENSO Index, Niño 2.1, and Niño 3.1) influence storm surge, 
which is the meteorological component of sea-level, along the U.S. west 
coast (e.g., Bromirski et al., 2003, 2017; Serafin and Ruggiero, 2014; 
Wahl and Chambers, 2016; Rashid and Wahl, 2020). ENSO was also 
linked to tropical cyclone activity in the Gulf of Mexico and Atlantic 
(Kennedy et al., 2007) which affects storm surge and precipitation 
(cascading to pluvial and fluvial floods) in the south-eastern U.S. 

Here we extend previous studies (particularly Nasr et al., 2021; Wahl 
et al., 2015) and carry out a continental-scale analysis of the temporal 
changes/variability in compound flooding potential caused by oceano
graphic (storm surge), fluvial (excessive river discharge), and pluvial 
(direct surface runoff from precipitation) sources using observational 
data. We have four key objectives. Our first objective is to characterize 
and map the change in dependence strength between inland and coastal 
drivers at locations with long overlapping records (at least 55 years of 
data) around the CONUS coastline. We perform this analysis for the 

whole year and after splitting the time series into seasons (or half years): 
tropical (June–November) and extra-tropical (December–May). This 
will show where and when compound flooding potential varied due to 
changes in dependence strength, and if these changes are more pro
nounced in one season compared to the other. Our second objective is to 
investigate whether a statistically significant link exists between 
time-varying dependence strength and large-scale climate indices. This 
will allow physical interpretation of the identified variations in the 
dependence strength. Our third objective is to compare the dependence 
structures (in addition to strength) of different combinations of flooding 
drivers over time. As our fourth and final objective, we demonstrate, 
exemplarily at one location, the effects of changes in dependence 
strength, structure, and marginal distributions on compound flood risk 
potential in a multivariate statistical framework. 

The paper is structured as follows. The datasets and methods are 
detailed in Sect. 2. The results are presented in Sect. 3, and findings are 
discussed in Sect. 4. Finally, conclusions are given in Sect. 5. 

2. Data and methods 

2.1. Data 

We use observational data from various sources for coastal locations 
around the CONUS coastline. The three flood generating variables 
considered here are storm surge (S), river discharge (Q), and precipi
tation (P). In the following we provide a brief overview of data, for more 
details on the data and pre-processing steps we refer to Nasr et al. (2021) 
where the same database was used. 

Hourly sea level data is available from the National Oceanic and 
Atmospheric Administration (NOAA; http://tidesandcurrents.noaa. 
gov/) database. Hourly sea-level values are detrended to eliminate 
mean sea-level rise. Then, we use the Unified Tidal Analysis and Pre
diction (UTide) package in MATLAB to perform a year-by-year harmonic 
tidal analysis to obtain tidal constituents (Codiga, 2011). Hourly storm 
surge, the meteorological component of water level of interest in this 
study, is represented by the non-tidal residual which is obtained by 
subtracting predicted tides from detrended hourly water levels. Finally, 
we extract daily maxima surge values from the hourly storm surge re
cord. Daily average river discharge time series were obtained from the 
United States Geological Survey (USGS) National Water Information 
System (NWIS) (https://waterdata.usgs.gov/nwis). Cumulative daily 
precipitation depths were obtained from the Global Historical Clima
tology Network Daily (GHCN-D) hosted by NOAA’s National Centers for 
Environmental Information (NOAA-NCEI) (https://www.ncdc.noaa.go 
v/ghcnd-data-access). All locations for which these data sets were ob
tained are shown in Fig. 1. As we are interested in investigating temporal 
changes, we focus on sites and pairs where the number of years of 
overlapping records between each pair is at least 55 years (Table S1). 
Applying this criterion results in omitting waves from the analysis, 
which were included in Nasr et al. (2021). Since we are interested in 
compound coastal-inland flooding drivers, the pairs considered are 
surge and discharge (S-Q) and surge and precipitation (S–P). From the 
35 locations considered in Nasr et al. (2021), Site 12- Annapolis, MD, is 
excluded as it does not have 55 years of overlapping data for either S-Q 
or S–P. 

In addition, we use the following eight climate indices, that were 
shown in earlier studies (e.g., Wahl and Chambers, 2016; Rashid and 
Wahl, 2020) to affect storm surge variability along the U.S. coast: 
Atlantic Multi-decadal Oscillation (AMO), Arctic Oscillation (AO), North 
Atlantic Oscillation (NAO), Niño 1.2 (N12), Niño 3 (N3), North Pacific 
Index (NPI), Pacific Decadal Oscillation (PDO), and Southern Oscillation 
Index (SOI). These indices represent sea-level pressure (SLP) and sea 
surface temperature (SST) anomalies at various spatial domains and 
were obtained from NOAA Physical Science Laboratory (https://psl. 
noaa.gov/gcos_wgsp/Timeseries/). 
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2.2. Changes in dependence strength over time 

Our first objective is to characterize and map the change in depen
dence strength between different drivers at locations around the CONUS 
coastline with long overlapping records. Here we focus on two combi
nations of variables with the potential for coastal-inland compound 
flooding. 

The metric that we use to quantify dependence strength is the tail 
dependence coefficient (χ). In this method, extremal (or tail) depen
dence falls into two categories: (1) asymptotic tail dependence; or (2) 
asymptotic tail independence (Ledford and Tawn, 1997). Suppose (A, B) 
are a pair of variables with cumulative distribution functions (Fa, Fb) 
transformed to unit scale (0,1), (U = Fa (A), V = Fb (B)). Then, (A, B) are 
asymptotically tail dependent if 

χ = lim
q⟶1

P (Fa(A) > q|Fb(B) > q) ε (0, 1]

and asymptotically tail independent if χ = 0. χ represents the proba
bility of one variable being extreme (exceeding a threshold q) given that 
the other variable is extreme (exceeding the same threshold q). 
Following Nasr et al. (2021), we choose q = 0.9 (90th percentile). We 
use the function ‘taildep’ from the R package extRemes (Gilleland and 
Katz, 2016) to calculate χ. The significance of the calculated χ values is 
estimated using a bootstrap method following Svensson and Jones 
(2002). We bootstrap data randomly by shuffling the temporal order of 
one variable (using blocks of 1-year length) to remove the dependence 
structure while at the same time preserving seasonality. We repeat this 1 
000 times and χ, as calculated from the original record, is considered 
significant if it is greater than 95% of the bootstrapped χ estimates (i.e., 
α = 0.05). 

To assess time-changing dependence strength, χ is calculated using a 
running time window approach with a 30-year window length (e.g., Hao 
and Singh, 2020), which is shifted 1 year for each time step. We require 
at least 25 years of overlapping data in each time window for deriving 
the metric. Following Wahl et al. (2015), we assess the significance of 
temporal changes by calculating the range of natural variability. The 
range of natural variability (10% and 90% levels) is calculated by 
resampling 30 years of data 10,000 times. The change/variability is 
significant if the value of χ calculated in a time window is outside that 
range. 

2.3. Relating changes in dependence to large-scale climate indices 

Our second objective is to investigate the relationships between 
time-varying dependence strength and large-scale climate indices. For 
this, we carry out a correlation and significance analysis between eight 
large-scale climate indices and time-changing χ from the non-stationary 
dependence strength analysis. The steps are as follows.  

1. From monthly values of the climate indices, we derive annual 
averages.  

2. Apply a low-pass filter, following Wahl and Chambers (2016), using 
a 30-year moving average to allow direct comparison with χ calcu
lated using a 30-year moving time window approach.  

3. Calculate Pearson correlation coefficient between 30-year running χ 
and low-pass filtered climate indices.  

4. Calculate lag-1 autocorrelation of the 30-year running χ time series 
and low-pass filtered climate indices.  

5. Calculate significance (at α = 0.05) of the correlation derived in step 
3 using a t-test which accounts for the effective (reduced) number of 
degrees of freedom (using the results from step 4) stemming from 
smoothing and autocorrelation similar to Wahl and Chambers (2016) 
and Rashid and Wahl (2020). 

2.4. Changes in dependence structure with time 

Our third objective is to assess changes in the dependence structures 
(in addition to dependence strength from the first objective) between 
different combinations of coastal and inland flooding drivers. Changes in 
the dependence structure can also lead to changes in joint return periods 
and in turn design values corresponding to joint return periods even if 
dependence strength and the marginal distributions of variables remain 
stationary. To analyse changes in the dependence structure, we use the 
last 30 years as a reference period and compare it to the data from all 
other overlapping 30-year time windows. We determine whether the 
dependence structures differ significantly from each other by comparing 
the extreme regions of the distributions using the Kullback–Leibler (KL) 
divergence. The method was introduced by Zscheischler et al. (2021) to 
investigate if the dependence structure between wind and precipitation 
extremes was different across different datasets in a study location in 
Europe. Also, Vignotto et al. (2021) used the KL divergence for clus
tering bivariate dependencies of compound precipitation and wind ex
tremes over Great Britain and Ireland. In an earlier study, Nasr et al. 

Fig. 1. Selected study sites based on tide gauge data availability and at least 55 years of overlapping records between surge and discharge (S–Q) or surge and 
precipitation (S–P). Sites are separated into east coast, Gulf coast, and west coast locations following Nasr et al. (2021). 
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(2021) used the KL divergence to compare dependence structures of 
compound flooding drivers derived from observation-based data and 
model-based data. The method builds on the previous work of Naveau 
et al. (2014) for comparing univariate datasets and extends it to bivar
iate (multivariate) datasets. 

The methodology here is briefly described but recommend that the 
reader refers to earlier studies for further details (Nasr et al., 2021; 
Zscheischler et al., 2021; Vignotto et al., 2021; and references therein for 
more details). For two bivariate distributions X(1) = (X(1)

1 , X(1)

2 ) and 
X(2) = (X(2)

1 , X(2)

2 ), corresponding to bivariate distributions from refer
ence periods (most recent 30 years, X(1)) and sliding 30-year window 
data (shifted 1 year at a time, X(2)), the divergence is only defined in the 
tail of the distributions after normalizing the marginal distributions to 
standard Pareto distributions. A risk function (r: R2⟶R) calculated on 
the Pareto scale is used to define extremal regions on each of the 
bivariate distributions. From the risk functions introduced in 
Zscheischler et al. (2021) we choose the ‘minimum’ corresponding to 
r(x) = min (x1, x2), with x = (x1, x2) as it covers both asymptotically 
dependent and independent data. This results in two univariate vari
ables: R(1) = r(X(1)) and R(2) = r(X(2)). We consider points as extreme 
when the variable R(j) exceeds a given high quantile threshold q(j)

u cor
responding to an exceedance probability u ε (0, 1), j = 1, 2. Varying the 
threshold q(j)

u changes the extremal region of interest (we used u = 0.9 to 
be consistent with the tail dependence threshold we employed in the 
first objective). Applying the minimum risk function for each of the two 
bivariate distributions, the extreme points are contained in the set 
{R(j) > q(j)

u }, j = 1, 2. This set is then divided into a fixed number of 
disjoint sets A(j)

1 ,…,A(j)
W . For the minimum risk function the data is split 

into W = 3 sets where one contains the co-occurring extremes and the 
other two contain data when only one variable is extreme. 

For the two random samples (X1
1, …, X1

n) and (X2
1, …, X2

n) from the two 
distributions X(1) and X(2), the empirical proportions of data points in 
each of the previously mentioned sets A(j)

w are computed as: 

p̂(j)
w =

#
{

i : X(j)
i ε A(j)

w

}

#
{

i : r
(

X(j)
i

)
> q(j)

u

}, w = 1, …, W; j = 1, 2; i = 1, …, n.

The dissimilarity between the extremal behaviours of the two dis
tributions can be accounted for as the KL divergence between the two 
multinomial distributions defined through the previous empirical pro
portions as follows: 

d12 = D
(

X(1)

1 , X(1)

2

)
=

1
2

∑W

w=1

(
(

p̂(1)

w − p̂(2)

w

)
log

(
p̂(1)

w

p̂(2)

w

))

The divergence d12 is a way to contrast the differences between 
extremal dependence structures for asymptotically dependent and in
dependent data. Also, it is symmetric and no additional model as
sumptions are required as it is a non-parametric statistic. The statistic d12 

follows a χ2(W −1) distribution in the limit as the sample size ap
proaches ∞ under suitable assumptions. This allows the estimation of 
whether it differs significantly from zero. 

2.5. Non-stationarity in a multivariate statistical framework 

In the final step, we perform a complete multivariate statistical 
analysis between surge and discharge using a 30-year sliding time 
window for Washington, DC. This location is chosen as it has a long 
overlapping record of surge and discharge along with a high strength 
and variability in dependence. The process is explained as follows: 

First, using time series of surge (S) and discharge (Q), we apply a 
peak-over-threshold (POT) approach to obtain independently cluster 
maxima series for each driver. Second, we use two-way sampling to pair 

the peak events of the conditioning variable with largest value of the 
conditioned variable within 3 days (e.g., Kim et al., 2022). The outcomes 
are two bivariate samples, one conditioned on S (COS) and the other 
conditioned on Q (COD). Third, we calculate Kendall’s τ (Kendall, 1938) 
for the two samples. 

Next, we use the framework by Jane et al. (2020) based on copula 
theory to derive design events for different return periods (RP) or annual 
exceedance probabilities (AEPs). First, we fit extreme marginal distri
butions to the conditioning variables in each of the two samples and 
non-extreme marginal distributions for the conditioned variables. For 
the first sample that is (COS) we used a generalized Pareto distribution 
(GPD) to model S and test a set of distributions for Q that are bounded at 
zero (e.g., Birnbaum-Saunders, exponential, gamma, lognormal, trun
cated normal, Tweedie, Weibull, generalized gamma). For the second 
sample that is (COD) we again use a generalized Pareto distribution 
(GPD) to model the conditioning variable Q in this case and test un
bounded distributions (Gaussian, Logistic) for S. We use the Akike in
formation criterion to select the best distribution (AIC; Akaike, 1974). 

After estimation of the extreme and non-extreme marginal distribu
tions, we obtain the copulas that best describe the joint dependence 
between Q and S. From a range of copula models that can capture 
different types of dependence structures (upper tail, lower tail, or no tail 
dependence) we select the best for each of the two samples using AIC. 
From these copula models, isolines for different joint AEPs can be esti
mated (Bender et al., 2016). The design event corresponding to the 
probability that both S and Q exceed the associated values concurrently 
is expressed as the “AND-Joint Return Period” and is extracted by 
selecting an event on the isoline. We choose the “AND” hazard scenario 
since it represents the concurrent occurrence of both extreme events, 
similar to the recent compound flooding studies (e.g., Jane et al., 2020; 
Kim et al., 2022; Peña et al., 2023). The selected “most-likely” design 
event corresponds to the event on the isoline with the highest proba
bility density given the observed data. All calculations are scripted in R 
Studio (R Core Team, 2020) and the pre-processing and multivariate 
(bivariate) modelling are conducted with the MultiHazard R package 
(https://github.com/rjaneUCF/MultiHazard). 

We carry out two experiments. In the first experiment, we investigate 
the effect of changes in the dependence structure (copula and strength) 
only, by fixing the marginal distributions to those fit based on the entire 
time series, but the strength of dependence (Kendall’s τ) and copula type 
are calculated separately in each time window. In the second experi
ment, we introduce the effect of changes in the marginals distributions 
by calculating the marginals for each time window. 

3. Results 

3.1. Changes in dependence strength over time 

This section describes the results for the first objective which is to 
characterize and map the change in dependence strength between 
different flooding drivers at locations around the CONUS coastline with 
long overlapping records. First, we show the results for the S-Q combi
nation and then for the S–P combination. For each combination we show 
results for the whole year and from the seasonal analysis (in the 
supplement). 

Fig. 2 shows the running tail dependence (χ) between S-Q calculated 
at a threshold of q = 0.9 from the 30-year moving time window analysis; 
results are exemplarily shown for three locations, distributed along the 
Gulf and east coast: Washington, DC (left column), Fort Pulaski, GA 
(middle column), and St. Petersburg, FL (right column). The tail 
dependence in Washington, DC increases between 1950 and the late 
1980s, exceeding the lower and upper ranges of the natural variability. 
This indicates a significant change and increase in the strength from 
0.275 to 0.4. This change is mainly driven by the change in the extra- 
tropical season supported by their similar temporal pattern. In St. 
Petersburg, FL the tail dependence has increased over time and exceeded 
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the range of natural variability in the late 1980s. This increase is also 
evident during (and driven by) the tropical season where hurricanes and 
tropical storms in the region often lead to high discharge and surge. In 
Fort Pulaski, GA the tail dependence is relatively stable over time (i.e., 
no exceedances of the range of natural variability) when analysing data 
from the entire year. However, during the extra-tropical season the tail 
dependence started to increase from the mid-1970s and exceeded the 
range of natural variability since the early 1990s. Performing this 
analysis for the entire year and for the different seasons highlights two 
things. First, if a change occurs in the annual time series, then the sea
sonal analysis informs which season mainly drives this change (for 
example in Washington, DC and St. Petersburg, FL). Second, if no change 
occurs during the entire year, it is still important to investigate changes 
during different seasons (as in Fort Pulaski, GA) as these may cause 
changes in flood risk during specific times of the year which are other
wise not captured. 

Fig. 3 shows results for changing χ between S-Q calculated at a 

threshold of q = 0.9 for all locations. The mean of each χ time series was 
removed (and is listed in brackets after the respective station name) to 
better highlight the changes over time. Along the East coast and eastern 
part of the Gulf of Mexico χ was above its mean value for 30-year win
dows centered in the 1980s and onwards and the range of natural 
variability was exceeded during that time at various locations. This 
behaviour is however reversed for the West coast and western part of the 
Gulf of Mexico. Similar results are found for the tropical (Fig. S1) and 
extra-tropical (Fig. S2) seasons for the eastern part of the CONUS where 
χ was mostly above mean values for the most recent years while it was 
below mean values on the West Coast for the same time period. 

The same results but for time-changing χ between S–P are shown in 
Fig. 4. For the East and Gulf coasts there is a mixed pattern where some 
locations are experiencing variability above the mean and others below 
over the same time period. For the West coast results are more coherent 
and the variability is below the mean for time windows centered before 
the mid-1970s, then it becomes larger to reach values above the mean 

Fig. 2. Time-changing tail dependence (at threshold q = 0.9) between surge (S) and discharge (Q) derived from a 30-year moving time window approach for three 
locations: Washington, DC (left column); Fort Pulaski, GA (middle column); St. Petersburg, FL (right column). Extremal dependence is calculated from the daily 
timeseries for the entire year (top row), the tropical season (June–November; middle row), and for the extra-tropical season (December–May; bottom row). Each 
circle represents the midpoint of the 30-year time window. Grey horizontal bands represent the range of natural variability of tail dependence (10% and 90%) from a 
resampling approach. Red markers indicate significant tail dependence (at α = 0.05), while non-significant values are marked in white. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and drops again below the mean in the early 2000s at locations in 
California. 

During the tropical season (Fig. S3), the East and Gulf coasts expe
rience variability above the mean for the most recent years. On the other 
hand, the West coast experiences variability below the mean in Cali
fornia for the most recent years. Stations on the northwest coast in 
Oregon and Washington experience generally stronger variability dur
ing the tropical season, with values consistently below the mean before 
the 1980s and above the mean afterwards. During the extra-tropical 
season (Fig. S4) this is reversed and the East and Gulf coasts experi
ence variability below the mean for the most recent years while the West 
Coast experiences variability above the mean. 

On the West coast the variability of S–P in the northern part (Oregon 
and Washington) differs from the southern part (California). The 

variability in Oregon and Washington is driven by the variability during 
summer season (Tropical season) while that of California is driven by 
variability in the winter season (Extra-tropical season). This is in 
agreement with the seasonality of rainfall in California as it often ex
periences heavy rainfall events when atmospheric rivers make landfall 
during winter as happened recently in January 2023. 

3.2. Changes in dependence and large-scale climate indices 

This section describes the results for the second objective which is to 
investigate relationships between time-varying dependence strength 
and large-scale climate indices. 

Fig. 5 shows a heat map for Pearson correlation coefficient between 
time changing χ (using a threshold of q = 0.9) for S-Q and eight 

Fig. 3. Heat map showing the changing tail dependence (for threshold q = 0.9) for S-Q when using daily data from the entire year; the mean has been removed (tail 
dependence anomaly) from each time series and the mean values are listed in brackets after the station names. Blank boxes indicate that calculations were not carried 
out in that box due to lack or insufficiency of available overlapping observations. Asterisk (*) indicates significant tail dependence (at α = 0.05) and the hyphen (−) 
indicates that the value is outside the range of natural variability (10%–90%). Each point represents the midpoint of the 30-year time window. 

Fig. 4. Heat map showing the changing tail dependence (for threshold q = 0.9) for S–P for when using daily data from the full year; the mean has been removed (tail 
dependence anomaly) from each time series and the mean values are listed in brackets after the station names. Blank boxes indicate that calculations were not carried 
out in that box due to lack or insufficiency of available overlapping observations. Asterisk (*) indicates significant tail dependence (at α = 0.05) and the hyphen (−) 
indicates that the value is outside the range of natural variability (10%–90%). Each point represents the midpoint of the 30-year time window. 
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Fig. 5. Heat map for Pearson correlation between time changing tail dependence coefficient χ (using a threshold of q = 0.9) for S-Q and smoothed climate indices. 
Numbers indicate significant values (at α = 0.05) while asterisk (*) indicates non-significant values. 

Fig. 6. Heat map for Pearson correlation between time changing tail dependence coefficient χ (using a threshold of q = 0.9) for S–P and smoothed climate indices. 
Numbers indicate significant values (at α = 0.05) while asterisk (*) indicates non-significant values. 
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smoothed climate indices. There is significant correlation between the 
time changing χ (using threshold of q = 0.9) for S-Q and at least 2 
climate indices at each of the analysed locations. The same is found in 
Fig. 6 for S–P. There is a strong positive correlation in the west coast 
with the N12, N3, and PDO and negative with NPI and SOI. While it is 
well-known that oceanic and hydro-meteorological phenomena are 
influenced by large scale atmospheric circulation, we show here that 
there is also a strong relationship between changes in dependence (be
tween inland and coastal flooding drivers) and large-scale climate 
indices. 

3.3. Changes in dependence structure with time 

This section describes the results for the third objective which is to 
compare the dependence structure (in addition to strength) of different 
combinations of flooding drivers over time using KL divergence because 
such changes can also modulate compound flooding potential. 

Fig. 7 shows a heatmap for the significance of the KL divergence 
calculated between the most recent 30-year time window and previous 
30-year time windows. Only locations and combinations that showed 
significant changes in the dependence structure are shown. Unlike the 
changes in dependence strength, the dependence structure for most lo
cations and variable combinations generally did not change significantly 
with time. Out of the 12 cases where we find significant changes in the 
dependence structure, 10 come from the analysis of the S–P variable 
pair. The locations where the changes occur are mostly located on the 
west coast; the only location on the east coast with changes in the 
dependence structure is Washington DC, where it happens for the S-Q 
(extra-tropical season) and S-Q (full year) cases. We find five cases 
where changes are significant when the whole (full) year is analysed, 
four cases where changes occur in the tropical season, and three cases 
where changes occur in the extra-tropical season. In most cases the 
changes occurred earlier in the records, while the most recent time 
windows show the same (or similar) dependence structures as the 
reference time window (i.e., the most recent 30 years of data); this 
behaviour is expected since recent time windows share a lot of infor
mation with the last time window in our moving window approach. 

3.4. Effects of non-stationarity on multivariate design values 

Here, as part of our fourth objective, we show results from a full 
multivariate analysis between surge and discharge using copula theory 
at Washington, DC. We show the effect of change of dependence strength 
with time on the most likely design point (first experiment) and the 
combined effect of changes in the dependence and the marginal distri
butions (second experiment) on design conditions. 

We start by showing the copula types used to model dependence in 
samples where either surge and discharge is conditioned to be above a 

high threshold. Fig. 8 shows that the copula type selected to model 
dependence between extreme surge (above q = 0.9) and corresponding 
discharge (red circles) is the Joe copula for all time windows. The Joe 
copula has upper tail dependence. The copula type selected to model 
dependence between extreme discharge (above q = 0.9) and corre
sponding surge (shown in blue points) is most often, but not always, the 
Joe copula. For some time-windows one of five other copulas is selected, 
but all of them possess upper tail dependence. 

Fig. 9 shows the temporal variation in the dependence strength and 
the discharge and surge values comprising the most likely design event 
under the 50-year “AND” joint return period scenario (corresponding to 
an annual exceedance probability (AEP) of 0.02). In Fig. 9a (top panel) 
we show how τ changes over time when conditioning on discharge 
(COD) and on surge (COS). For both cases, τ increases for windows 
centered at the 1950s/1960s onwards where the maximum τ values 
during recent years reach double the minimum values seen in the past. 
Fig. 9b (middle panel) shows the effect of changing dependence strength 
on surge/discharge values associated with the most likely 50-year return 
period event while keeping the marginal distributions constant. Note 
that we also allow the copula type to change, but in all time windows the 
most likely design point is defined by the case (COD or COS) that is 
modelled with the Joe copula. The effect is more pronounced in surge 
(~15 cm increase) compared to discharge, which fluctuates in a rela
tively small range of values. In Fig. 9c (lower panel) we show the same 
results but now with temporally varying marginal distributions. The 
effect of changing the marginals is stronger compared to just changing 
the dependence strength, leading to increases of the design values of 
both surge and discharge. 

4. Discussion 

In this study we have quantified the temporal changes in compound 
flooding potential that arise from the combination of different coastal 
and inland flooding drivers. Changes over time are assessed using a 30- 
year sliding time window of the tail dependence coefficient. The sliding 
time window approach was applied in several previous studies to assess 
temporal changes in a range of statistical parameters (e.g., Wahl et al., 
2015; Wahl and Chambers, 2016; Rashid et al., 2019; Hao and Singh, 
2020; Rashid and Wahl, 2020). We chose the tail dependence coefficient 
to focus on the case when two variables are extreme, as opposed to 
conditional sampling (using for example Kendall’s τ) when only one 
variable is extreme and not necessarily the other (e.g., Wahl et al., 
2015); this approach is still used here in the final objective to implement 
the multivariate statistical modelling framework at Washington, DC. 

For surge and discharge (S-Q), we find that the value of χ, calculated 
using a 30-year window, was above its mean value for windows centered 
in the 1980s onward on the East coast and the eastern part of the Gulf of 
Mexico, with a reverse behaviour for the West coast and western part of 

Fig. 7. Heat map for significance of the Kullback–Leibler (KL) divergence between the most recent 30-year and previous 30-year windows. Dark blue (1) indicates 
significance and dark red (0) indicates non-significance (at α = 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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the Gulf of Mexico. This pattern in general is similar for both tropical 
and extra-tropical seasons. 

We find that for S-Q the running χ is significantly correlated to at 
least two climate indices at any given location from the analysed loca
tions. The running χ is positively correlated with the low-pass filtered 
Arctic Oscillation (AO), Niño 1.2 (N12), and Niño 3 (N3) in the East 
coast and eastern Gulf of Mexico and negatively correlated with the 
same indices in the western Gulf of Mexico. Using a weather typing 
approach, Camus et al. (2022) showed positive correlation between the 
occurrence of compound S-Q events and Niño 3.4, also known as 
Oceanic Niño Index, for select locations in the East coast and Gulf of 
Mexico. In case of S–P, in the West coast, the running χ is positively 
correlated with Niño 1.2 (N12), Niño 3 (N3), and Pacific Decadal 
Oscillation (PDO); and is negatively correlated with North Pacific Index 
(NPI) and Southern Oscillation Index (SOI). 

The spatial distribution in the temporal change of tail dependence 
was found to be correlated with some large-scale climate indices. These 
results are not surprising as hydrometeorological and oceanic phe
nomena are physically connected globally through various excitation 
mechanisms by atmospheric circulation (Mullon et al., 2013). Some 
climate indices (e.g., ENSO) are known to influence storminess and 
occurrence of hurricanes and storms that lead to extreme storm surge 
and heavy precipitation in a short time. Wahl and Chambers (2016) and 
Rashid and Wahl (2020) showed how climate indices affect extreme 
surge levels, whereas in this study, we show that similar relationships 
also exist between these indices and the dependence between inland and 
coastal flooding drivers. 

Contrary to the change of the dependence strength with time, results 
from the KL divergence and copula analysis show that the overall 
dependence structure (i.e., copula type) does not significantly change 
over time. From the copula analysis results shown for Washington, DC, 
we find that the strength of dependence, as reflected by Kendall’s rank 
correlation coefficient τ, increases with time and this increase in 
dependence propagates to the increase in potential compound flood 
hazard when using constant marginals. Changes in the marginal distri
butions have a much stronger effect than changes in dependence 
strength on compound flood hazard potential. While the selected copula 
type is more variable when analysing the sample conditions on 
discharge (Fig. 8), we note that all copulas that are selected for the 
different time windows have upper tail dependence; hence the overall 
impact on the joint probabilities is still relatively small. Overall, these 
findings are in agreement with other studies (e.g., Bender et al., 2014; 
Hao and Singh, 2020; Razmi et al., 2022). However, those were all 

individual case studies, and it is still important for non-stationary 
compound flood assessments to account for potential changes in 
dependence strength (and structure) as an additional source of 
non-stationarity. 

Finally, we acknowledge that while our observational database is 
very good in comparison to many other studies for other parts of the 
world, it’s still limited, especially for the purpose of assessing non- 
stationarity. As has been shown, for example, in Santos et al. (2021a), 
natural climate variability can lead to changes in compound flood po
tential at multi-decadal time scales. Hence, the results presented here 
should not be interpreted as emerging long-term trends because of 
climate change, but rather show where and how much compound flood 
potential has varied in the past. In the same context, Bevacqua et al. 
(2023) highlight the advantage of integrating ensemble simulations into 
studies of compound weather extremes, including compound flooding, 
to better understand physical processes connections, assess high-impact 
low-probability events, and conduct climate attribution studies. 

Flood risk generally involves different components: hazard, expo
sure, and vulnerability. While our focus here was on assessing the hazard 
component and how it changes with time, it is worth noting that the 
other components are dynamic as well. Socioeconomic development 
translates to changes in exposure and vulnerability which increases 
impacts even when the dependence and marginal distributions of drivers 
considered are stationary (hazard is stationary). A next step could be to 
focus on local communities and explore how compound flood risk has 
evolved with time incorporating hazard, exposure, and vulnerability (e. 
g., Sebastian et al., 2019). 

5. Conclusions 

We have quantified the temporal variability in compound flooding 
potential that arises from the combination of storm surge, precipitation, 
and river discharge along the CONUS coastline. Our first objective was 
to characterize and map the change in dependence strength between 
different drivers at locations around the CONUS coastline with long 
overlapping records. We carried out the analysis at 34 sites, where long 
enough overlapping datasets with at least 55 years were available for the 
different variables. We found for S-Q that from 1980 onwards the 
variability of χ was above the mean for the East coast and eastern Gulf of 
Mexico and below it for the West coast and western Gulf of Mexico. 

Our second objective was to investigate whether a statistically sig
nificant link between time-varying dependence strength and large-scale 
climate indices exists. We found high significant correlations between 

Fig. 8. Best performing copula at Washington DC for the sample containing extreme discharge (above q = 0.9) and corresponding surge (blue points) and for the 
sample of extreme surge (above q = 0.9) and corresponding discharge (red circle). Each result point is at the center of a 30-year sliding time window. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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running χ and various climate indices (e.g., AO, ENSO, NPI, PDO, and 
SOI). Changes in χ are correlated and linked with large scale atmo
spheric circulations which modulate hydro-meteorological and ocean
ographic phenomena. 

Our third objective was to compare the dependence structures (in 
addition to strength) of different combinations of flooding drivers over 
time. Unlike the dependence strength that significantly changes over 
time, we found no significant change in dependence structure (i.e., 
copula type that models dependence). Our fourth objective was to 
perform a complete multivariate analysis for S-Q at Washington, DC as 
an example. We found that the effect of increasing the dependence 
strength, assuming stationary marginal distributions, is more pro
nounced for surge than discharge which is translated to a potential 

increase in coastal flood hazard compared to fluvial flood hazard. 
Varying the marginals with time in addition to the dependence leads to a 
significant increase in discharge and surge associated with most-likely 
50-year return period events. 

Our study focuses on temporal changes of the dependence which is 
part of the hazard component of potential compound flood risk. Flood 
risk is non-stationary as it involves changes in hazard, exposure, and 
vulnerability components over time. Incorporating these changes can 
lead to better understanding of flood risk in the future, leading to better 
planning that results into increasing resilience of coastal communities. 

Fig. 9. Dependence strength and surge/discharge 
values associated with most likely design events at 
Washington DC calculated using a 30-year sliding 
time window. Top panel (a) shows Kendall’s rank 
correlation coefficient when conditioning on 
discharge (COD) and on surge (COS). Middle panel 
(b) shows surge/discharge values for most-likely 50- 
year return period events and their changes over 
time due to varying dependence strength. Bottom 
panel (c) is the same as (b) but with time varying 
marginal distributions.   
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6. Code availability 

Data pre-processing, analysis and visualization were carried out in R 
programming language (R Core Team, 2020). The following R packages 
were used: ‘dataRetrieval’ (De Cicco et al., 2018) and ‘rnoaa’ (Cham
berlain et al., 2016) for data retrieval; ‘dplyr’ (Wickham et al., 2020b), 
‘lubridate’ (Spinu et al., 2020), and ‘tidyr’ (Wickham, 2020) for data 
pre-processing. ‘ExtRemes’ (Gilleland and Katz, 2016), ‘MultiHazard’ 
(Jane et al., 2020), and other routines for data analysis; and ‘ggplot2’ 
(Wickham et al., 2020a) and ‘pheatmap’ (Kolde, 2015) for visualization. 
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Bevacqua, E., Suarez-Gutierrez, L., Jézéquel, A., Lehner, F., Vrac, M., Yiou, P., 
Zscheischler, J., 2023. Advancing research on compound weather and climate events 
via large ensemble model simulations. Nat. Commun. 14, 2145. https://doi.org/ 
10.1038/s41467-023-37847-5. 

Bromirski, P.D., Flick, R.E., Cayan, D.R., 2003. Storminess variability along the 
California coast: 1858–2000. J. Clim. 16, 982–993. https://doi.org/10.1175/1520- 
0442(2003)016<0982:SVATCC>2.0.CO;2. 

Bromirski, P.D., Flick, R.E., Miller, A.J., 2017. Storm surge along the Pacific coast of 
North A merica. J. Geophys. Res. Oceans. 122, 441–457. https://doi.org/10.1002/ 
2016JC012178. 

Camelo, J., Mayo, T.L., Gutmann, E.D., 2020. Projected climate change impacts on 
hurricane storm surge inundation in the coastal United States. Front. Built Environ. 
6, 588049 https://doi.org/10.3389/fbuil.2020.588049. 

Camus, P., Haigh, I.D., Nasr, A.A., Wahl, T., Darby, S.E., Nicholls, R.J., 2021. Regional 
analysis of multivariate compound coastal flooding potential around Europe and 
environs: sensitivity analysis and spatial patterns. Nat. Hazards Earth Syst. Sci. 21, 
2021–2040. https://doi.org/10.5194/nhess-21-2021-2021. 

Camus, P., Haigh, I.D., Wahl, T., Nasr, A.A., Méndez, F.J., Darby, S.E., Nicholls, R.J., 
2022. Daily synoptic conditions associated with occurrences of compound events in 
estuaries along North Atlantic coastlines. Int. J. Climatol. 42, 5694–5713. https:// 
doi.org/10.1002/joc.7556. 

Chamberlain, S., Anderson, B., Salmon, M., Erickson, A., Potter, N., Stachelek, J., 
Simmons, A., Ram, K., Edmund, H., 2016. rnoaa: NOAA weather data from R. CRAN. 
https://CRAN.R-project.org/package=rnoaa. 

Codiga, D.L., 2011. Technical report 2011-01. In: Unified Tidal Analysis and Prediction 
Using the UTide Matlab Functions. Graduate School of Oceanography, University of 
Rhode Island, Narragansett. 1–59, available at: http://www.po.gso.uri.edu/pub/ 
downloads/codiga/pubs/2011Codiga-UTide-Report.pdf. (Accessed 25 June 2020). 
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