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ABSTRACT

Flooding in low-lying coastal zones arises from coastal (storm surge, tides, and waves), fluvial (excessive river
discharge), and pluvial (excessive surface runoff) drivers. We analyse changes in compound flooding potential
around the contiguous United States (CONUS) coastline stemming from select combinations of these flooding
drivers using long observational records with at least 55 years of data. We assess temporal changes in the tail
(extremal) dependence ()) using a 30-year sliding time window. Periods of strong tail dependence are found for
the windows centered between the 1960s and 1980s/1990s at several locations for surge-discharge (S-Q) and
surge-precipitation (S-P) combinations. Changes in dependence are associated with large-scale climate indices
such as the Arctic Oscillation (AO) and El Nino Southern Oscillation indices (Nino 1.2 and Nino 3), among others.
The significance of potential changes in the dependence structure is subsequently tested using Kullback-Leibler
(KL) divergence. We find that changes are mostly not significant. Finally, we perform a complete multivariate
statistical analysis exemplarily for one selected pair of variables at one location (S-Q in Washington, DC),
allowing for varying dependence strength and structure as well as changes in the marginal distributions. Com-
bined changes with increase in the dependence and marginals exacerbate the predicted compound flood po-
tential. The comprehensive analysis presented here provides new insights into how and where compound
flooding potential has changed with time, demonstrates associated links with large-scale climate indices, and
highlights the effects of changes in the dependence and marginals in a multivariate statistical framework.

1. Introduction

and waves (coastal/oceanographic), and inland drivers such as excessive
river discharge (fluvial), and direct runoff due to extreme precipitation

Floods are among the most costly and dangerous natural catastro-
phes, especially in coastal locations that are densely populated and have
high socioeconomic importance (Hanson et al., 2011). In the contiguous
United States (CONUS), 40% of the population resides in coastal
counties, and 40% of them are exposed to coastal hazards (NOAA Office
for Coastal Management). In total, 66% of U.S. losses from weather and
climate extremes between 1980 and 2020 were due to inland floods and
tropical cyclones causing storm surges, waves, wind, and extreme pre-
cipitation (Smith, 2020).

In coastal areas, flooding can occur from multiple hydro-
meteorological drivers such as coastal drivers including storm surges
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(pluvial). Flood-related impacts can be exacerbated, depending on local
conditions, when two or more of these drivers occur at the same time
(concurrently) or when separated by a short period, such as a few hours
or days (successively) (Zscheischler et al., 2018, 2020). Traditionally,
past flood risk assessments accounted for individual drivers and falsely
assumed independence between them, which can lead to an underesti-
mation of flood risk, especially for coastal communities (Wahl et al.,
2015).

Over the past decade, assessments of the potential for compound
inland and coastal flooding drivers to co-occur have been undertaken at
the global scale (e.g., Ward et al., 2018; Couasnon et al., 2020), regional
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scale (e.g., Wahl et al., 2015; Moftakhari et al., 2017; Paprotny et al.,
2020; Hendry et al., 2019; Camus et al., 2021; Nasr et al., 2021), and for
local case studies (e.g., Kew et al., 2013; Rueda et al., 2016; Bevacqua
et al., 2017; Couasnon et al., 2018; Jane et al., 2020, 2022; Kim et al.,
2022; Pena et al., 2023; Santos et al., 2021b). Santos et al. (2021a)
performed a compound analysis between surge and precipitation in a
managed water system using a large ensemble of model data to study
internal climate vriability. Challenges in analysing compound events are
often related to the availability of longer observation records, in
particular overlapping records which are required for a dependence
analysis, which are limited (e.g., Jane et al., 2022; Santos et al., 2021b).
To overcome this challenge, model/reanalysis data can be used instead
(e.g., Marcos et al., 2019; Bevacqua et al., 2020; Couasnon et al., 2020;
Camus et al., 2021). However, results from models should be interpreted
with care as dependence could be overestimated or underestimated
depending on the pairs of variables, as shown by Nasr et al. (2021).
Thus, long overlapping records of observations are favoured to assess
temporal changes in bivariate time series (e.g., Wahl et al., 2015)
without introducing additional uncertainty from models (Nasr et al.,
2021).

Climate change affects variables/drivers of compound flooding (e.g.,
Camelo et al., 2020 and Tabari, 2020). While there are many studies that
investigate effects of climate change on individual flooding drivers, few
studies focused on the non-stationary interaction between those drivers
over time. Wahl et al. (2015) analysed dependence between storm surge
and precipitation at several coastal locations around the CONUS using
Kendall’s rank correlation coefficient (t) calculated on conditional
samples (two-way sampling) by applying a sliding time window. They
found that the dependence between storm surge and precipitation had
changed over time at many of the locations analysed.

Moftakhari et al. (2017) studied compounding effects of fluvial
floods and sea level rise at select locations in the U.S. and concluded that
non-stationarity in coastal water levels due to sea-level rise (change in
the marginal distribution) increases flood risk. Naseri and Hummel
(2022) studied dependence between annual maximum precipitation and
coincident sea-level. They found that sea-level rise and dependence have
significant effects on joint return periods. Using numerical models, Gori
et al. (2022) found that by 2 100 the frequency of joint extreme surge
and rainfall could increase by 7-36-fold in the southern U.S. and by
30-195-fold in the northeast U.S. due to decreasing translation spend
and increasing storm intensity of tropical cyclones.

Earlier studies have shown links between coastal flooding drivers
and large-scale climate variability (e.g., Rashid and Wahl, 2020). This
poses the question whether dependence between those drivers could
also be linked to large-scale climate indices. Variability in extreme
sea-levels along the U.S. coastlines, for example, was found to be linked
to large-scale climatic indices at different time scales (e.g., Wahl and
Chambers, 2016; Rashid and Wahl, 2020). El-Nino Southern Oscillation
(ENSO) and indices derived from it (e.g., Southern Oscillation Index
(SOI), Pacific Decadal Oscillation (PDO), North Pacific Index (NPI),
Multivariate ENSO Index, Nino 2.1, and Nino 3.1) influence storm surge,
which is the meteorological component of sea-level, along the U.S. west
coast (e.g., Bromirski et al., 2003, 2017; Serafin and Ruggiero, 2014;
Wahl and Chambers, 2016; Rashid and Wahl, 2020). ENSO was also
linked to tropical cyclone activity in the Gulf of Mexico and Atlantic
(Kennedy et al., 2007) which affects storm surge and precipitation
(cascading to pluvial and fluvial floods) in the south-eastern U.S.

Here we extend previous studies (particularly Nasr et al., 2021; Wahl
et al., 2015) and carry out a continental-scale analysis of the temporal
changes/variability in compound flooding potential caused by oceano-
graphic (storm surge), fluvial (excessive river discharge), and pluvial
(direct surface runoff from precipitation) sources using observational
data. We have four key objectives. Our first objective is to characterize
and map the change in dependence strength between inland and coastal
drivers at locations with long overlapping records (at least 55 years of
data) around the CONUS coastline. We perform this analysis for the
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whole year and after splitting the time series into seasons (or half years):
tropical (June-November) and extra-tropical (December-May). This
will show where and when compound flooding potential varied due to
changes in dependence strength, and if these changes are more pro-
nounced in one season compared to the other. Our second objective is to
investigate whether a statistically significant link exists between
time-varying dependence strength and large-scale climate indices. This
will allow physical interpretation of the identified variations in the
dependence strength. Our third objective is to compare the dependence
structures (in addition to strength) of different combinations of flooding
drivers over time. As our fourth and final objective, we demonstrate,
exemplarily at one location, the effects of changes in dependence
strength, structure, and marginal distributions on compound flood risk
potential in a multivariate statistical framework.

The paper is structured as follows. The datasets and methods are
detailed in Sect. 2. The results are presented in Sect. 3, and findings are
discussed in Sect. 4. Finally, conclusions are given in Sect. 5.

2. Data and methods
2.1. Data

We use observational data from various sources for coastal locations
around the CONUS coastline. The three flood generating variables
considered here are storm surge (S), river discharge (Q), and precipi-
tation (P). In the following we provide a brief overview of data, for more
details on the data and pre-processing steps we refer to Nasr et al. (2021)
where the same database was used.

Hourly sea level data is available from the National Oceanic and
Atmospheric Administration (NOAA; http://tidesandcurrents.noaa.
gov/) database. Hourly sea-level values are detrended to eliminate
mean sea-level rise. Then, we use the Unified Tidal Analysis and Pre-
diction (UTide) package in MATLAB to perform a year-by-year harmonic
tidal analysis to obtain tidal constituents (Codiga, 2011). Hourly storm
surge, the meteorological component of water level of interest in this
study, is represented by the non-tidal residual which is obtained by
subtracting predicted tides from detrended hourly water levels. Finally,
we extract daily maxima surge values from the hourly storm surge re-
cord. Daily average river discharge time series were obtained from the
United States Geological Survey (USGS) National Water Information
System (NWIS) (https://waterdata.usgs.gov/nwis). Cumulative daily
precipitation depths were obtained from the Global Historical Clima-
tology Network Daily (GHCN-D) hosted by NOAA’s National Centers for
Environmental Information (NOAA-NCEI) (https://www.ncdc.noaa.go
v/ghend-data-access). All locations for which these data sets were ob-
tained are shown in Fig. 1. As we are interested in investigating temporal
changes, we focus on sites and pairs where the number of years of
overlapping records between each pair is at least 55 years (Table S1).
Applying this criterion results in omitting waves from the analysis,
which were included in Nasr et al. (2021). Since we are interested in
compound coastal-inland flooding drivers, the pairs considered are
surge and discharge (S-Q) and surge and precipitation (S-P). From the
35 locations considered in Nasr et al. (2021), Site 12- Annapolis, MD, is
excluded as it does not have 55 years of overlapping data for either S-Q
or S-P.

In addition, we use the following eight climate indices, that were
shown in earlier studies (e.g., Wahl and Chambers, 2016; Rashid and
Wahl, 2020) to affect storm surge variability along the U.S. coast:
Atlantic Multi-decadal Oscillation (AMO), Arctic Oscillation (AO), North
Atlantic Oscillation (NAO), Nino 1.2 (N12), Nino 3 (N3), North Pacific
Index (NPI), Pacific Decadal Oscillation (PDO), and Southern Oscillation
Index (SOI). These indices represent sea-level pressure (SLP) and sea
surface temperature (SST) anomalies at various spatial domains and
were obtained from NOAA Physical Science Laboratory (https://psl.
noaa.gov/gcos_wgsp/Timeseries/).
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Fig. 1. Selected study sites based on tide gauge data availability and at least 55 years of overlapping records between surge and discharge (S—Q) or surge and
precipitation (S-P). Sites are separated into east coast, Gulf coast, and west coast locations following Nasr et al. (2021).

2.2. Changes in dependence strength over time

Our first objective is to characterize and map the change in depen-
dence strength between different drivers at locations around the CONUS
coastline with long overlapping records. Here we focus on two combi-
nations of variables with the potential for coastal-inland compound
flooding.

The metric that we use to quantify dependence strength is the tail
dependence coefficient (y). In this method, extremal (or tail) depen-
dence falls into two categories: (1) asymptotic tail dependence; or (2)
asymptotic tail independence (Ledford and Tawn, 1997). Suppose (A, B)
are a pair of variables with cumulative distribution functions (F,, F)
transformed to unit scale (0,1), (U = F, (A), V = F;, (B)). Then, (A, B) are
asymptotically tail dependent if

x=limP (Fo(A) > q|Fy(B) > q) € (0, 1]

and asymptotically tail independent if y = 0. y represents the proba-
bility of one variable being extreme (exceeding a threshold q) given that
the other variable is extreme (exceeding the same threshold q).
Following Nasr et al. (2021), we choose q = 0.9 (90th percentile). We
use the function ‘taildep’ from the R package extRemes (Gilleland and
Katz, 2016) to calculate y. The significance of the calculated y values is
estimated using a bootstrap method following Svensson and Jones
(2002). We bootstrap data randomly by shuffling the temporal order of
one variable (using blocks of 1-year length) to remove the dependence
structure while at the same time preserving seasonality. We repeat this 1
000 times and y, as calculated from the original record, is considered
significant if it is greater than 95% of the bootstrapped y estimates (i.e.,
a = 0.05).

To assess time-changing dependence strength, y is calculated using a
running time window approach with a 30-year window length (e.g., Hao
and Singh, 2020), which is shifted 1 year for each time step. We require
at least 25 years of overlapping data in each time window for deriving
the metric. Following Wahl et al. (2015), we assess the significance of
temporal changes by calculating the range of natural variability. The
range of natural variability (10% and 90% levels) is calculated by
resampling 30 years of data 10,000 times. The change/variability is
significant if the value of y calculated in a time window is outside that
range.

2.3. Relating changes in dependence to large-scale climate indices

Our second objective is to investigate the relationships between
time-varying dependence strength and large-scale climate indices. For
this, we carry out a correlation and significance analysis between eight
large-scale climate indices and time-changing y from the non-stationary
dependence strength analysis. The steps are as follows.

1. From monthly values of the climate indices, we derive annual
averages.

2. Apply a low-pass filter, following Wahl and Chambers (2016), using
a 30-year moving average to allow direct comparison with y calcu-
lated using a 30-year moving time window approach.

3. Calculate Pearson correlation coefficient between 30-year running y
and low-pass filtered climate indices.

4. Calculate lag-1 autocorrelation of the 30-year running y time series
and low-pass filtered climate indices.

5. Calculate significance (at @ = 0.05) of the correlation derived in step
3 using a t-test which accounts for the effective (reduced) number of
degrees of freedom (using the results from step 4) stemming from
smoothing and autocorrelation similar to Wahl and Chambers (2016)
and Rashid and Wahl (2020).

2.4. Changes in dependence structure with time

Our third objective is to assess changes in the dependence structures
(in addition to dependence strength from the first objective) between
different combinations of coastal and inland flooding drivers. Changes in
the dependence structure can also lead to changes in joint return periods
and in turn design values corresponding to joint return periods even if
dependence strength and the marginal distributions of variables remain
stationary. To analyse changes in the dependence structure, we use the
last 30 years as a reference period and compare it to the data from all
other overlapping 30-year time windows. We determine whether the
dependence structures differ significantly from each other by comparing
the extreme regions of the distributions using the Kullback-Leibler (KL)
divergence. The method was introduced by Zscheischler et al. (2021) to
investigate if the dependence structure between wind and precipitation
extremes was different across different datasets in a study location in
Europe. Also, Vignotto et al. (2021) used the KL divergence for clus-
tering bivariate dependencies of compound precipitation and wind ex-
tremes over Great Britain and Ireland. In an earlier study, Nasr et al.
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(2021) used the KL divergence to compare dependence structures of
compound flooding drivers derived from observation-based data and
model-based data. The method builds on the previous work of Naveau
et al. (2014) for comparing univariate datasets and extends it to bivar-
iate (multivariate) datasets.

The methodology here is briefly described but recommend that the
reader refers to earlier studies for further details (Nasr et al., 2021;
Zscheischler et al., 2021; Vignotto et al., 2021; and references therein for
more details). For two bivariate distributions XV = (Xgl),Xg)) and
X®@ = (X<12),X(22)), corresponding to bivariate distributions from refer-
ence periods (most recent 30 years, X(!)) and sliding 30-year window
data (shifted 1 year at a time, X?), the divergence is only defined in the
tail of the distributions after normalizing the marginal distributions to
standard Pareto distributions. A risk function (r: R2—R) calculated on
the Pareto scale is used to define extremal regions on each of the
bivariate distributions. From the risk functions introduced in
Zscheischler et al. (2021) we choose the ‘minimum’ corresponding to
r(x) = min (x1, x2), with x = (x1,x2) as it covers both asymptotically
dependent and independent data. This results in two univariate vari-
ables: RY) = (X)) and R® = r(X?)). We consider points as extreme
when the variable R exceeds a given high quantile threshold ¢ cor-
responding to an exceedance probability u e (0,1),j = 1,2. Varying the
threshold ¥’ changes the extremal region of interest (we used u = 0.9 to
be consistent with the tail dependence threshold we employed in the
first objective). Applying the minimum risk function for each of the two
bivariate distributions, the extreme points are contained in the set
{RO > q¥3, j = 1,2. This set is then divided into a fixed number of
disjoint sets A(lj)7 ...,Ag&. For the minimum risk function the data is split
into W = 3 sets where one contains the co-occurring extremes and the
other two contain data when only one variable is extreme.

For the two random samples (X}, ..., X}) and (X3, ..., X2) from the two
distributions X!) and X®), the empirical proportions of data points in
each of the previously mentioned sets AY) are computed as:

_ #{i : X}%Ag)}
Pl = : W
# {i : r(Xf”) > qt(ll>}
The dissimilarity between the extremal behaviours of the two dis-
tributions can be accounted for as the KL divergence between the two

multinomial distributions defined through the previous empirical pro-
portions as follows:

1Y ~(1)
_ (1) (1)) _ ~(1) _ =(2) Py
dlz*D(X 7X2 )75 Z((pw — Py )10g<ﬁ(2)

w=1 w

=1,...W; j=1,2;i=1,...,n.

The divergence d;, is a way to contrast the differences between
extremal dependence structures for asymptotically dependent and in-
dependent data. Also, it is symmetric and no additional model as-
sumptions are required as it is a non-parametric statistic. The statistic d;»
follows a y?(W—1) distribution in the limit as the sample size ap-
proaches oo under suitable assumptions. This allows the estimation of
whether it differs significantly from zero.

2.5. Non-stationarity in a multivariate statistical framework

In the final step, we perform a complete multivariate statistical
analysis between surge and discharge using a 30-year sliding time
window for Washington, DC. This location is chosen as it has a long
overlapping record of surge and discharge along with a high strength
and variability in dependence. The process is explained as follows:

First, using time series of surge (S) and discharge (Q), we apply a
peak-over-threshold (POT) approach to obtain independently cluster
maxima series for each driver. Second, we use two-way sampling to pair
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the peak events of the conditioning variable with largest value of the
conditioned variable within 3 days (e.g., Kim et al., 2022). The outcomes
are two bivariate samples, one conditioned on S (COS) and the other
conditioned on Q (COD). Third, we calculate Kendall’s T (Kendall, 1938)
for the two samples.

Next, we use the framework by Jane et al. (2020) based on copula
theory to derive design events for different return periods (RP) or annual
exceedance probabilities (AEPs). First, we fit extreme marginal distri-
butions to the conditioning variables in each of the two samples and
non-extreme marginal distributions for the conditioned variables. For
the first sample that is (COS) we used a generalized Pareto distribution
(GPD) to model S and test a set of distributions for Q that are bounded at
zero (e.g., Birnbaum-Saunders, exponential, gamma, lognormal, trun-
cated normal, Tweedie, Weibull, generalized gamma). For the second
sample that is (COD) we again use a generalized Pareto distribution
(GPD) to model the conditioning variable Q in this case and test un-
bounded distributions (Gaussian, Logistic) for S. We use the Akike in-
formation criterion to select the best distribution (AIC; Akaike, 1974).

After estimation of the extreme and non-extreme marginal distribu-
tions, we obtain the copulas that best describe the joint dependence
between Q and S. From a range of copula models that can capture
different types of dependence structures (upper tail, lower tail, or no tail
dependence) we select the best for each of the two samples using AIC.
From these copula models, isolines for different joint AEPs can be esti-
mated (Bender et al., 2016). The design event corresponding to the
probability that both S and Q exceed the associated values concurrently
is expressed as the “AND-Joint Return Period” and is extracted by
selecting an event on the isoline. We choose the “AND” hazard scenario
since it represents the concurrent occurrence of both extreme events,
similar to the recent compound flooding studies (e.g., Jane et al., 2020;
Kim et al., 2022; Pena et al., 2023). The selected “most-likely” design
event corresponds to the event on the isoline with the highest proba-
bility density given the observed data. All calculations are scripted in R
Studio (R Core Team, 2020) and the pre-processing and multivariate
(bivariate) modelling are conducted with the MultiHazard R package
(https://github.com/rjaneUCF/MultiHazard).

We carry out two experiments. In the first experiment, we investigate
the effect of changes in the dependence structure (copula and strength)
only, by fixing the marginal distributions to those fit based on the entire
time series, but the strength of dependence (Kendall’s t) and copula type
are calculated separately in each time window. In the second experi-
ment, we introduce the effect of changes in the marginals distributions
by calculating the marginals for each time window.

3. Results
3.1. Changes in dependence strength over time

This section describes the results for the first objective which is to
characterize and map the change in dependence strength between
different flooding drivers at locations around the CONUS coastline with
long overlapping records. First, we show the results for the S-Q combi-
nation and then for the S-P combination. For each combination we show
results for the whole year and from the seasonal analysis (in the
supplement).

Fig. 2 shows the running tail dependence ()) between S-Q calculated
at a threshold of q = 0.9 from the 30-year moving time window analysis;
results are exemplarily shown for three locations, distributed along the
Gulf and east coast: Washington, DC (left column), Fort Pulaski, GA
(middle column), and St. Petersburg, FL (right column). The tail
dependence in Washington, DC increases between 1950 and the late
1980s, exceeding the lower and upper ranges of the natural variability.
This indicates a significant change and increase in the strength from
0.275 to 0.4. This change is mainly driven by the change in the extra-
tropical season supported by their similar temporal pattern. In St.
Petersburg, FL the tail dependence has increased over time and exceeded
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Fig. 2. Time-changing tail dependence (at threshold q = 0.9) between surge (S) and discharge (Q) derived from a 30-year moving time window approach for three
locations: Washington, DC (left column); Fort Pulaski, GA (middle column); St. Petersburg, FL (right column). Extremal dependence is calculated from the daily
timeseries for the entire year (top row), the tropical season (June-November; middle row), and for the extra-tropical season (December-May; bottom row). Each
circle represents the midpoint of the 30-year time window. Grey horizontal bands represent the range of natural variability of tail dependence (10% and 90%) from a
resampling approach. Red markers indicate significant tail dependence (at a = 0.05), while non-significant values are marked in white. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

the range of natural variability in the late 1980s. This increase is also
evident during (and driven by) the tropical season where hurricanes and
tropical storms in the region often lead to high discharge and surge. In
Fort Pulaski, GA the tail dependence is relatively stable over time (i.e.,
no exceedances of the range of natural variability) when analysing data
from the entire year. However, during the extra-tropical season the tail
dependence started to increase from the mid-1970s and exceeded the
range of natural variability since the early 1990s. Performing this
analysis for the entire year and for the different seasons highlights two
things. First, if a change occurs in the annual time series, then the sea-
sonal analysis informs which season mainly drives this change (for
example in Washington, DC and St. Petersburg, FL). Second, if no change
occurs during the entire year, it is still important to investigate changes
during different seasons (as in Fort Pulaski, GA) as these may cause
changes in flood risk during specific times of the year which are other-
wise not captured.

Fig. 3 shows results for changing y between S-Q calculated at a

threshold of q = 0.9 for all locations. The mean of each y time series was
removed (and is listed in brackets after the respective station name) to
better highlight the changes over time. Along the East coast and eastern
part of the Gulf of Mexico y was above its mean value for 30-year win-
dows centered in the 1980s and onwards and the range of natural
variability was exceeded during that time at various locations. This
behaviour is however reversed for the West coast and western part of the
Gulf of Mexico. Similar results are found for the tropical (Fig. S1) and
extra-tropical (Fig. S2) seasons for the eastern part of the CONUS where
¥ was mostly above mean values for the most recent years while it was
below mean values on the West Coast for the same time period.

The same results but for time-changing y between S-P are shown in
Fig. 4. For the East and Gulf coasts there is a mixed pattern where some
locations are experiencing variability above the mean and others below
over the same time period. For the West coast results are more coherent
and the variability is below the mean for time windows centered before
the mid-1970s, then it becomes larger to reach values above the mean
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Fig. 4. Heat map showing the changing tail dependence (for threshold q = 0.9) for S-P for when using daily data from the full year; the mean has been removed (tail
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and drops again below the mean in the early 2000s at locations in
California.

During the tropical season (Fig. S3), the East and Gulf coasts expe-
rience variability above the mean for the most recent years. On the other
hand, the West coast experiences variability below the mean in Cali-
fornia for the most recent years. Stations on the northwest coast in
Oregon and Washington experience generally stronger variability dur-
ing the tropical season, with values consistently below the mean before
the 1980s and above the mean afterwards. During the extra-tropical
season (Fig. S4) this is reversed and the East and Gulf coasts experi-
ence variability below the mean for the most recent years while the West
Coast experiences variability above the mean.

On the West coast the variability of S-P in the northern part (Oregon
and Washington) differs from the southern part (California). The

variability in Oregon and Washington is driven by the variability during
summer season (Tropical season) while that of California is driven by
variability in the winter season (Extra-tropical season). This is in
agreement with the seasonality of rainfall in California as it often ex-
periences heavy rainfall events when atmospheric rivers make landfall
during winter as happened recently in January 2023.

3.2. Changes in dependence and large-scale climate indices

This section describes the results for the second objective which is to
investigate relationships between time-varying dependence strength
and large-scale climate indices.

Fig. 5 shows a heat map for Pearson correlation coefficient between
time changing y (using a threshold of q = 0.9) for S-Q and eight
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Numbers indicate significant values (at @ = 0.05) while asterisk (*) indicates non-significant values.
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smoothed climate indices. There is significant correlation between the
time changing y (using threshold of q = 0.9) for S-Q and at least 2
climate indices at each of the analysed locations. The same is found in
Fig. 6 for S-P. There is a strong positive correlation in the west coast
with the N12, N3, and PDO and negative with NPI and SOIL While it is
well-known that oceanic and hydro-meteorological phenomena are
influenced by large scale atmospheric circulation, we show here that
there is also a strong relationship between changes in dependence (be-
tween inland and coastal flooding drivers) and large-scale climate
indices.

3.3. Changes in dependence structure with time

This section describes the results for the third objective which is to
compare the dependence structure (in addition to strength) of different
combinations of flooding drivers over time using KL divergence because
such changes can also modulate compound flooding potential.

Fig. 7 shows a heatmap for the significance of the KL divergence
calculated between the most recent 30-year time window and previous
30-year time windows. Only locations and combinations that showed
significant changes in the dependence structure are shown. Unlike the
changes in dependence strength, the dependence structure for most lo-
cations and variable combinations generally did not change significantly
with time. Out of the 12 cases where we find significant changes in the
dependence structure, 10 come from the analysis of the S-P variable
pair. The locations where the changes occur are mostly located on the
west coast; the only location on the east coast with changes in the
dependence structure is Washington DC, where it happens for the S-Q
(extra-tropical season) and S-Q (full year) cases. We find five cases
where changes are significant when the whole (full) year is analysed,
four cases where changes occur in the tropical season, and three cases
where changes occur in the extra-tropical season. In most cases the
changes occurred earlier in the records, while the most recent time
windows show the same (or similar) dependence structures as the
reference time window (i.e., the most recent 30 years of data); this
behaviour is expected since recent time windows share a lot of infor-
mation with the last time window in our moving window approach.

3.4. Effects of non-stationarity on multivariate design values

Here, as part of our fourth objective, we show results from a full
multivariate analysis between surge and discharge using copula theory
at Washington, DC. We show the effect of change of dependence strength
with time on the most likely design point (first experiment) and the
combined effect of changes in the dependence and the marginal distri-
butions (second experiment) on design conditions.

We start by showing the copula types used to model dependence in
samples where either surge and discharge is conditioned to be above a

Weather and Climate Extremes 41 (2023) 100594

high threshold. Fig. 8 shows that the copula type selected to model
dependence between extreme surge (above q = 0.9) and corresponding
discharge (red circles) is the Joe copula for all time windows. The Joe
copula has upper tail dependence. The copula type selected to model
dependence between extreme discharge (above q = 0.9) and corre-
sponding surge (shown in blue points) is most often, but not always, the
Joe copula. For some time-windows one of five other copulas is selected,
but all of them possess upper tail dependence.

Fig. 9 shows the temporal variation in the dependence strength and
the discharge and surge values comprising the most likely design event
under the 50-year “AND” joint return period scenario (corresponding to
an annual exceedance probability (AEP) of 0.02). In Fig. 9a (top panel)
we show how t changes over time when conditioning on discharge
(COD) and on surge (COS). For both cases, T increases for windows
centered at the 1950s/1960s onwards where the maximum t values
during recent years reach double the minimum values seen in the past.
Fig. Ob (middle panel) shows the effect of changing dependence strength
on surge/discharge values associated with the most likely 50-year return
period event while keeping the marginal distributions constant. Note
that we also allow the copula type to change, but in all time windows the
most likely design point is defined by the case (COD or COS) that is
modelled with the Joe copula. The effect is more pronounced in surge
(~15 cm increase) compared to discharge, which fluctuates in a rela-
tively small range of values. In Fig. 9c (lower panel) we show the same
results but now with temporally varying marginal distributions. The
effect of changing the marginals is stronger compared to just changing
the dependence strength, leading to increases of the design values of
both surge and discharge.

4. Discussion

In this study we have quantified the temporal changes in compound
flooding potential that arise from the combination of different coastal
and inland flooding drivers. Changes over time are assessed using a 30-
year sliding time window of the tail dependence coefficient. The sliding
time window approach was applied in several previous studies to assess
temporal changes in a range of statistical parameters (e.g., Wahl et al.,
2015; Wahl and Chambers, 2016; Rashid et al., 2019; Hao and Singh,
2020; Rashid and Wahl, 2020). We chose the tail dependence coefficient
to focus on the case when two variables are extreme, as opposed to
conditional sampling (using for example Kendall’s t) when only one
variable is extreme and not necessarily the other (e.g., Wahl et al.,
2015); this approach is still used here in the final objective to implement
the multivariate statistical modelling framework at Washington, DC.

For surge and discharge (S-Q), we find that the value of y, calculated
using a 30-year window, was above its mean value for windows centered
in the 1980s onward on the East coast and the eastern part of the Gulf of
Mexico, with a reverse behaviour for the West coast and western part of

1
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Fig. 7. Heat map for significance of the Kullback-Leibler (KL) divergence between the most recent 30-year and previous 30-year windows. Dark blue (1) indicates
significance and dark red (0) indicates non-significance (at a = 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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the Gulf of Mexico. This pattern in general is similar for both tropical
and extra-tropical seasons.

We find that for S-Q the running y is significantly correlated to at
least two climate indices at any given location from the analysed loca-
tions. The running ¥ is positively correlated with the low-pass filtered
Arctic Oscillation (AO), Nino 1.2 (N12), and Nino 3 (N3) in the East
coast and eastern Gulf of Mexico and negatively correlated with the
same indices in the western Gulf of Mexico. Using a weather typing
approach, Camus et al. (2022) showed positive correlation between the
occurrence of compound S-Q events and Nino 3.4, also known as
Oceanic Nino Index, for select locations in the East coast and Gulf of
Mexico. In case of S-P, in the West coast, the running y is positively
correlated with Nino 1.2 (N12), Nino 3 (N3), and Pacific Decadal
Oscillation (PDO); and is negatively correlated with North Pacific Index
(NPI) and Southern Oscillation Index (SOI).

The spatial distribution in the temporal change of tail dependence
was found to be correlated with some large-scale climate indices. These
results are not surprising as hydrometeorological and oceanic phe-
nomena are physically connected globally through various excitation
mechanisms by atmospheric circulation (Mullon et al., 2013). Some
climate indices (e.g., ENSO) are known to influence storminess and
occurrence of hurricanes and storms that lead to extreme storm surge
and heavy precipitation in a short time. Wahl and Chambers (2016) and
Rashid and Wahl (2020) showed how climate indices affect extreme
surge levels, whereas in this study, we show that similar relationships
also exist between these indices and the dependence between inland and
coastal flooding drivers.

Contrary to the change of the dependence strength with time, results
from the KL divergence and copula analysis show that the overall
dependence structure (i.e., copula type) does not significantly change
over time. From the copula analysis results shown for Washington, DC,
we find that the strength of dependence, as reflected by Kendall’s rank
correlation coefficient 1, increases with time and this increase in
dependence propagates to the increase in potential compound flood
hazard when using constant marginals. Changes in the marginal distri-
butions have a much stronger effect than changes in dependence
strength on compound flood hazard potential. While the selected copula
type is more variable when analysing the sample conditions on
discharge (Fig. 8), we note that all copulas that are selected for the
different time windows have upper tail dependence; hence the overall
impact on the joint probabilities is still relatively small. Overall, these
findings are in agreement with other studies (e.g., Bender et al., 2014;
Hao and Singh, 2020; Razmi et al., 2022). However, those were all

individual case studies, and it is still important for non-stationary
compound flood assessments to account for potential changes in
dependence strength (and structure) as an additional source of
non-stationarity.

Finally, we acknowledge that while our observational database is
very good in comparison to many other studies for other parts of the
world, it’s still limited, especially for the purpose of assessing non-
stationarity. As has been shown, for example, in Santos et al. (2021a),
natural climate variability can lead to changes in compound flood po-
tential at multi-decadal time scales. Hence, the results presented here
should not be interpreted as emerging long-term trends because of
climate change, but rather show where and how much compound flood
potential has varied in the past. In the same context, Bevacqua et al.
(2023) highlight the advantage of integrating ensemble simulations into
studies of compound weather extremes, including compound flooding,
to better understand physical processes connections, assess high-impact
low-probability events, and conduct climate attribution studies.

Flood risk generally involves different components: hazard, expo-
sure, and vulnerability. While our focus here was on assessing the hazard
component and how it changes with time, it is worth noting that the
other components are dynamic as well. Socioeconomic development
translates to changes in exposure and vulnerability which increases
impacts even when the dependence and marginal distributions of drivers
considered are stationary (hazard is stationary). A next step could be to
focus on local communities and explore how compound flood risk has
evolved with time incorporating hazard, exposure, and vulnerability (e.
g., Sebastian et al., 2019).

5. Conclusions

We have quantified the temporal variability in compound flooding
potential that arises from the combination of storm surge, precipitation,
and river discharge along the CONUS coastline. Our first objective was
to characterize and map the change in dependence strength between
different drivers at locations around the CONUS coastline with long
overlapping records. We carried out the analysis at 34 sites, where long
enough overlapping datasets with at least 55 years were available for the
different variables. We found for S-Q that from 1980 onwards the
variability of y was above the mean for the East coast and eastern Gulf of
Mexico and below it for the West coast and western Gulf of Mexico.

Our second objective was to investigate whether a statistically sig-
nificant link between time-varying dependence strength and large-scale
climate indices exists. We found high significant correlations between
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running y and various climate indices (e.g., AO, ENSO, NPI, PDO, and
SOI). Changes in y are correlated and linked with large scale atmo-
spheric circulations which modulate hydro-meteorological and ocean-
ographic phenomena.

Our third objective was to compare the dependence structures (in
addition to strength) of different combinations of flooding drivers over
time. Unlike the dependence strength that significantly changes over
time, we found no significant change in dependence structure (i.e.,
copula type that models dependence). Our fourth objective was to
perform a complete multivariate analysis for S-Q at Washington, DC as
an example. We found that the effect of increasing the dependence
strength, assuming stationary marginal distributions, is more pro-
nounced for surge than discharge which is translated to a potential

10

2000

increase in coastal flood hazard compared to fluvial flood hazard.
Varying the marginals with time in addition to the dependence leads to a
significant increase in discharge and surge associated with most-likely
50-year return period events.

Our study focuses on temporal changes of the dependence which is
part of the hazard component of potential compound flood risk. Flood
risk is non-stationary as it involves changes in hazard, exposure, and
vulnerability components over time. Incorporating these changes can
lead to better understanding of flood risk in the future, leading to better
planning that results into increasing resilience of coastal communities.
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6. Code availability

Data pre-processing, analysis and visualization were carried out in R
programming language (R Core Team, 2020). The following R packages
were used: ‘dataRetrieval’ (De Cicco et al., 2018) and ‘rnoaa’ (Cham-
berlain et al., 2016) for data retrieval; ‘dplyr’ (Wickham et al., 2020b),
‘lubridate’ (Spinu et al., 2020), and ‘tidyr’ (Wickham, 2020) for data
pre-processing. ‘ExtRemes’ (Gilleland and Katz, 2016), ‘MultiHazard’
(Jane et al., 2020), and other routines for data analysis; and ‘ggplot2’
(Wickham et al., 2020a) and ‘pheatmap’ (Kolde, 2015) for visualization.
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