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ABSTRACT

The porcini mushroom family Boletaceae is a diverse, widespread group of ectomycorrhizal (ECM)
mushroom-forming fungi that so far has eluded intrafamilial phylogenetic resolution based on
morphology and multilocus data sets. In this study, we present a genome-wide molecular data set
of 1764 single-copy gene families from a global sampling of 418 Boletaceae specimens. The
resulting phylogenetic analysis has strong statistical support for most branches of the tree,
including the first statistically robust backbone. The enigmatic Phylloboletellus chloephorus from
non-ECM Argentinian subtropical forests was recovered as a new subfamily sister to the core
Boletaceae. Time-calibrated branch lengths estimate that the family first arose in the early to mid-
Cretaceous and underwent a rapid radiation in the Eocene, possibly when the ECM nutritional
mode arose with the emergence and diversification of ECM angiosperms. Biogeographic recon-
structions reveal a complex history of vicariance and episodic long-distance dispersal correlated
with historical geologic events, including Gondwanan origins and inferred vicariance associated
with its disarticulation. Together, this study represents the most comprehensively sampled, data-
rich molecular phylogeny of the Boletaceae to date, establishing a foundation for future robust
inferences of biogeography in the group.
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et al. 2014). New Boletaceae species have been increas-
ingly described in a global phylogenetic context, shedding

INTRODUCTION

The porcini mushroom family Boletaceae is exceptionally
diverse and globally distributed, but poorly documented
for many regions. Yet, boletoid fungi are prevalent ecto-
mycorrhizal (ECM) mutualists in ecosystems dominated
by ECM plants (Peay et al. 2010), and at least eight species
are traded globally as wild-collected edible mushrooms
(Arora 2008; Dentinger et al. 2010; Dentinger and Suz
2014; Sitta and Floriani 2008). Despite their conspicuous
sporocarps, ecological dominance, and cultural impor-
tance, new species of Boletaceae are regularly described
from around the world (FIG. 1; 2249 currently accepted
species; SUPPLEMENTARY TABLE 2) (e.g., Castellano
et al. 2016; Chakraborty and Das 2015; Das et al. 2015,
2016; Fulgenzi et al. 2007, 2008, 2010; Halling et al. 2006,
2023; Henkel et al. 2016; Husbands et al. 2013; Magnago
et al. 2017; Neves and Halling 2010). Novel taxa have also
recently been described from wild-collected foods in mar-
kets (e.g., Das et al. 2015; Dentinger and Suz 2014; Halling

light on their origin, diversification, and migration.
However, over 20 years of molecular phylogenetic studies
using legacy loci have made little progress toward resol-
ving the deepest nodes (“backbones”) in Boletaceae phy-
logenies (Grubisha et al. 2001; Binder and Hibbet 2006;
Drehmel et al. 2008; Dentinger et al. 2010; Nuhn et al.
2013; Wu et al. 2014).

As aresult of this intrafamial phylogenetic uncertainty,
there has been a recent explosion of new generic names to
accommodate newly discovered species (e.g., Henkel et al.
2016). In addition, new generic names have been erected
for species that are included in molecular phylogenetic
analyses for the first time and recovered on long branches
with no supported affinity to existing named genera (e.g.,
Badou et al. 2022; Castellano et al. 2016; Halling et al.
2023; Henkel et al. 2016). Few of these studies have
followed recommended best practices for naming new
genera (Vellinga et al. 2015), namely, failing to establish
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Southeast Asia

Figure 1. Selected Boletaceae collections from two of the most species-rich regions that were newly sequenced in this study. A. Boletus
cervinococcineus, Singapore (BD616). B. Heimioporus punctisporus, Sarawak (BAKO2). C. Unidentified Boletaceae, Vietnam (CTN-08-
0007). D. Unidentified Boletaceae (CTN-08-0029). E. Spongiforma sp., Sarawak (BTNG10). F. Leccinum sp., Sarawak (SWK246).
G. Crocinoboletus laetissimus, Sarawak (SWK335). H. unidentified Boletaceae sp., Vietnam (DLT-08-0127). |. Boletellus sp., Sarawak
(SWK356). J. unidentified Boletaceae, Vietham (CTN-08-0051). K. Tylopilus sp., Cameroon (BD655). L. Xerocomus sp. 9, Cameroon
(BD773). M. Fistulinella staudtii, Cameroon (BD848). N. Boletellus sp., Cameroon (BD714). O. Phylloporus cf. tubipes, Cameroon (BD719).
P. Tylopilus sp. 8, Cameroon (BD816). Q. Xerocomus sp. 8, Cameroon (BD695). R. Boletus alliaceus, Cameroon (BD697). S. Tubosaeta
brunneosetosa, Cameroon (BD686). T. Tylopilus sp., Cameroon (BD716). Images are not to scale.



all genera as monophyletic, insufficient geographic and
taxonomic sampling, missing type species, and insuffi-
cient statistical support for branches in the tree. Instead,
a more inclusive and general application of existing gen-
eric names with recognition of new subgenera would
enable advancement of biodiversity discovery without
an inflation of new generic names, as recommended by
Nimis (1998) for lichen taxaonomy. Moreover, many of
these new Boletaceae genera are monotypic and require
identification to species to be recognized, contradictory to
the inclusive nature of taxonomic ranks above the species
level and an impractical solution for field identifications.
For example, 69 genera (62%) have five or fewer species.
Of the 27 genera described in the last 5 years, only one has
more than five species (Erythrophylloporus = six species),
whereas 11 (44%) are monotypic and another 11 (44%)
have only two species (SUPPLEMENTARY TABLE 2).
Taken together, there remains much taxonomic, nomen-
clatural, and evolutionary uncertainty in the Boletaceae.

Despite these taxonomic concerns, the Boletacaeae pre-
sents a unique system to identify the mechanisms that
contribute to rapid diversification in Fungi. The
Boletaceae appear to have undergone an early evolutionary
radiation between 60 and 100 million years ago (mya)
(Bruns and Palmer 1989; Binder and Hibbet 2006;
Dentinger et al. 2010; Wu et al. 2014, 2016; Sato et al.
2017; Varga et al. 2019; Sato 2023). This early radiation has
been correlated with the convergent evolution of morpho-
logical traits, such as the lamellate hymenophore and gas-
teromycetization (Badou et al. 2022; Castellano et al. 2016;
Farid et al. 2018; Smith et al. 2015; Zhang and Li 2018).

Many factors have contributed to difficulties in gen-
erating robust phylogenetic reconstructions for the
Boletaceae. Although phenomena such as incomplete
lineage sorting and hybridization may obscure historical
phylogenetic signal, previous data sets for the Boletaceae
had patchy taxonomic and geographic sampling. These
factors impact accurate phylogenetic reconstruction, pos-
sibly exacerbated by the aforementioned rapid radiation
event (Bruns et al. 1992; Sato et al. 2017). Without
a phylogeny that is based on globally representative
taxon sampling and statistically well-supported resolu-
tion at all depths of the tree, it is impossible to name,
classify, and understand Boletaceae evolution. For exam-
ple, only a few studies have included representatives of
the exceptionally rich Australian boletoid funga (Halling
et al. 2012, 2015, 2023). Boletoid fungi from the African
and American tropics are rarely represented in family-
level analyses despite their exceptional species richness
(e.g., Heinemann 1951; Henkel et al. 2012).

Recent field work has resulted in many new collec-
tions from undersampled regions (B. Dentinger,
T. Henkel, and R. Halling, unpublished data). These
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specimens are now available to include in phylogenetic
data sets in the effort to achieve the first globally repre-
sentative sampling of the Boletaceae and potentially
resolve ancient relationships among mushroom-form-
ing fungi (Dentinger et al. 2016; Liimatainen et al. 2022;
Tremble et al. 2020). However, no one has yet applied
these methods to the Boletaceae. Moreover, whole gen-
ome sequencing of mushroom-forming fungi provides
opportunities to go beyond phylogenetic reconstruc-
tion. For example, whole genome sequencing can
exceed legacy loci in identifying processes in popula-
tions that generate biodiversity (e.g., Tremble et al.
2022).

For this study, we generated the first phylogeny of
the Boletaceae that utilized a large-scale molecular
data set comprising 1764 genome-wide loci from
418 taxa across the family, from both tropical and
temperate geographic regions. We included recent
new collections from previously undersampled
regions, including tropical Africa, southern South
America, lowland tropical South America, and
Australia. Type species, including type specimens,
were sampled to facilitate future taxonomic revisions
of genera. Using our highly resolved genome-based
phylogeny, we also performed the first inclusive bio-
geographic reconstruction of the Boletaceae. Overall,
we provide new insights into the broad patterns of
evolution of this enigmatic fungal group.

MATERIALS AND METHODS

Sampling.—Taxon selection focused on obtaining
representatives of all currently accepted genera follow-
ing Index Fungorum/Species Fungorum, selecting type
species whenever possible. Because the current under-
standing of genera is incomplete and rapidly changing,
we could not include representatives of all currently
accepted genera that were published during the course
of this study. Specimens from geographic regions not
represented in prior studies were also included. A total
of 418 Boletaceae specimens were gathered from
a global distribution using collections made by the
authors, those borrowed from four institutions, and
donations from citizen scientists (SUPPLEMENTARY
TABLE 1). In addition, we utilized genome data publicly
available from the Joint Genome Institute (JGI)
MycoCosm Portal (Grigoriev et al. 2013) for Boletus
coccyginus, B. reticuloceps, Butyriboletus roseoflavus,
Chiua virens, Lanmaoa asiatica, and Imleria badia
(Kohler et al. 2015; Miyauchi et al. 2020; Wu et al.
2022). Paxillus involutus and Paxillus adelphus genomes
from JGI were used for outgroups (Kohler et al. 2015).



4 e TREMBLE ET AL.: BOLETACEAE PHYLOGENOMICS

DNA extraction and sequencing.—Genomic DNA
was extracted in one of three ways. (i) Ten milligrams of
hymenophore tissue from each specimen was homoge-
nized in 2.0-mL screw-cap tubes containing a single
3.0 mm stainless steel bead and 8 x 1.5 mm ones using
a BeadBug microtube homogenizer (Sigma-Aldrich, Saint
Louis, Missouri; catalog no. Z763713) for 120 s at a speed
setting of 3500 rpm. After physical disruption, DNA was
extracted using the Monarch Genomic DNA Purification
Kit (New England Biolabs, Ipswich, Massachusetts; cata-
log no. T3010) with the Monarch gDNA Tissue Lysis
Buffer (catalog no. T3011) using double the volume of
lysis buffer, 1 h of lysis incubation at 56 C, and 550 uL of
wash buffer during each of the wash steps. (ii) An in-
house 96-well plate protocol where tissue is physically
homogenized, as above, after which 1000 uL of lysis
buffer (1% sodium dodecyl sulfate, 10 mM Tris, 10 mM
EDTA, 5 mM NaCl, 50 mM dithiothreitol, pH 8.0) is
added. To this solution is added 4 pL of RNase A (20 mg/
mL), the solution vortexed, and then incubated at 37
C for 10 min. Next, 10 pL of proteinase K (20 mg/mL)
is added, the solution vortexed, and then incubated at 56
C overnight on an Eppendorf ThermoMixer (Eppendorf,
Hamburg, Germany) with agitation at 400 rpm. After
lysis, the tubes are centrifuged at maximum speed
(17 000x g) to pellet the cellular debris. Then 700 uL of
supernatant is removed to a new 1.7-mL microcentrifuge
tube with hinged cap to which 162.5 pL 3.0 M potassium
acetate (pH 5.5) is added. The solution is mixed briefly
and then put on ice for 5 min, followed by a second
centrifugation, as above. Avoiding the pellet, the super-
natant is removed to a well of a 96-well 10 pM filter plate
(Enzymax, Lexington, Kentucky; catalog no. EZ96FTP)
set in a 2-mL MASTERBLOCK collection plate (Greiner
Bio-One, Monroe, North Carolina; catalog no. 780271).
Filtration is achieved through centrifugation at 1500x
g for 2 min. The flow through is transferred to a new
1.7-mL microcentrifuge tube with hinged cap and cen-
trifuged, as above. Without disturbing the pellet, the
supernatant is removed to a new 2.0-mL microcentrifuge
tupe with hinged cap and 1000 pL of binding buffer (5 M
guanidium hydrochloride, 40% isopropanol) is added
and the solution homogenized by pipetting. The binding
solution is then transferred to a well of a 96-well long-tip
AcroPrep plate (Cytiva Life Sciences, Marlborough,
Massachusetts; catalog no. 8133) that was preconditioned
by pulling 400 uL Tris-HCI buffer (pH 8.0) through using
a vacuum manifold. DNA is bound to the filter by cen-
trifugation at 1500x g for 2 min or using a vacuum
manifold. The filter is washed twice with 700 pL of
wash buffer (20% solution of 80 mM NaCl, 8 mM Tris-
HCl, pH 7.5 and 80% ethanol) using centrifugation or
vacuum, and then the filter is dried with centrifugation at

1500x g for 15 min. Residual ethanol is removed by
incubating the filter plate at room temperature for
30 min. To elute the DNA from the filter, 50 pL of elution
buffer (0.1x Tris-EDTA bulffer, pH 8-9) prewarmed to 60
C is added directly to the filter, incubated for 2 min at
room temperature, and eluted into a new 2-mL
MASTERBLOCK collection plate with centrifugation at
1500 rpm for 2 min. The elution step is repeated once.
(iii) A phenol-chloroform DNA extraction protocol
where tissue is physically homogenized, as above, and
lysed using the Tissue Lysis buffer from the Monarch
Genomic DNA Purification Kit (New England Biolabs;
catalog no. T3010S) with double the volume of lysis buffer
and a 1-h incubation at 56 C. Then, total lysate was placed
in Phase Lock Gel Light tubes (QuantaBio, Beverly,
Massachusetts; catalog no. 2302820) along with an equal
volume of OmniPur phenol:chloroform:isoamyl alcohol
(25:24:1, TE-saturated, pH 8.0) solution (MilliporeSigma;
Calbiochem catalog no. D05686) and then mixed by
gentle inversion for 15 min using a fixed speed tube
rotator. After mixing, tubes were centrifuged at maxi-
mum speed (14 000 x g) for 10 min, then the aqueous
(top) layer was transferred to a new Phase Lock gel tube
and the process repeated. DNA precipitation of the aqu-
eous phase was performed by adding 5 M NaCl to a final
concentration of 0.3 M and two volumes of room tem-
perature absolute ethanol, inverting the tubes 20x for
thorough mixing followed by an overnight incubation at
—-20 C. DNA was pelleted by centrifugation at 14 000x
g for 5 min, washed twice with freshly prepared, ice-cold
70% ethanol, air-dried for 15 min at room temperature,
and then resuspended in 150 pL of Elution Buffer from
the Monarch Genomic DNA Kkit.

DNA extract quality was assessed for quality using
a NanoDrop 1000 (Thermo Scientific, Waltham,
Massachusetts) and fragment integrity using agarose gel
electrophoresis. Genomic DNAs were sequenced using
a combination of paired-end sequencing on the Illumina
MiSeq, HiSeq, and Novaseq sequencing platforms (Illumina,
San Diego, California) (SUPPLEMENTARY TABLE 2). All
raw reads and whole genome assemblies are deposited in the
Short Read Archive (Bioproject PRINA1022813).

Genome assembly, ortholog extraction, and
phylogenetic analysis.—Raw sequencing reads were
quality-filtered and adapter-trimmed using fastp 0.20.1
(Chen et al. 2018) with default settings. Genome assem-
blies were produced from quality-filtered reads using
SPAdes 3.15.0 (Bankevich et al. 2012) with five k-mer
values (k = 77, 85, 99, 111, 127). From each genome, we
identified 1764 highly conserved single-copy orthologs
using BUSCO with the “basidiomycota odb 10” dataset.



Orthogroups that were present in less than 75% of taxa
and taxa with less than 20% ortholog recovery were
removed. Retained orthologs were aligned using
MAFFT 7.397 (Katoh et al. 2017) with the “L-INS-i”
algorithm, and maximum likelihood gene trees were
inferred using IQ-TREE 2.0.3 (Minh et al. 2020) with
automatic model selection in  ModelFinder
(Kalyaanamoorthy et al. 2017) and ultrafast bootstrap-
ping (BS; Hoang et al. 2018) with 1000 replicates.
A summary coalescent species tree was constructed
from the resulting gene trees using ASTRAL-hybrid
implemented in ASTER* (1.15) (Zhang and Mirarab
2022). Branch lengths in substitutions/site were esti-
mated under maximum likelihood on the species tree
using the “-te” option in IQ-TREE, with a partitioned
concatenated alignment of all BUSCO genes used in
species tree construction.

Gene tree comparison.—To evaluate discordance,
individual gene trees were compared using six metrics
calculated in SortaDate (average bootstrap support,
clocklike branch lengths, tree length; Smith et al. 2018)
and the R package TrEEDIST (generalized Robinson-
Foulds metrics; Smith 2020, 2022). In addition to data
matrix summaries (number of taxa, alignment length),
Pearson’s correlations were calculated to determine
relationships between metrics.

Divergence dating.—A time tree was inferred by apply-
ing the RelTime method (Tamura et al. 2012, 2018) con-
ducted in MEGAI11 (Stecher et al. 2020; Tamura et al.
2021) to the species tree with maximum likelihood (ML)-
estimated branch lengths. To reduce computational bur-
den, time-calibrated branch lengths were calculated using
the maximum likelihood (ML) method and the general
time reversible substitution model (Nei and Kumar 2000)
from two sets of 100 genes: (i) the top 100 genes with
well-supported clocklike trees determined using
SortaDate (Smith et al. 2018) and (ii) the top 100 genes
with the smallest generalized Robinson-Foulds (“gRF”)
distances to the species tree calculated using the
R package TrReEDIST. The time tree was computed using
two sets of calibration constraints. The first included two
calibrations with uniform priors: (i) a secondary calibra-
tion for the stem age of the Boletaceae from 50 to 150 my
(Varga et al. 2019; Wu et al. 2022) and (ii) a secondary
calibration for the stem age of Boletus edulis from 5 to 13
my (Tremble et al. 2022). Uniform priors were used
because they are less prone to error with secondary cali-
brations (Schenk 2016). The second set included the
former two calibrations plus four of the five internal
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calibrations using the highly supported core shifts from
Varga et al. (2019). All internal calibrations used priors
with normal distributions around means, with the mini-
mum and maximum ages of the 95% confidence intervals
(CIs) reported by Varga et al. (2019). Because many of the
clades in Varga et al. were incongruent with our topology,
calibrations were selected using the most inclusive node,
except for Aureoboletus, which could not be reconciled
with our results. The Tao et al. (2020) method was used to
set minimum and maximum time boundaries on nodes
for which calibration densities were provided, and to
compute confidence intervals. Outgroup node ages were
not estimated because the RelTime method uses evolu-
tionary rates from the ingroup to calculate divergence
times and does not assume that evolutionary rates in
the ingroup clade apply to the outgroup.

Ancestral range reconstruction.—Numerous analyti-
cal methods for reconstructing historical biogeography
exist, accounting for processes such as vicariance, dis-
persal, and cladogenesis (Landis et al. 2013; Ree et al.
2005; Ronquist 1994). To account for these macroevolu-
tionary processes in our ancestral state reconstruction in
the Boletaceae, we utilized BioGeography with Bayesian
(and likelihood) Evolutionary Analysis with R scripts
(“BioGeoBEARS”; Matzke 2013). Samples were coded in
two ways to compare coding by physical geography with
coding by phytogeographic regions. We chose to
include coding by phytogeographic regions because
ectomycorrhizal fungi are likely to track their plant
partners due to the obligate nature of their symbiosis.
The physical geographic coding scheme was as follows:
Paleotropical (consisting of Africa and tropical Asia),
Neotropical (South and Central America), South
Temperate (Australia and New Zealand), or North
Temperate (North America, Europe, northern tempe-
rate Asia). The phytogeographic coding scheme used
the floristic regions in Liu et al. (2023): Holarctic
(including Central America), Neotropical, Chilean-
Patagonian, African, Indo-Malesian, Australian, and
Novo-Zealandic (SUPPLEMENTARY TABLE 4).
Central America was combined with the Holarctic
region, as Central American ECM fungi are mostly
derived from North American ancestors (Halling
1996). The most likely model was chosen according to
the Akaike information criterion (AIC) and weighted
AIC score calculated in BioGeoBEARS.

RESULTS

Sampling.—Our samples represent 65/111 (58.5%)
currently accepted genera, with many new collections,
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especially from Cameroon and southeast Asia, that
could not be assigned to known genera based on mor-
phology or internal transcribed spacer (ITS) DNA bar-
code comparisons (SUPPLEMENTARY TABLE 1). Of
the 46 genera not represented, 23 (47%) are monotypic,
13 (28%) are ditypic, whereas only two (4%) have more
than five species, both of which have only six species
(Erythrophylloporus and Hourangia). Thirty-nine gen-
era have been described since 2000, with 19 of them
described in the last 5 years, including six in the year
2023. Many of these are rare or rarely collected and are
poorly represented by specimens: of the 46 genera not
represented in our data set, 23 have no specimens in
MyCoPortal, six are represented by a single specimen,
and only six genera are represented by more than 10
specimens.

DNA sequencing, genome assembly, and ortholog
extraction.—Whole genome sequencing of 418 spe-
cimens resulted in 13 794 532 paired-end reads per
specimen  on  average (SUPPLEMENTARY
TABLE 3). On average, genome assemblies pos-
sessed an assembly N50 of 12.9 kbp (thousand
base pairs), total assembly length of 61.6 Mbp (mil-
lion base pairs), 53 972 scaffolds, and a BUSCO
score of 74.7%. Thirty-four of 418 specimens pos-
sessed BUSCO scores less than 20%, and 175 speci-
mens possessed BUSCO scores greater than 90%
(SUPPLEMENTARY TABLE 3). After removing
specimens with poor BUSCO recovery, our final
data set included 384 Boletaceae specimens, three
outgroup taxa, and 1461 single-copy orthologs.

Phylogenetic analysis.—The summary coalescent
tree resolved most nodes with significant statistical
support, including full resolution of the backbone
within Boletaceae (FIG. 2). Many of the groups recov-
ered are consistent with previous studies but now with
statistical support (Dentinger et al. 2010; Nuhn et al.
2013; Wu et al. 2014). We formally recognize eight
subfamilies, including six subfamilies following pre-
vious authors (Wu et al. 2014), and two new subfami-
lies, the Phylloboletelloideae and Suillelloideae
(Tremble et al. 2023). Many of the currently accepted
genera that are not mono- or oligotypic are polyphy-
letic. One notable phylogenetic pattern is the polyphyly
of the endemic Chilean taxa, all of which were recov-
ered on long branches in separate subfamilies:
Gastroboletus valdivianus in Xerocomoideae, Boletus
loyita in Austroboletoideae, Butyriboletus loyo in
Suillelloideae, and Boletus putidus in Boletoideae.

Gene tree comparison.—Average bootstrap support
had the highest positive correlation with the number
of taxa present (Pearson’s coefficient = 0.76), and weak
to moderate negative correlations with alignment length
(Pearson’s coefficient = —0.17), clocklike branch lengths
(Pearson’s coefficient = —0.13), and total tree length
(Pearson’s coefficient = —0.20). Generalized Robinson-
Foulds distances were weakly to moderately negatively
correlated with number of taxa (Pearson’s coeffi-
cient = -0.33), total length (Pearson’s coeffi-
cient = —0.30), and clocklike branch lengths (Pearson’s
coefticient = —0.13), and weakly to moderately positively
correlated with alignment length (Pearson’s coeffi-
cient = 0.29) and average bootstrap support (Pearson’s
coefficient = 0.17). Clocklike branch lengths and total
tree length were weakly positively correlated (Pearson’s
coefficient = 0.15).

Divergence dating.—Using the two- and six-calibra-
tion sets, the following ages were estimated (FIGS. 2, 3):
Stem ages for the Boletaceae were estimated at 139 my
and 77 my, depending on the calibrations used (TABLE
1). The crown age of the Boletaceae and stem age of
Chalciporoideae were estimated at 103-105 my and 63
my (49-77 my). The stem ages of the
Phylloboletelloideae were estimated at 83-87 my and
58 my (49-77 my). The radiation of the remaining
subfamilies was estimated to have occurred between 61
and 51 mya. The origin of Boletus sensu stricto (i.e.,
“true porcini”) was estimated at 38 my and 35 my (29-
42 my), and its diversification was estimated at 29-30
mya and 26 mya (20-34 mya).

Ancestral range reconstruction.— Ancestral distribu-
tion reconstruction recovered a likely Paleotropical ori-
gin of the Boletaceae (DEC+] model chosen with lowest
AIC and AICc for both coding sets), with major des-
cendant radiations originating in the Paleotropics
(Africa and Asia) and Neotropics (FIG. 3). In addition,
we found evidence for multiple diversification events
spurred by the separation of Gondwana (FIG. 3).
Gondwanan separation occurred in two predominant
phases: Phase 1 (southern Gondwanan disarticulation),
which involved the separation of southern South
America, southern Africa, Australia-Antarctica, and
Madagascar-India, beginning approximately 180 mya
and largely completed by 120 mya (Jokat et al. 2003),
and Phase 2 (western Gondwanan disarticulation),
involving the separation of South America and Africa,
which was completed 80 mya (Reguero and Goin 2021).
At the split between the Austroboletoidae and
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Figure 2. Time-calibrated phylogeny of Boletaceae using 1461 BUSCO genes. Topology is a summary coalescent of individual best ML
gene trees using ASTRAL-hybrid. Numbers on branches are quartet probabilities. Branch lengths were converted to time using the top
100 best gene trees estimated using SortaDate in RelTime. Red and blue arrows and numbers indicate node calibrations used for the
six-calibration and two-calibration divergence estimations, respectively. Inset a. Map of specimen origins with numbers of specimens
from each geographic area. Inset b. Lineages-through-time plot calculated with the “Itt.plot” function in the R package are. The dashed
line represents a constant birth-death rate. The shaded box indicates a period of increased diversification from a constant birth-death
rate indicative of a rapid radiation.



8 e TREMBLE ET AL.: BOLETACEAE PHYLOGENOMICS

Suillelloidae (FIG. 3), we estimated a putative Phase 1
Gondwanan separation to have occurred, which led to
rapid formation of South Temperate, Neotropical, and
Paleotropical lineages. Later, at least five putative Phase
2 separation events occurred, splitting the Paleotropical
and Neotropical lineages. Our divergence time estima-
tion places these events much earlier than the 120 mya
and 80 mya reported (estimated at 60 mya for Phase 1—
southern Gondwanan separation and 40 mya for Phase
2—western Gondwanan separation in our analyses),
which suggests that our divergence time estimation
could be consistently underestimating dates.

In our four-category paleoregion coding set, the
Boletaceae equally likely to be
Neotropical or Paleotropical. However, the subsequent
node that leads to the rest of the Boletaceae (excluding
Phyllobolletoidae and Chalciporoideae) was well sup-
ported as Paleotropical, as were all immediate descen-
dent nodes. Our coding of the Chalciporoideae and the
single Phylloboletellus specimen likely had a strong
influence on deep-node ancestral range reconstructions.
The backbone nodes of the Boletaceae excluding
Phylloboletoidae and Chalciporoideae were estimated
as Asian in origin, corroborating the four-category ana-
lysis, although with less confidence. Migrations between
phytogeographic regions were dominated by dispersals
between the Indo-Malesian and Holarctic regions
(FIGS. 3, 4).

ancestor was

DISCUSSION

Phylogeny.—The phylogeny supports the recognition
of eight subfamilies within the Boletaceae, including
the recently defined Phyllobolletoideae and
Suillelloideae (Tremble et al. 2023), and their interre-
lationships were fully resolved for the first time. The
Chalciporoideae was recovered as the basal group of
the Boletaceae, a relationship previously noted by
others (e.g., Wu et al. 2014). The rarely collected
Phyloboletellus chloephorus (Singer and Digilio 1951)
was the next lineage to branch off before the radiation
that gave rise to the six additional subfamilies. Previous
studies have placed Pseudoboletus parasiticus in
a position similar to that of Phylloboletellus chloe-
phorus in our study (Caiafa and Smith 2022; Nuhn
et al. 2013; Sato and Toju 2019; Wu et al. 2014).
However, we were unable to include genomic data
from a representative of Pseudoboletus in our study
so cannot assess its putative phylogenetic position.
The tree topology has intriguing implications for the
role of ecological transitions in Boletaceae diversification.
Members of the Chalciporoideae have not been identified

from ECM root tips in situ despite multiple synthesis
attempts (Kasuya and Igarashi 1996; Yamada and
Katsuya 1995) and are thought to be saprotrophic or
mycoparasitic (Caiafa and Smith 2022). As well,
P. chloephorus may not be ECM given its occurrence in
nonectotrophic forests (Singer and Digilio 1951).
Moreover, P. parasiticus and other Pseudoboletus spp.
produce sporocarps directly attached to gasteroid
Scleroderma and Astraeus and are assumed to be myco-
parasites (Binder and Hibbet 2006; Nuhn et al. 2013;
Raidl 1997). Interestingly, Richter and Bruhn (1989)
reported  ectomycorrhizal  synthesis  between
Pseudoboletus parasiticus and red pine (Pinus resinosa),
leading both Tedersoo et al. (2010) and Sato and Toju
(2019) to list Pseudoboletus as ectomycorrhizal. However,
the report by Richter and Bruhn (1989) is dubious
because the specimen they used to produce the ectomy-
corrhizal synthesis was not attached to a Scleroderma
sporocarp and could have been misidentified.
Altogether, the phylogenetic positions of these groups
suggest that a strict ECM ecology is not ancestral for
the Boletaceae. This situation corroborates Sato and
Toju (2019), who induced that the ECM habit emerged
coincident with rapid diversification of the Boletaceae.
Genomic changes coinciding with the emergence of an
obligate ECM habit further support the view that this
nutritional shift has profoundly impacted Boletaceae
(Wu et al. 2022).

Taxonomic implications.—Many taxonomic changes
in the Boletaceae have been proposed in recent years. In
particular, new genera have been erected for phylogen-
etically unresolved lineages. Many of these new genera
are mono- or oligotypic (composed of one or few species)
(e.g., Castellano et al. 2016; Chakraborty and Das 2015;
Halling et al. 2023; Henkel et al. 2016). These new genera
typically lack well-defined, unifying morphological fea-
tures and are difficult or impossible to recognize without
also identifying their species or phylogenetic analysis.
Such a lack of unifying features minimizes the informa-
tion content of these generic names. Nonetheless, the
strong nodal support throughout our phylogeny sets the
stage for a new, comprehensive and stable generic-level
taxonomy. We will address this in subsequent works
when all currently accepted genera are sampled.

Biogeography and chronology.—Divergence dating
estimated the origin of the Boletaceae to be as old as
139 my and as young as 77 my. Ranking genes with
different metrics had little impact on divergence date
estimates. However, the two calibrations sets gave very
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Figure 3. Biogeographic reconstruction using BioGeoBEARS with our two-calibration-point time tree. Left-hand tree depicts 4-state
coding scheme (light blue = Neotropical, blue = Paleotropical, yellow = North Temperate, red = South Temperate) and right-hand tree
depicts floristic region coding scheme (pink = Chilean-Patagonian, green = Indo-Malesian, blue = African, yellow = Holarctic, red = Novo-
Zealandic, light blue = Neotropical, Orange = Australian). Pie charts indicate the proportional likelihood of each state at a node. Red and
black boxes indicate Phase 1—southern Gondwanan and Phase 2—western Gondwanan diversification events, respectively.



10 e TREMBLE ET AL.: BOLETACEAE PHYLOGENOMICS

Table 1. Estimated divergence dates of the Boletaceae using two separate calibration sets and gene ranking approaches.

Boletaceae Boletus s. str.
Ranking method Calibrations Stem age Crown age Crown age Stem age Crown age
Generalized Robinison-Foulds 2 139.42 (50-150) 105.36 (74.16-144.09) 87.25 (54.58-139.5) 37.92 (16.06-85.72) 28.96 (12.42-67.49)
distance
SortaDate (BS, clocklike, length) 2 13838 (50-150) 102.77 (67.33-144.83) 82.85 (46.94-144.83) 38.36 (14.37-90.11) 29.70 (11.24-78.46)
SortaDate (BS, clocklike, length) 6 76.73 63.12 (48.90-76.73)  57.53 (48.90-76.73)  35.10 (28.95-41.89) 26.13 (19.90-34.31)
>
African Neotropical
Chilean-
Patagonian
Australian
/J"
Novozealandic
DESTINATION
Indo- Novo- Chilean-
Holarctic Neotropical Malesian African Australian zealandic Patagonian
Holarctic 0 428 4.66 272 222 1.76
Neotropical 1.26 0 1.16 2.34 0.22 0.6 0.34
w|  Indo-Malesian s 32 0 8 432 254 0.64
= African 6.46 6.1 5.56 0 1.24 0 0.2
9 Australian 2.38 1.34 2.16 0.5 0 0.66 1.06
Novozealandic 0.28 048 0.12 0 14 0 0
Chile-Patagonian 0.74 0.32 0.04 0.04 0.84 0 0

Figure 4. Dispersal events and rates inferred from BioGeoBEARS using our two-calibration-point time tree. Top: Map depicting global
floristic regions (Liu et al. 2023) that correspond with our second ancestral state reconstruction coding region and are colored and
labeled on the map. Map was rendered using the “imago” R code (https://github.com/hrbrmstr/imago) to reproduce the AuthaGraph
world map projection (http://www.authagraph.com/top/?lang=en). Curved arrows indicate inferred directional dispersal events and
are colored by rate values following the table (Bottom). The stroke weight of the arrows has been scaled to percent of the maximum
rate value following the values in the table. Bottom: Table of dispersal rates inferred under a DIVAlike+j model in BioGeoBEARS. Rates
in the table are mean number of recreated dispersal events between two coding regions. Source regions are at left and destination
regions are along the top. Values are colored along a scale from cool to warm (red being maximum).

different estimates for most nodes. For example, the
estimated dates of the crown age of the Boletaceae
using the Varga et al. (2019) internal calibrations were
almost half those of the two-calibration set [63 my (95%
CI: 49-77 my) vs. 103 my (95% CI: 67-145 my), respec-
tively]. Although there is some overlap in the confidence
intervals, given the lack of fossil evidence, it is difficult

to interpret these different estimates. The priors for the
internal calibrations were also normally distributed,
which may have introduced more error (Schenk 2016).
Regardless of the priors used, the dates estimated using
the Varga et al. (2019) internal calibrations may be
suspect due to extensive topological incongruence of
their phylogenetic trees with ours. Our older divergence
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estimate corroborates the results of He et al. (2020), and
our internal dates correspond with other results, such as
the ~48 my origin of the Strobilomyces group (Han et al.
2018). Our older divergence estimate is also in line with
the origin of ECM Pinaceae in the early Cretaceous
(Brundrett and Tedersoo 2018). Therefore, we consider
the older estimate to be more plausible.

In our ancestral range reconstruction analysis, we
found evidence of multiple diversification events that
may have been initiated by the breakup of both southern
and western Gondwana. The first phase of the
Gondwanan separation (southern Gondwana) postulated
by Jokat et al. (2003) correlates well with our estimated
origin of the Boletaceae; this indicates that the family
could have been diverse and widely distributed by 120
mya, substantially older than the estimated age from our
divergence dating analysis (103-105 my) using the two-
calibration set, albeit within the 95% confidence interval.
Still, our dates are at best coarse estimates based on fossil-
free secondary calibrations. However, the phylogenetic
pattern that parallels the breakup of Gondwana means
that a hypothesis of vicariant dispersal cannot be rejected;
if that is true, then this may provide corroborating evi-
dence that our estimated ages may, in fact, be too young.
For example, in our ancestral range reconstruction, we
identified at least eight separate nodes where the immedi-
ate descendant nodes are Neotropical and Paleotropical,
a pattern that is often a hallmark of western Gondwanan
separation (Beaulieu et al. 2013; Regueroand Goin 2021).
However, all of these nodes were reconstructed to have
occurred in the last 50 my. Unless our divergence esti-
mates are underestimates, this biogeographic pattern
would have to have resulted from at least eight indepen-
dent intercontinental dispersal events or is indicative of
descent from common ancestors that once occupied
a Holarctic range at high latitudes (e.g., the “boreotropics
hypothesis”; Wolfe 1975). Although repeated interconti-
nental dispersals cannot be entirely ruled out, they would
be surprising and unprecedented. Thus, we consider it
more likely that our divergence estimates are underesti-
mates, and that these “dispersal events” reflect vicariance
due to western Gondwanan separation. However, the
alternative hypotheses cannot be rejected with the current
dataset, and testing them will require more comprehen-
sive and intentional geographic sampling and, ideally,
incorporation of fossils. In any case, our divergence esti-
mates suggest that the Boletaceae originated and diversi-
fied within the early to late Cretaceous period. During this
time, the global climate was warm and wet (Hay and
Floegel 2012), gymnosperms and subsequently angios-
perms diversified (Crisp and Cook 2011), and the super-
continents broke apart (Jokat et al. 2003).
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Our biogeographic and divergence dating analyses
support a Paleotropical origin of the Boletaceae with
subsequent diversification during separation of both
western and southern Gondwana. Later divergence
was likely facilitated by continental drift-based vicar-
iance events and possible long-distance dispersals.
Other recent studies have shown that lineages of ECM
fungi originated in Gondwana or more recently in
Paleotropical regions (Codjia et al. 2023; Dentinger
et al. 2010; Hackel et al. 2022; Han et al. 2018; Hosaka
et al. 2008; Kennedy et al. 2012; Matheny et al. 2009;
Ryberg and Matheny 2011; Sanchez-Ramirez et al.
2015). Endemism paralleling phytogeographic regions
was implied with our biogeographic reconstruction. For
example, we found that estimated dispersal events were
most frequent between the Indo-Malesian and Holarctic
regions over the past 50 my. We acknowledge the diffi-
culty of determining origins and dispersal events in the
absence of fossils or other corroborating evidence.
Nonetheless, our study and others suggest that vicar-
iance may have played a strong role in the distribution
of ECM fungal taxa, despite the long-distance dispersal
capacity of airborne spores (Matheny et al. 2009; Peay
et al. 2010; Peay and Matheny 2016). Conversely, vicar-
iance alone cannot explain the close phylogenetic rela-
tionships seen between distantly disjunct taxa. Long-
distance dispersals may have occurred, albeit rarely.
Although long-distance dispersal is demonstrably pos-
sible in the Boletaceae and other ECM lineages, the
likelihood of its frequent occurrence is low (Geml
et al. 2012; Hackel et al. 2022; Tremble et al. 2022).
Most basidiospores do not travel far from the parental
sporocarp (Galante et al. 2011), and the probability of
two airborne basidiospores landing in close-enough
proximity to mate is negatively correlated with increas-
ing distance from sporocarps (Golan and Pringle 2017;
Peay et al. 2012). Such improbabilities notwithstanding,
our biogeographic patterns are consistent with episodic
long-distance dispersal, possibly by aerial dispersal of
basidiospores, spores vectored by migrating animals
(e.g., Elliott et al. 2019) or somatic mycelia on rafting
vegetation (Thiel and Gutow 2005).

Our biogeographic reconstructions are consistent
with the “Southern Route to Asia” hypothesis (Wilf
et al. 2019). This idea proposes that ECM Castanopsis
(Fagaceae), and by extension their symbiotic fungi,
existed in southern Gondwana during the Eocene
and were carried on Australia northward to Asia. In
this scenario, the Gondwanan ECM habitat tracked
increasingly drier climatic niches on Australia as it
moved northward and collided with the Pacific Plate.
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A relictual ECM community remained in a newly
isolated New Guinea and subsequently spread north-
west along the montane Australasian archipelago, fol-
lowed by dispersal into continental Asia. Many of the
dispersal events we found between Indo-Malesia and
other regions, especially the Holarctic, are inferred
within the last 20 my, coincident with the late-
Oligocene contact of Australia with the Pacific Plate
(Hall 2011). As suggested by Halling et al. (2012),
recent Boletaceae migrations likely occurred across
the Australasian archipelago and are corroborated by
our inferred recent regional dispersal events.
Interestingly, all endemic New Zealand Boletaceae
are estimated to be much younger than the separation
of New Zealand from Gondwana ~80 mya, strongly
suggesting that they arrived via dispersal. Similar pat-
terns have been shown in other Agaricomycetes, such
as Lentinula and Inocybaceae (Hibbett 2004; Matheny
et al. 2009).

Biogeographic reconstructions are highly sensitive to
taxon sampling, and our dataset is not immune to
equivocal reconstructions. For example, in both coding
schemes, the most recent common ancestor of the
Chalciporoideae had the highest probabilities of
a North Temperate and a North American origin,
respectively. However, with no Chalciporoideae samples
from Asia, Africa, or Australia/New Zealand in our
study, their potential impacts on the reconstruction
are unknown. Such sampling gaps notwithstanding, we
have the most geographically comprehensive sampling
for Boletaceae ever compiled and provide the first
opportunity to examine global-scale biogeographic pat-
terns. Insights into the evolution of the Boletaceae are
revealed for the first time, despite slight uncertainty at
a minority of nodes.

The evolutionary origins of distinctive regional
Boletaceae assemblages have long been a mystery
(Horak 1977). For example, the endemic Boletaceae of
Chile and Argentina have not been included in previous
phylogenetic studies, and their morphology-based affi-
nities have been inconclusive (Horak 1977). The recov-
ery of several Chilean species as independent lineages on
long branches in four of the subfamilies implies that
they have survived in isolation without speciating for
millions of years. The closest relatives of these Chilean
boletes occurred in geographic regions as disjunct as
North America, lowland tropical northern South
America, and Australia. Boletus loyita and
Gastroboletus valdivianus were most closely related to
extant Australian taxa, suggesting an origin prior to
southern Gondwanan disarticulation (phase 1 separa-
tion) (Reguero and Goin 2021). Close relationships

between southern Gondwanan Australian and southern
South American taxa have been documented elsewhere
(Feng et al. 2017). It is difficult to determine whether
Chilean boletes are relictual species, whose placement
on long branches is due to extensive extinction of sister
lineages or simply due to no subsequent speciation after
southern Gondwana separation. However, ECM genera
such as Lactarius and Russula are also strikingly species-
poor in Chile compared with other parts of the world
(Nouhra et al. 2019), which may suggest abnormally low
ECM net diversification rates in Chile. In all likelihood,
Chilean boletes arose in Gondwana, separated from
their sister lineages during Gondwanan disarticulation,
and either suffered from high levels of extinction or
underwent no subsequent speciation for tens of millions
of years.

Ancestral range reconstruction recovered an Asian ori-
gin of the core, “true porcini” genus Boletus s. str., corro-
borating the results of Feng et al. (2012). However, we
cannot entirely rule out an African origin. The Central
African endemic Boletus alliaceus was recovered here as
a sister taxon to Boletus s. str., and a similar relationship was
found for the recently described Paxilloboletus africanus
(Badou et al. 2022). Furthermore, we estimated the origin
of Boletus s. str to be 40 my, which may indicate why the
sister lineages to Boletus s. str. are endemic to Africa. India
separated from Africa and Madagascar ~120 mya (Reguero
and Goin 2021) and at 40 mya was already in contact with
Asia (Aitchison et al. 2007; Hu et al. 2016). If B. alliaceus
and P. africanus are indeed sister lineages of Boletus s. str.,
then the arrival and subsequent diversification of true
porcini in Asia must have been a dispersal event, because
the separation of India from mainland Africa (~180-170
mya; Hankel 1994) or Madagascar (83.6-91.6 mya; Storey
1995) occurred long before our estimated age of the
Boletus s. str. ancestor (~40 mya). Even if a more recent
ancestor existed in Madagascar or the Seychelles, the
separation of India from these landmasses at ~90 mya
(Storey 1995) and ~64 mya (Norton and Sclater 1979),
respectively, is still much older than our current age
estimates for true porcini. Furthermore, most or all
ECM fungi in Madagascar appear to have arrived on the
island through dispersal after its separation from Africa
(Rivas-Ferreiro et al. 2023), so dispersal is the most plau-
sible mechanism unless ancient Malagasy relict taxa are
discovered. In the current study, currently undescribed
species of Boletus s. str. were recovered from Taiwan,
Malaysian Borneo, and the Gulf Coast of the United
States, indicating that much more diversity exists in the
genus. To sort out the origins and full diversity of Boletus
s. str., more mycological exploration and whole genome
sequencing are needed. In particular, discovery and



analysis of true porcini lineages from India and Africa
could shed further light on the origin of this charismatic

group.
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