

Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions

6 Joshua Green^{1,2}, Ivan D. Haigh^{1,2}, Niall Quinn², Jeff Neal^{2,3}, Thomas Wahl⁴, Melissa Wood¹, Dirk
7 Eilander^{5,6}, Marleen de Ruiter⁵, Philip Ward^{5,6}, Paula Camus^{1,7}

10 ¹ School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,
11 European Way, Southampton SO14 3ZH, UK

11 European Way, Southampton SO14 5ZB, UK
12 3 Fathom Square Works, 17-18 Berkeley Square, Bristol BS8 1HB, UK

¹² 21 Platform, Square Works, 17–18 Berkeley Square, Bristol BS8 1TB, UK
¹³ School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK

3 School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
4 Department of Civil, Environmental, and Construction Engineering and National Center for
Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA

15 Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
16 5 Institute for Environmental Studies, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The
17 Netherlands

17 Netherlands

18 6 Deltarest, 2629 HV Delft, The Netherlands
19 Geomatics and Green Engineering Group

19 /Geomatics and Ocean Engineering Group. Departamento de Ciencias y Técnicas del Agua y del
20 Medio Ambiente. E.T.S.I.C.C.P. Universidad de Cantabria, 39005 Santander, Spain
21

21

23 Correspondence to: Joshua Green, J.Green@soton.ac.uk

24

25

26

27

28

29

30

31

32

33

34

35

58

37

39 **Abstract**

40 Compound flooding, where the combination or successive occurrence of two or more flood drivers
41 leads to a greater impact, can exacerbate the adverse consequences of flooding, particularly in
42 coastal/estuarine regions. This paper reviews the practices and trends in coastal/estuarine
43 compound flood research and synthesizes regional to global findings. Systematic review is employed
44 to construct a literature database of 271 studies relevant to compound flooding in a
45 coastal/estuarine context. This review explores the types of compound flood events, their
46 mechanistic processes, and synthesizes terminology throughout the literature. Considered in the
47 review are six flood drivers (fluvial, pluvial, coastal, groundwater, damming/dam failure, and
48 tsunami) and five precursor events and environmental conditions (soil moisture, snow, temp/heat,
49 fire, and drought). Furthermore, this review summarizes research methodology and study
50 applications trends, and considers the influences of climate change and urban environments. Finally,
51 this review highlights knowledge gaps in compound flood research and discusses the implications on
52 future practices. Our five recommendations for compound flood research are: 1) adopt consistent
53 terminology and approaches; 2) expand the geographic coverage of research; 3) pursue more inter-
54 comparison projects; 4) develop modelling frameworks that better couple dynamic Earth systems;
55 and 5) design urban and coastal infrastructure with compounding in mind.

56

57

58

59

60

61

62 **Short Summary**

63 Compound flooding, involving the combination or successive occurrence of two or more flood
64 drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices,
65 trends, methodologies, applications, and findings of coastal compound flooding literature at regional
66 to global scales. We explore the types of compound flood events, their mechanistic processes, and
67 the range of terminology. Lastly, this review highlights knowledge gaps and implications for future
68 practices.

69

70

71 **Key Words:** Compound Flood, Compound Event, Flood Driver, Coastal Flood, Coastal Hazard

72

73

74

75

76

77

78

79

80

81

82

83 1) Introduction

84 Flooding is the costliest and most common hazard worldwide (Bevere and Remondi, 2022;
85 Mishra et al., 2022; Rentschler et al., 2022; Thielen et al., 2022), and can lead to a wide range of
86 environmental, economic, and social repercussions. Over 1.8 billion people, almost a quarter (23%)
87 of the world's population, are exposed to 1-in-100 year flooding (Rentschler et al., 2022). The vast
88 majority (89%) of these people live in low- and middle-income countries, and socially vulnerable
89 communities are disproportionately at risk (Rentschler et al., 2022). Since 1980, global floods have
90 caused over 250,000 fatalities and \$1 trillion USD in losses (Re, 2017; Em-Dat, 2022). In 2021 alone
91 there were more than 50 severe flood disasters recorded worldwide, causing economic losses
92 totaling \$82 billion (2022 USD) (Bevere and Remondi, 2022).

93 A large proportion of deaths and the economic losses associated with flooding have historically
94 occurred in densely populated coastal/estuarine regions. Today, near-coastal zones and low-
95 elevation coastal zones, subject to flooding from a range of drivers, are respectively home to 2.15
96 billion and ~900 million people globally (Reimann et al., 2023). In the past decade, floods associated
97 with strong onshore wind and pressure fields (e.g., 2013/2014 UK Winter Floods, 2017 Atlantic
98 Hurricane Season, 2019 Atlantic Hurricane Dorian, 2019 East Africa Tropical Cyclone Idai, 2019
99 Pacific Typhoon Season, and 2022 Eastern Australia Floods) have showcased the ever-present threat
100 of extreme flood impacts in coastal settings. Even in regions where coastal defence standards are
101 among the highest in the world (e.g., Europe, Japan, Netherlands), potential defence failure during
102 events that exceed the standard of protection (e.g., major overtopping or a breach) still pose
103 considerable risk to populations and development in coastal floodplains. Moreover, flooding is a
104 rapidly growing threat to most coastal regions and their communities due to: (i) sea-level rise,
105 changes in storminess, and increasingly variable rainfall patterns driven by climate change (Church et
106 al., 2001; Wood et al., 2023); (ii) population growth, urbanisation, and continued development in
107 floodplains (Hallegatte et al., 2013); and (iii) the continued decline in the extent of shorelines and
108 habitats which act as natural buffers to flooding (Woodruff et al., 2013; Oppenheimer et al., 2019).

109 Average global flood losses in large coastal cities are estimated to increase approximately tenfold by
110 2050 due to socio-economic change alone, reaching up to US\$1 trillion or more per year when
111 considering sea-level rise and land subsidence (Hallegatte et al., 2013). There is clear importance in
112 advancing our understanding of flooding in coastal/estuarine regions.

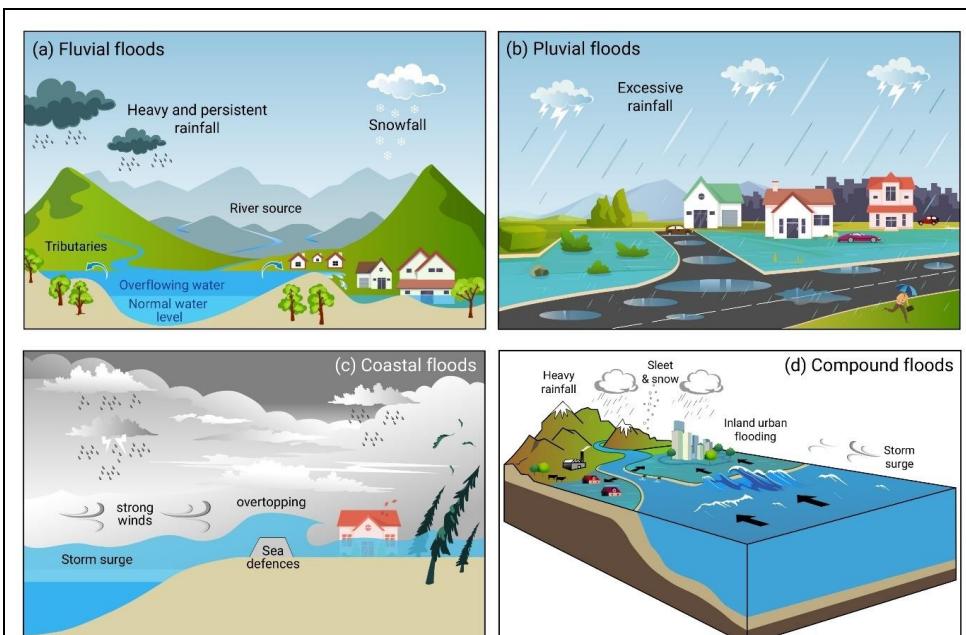


Figure 1. Schematic diagram of flood drivers showing (a) fluvial (river discharge), (b) pluvial (rainfall runoff), and (c) coastal (surge, tide, waves, and total sea level) components, as well as their (d) compound flood interactions.

113
114 This review focuses on compound flooding that takes place in coastal (ocean/lake) and
115 estuarine regions, which primarily arises from three main sources: (1a) river discharge (**fluvial**); (1b)
116 precipitation surface runoff (**pluvial**); and (1c) coastal processes including storm surge, astronomical
117 tides, wave action, and relative sea level rise (SLR) (**coastal**) as shown in Figure 1. Traditionally, most
118 existing flood risk assessments consider these main drivers of flooding separately; and many
119 oversimplify or ignore key interactions all together. However, in many coastal/estuarine regions,
120 floods are often caused by more than one driver as the processes are naturally correlated. For
121 example, intense tropical/extratropical cyclones (TCs/ETCs) can generate heavy precipitation that
122 enhances river discharges, while at the same time strong winds and low pressures cause large storm

123 surges and waves. When fluvial, pluvial, and/or coastal drivers occur at the same time, or within a
124 few hours or days, the adverse effects of flooding can be measurably exacerbated (Gori et al., 2020a;
125 Khalil et al., 2022). The synergy of multiple hazard drivers can result in disproportionately extreme
126 events, even if individual flood drivers are not extreme themselves. This is often referred to as
127 'compound events' (Hewitt and Burton, 1971; Adhikari et al., 2010; Seneviratne et al., 2012; Leonard
128 et al., 2014; Zscheischler et al., 2020). It is only in the last decade that we are beginning to recognize
129 the necessity of compound event-based approaches to flood risk assessment, as traditional
130 univariate methods of analysis fail to capture the non-linear impacts of multiple flood drivers
131 (Kappes et al., 2010; Leonard et al., 2014; Eshrati et al., 2015; Klerk et al., 2015; Ridder et al., 2018;
132 Zscheischler et al., 2018; Hao and Singh, 2020; Ridder et al., 2020; Manoj J et al., 2022).

133 In recent decades our knowledge of individual flood drivers has improved tremendously, as a
134 result of better in-situ and remote sensed datasets, and advances in statistical and numerical
135 modelling techniques. However, our understanding of compound flood events is still limited, from
136 the synergetic processes to the spatiotemporal trends and scales of interacting drivers. Compound
137 event-based research is relatively new (Wu et al., 2020; Bevacqua et al., 2021), having only gained
138 notable attention in 2012 when it was formally defined in the Intergovernmental Panel on Climate
139 Change's (IPCC) Special Report on Climate Extremes (SREX) (Seneviratne et al., 2012), and as a key
140 guiding principle of the 2015 UN Sendai Framework on Disaster Risk Reduction (Undrr, 2015) .
141 Additionally, there has been growing public awareness of extreme compound flooding following a
142 decade of increasingly frequent extreme weather events, where catastrophic disasters arose from
143 multiple interacting flood drivers. For example, in 2017 Hurricane Harvey resulted in record-breaking
144 rainfall, river discharge, and runoff, which when combined with long-lasting storm surge resulted in
145 catastrophic flooding in Houston, Texas (Valle-Levinson et al., 2020; Huang et al., 2021; Gutenson et
146 al., 2022). This was the second costliest (\$152.5B) natural hazard in US history (Ncei, 2023). As a
147 result of this event, it has been recognised that by failing to consider compound flooding, the risk to
148 Houston and elsewhere had been, and currently remains, greatly underestimated.

149 Compound flood research at local, regional, and recently global scales has experienced growing
150 recognition and substantial advancements over the past decade, with rapid increases in the number
151 of academic publications (particularly since 2020). However, to date there have only been a handful
152 of published reviews that have synthesized current understanding of compound flooding. Moreover,
153 the reviews that do exist have only focused on specific elements of the broader compound flood
154 subject. Bensi et al. (2020) reviewed the drivers and mechanisms of compound flooding, the
155 methods of joint distribution analysis regarding probability hazard assessment, and the key findings
156 of various bivariate coastal-fluvial and coastal-pluvial flood studies. To the best of our knowledge,
157 three publications have reviewed compound flood modelling approaches in coastal regions
158 (Santiago-Collazo et al., 2019; Xu et al., 2022; Jafarzadegan et al., 2023) . Santiago-Collazo et al.
159 (2019) summarized practices of numerical compound flood modelling methodologies including
160 different frameworks for linking (or coupling) multiple hydrologic, hydrodynamic, and ocean
161 circulation models. Xu et al. (2022) examined the advancements, benefits, limitations, and
162 uncertainties of varying numerical and statistical (joint probability and dependence) models and
163 frameworks for compound flood inundation. Lastly, Jafarzadegan et al. (2023) provided a general
164 review of advancements in both univariate riverine and coastal modelling , briefly touching on a
165 hybrid compound modelling approach using linked statistical-hydrodynamic models and physics-
166 informed machine learning (ML). More broadly, two additional papers by Hao et al. (2018) and
167 Zhang et al. (2021a) reviewed the advancing work on compound flood extremes in the realm of
168 hydrometeorology, evaluating the physical drivers and underlying mechanisms (Hao et al., 2018)
169 plus analytical and modelling research methods (Zhang et al., 2021a). Hao et al. (2018) outlined the
170 characteristics and key statistical tools for assessing compound flood and other compound
171 hydroclimatic extremes (drought, heatwave, coldwave, extreme rainfall). Zhang et al. (2021a)
172 discussed these same statistical approaches when reviewing drivers, mechanisms, and means of
173 quantifying risk for compound flooding and four other compound extremes (drought, hot-wet, cold-
174 wet, cold-dry). In addition, they reflected on methods of numerical modelling and collate findings on

175 pluvial-surge, fluvial-surge, sea level-tide, and fluvial-tide compound flood studies. Regarding
176 compound events and driver dependence, Hao and Singh (2020) and Zscheischler and Seneviratne
177 (2017) reviewed standard methods of measuring dependence (using copulas) as well as approaches
178 for quantifying the likelihood of compound floods. Abbaszadeh et al. (2022) reviewed the sources
179 and challenges of uncertainty in flood modelling and forecasting and offer guidance on reducing
180 uncertainty in the context of compound floods. In addition to these aforementioned papers that
181 reviewed specific aspects of compound flooding, there are a number of articles (e.g., Leonard et al.
182 (2014); Aghakouchak et al. (2020); Ridder et al. (2020); Zscheischler et al. (2020); Bevacqua et al.
183 (2021); Simmonds et al. (2022); Van Den Hurk et al. (2023)) that have reviewed broader compound
184 event research involving a wider range of hazards beyond just flooding. These papers have discussed
185 compound flooding and provide a diversity of detailed case examples, but largely focus on the
186 frameworks, typologies, theories, and perspectives of compound event-based research and disaster
187 risk reduction as a whole (Leonard et al., 2014; Aghakouchak et al., 2020; Ridder et al., 2020;
188 Zscheischler et al., 2020; Bevacqua et al., 2021; Simmonds et al., 2022). Overall, these previous
189 reviews have provided an excellent synthesis of specific aspects of compound flooding, however,
190 they have each only focused on a narrow area within the much broader compound flooding
191 discipline. To date, a detailed state-of-the-art review of the entire body of compound flood literature
192 has yet to be done.

193 Therefore, the overall aim of this paper is to carry out a comprehensive systematic review and
194 synthesis of compound flood literature, with a focus on coastal/estuarine regions where compound
195 flooding is most prevalent. We stress, this is not a review of coastal flooding, but rather compound
196 flooding occurring in coastal (ocean/lake) and estuarine settings.

197
198 To address this aim we have six objectives around which the paper is structured:

199 1. To survey the range of compound event definitions and terminologies, and examine how
200 they pertain to the scope of compound flooding (Section 2);

201 2. To briefly discuss the key physical processes contributing to flood events from individual
202 drivers (Section 3);
203 3. To develop an extensive literature database on compound flood research in
204 coastal/estuarine regions (Section 4);
205 4. To identify trends in the characteristics of compound flood research (Section 5);
206 5. To synthesize the key findings (dependence hotspots and driver dominance), considerations
207 (coastal urban infrastructure and climate change), and standard practices (application cases
208 and analytical methods) of compound flood research (Section 6); and
209 6. To reflect on the knowledge gaps in multivariate flood hazard research and suggest potential
210 directions for research going forward (Section 7).

211
212 Finally, overall conclusions are given (Section 8). Compound flood research is a rapidly
213 developing field of science. As well as providing a comprehensive review, identifying knowledge
214 gaps, and suggesting potential areas for future research, one of our secondary goals of this paper is
215 to provide an initial starting point to better inform researchers and decision-makers new to the
216 emerging field.

217 2) Definitions and Types of Compound Events & Multi-hazard Events

218 Our first objective is to survey the range of compound event terminologies observed in
219 literature, and to establish the scope of compound flooding considered in this review. First, we do
220 this broadly, reflecting on the definitions of compound events across different types of hazards (and
221 risks) that have been defined in the literature, and then we examine how the various definitions
222 pertain specifically to compound flood types and accompanying drivers. After this, we seek to
223 champion a unifying definition framework (i.e., encompasses a diversity of perspectives and use-
224 cases around compound events) for this review.

225 Throughout natural hazard literature, terminology around 'compound event', 'compound
226 hazard', and 'multi-hazard' are highly inconsistent. In the past, these terms have sometimes been
227 applied interchangeably. Some refer to compound hazards as a type of multi-hazard event within
228 the larger umbrella of the multi-hazard framework. We believe each of these terms are distinct from
229 one another, and thus for the purposes of this review we use the phrase 'compound event'.
230 Examples of different compound event (and related) terminologies are listed in Table 1 (general
231 disaster and hazard definitions are also provided for context). Several terms have been used to
232 describe similar concepts that all broadly involve the consideration of multiple hazards, drivers,
233 mechanisms, variables, and extremes in a multivariate and non-linear assessment of risk (i.e., hazard
234 exposure x vulnerability x capacity) and impact as defined by the IPCC (Ipcc, 2012, 2014).
235 Use of the term 'compound event' (and similar phrases) has been observed in older academic
236 publications (Hewitt and Burton, 1971), however it was only formally defined in an official context in
237 the 2012 IPCC SREX (Seneviratne et al. (2012)). As of present, the most widely accepted definitions
238 of compound events are those from the IPCC SREX (Seneviratne et al., 2012), Leonard et al. (2014),
239 and Zscheischler et al. (2020), which we briefly discuss below.
240
241 The IPCC SREX (Seneviratne et al., 2012) defines compound events as a 'combination of
242 multiple divers or hazards with adverse environmental or social risk/impact'. A more detailed
243 explanation is as follow:
244
245 *"(1) two or more extreme events occurring simultaneously or successively, (2) combinations
246 of extreme events with underlying conditions that amplify the impact of the events, or (3)
247 combinations of events that are not themselves extremes but lead to an extreme event or
248 impact when combined. The contributing events can be of similar (clustered multiple events)
249 or different type(s)"*
250

251 According to this definition, compound flooding could, for instance, describe the occurrence of
252 a moderate rainfall event that causes surface runoff and discharges at the coast, in addition to
253 elevated coastal water level from storm surge and wave action (whether simultaneous or a few days
254 later). None, one, or both of the two events may be considered extreme according to threshold or
255 probability-based approaches, but together they lead to extreme coastal water levels. This definition
256 also emphasizes the potential for compounding from the temporal clustering of the same (or
257 different) types of events (e.g., storm clustering involving quick succession of storm events and
258 associated coastal hazards (Jenkins et al., 2023)).

259 Leonard et al. (2014) argue that the IPCC SREX (Seneviratne et al., 2012) definition is unable to
260 capture extreme event edge cases (i.e., unexpected or outlier situations) and is not founded on the
261 physical systems at play. They instead propose a definition that focuses on the variable interactions
262 and event impact, as follows:

263

264 *“Our definition emphasizes three characteristics: (1) the extremeness of the impact rather
265 than the climate or weather event; (2) the multivariate nature of the event; and (3) statistical
266 dependence between variables or events that cause the impact.”*

267

268 Thus, according to this definition, classification of compound flood events necessitates an
269 extreme impact. In the context of flooding, the IPCC SREX may recognize, for example, the
270 simultaneous overtopping of riverine channels and surfacing of groundwater as compounding.
271 However, unless the impact is extreme, it would not pass as a compound flood according to Leonard
272 et al. (2014). This interpretation also requires definitive dependence between the extremes in
273 question. Therefore, a fluke spatiotemporal overlap of extreme rainfall due to an atmospheric river
274 in a region with elevated river levels from recent snowmelt would not be considered a compound
275 flood as the two events are fully independent.

276 More recently, Zscheischler et al. (2018) proposed a broader definition that is specific to
277 compound weather/climate events, as follows:

278

279 *"The combination of multiple drivers and/or hazards that contributes to societal or
280 environmental risk."*

281

282 Under this definition, the extremeness of individual drivers and/or hazards is not considered,
283 however their combination must still exhibit some extent of impact to contribute to overall risk.

284 Furthermore, compound events are strictly limited to the combination of natural (weather/climate)
285 drivers and hazards. Thus, anthropogenic hazards (e.g., dam failure and deforestation) are not
286 included within their scope of compound events. To date, the definition proposed in Zscheischler et
287 al. (2018) offer strong potential for unified discussion of compound climate events across scientific
288 disciplines. In the past few years numerous compound flood studies have accordingly adopted their
289 definition framework (Hao and Singh, 2020; Ridder et al., 2020; Bevacqua et al., 2021; Zhang et al.,
290 2021a; Xu et al., 2022).

291 Finally, for the scope of this review, we adopt the IPCC definitions of 'hazard' and 'compound
292 event' (Ipcc, 2012; Seneviratne et al., 2012), and thus consider compound events as a combination
293 of two or more co-occurring or consecutive drivers (natural or anthropogenic), that together have a
294 greater impact than either of the individual events. Neither the individual driver nor their
295 combinations must explicitly be considered extreme. Potential driver interaction types within this
296 compound event framework include the temporal and/or spatially overlapping combination of
297 multiple hazards (often from a shared modulators, e.g., storm event prompts simultaneously rainfall
298 and storm surge), the direct triggering or cascading of one hazard by another (e.g., heavy rainfall on
299 top of existing bankfull river discharge), and the random or by-chance spatial/temporal overlapping
300 of independent hazards (e.g., atmospheric river rainfall during peak spring snowmelt).

301

Term Category	Reference	Term	Definition
General	Undrr (2016)	Disaster	A serious disruption of the functioning of a community or a society at any scale due to hazardous events interacting with conditions of exposure, vulnerability, and capacity , leading to one or more of the following: human, material, economic and environmental losses and impacts .
General	Ipcc (2012)	Disaster	Severe alterations in the normal functioning of a community or a society due to hazardous physical events interacting with vulnerable social conditions , leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response to satisfy critical human needs and that may require external support for recovery.
General	Undrr (2016)	Hazard	A process, phenomenon or human activity that may cause loss of life, injury or other health impacts, property damage, social and economic disruption, or environmental degradation.
General	Ipcc (2012)	Hazard	The potential occurrence of a natural or human-induced physical event that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, and environmental resources.
General	Ipcc (2012)	Disaster Risk	The likelihood over a specified time period of severe alterations in the normal functioning of a community or a society due to hazardous physical events interacting with vulnerable social conditions , leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response to satisfy critical human needs and that may require external support for recovery.
General	Undrr (2016)	Disaster Risk	The potential loss of life, injury, or destroyed or damaged assets which could occur to a system, society or a community in a specific period of time, determined probabilistically as a function of hazard, exposure, vulnerability, and capacity .
General	Ipcc (2012)	Impacts	The effects on natural and human systems of physical events, of disasters, and of climate change .
General	Undrr (2016)	Disaster Impact	The total effect , including negative effects (e.g., economic losses) and positive effects (e.g., economic gains), of a hazardous event or a disaster . The term includes economic, human and environmental impacts, and may include death, injuries, disease and other negative effects on human physical, mental and social well-being.
General	Herring (2020)	Extreme Event	A time and place in which weather, climate, or environmental conditions —such as temperature, precipitation, drought, or flooding—statistically rank above a threshold value near the upper or lower ends of the range of historical measurements. Though the threshold is subjective, some scientists define extreme events as those that occur in the highest or lowest 5% or 10% of historical measurements. Other times they describe events by how far they are from the mean, or by their recurrence interval or probability.
General	Sarewitz and Pielke (2001)	Extreme Event	An occurrence that, with respect to some class of occurrences, is either notable, rare, unique, profound, or otherwise significant in terms of its impacts, effects or outcomes . An extreme event is not simply 'something big and rare and different'. 'Eventness' demands some type of temporal and spatial boundaries, while 'extremeness' reflects an event's potential to cause change.
General	Ipcc (2014)	Extreme Weather Event	An extreme weather event is an event that is rare at a particular place and time of year . Definitions of rare vary, but an extreme weather event would normally be as rare as or rarer than the 10 th or 90 th percentile of a probability density function estimated from observations. The characteristics of what is called extreme weather may vary from place to place in an absolute sense. When a pattern of extreme weather persists for some time, such as a season, it may be classed as an extreme climate event, especially if it yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season).
Multi-	Undrr (2016)	Multi-hazard	1) The selection of multiple major hazards that the country faces, and 2) The specific contexts where hazardous events may occur simultaneously, cascadingly, or cumulatively over time, and taking into account the potential interrelated effects

Multi-	Zschau (2017)	Multi-hazard	More than one hazard where hazard interactions are considered
Multi-	Komendantova et al. (2014)	Multi-hazard	The analysis of different relevant hazards, triggering, and cascade effects threatening the same exposed elements with or without temporal concurrence
Multi-	Tilloy et al. (2019)	Multi-hazard	More than one natural hazard with interrelationships between the hazards that impact the same location and time period .
Multi-	Gill and Malamud (2014)	Multihazards	All possible and relevant hazards, and their interactions , in a given spatial region and/or temporal period
Multi-	Hewitt and Burton (1971)	Multiple Hazards	Elements of quite different kinds coinciding accidentally, or more often, following one another with damaging force, for instance floods in the midst of drought, or hurricane followed by landslides and floods.
Multi-	Zschau (2017)	Multi-hazard Risk	Risk in a multihazard framework where no hazard interactions are considered on the vulnerability level
Multi-	Eshrati et al. (2015)	Multi-hazards Risk	The consideration of multiple (if possible all relevant) hazards posing risk to a certain area under observation.
Multi-	Kappes et al. (2010)	Multi-hazard Risk	The totality of relevant hazards in a defined area . Hazards are, as natural processes, part of the same overall system, influence each other and interact. Thus, multi-hazard risk contains emergent properties: It is not just the sum of single-hazard risks since their relations would not be considered and this would lead to unexpected effects.
Multi-	Kappes et al. (2012)	Multi-hazard Risk	A first definition of the term ' multi-hazard ' in a risk reduction context could read as follows: the totality of relevant hazards in a defined area (Kappes 2011). However, whether a hazardous process is relevant has to be defined according to the specific setting of the respective area and to the objective of the study. Additionally, not all studies on multiple hazards share the aim of involving ' all relevant processes of a defined area ' but can rather be described as ' more-than-one-hazard ' approaches. In summary, two approaches to multi-hazard can be distinguished: 1) primarily spatially oriented and aims at including all relevant hazards, and 2) primarily thematically defined .
Multi-	Eshrati et al. (2015)	Multi-hazards Interaction Types	Hazards relationship refers to many different types of influence of hazards to each other. 1) Triggering of a hazard by another 2) Simultaneous impact of several hazards due to the same triggering event 3) Disposition alteration of a hazard after another hazard occurrence 4) Multiple effects of a hazard phenomenon
Multi-	Tilloy et al. (2019)	Multi-hazards Interaction Types	1) Independence where spatial and temporal overlapping of the impact of two hazards without any dependence or triggering relationship 2) Triggering/Cascading where a primary hazard that triggers and a secondary hazard 3) Change Conditions : one hazard altering the disposition of a second hazard by changing environmental conditions 4) Compound hazard (association) where different hazards are the result of the same "primary event", or large-scale processes which are not necessarily hazard 5) Mutual exclusion (negative dependence) where two hazards can also exhibit negative dependence or be mutually exclusive
Multi-	Kappes et al. (2010)	Multi-hazard Interaction Types	1) Disposition Altering where modification of environmental characteristics, whether long-term basic disposition (e.g., relief, climate, vegetation cover) or

<p>faster variable disposition (e.g. daily to seasonal weather, water balance, vegetation period) causes the exceedance of a threshold and resulting hazard 2) Triggering/Cascading where one hazard is directly triggered or provoked by another hazard, or a chain of two or more hazards are induced as a result of a shared external event</p>			
Multi-	Gill and Malamud (2014)	Multihazard Interaction Types	Multiple hazard interaction types are divided into four categories: 1) Coincidence relationship involving the spatial and temporal coincidence of natural hazards. 2) Triggering relationship where a hazard is triggered. (e.g., lightning triggering a wildfire, groundwater abstraction triggering regional subsidence, a flood triggering a landslide which then triggers a further flood) 3) Increased probability relationship where the probability of a hazard is increased. (e.g., a wildfire increasing the probability of landslides, regional subsidence increasing the probability of flooding) 4) Decreased probability relationship where the probability of a hazard is decreased. (e.g., urbanisation catalysing storm-triggered flooding, storms impeding urban fire-triggered structural collapse)
Multi-	Zschau (2017)	Multi-risk	Risk in a multi-hazard framework where hazard interactions are considered on the vulnerability level .
Multi-	Komendantova et al. (2014)	Multi-risk	A comprehensive risk defined from interactions between all possible hazards and vulnerabilities .
<hr/> <p>Compound / Other IPCC SREX (Seneviratne et al. (2012)) Ipcc (2012)</p> <p>In climate science, compound events can be: 1) Two or more extreme events occurring simultaneously or successively, 2) Combinations of extreme events with underlying conditions that amplify the impacts of the events, or 3) Combinations of events that are not themselves extreme but lead to an extreme event or impact when combined. The contributing events can be of similar (clustered multiple events) or different types. Examples of compound events resulting from events of different types are varied – for instance, high sea level coinciding with tropical cyclone landfall, or cold and dry conditions (e.g., the Mongolian Dzud), or the impact of hot events and droughts n wildfire, or a combined risk of flooding from sea level surges and precipitation-induced high river discharge (Svensson and Jones, 2002; Van den Brink et al., 2005). Compound events can even result from 'contrasting extremes', for example, the projected occurrence of both droughts and heavy precipitation events in future climate in some regions.</p> <hr/>			
Compound / Other	Hewitt and Burton (1971)	Compound Event	Several elements acting together above their respective damage threshold , for instance wind, hail, and lightning damage in a severe storm. Many of the most severe meteorological hazards are compound , or become disastrous through involvement in a multiple hazard situation
Compound / Other	Leonard et al. (2014)	Compound Event	Emphasizes three key characteristics of a compound event : (1) the extremeness of the impact rather than variables or events it depends on; (2) the requirement of multiple variables or events on which the impact depends; and (3) the role of statistical dependence . Consider a coastal flood where the flood level depends on a rainfall event and an elevated ocean level. The coastal flood is a compound event because (1) the impact metric, a flood level, is considered to be extreme; (2) the impact depends on multiple variables, the rainfall and ocean boundary; and (3) the ocean level can have a statistical dependence with rainfall due to influences such as storm surge, wind setup, or seasonality.
Compound / Other	Zscheischler et al. (2018)	Compound Event	Compound weather and climate events are the combination of multiple drivers and/or hazards that contributes to societal or environmental risk. Drivers include processes, variables and phenomena in the climate and weather domain that may span over multiple spatial and temporal scales. Hazards are usually the immediate physical precursors to negative impacts (such as floods, heatwaves, wildfire), but can occasionally have positive outcomes (for example, greening in the Alps during the 2003 heatwave in Europe).

Compound / Other	Zscheischler et al. (2020)	Compound Event Interaction Types	<p>Compound weather and climate events have been organized into four type classes:</p> <ol style="list-style-type: none"> 1) Preconditioned: where a hazard causes or leads to an amplified impact because of a precondition 2) Multivariate: co-occurrence of multiple climate drivers and/or hazards in the same geographical region causing an impact 3) Temporally Compounding (sequential): succession of hazards that affect a given geographical region, leading to, or amplifying, an impact compared with a single hazard 4) Spatially Compounding: events where spatially co-occurring hazards cause an impact
Compound / Other	Raymond et al. (2020)	Connected Extreme Event	<p>The concept of connected extreme weather and climate events further recognizes that compound event impacts are often substantially and nonlinearly influenced by non-physical factors such as exposure and vulnerability, cutting across sectors and scales (from personal to society wide). These 'societal mechanisms' can tie together the impacts from two or more climate extremes. It is the creation or strengthening of the connections between events, in the impacts space and involving anthropogenic systems, that leads to our terminology of 'connected' events as being distinct from 'compound' events, and also from interacting-risk or multi-risk frameworks that focus on combinations of physical hazards.</p>
Compound / Other	Pescaroli and Alexander (2018)	Compound Risk	<p>Risk from:</p> <ol style="list-style-type: none"> 1) Extremes that occur simultaneously or successively; 2) Extremes combined with background conditions that amplify their overall impact; or 3) Extremes that result from combinations of "average" events.
Compound / Other	De Ruiter et al. (2020)	Dependent Hazards (Triggering / Cascading)	<p>Include triggering and cascading disasters, such as landslides triggered by a flood, or fires caused in the aftermath of an earthquake (Daniell et al., 2017). Cascading events are commonly defined as a primary hazard triggering a secondary hazard (Pescaroli & Alexander, 2015)</p>
Compound / Other	Kappes et al. (2010); Kappes et al. (2012)	Cascading / Triggering Hazards	<p>The triggering of one hazard by another, eventually leading to subsequent hazard events. This is referred to as cascade, domino effect, follow-on event, knock-on effect, or triggering effect.</p>
Compound / Other	Undrr (2019)	Cascading Hazard	<p>Cascading hazard processes refer to a primary impact (trigger) such as heavy rainfall, seismic activity or unexpectedly rapid snow melt, followed by a chain of consequences that can cause secondary impacts</p>
Compound / Other	Mishra et al. (2021)	Cascading / Compound Extreme Event	<p>A cascading (compound) event occurs due to the combination of two or more individual extreme events occurring successively (simultaneously). Examples of cascading events are: (a) a severe drought event followed by an extreme flood (drought-flood regime), and (b) extreme drought followed by wildfire (drought-wildfire regimes), which can be further compounded by flooding events. The compound event can also be a combination of human and natural related disasters (Mishra et al., 2021).</p>
Compound / Other	Cutter (2018)	Compound / Cascading / Triggering Hazard	<p>Natural scientists working in the hazards arena inherently understand the compounding physical processes and interactions that trigger a natural hazard event such as an earthquake and follow on sequences of other events that occur as a direct or indirect result of the initial triggering event. Compounding interactions can trigger a secondary hazard (e.g., lightning causing a wildfire) or increase the probability of a hazard (e.g., wildfire destroying slope vegetation and when rain events occur mudflows ensue). Compounding interactions are both spatially and temporally coincident and can amplify the effects, especially if they occur over relatively short time periods and overlap geographically. Compounding processes, compounding events, or compounding hazards are synonyms for describing these types of processes or outcomes. Cascading hazards occur as a direct or indirect result of an initial hazard. One characteristic feature of cascading natural events is proximity in time and space, suggesting that there are sufficient</p>

			forces or energy in the initial event to trigger the subsequent events in the physical system.
Compound / Other	Pescaroli and Alexander (2015)	Cascading Disasters	Extreme events , in which cascading effects increase in progression over time and generate unexpected secondary events of strong impact. These tend to be at least as serious as the original event, and to contribute significantly to the overall duration of the disaster's effects. In cascading disasters one or more secondary events can be identified and distinguished from the original source of disaster.
Compound / Other	De Ruiter et al. (2020)	Consecutive Disasters	Two or more disasters that occur in succession , and whose direct impacts overlap spatially before recovery from a previous event is considered to be completed. This can include a broad range of multi-hazard types , such as compound events (Zscheischler et al., 2018) and cascading events (Pescaroli & Alexander, 2015). Consecutive disasters can occur due to dependency between natural hazards (e.g., triggering events) or when independent hazards occur in the same space-time window
Compound / Other	Pescaroli and Alexander (2018)	Interacting / Interconnected Risk	Risk from physical dynamics that develop through the existence of a widespread network of causes and effects, tends to overlap with compound risk in the hazard domain. Focus on the area in which hazard interacts with vulnerability to create disaster risk
Compound / Other	Pescaroli and Alexander (2018)	Cascading Risk	Risk from ' toppling dominoes ' or ' systematic accidents '. Associated mostly with the anthropogenic domain and the vulnerability component of risk.

302 *Table 1. Examples of different compound event (and related) terminologies, types, and definitions in scientific literature.*
303 *Unique aspects of varying definitions are emphasized in bold.*

304

305 3) Flood Processes and Mechanisms

306 Having considered the compound event definitions, our second objective is to briefly discuss
307 the key physical processes contributing to flooding and the individual drivers/hazards recognized in
308 this review. In this review we focus on coastal regions. Here, flooding mainly arises from three main
309 flood drivers, namely (i) fluvial, (ii) pluvial and (iii) coastal. In this section we start by discussing these
310 three drivers and their mechanisms individually (Section 3.1). It is these three drivers, in different
311 combinations, that most often result in compound flood events. Schematic diagrams illustrating the
312 varying flood processes associated with these three main drivers are shown in Figure 1. However,
313 flooding can also arise from three less frequent auxiliary flood drivers, that is (iv) groundwater, (v)
314 damming and dam failure, and (vi) tsunamis. These additional flood drivers are also briefly discussed
315 (Section 3.2). Finally, we also highlight several precursor events and environmental conditions that
316 can influence the magnitude and/or occurrence of flooding (Section 3.3).

317 3.1 Main Drivers of Flooding in Coastal Regions

318 Fluvial flooding (Figure 1a), also known as river (or riverine) flooding is induced by the
319 accumulation of large volumes of rainfall and/or freshwater. Intense precipitation during extreme
320 meteorological events (e.g., TCs/ETCs and atmospheric rivers) and weather seasons (e.g., monsoons)
321 can inundate rivers quickly. Elevated volumes of water cause the level in rivers, creeks, and streams
322 to rise above their channel banks and spill out into the adjacent low-lying area known as the
323 floodplain. Thus, fluvial flooding depends on the hydrometeorological conditions and catchment
324 characteristics (e.g., size, shape, slope, land cover, and soil type). The peak of river flooding can have
325 a time lag of hours to weeks between the rainfall over a catchment and the exceedance of
326 downstream channels (Valle-Levinson et al., 2020). In the spring, fluvial flooding can also be driven
327 by snowmelt (or glacial melt) as large reservoirs of melting freshwater flows into downstream river
328 channels. Freshwater fluvial flooding occurs worldwide but is more frequent in high latitude (e.g.,
329 Canada and Northern Europe) and high elevation (e.g., Hindu Kush and Andes Mountains) regions.

330 Pluvial flooding (Figure 1b) is the result of rapid heavy rainfall (flash flooding) or long sustained
331 rainfall. As the rain reaches the ground, the soil has the potential to become saturated, causing
332 either ponding or surface runoff (overland flooding) that flows down terrain and into rivers (in
333 practice the boundary between pluvial and fluvial flooding is not well defined and is usually based on
334 catchment area rather than physical process). Pluvial flooding is thus closely dependent on surface
335 drainage. Urban flooding is closely linked with pluvial flooding where excessive runoff in areas of
336 human development has insufficient drainage, often due to impervious surfaces such as concrete
337 and asphalt (Gallien et al., 2018). Urban flooding also ties in with sewer and stormwater flooding in
338 which pluvial surface runoff infiltrate waste management infrastructure and exceed system capacity
339 (Archetti et al., 2011; Gallien et al., 2018; Meyers et al., 2021).

340 Coastal flooding (Figure 1c) mainly occurs from one or more combinations of high astronomical
341 tides, storm surge, and wave action (runup, set up, swell, seiche), superimposed on relative mean
342 sea level. Each of these components of total sea level contribute differently to flooding, but we have

343 chosen to group them together for simplicity. Coastal flooding primarily refers to flooding at the
344 interface of land and ocean; however, it is sometimes also used when discussing instances of
345 flooding by these mechanisms (e.g. seiche) along the shoreline of lakes (e.g., Great Lakes). Tides are
346 the regular and predictable rise and fall of the sea level caused by the gravitational attraction and
347 rotation of the Earth, Moon, and Sun. Tides exhibit diurnal, semi-diurnal, or mixed diurnal cycles and
348 experience shifts in amplitude on fortnightly, bimonthly, and interannual timescales. Storm surges
349 are driven by storm events with low atmospheric pressure that cause sea levels to rise, and strong
350 winds that force water towards the coastline. Storms also generate waves, locally or remotely (e.g.,
351 swell), via the interaction of wind on a water's surface due to boundary friction and energy transfer.
352 Waves mostly contribute to enhanced coastal flooding via setup (the increase in mean water level
353 due to the presence of breaking waves) and runup (the maximum vertical extent of wave uprush on
354 a beach or structure). Mean sea level is the average height of the sea after filtering out the short-
355 term variations associated with tides, storm surges, and waves. Increases in relative mean sea level
356 arise as a result of vertical land movements (i.e., isostatic SLR) and changes in ocean volume (i.e.,
357 eustatic SLR) from thermal expansion of water, mass loss from glaciers and polar ice sheets, and
358 changes in terrestrial water storage (Oppenheimer et al., 2019).

359 3.2 Other Drivers of Flooding

360 In Section 3.1 we considered the three main flood drivers, which most frequently contribute to
361 compound flooding in coastal regions. However, other less frequent drivers can also play an
362 important role in compound floods and are briefly summarised below. Groundwater flooding is the
363 rise of the water table to the ground surface or an elevation above human development (Holt,
364 2019). This occurs during an increase in the volume of water entering an underlying aquifer. This can
365 be the result of prolonged rainfall and snowmelt, but in the case of unconfined coastal aquifers can
366 also be driven by SLR and saltwater intrusion (Plane et al., 2019; Befus et al., 2020; Rahimi et al.,
367 2020). Groundwater flooding is often observed along shorelines that are equal to or below sea level
368 (Plane et al., 2019; Befus et al., 2020; Rahimi et al., 2020), in regions with high ground-surface

369 connectivity (Jane et al., 2020), and in areas experiencing ground subsidence (downward vertical
370 shift of Earth's surface from processes such as compaction and groundwater extraction) (Rozell,
371 2021). As coastal groundwater flooding is the result of long-term changes, it is slow to dissipate and
372 usually persists longer than floods driven by fluvial and pluvial processes (Rozell, 2021).

373 Damming and dam failure (whether occurring naturally or from anthropogenic activities) can
374 result in flooding from a rapid release or build-up of large volumes of water. Natural damming
375 including beaver dams, ice jams, volcanic dams, morainal dams, and landslide dams can inhibit flow
376 and cause backwater flooding (and even lake formation) (Costa, 1985). Anthropogenic damming is
377 the intentional inundation (via impoundment) of a hydrological network for purposes of resources
378 management (Baxter, 1977). Natural dam failures such as glacial outbursts and landslide dam
379 overtopping can release vast quantities of water that overwhelm and inundate downstream
380 landscapes (Costa, 1985). The failure of human engineered water reservoirs (e.g., dams, levees,
381 dykes, water supply systems) can also cause substantial downstream flooding; often posing a greater
382 threat due to the close proximity to human development (e.g., 2017 Oroville Dam crisis (Koskinas et
383 al., 2019) and 2023 Derna dam collapses (Reliefweb, 2023)).

384 Tsunamis are a series of impulsive waves generated by the sudden displacement of large
385 volumes of water due to undersea earthquakes and landslides, shifts in the tectonic plates, and
386 underwater volcanic eruptions (Iotic, 2020). While large magnitude tsunami events occur
387 infrequently compared to other flood drivers, they still have the potential to cause catastrophic
388 flooding in coastal regions. Tsunamis are also unique in their potential to drive coastal flooding at
389 oceanic scales, sometimes spanning multiple countries and continents (e.g., 2004 Indian Ocean
390 Tsunami (Lavigne et al., 2009; Leone et al., 2011) and 2022 Hunga Tonga Tsunami (Manneela and
391 Kumar, 2022; Borrero et al., 2023)).

392 **3.3 Precursor Events and Environmental Conditions**

393 In addition to the aforementioned six flood drivers, we also bring to attention five important
394 precursor events and environmental conditions that can strongly influence flooding and whether or

395 not it occurs. First, soil moisture conditions commonly exacerbate surface flooding due to reduced
396 drainage capacity during periods of sustained high antecedent soil moisture (Stein et al., 2019).
397 Elevated freshwater volumes from snow and glacial melt may escalate fluvial and groundwater
398 flooding (Melone, 1985; Benestad and Haugen, 2007; Vormoor et al., 2015). Extreme temp/heat
399 have the potential to increase atmospheric water content and thus intensify pluvial and fluvial
400 flooding (Bermúdez et al., 2021). Wildfires can worsen pluvial and fluvial floods by modifying soil
401 properties such that ash deposits and burnt hydrophobic soils cause rapid surface flows and
402 channelization (Bayazit and Koç, 2022; Jong-Levinger et al., 2022; Xu et al., 2023). Finally, drought is
403 known to potentially intensify pluvial flooding when long term water deficiencies dry out and harden
404 the soil, in turn reducing ground infiltration and causing rapid surface flows (Katwala, 2022). We
405 note that many of these precursors and conditions have partially overlapping influences on flooding
406 as they are inherently interlinked by shared climatic and meteorologic forcings.

407 4) Literature Database Methodology

408 Our third objective is to develop a database of the extensive English-written scientific literature
409 on compound flood research. In this section we describe how the database was compiled, and then
410 we review and discuss the database contents in objectives four (Section 5) and five (Section 6).
411 A combination of *systematic review* and *content analysis* were used to collect scientific literature
412 and filter for publications relevant to the scope and themes of this paper. Published journal articles,
413 academic theses, conference proceedings, as well as government and scientific reports up until the
414 end of the year 2022 were sourced using the Web of Science, Semantic Scholar, Google Scholar, and
415 Dimensions AI search engines. Papers were filtered by topic, title, abstract, and full text (when
416 possible) entering different combinations of key search terms as shown in Table 2. Potential valid
417 articles were also identified from the bibliographies of compound flood papers using literature
418 mapping tools, including Connected papers, Citation Gecko, Local Citation Network, Open

419 Knowledge Maps. Research literature was then filtered for relevance based on the set of criteria
420 defined below.

421

422 To be include in our review applicable papers must:

423 1) focus primarily on compound flooding, and not simply mention it fleetingly in the
424 abstract or conclusion when in fact addressing univariate flooding;
425 2) involve multivariate statistical analysis, numerical modelling (hydrological and/or
426 hydrodynamic), and/or discussion of two or more flood drivers, precursors events, or
427 environmental conditions, of which at least one being one of the main three flood
428 drivers (fluvial, pluvial, coastal); and
429 3) take place in coastal regions, (i.e. near an ocean, sea, inlet, estuary, or lake)

430

431 Papers deemed appropriate were added to the literature review database and categorized by:

432 1) case study geographic scope;
433 2) case study scenario;
434 3) flood drivers, precursor events, and/or environmental conditions considered;
435 4) research approach (numerical modelling, statistical modelling/analysis, or both); and
436 5) study application (earth system processes, risk assessment, impact assessment,
437 forecasting, planning and management, and methodological advancement).

438

439

440

441

442

443

Search Terms
"compound* flood*"
"joint* "flood*"
"coincid* flood*"
"comb* flood*"
"multivariate flood*"
"multi* flood*"
"multi-hazard" AND "flood*"
"cascading" AND "flood*"
"trigger*" AND "flood*"
"concurrent" AND "flood*"
"precondition" AND "flood*"
"antecedent" AND "flood*"
"*connected" AND "flood*"
("cooccur*" OR "co-occurr*") AND "flood*"
("interrelated" OR "interacting") AND "flood*"
("joint probability" OR "joint occurrence") AND "flood*"
("river" OR "discharge") AND ("precipitation" OR "rain") AND "flood*"
("precipitation" OR "rain") AND ("surge" OR "tide" OR "wave") AND "flood*"
("river" OR "discharge") AND ("surge" OR "tide" OR "wave") AND "flood*"
"fluvial" AND "pluvial" AND "flood*"
"fluvial" AND "coastal" AND "flood*"
"pluvial" AND "coastal" AND "flood*"
"fluvial" AND "pluvial" AND "coastal" AND "flood*"

444 *Table 2. Literature database keywords and Boolean search terms. Asterisks act as multi-character wildcards used to capture*
445 *alternative phrasing of truncated root words (e.g., 'flood*' returns 'flood-s', 'flood-ed', and 'flood-ing')*

446

447 To fully clarify the scope of this review, we again emphasize that this review is focused on
448 compound flood literature in coastal (ocean/lake) and estuarine environments. Some may argue
449 that all coastal flooding (or really flooding in general) involves a combination of multiple drivers.
450 While this is not untrue, the majority of historical flood and coastal flood literature has not explicitly
451 focussed on the compounding interactions between the different components of flooding and how
452 those interactions influence flooding as a whole. For this reason, general coastal flood literature that
453 does not explicitly examine the interactions of different flood mechanisms on total flooding is
454 excluded. Additionally, while compound flood literature must examine flooding in coastal and
455 estuarine regions, it does not necessarily require the consideration of coastal drivers to be included
456 (e.g. compound fluvial-pluvial flooding at the coast). Finally, we highlight that historical literature
457 that do not use the phrase "compound flood" may still be included as they would have satisfied the
458 other keyword search terms listed in Table 2.

459 Keeping in line with the compound event definition framework outlined in Section 2, and the
460 individual flood mechanisms detailed in Section 3, this review recognizes compound flooding as a
461 combination of two or more of the six flood drivers (fluvial, pluvial, coastal, groundwater,
462 damming/dam failure, and tsunami) and five precursor events and environmental conditions (soil
463 moisture, snow, temp/heat, fire, and drought). In this paper, the coastal driver category will
464 encapsulate processes at lake coasts in addition to oceanic coasts, as lakes exhibit wind-driven
465 oscillating waves (seiche) that contribute to compound flooding similarly to oceanic tides and storm-
466 surge. Not considered in the review are studies that assess the cooccurrence or consecutive
467 occurrence of flood characteristics that are not unique to a particular flood driver variable (e.g., flow
468 velocity, flood volume, flood duration, flood intensity, flood depth/height). Additionally, this review
469 does not recognize the confluence or convergence of rivers channels within the same river network
470 as compound flooding. While there is considerable literature on this subject (e.g., Bender et al.
471 (2016)), fluvial-fluvial compounding predominantly occurs inland and therefore is not included
472 within the scope of this paper, which we again emphasize focuses on coastal regions. This review
473 does however recognize compounding of like-type flood drivers in the case of pluvial-pluvial
474 temporal clustering as well as coastal-coastal between different coastal components (e.g., tide-
475 surge, surge-waves, tide-waves).

476 While this review aims to provide an overview of existing research on compound flooding, it is
477 necessary to recognize limitations of the literature review database. Most notably, this review only
478 considers English scientific literature and thus may not fully represent the perspectives and findings
479 of all research communities. Throughout the literature database development process, a small
480 number (<5) of non-English compound flood studies were identified but omitted to preserve
481 consistent methodology. Additionally, the final literature database used in this study is extensive but
482 not exhaustive, as some compound flood literature may have been overlooked or excluded based on
483 the drivers, precursor events, and environmental conditions considered within the review's scope.

484 From these literature search and database curation methodologies, we identified a total of 271
485 compound flood publications. A detailed overview of the compound flood literature database is
486 presented in the Appendix (Table A1).

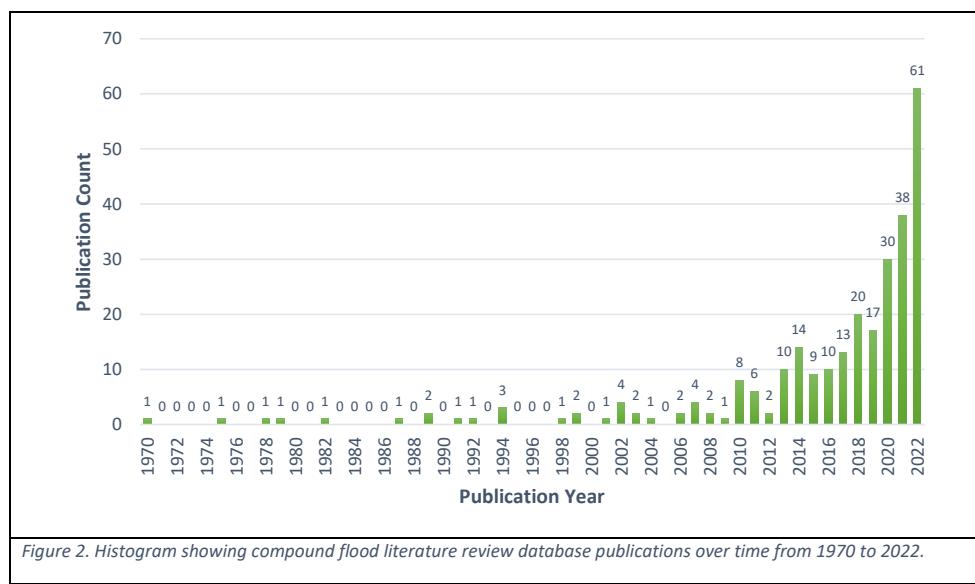
487 **5) Review of Literature Database**

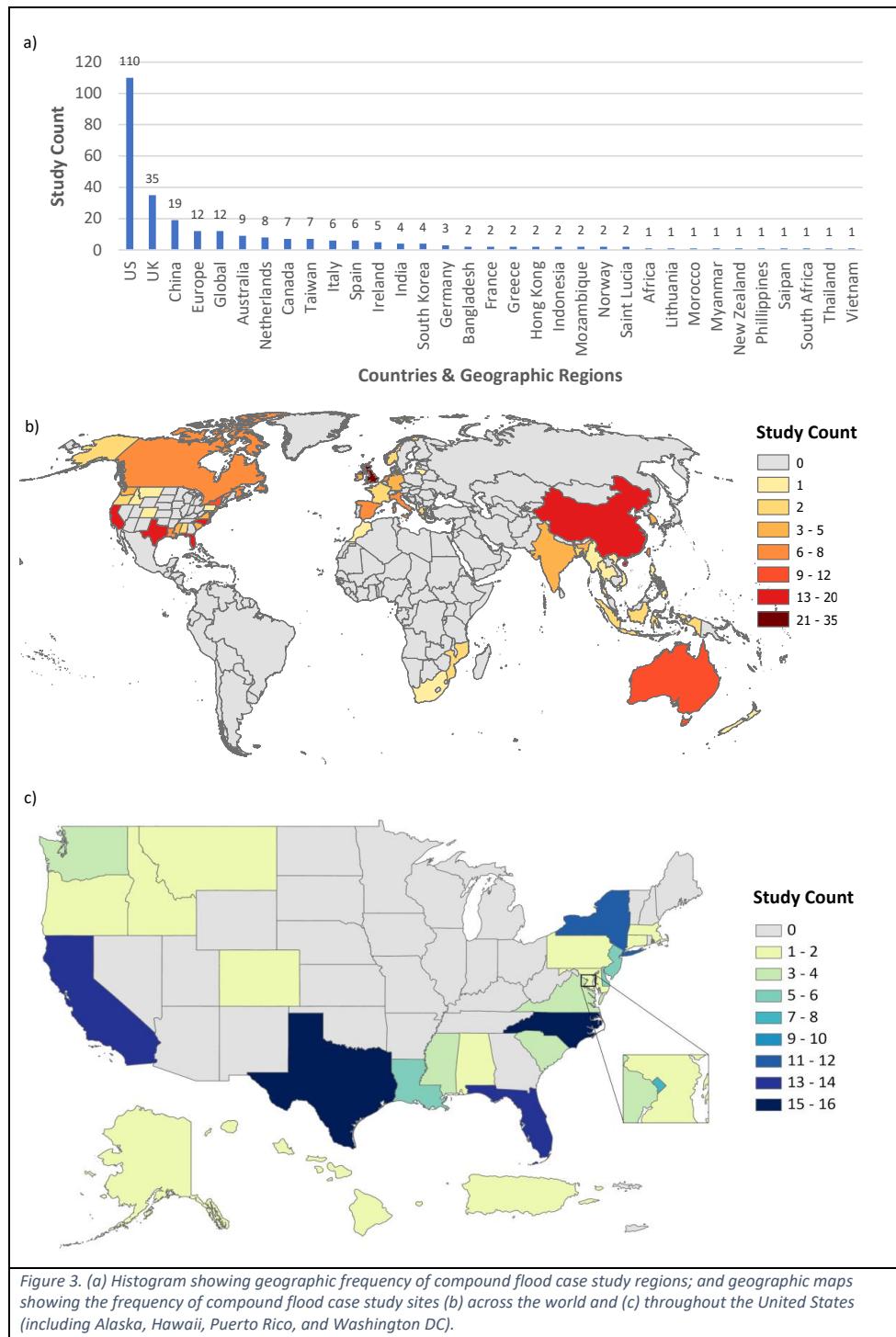
488 The fourth objective of the review is to identify and reflect on trends in the characteristics of
489 compound flood research. We discuss general bibliometric characteristics of compound flood
490 literature including: publications over time (Section 5.1), the geographic scope of compound flood
491 case studies (Section 5.2), and the key scientific journals and/or institutions (Section 5.3). We then
492 review the flood drivers considered (Section 5.4), the analytical approaches applied in the studies
493 (Section 5.4), and their various research applications (Section 5.5).

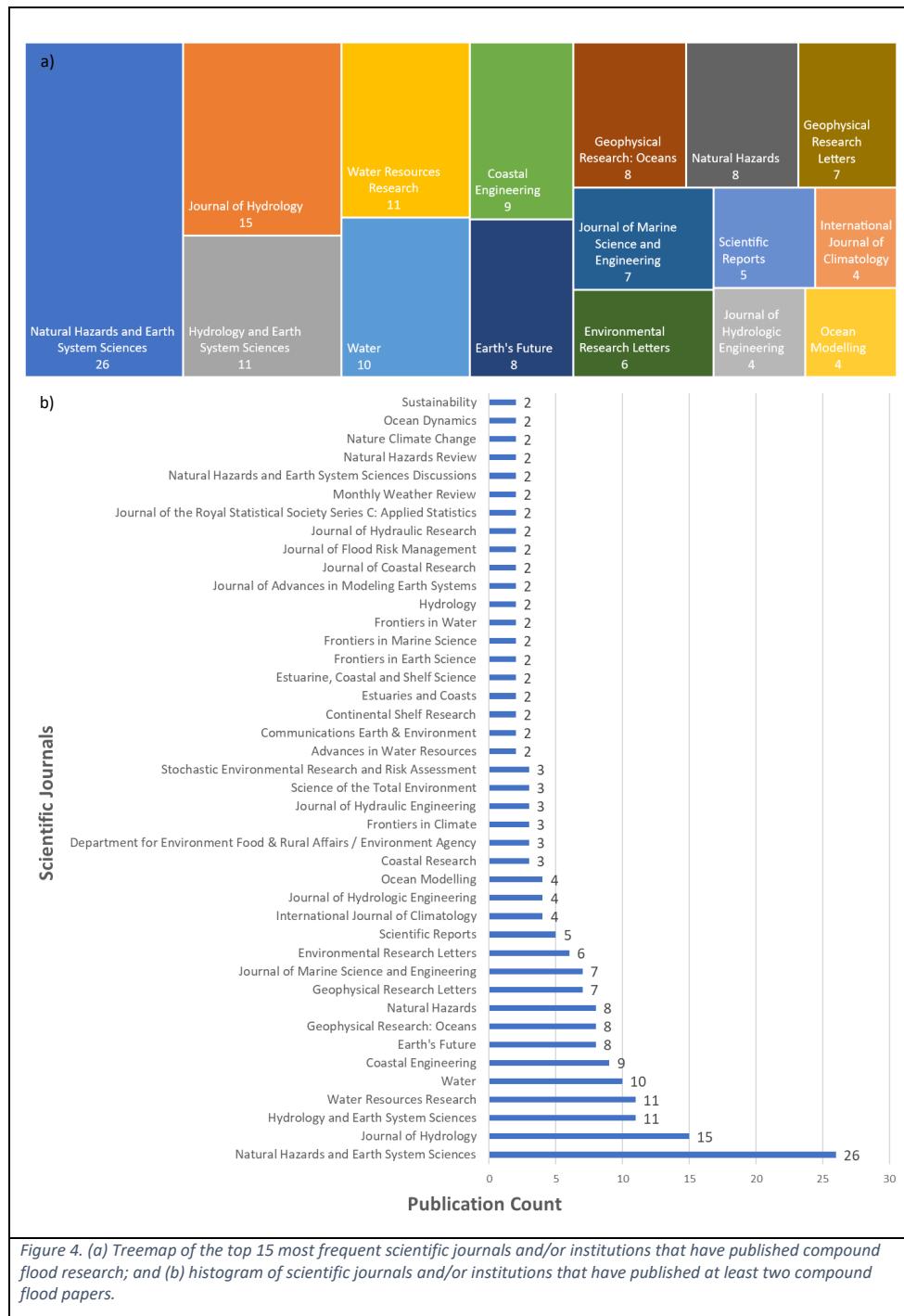
494 **5.1) Publications by Year**

495 As mentioned previously, we identified 271 publications on compound flooding up to the end
496 of the year 2022. The number of publications per year, identified in the review, are shown in Figure
497 2. Up until the year 2000 there were very few compound flood studies (16) (Myers, 1970; Ho and
498 Myers, 1975; Prandle and Wolf, 1978; Mantz and Wakeling, 1979; Walden et al., 1982; Loganathan
499 et al., 1987; Chou, 1989; Vongvisessomjai and Rojanakamthorn, 1989; Flick, 1991; Tawn, 1992;
500 Acreman, 1994; Coles and Tawn, 1994; Dixon and Tawn, 1994; Jones, 1998; Coles et al., 1999;
501 Rodríguez et al., 1999), the earliest being published in 1970 (Myers, 1970). Since then, there has
502 been a considerable increase in compound flood related papers. The past three years (2020-2022) in
503 particular has spawned a considerable number of compound flood papers (129), nearly half (48%).

504 **5.2) Publications by Geographic Region**


505 The number of compound flood related papers, organized by geographical region on which the
506 study focuses, are displayed in Figure 3a, and spatially mapped in Figure 3b. Although there has been
507 increasing focus on the compound nature of flooding, the spatial scope of compound flood research
508 is largely limited to a few geographic regions. Nearly half the publications are directed at compound




509 flooding along the US coastlines (110, 40%). The spatial distribution of US-related studies is
510 visualized in Figure 3c. Following the US, some of the next most frequently studied regions are the
511 UK (35, 13%), China (19, 7.0%), Global (12, 4.4%), Europe (12, 4.4%), Australia (9, 3.3%), the
512 Netherlands (8, 3.0%), Canada (7, 2.6%), and Taiwan (7, 2.6%). Additional geographic regions
513 assessed in <7 studies are presented in Figure 3a.

514 **5.3) Publications by Journals and Institutions**

515 A total of 107 unique scientific journals and institutions (i.e., universities and government agencies)
516 have published compound flood research (i.e., articles, reports, and theses). More than half (140,
517 52%) of the compound flood literature is published in 15 academic research journals (Figure 4), with
518 the top 5 most frequent journals being Natural Hazards and Earth System Sciences (26, 9.6%),
519 Journal of Hydrology (15, 5.5%), Hydrology and Earth System Sciences (12, 4.4%), Water Resources
520 Research (11, 4.1%), and Water (10, 3.7%). Although a considerable volume of compound flood
521 research is published by a select few journals and institutions, a total of 65 journals and institutions
522 have only published a single compound flood study. We suspect that this will change in the years to
523 come as the field of compound flood hazards gains further attention.

527 **5.4) Review of Flood Drivers Considered**

528 Across the 271 studies in the review database, a total of 11 unique compound flood drivers,
529 precursor events, and environmental conditions were identified. These are listed in Table 3 and
530 visualized in Figure 5. Due to the highly complex interactions between terrestrial, oceanic, and
531 atmospheric systems, most studies choose to limit the scope of their research to a select few flood
532 driving mechanisms. For instance, some focus on TC/ETC and extreme precipitation events, while
533 others addressed elevated river discharge in tandem with storm surge. Looking at the combination
534 of drivers analysed, 42 (15%) studies considered exactly the three main components of compound
535 flooding (fluvial, pluvial, coastal); note that analysis of three drivers does not necessarily dictate
536 trivariate analysis (e.g., fluvial-pluvial-coastal), but can also describe two separate bivariate analyses
537 (e.g., fluvial-coastal and pluvial-fluvial) that together include three drivers. The remainder of the
538 studies largely considered combinations of the main drivers (often as bivariate analyses), the most
539 prominent being fluvial-coastal (83, 31%), pluvial-coastal (77, 28%), and coastal-coastal (36, 13%)
540 (e.g., surge and tide) (Figure 5). These results are to be expected as compounding is most prevalent
541 at the coast. Examples of unique and less frequently studied compound flood driver combinations
542 include pluvial-snow (Sui and Koehler, 2001; Mohammadi et al., 2021), pluvial-fire (Cannon et al.,
543 2008; Jong-Levinger et al., 2022), coastal-tsunami (Kowalik and Proshutinsky, 2010; Zhang et al.,
544 2011), pluvial-temp/heat (Benestad and Haugen, 2007), pluvial-drought (Ridder et al., 2020), and
545 fluvial-damming/dam failure (Thieken et al., 2022).

546

547

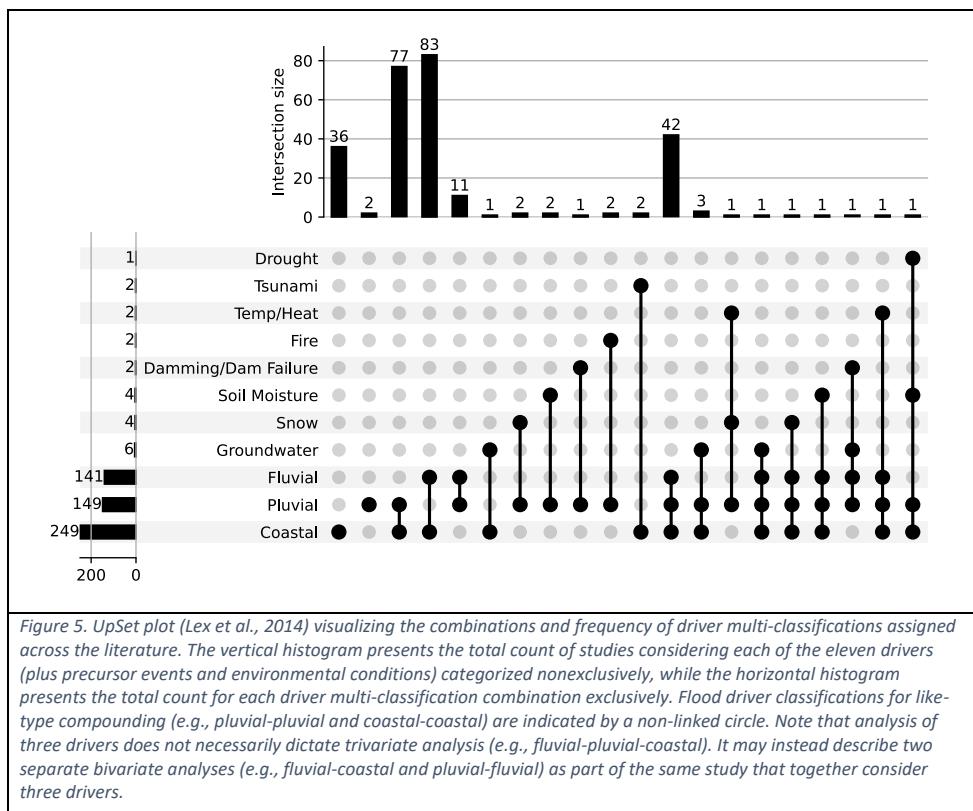
548

549

550

551

Flood Drivers, Precursors Events, and Environmental Conditions	Number of Studies in which Considered	Other Corresponding Terms & Variables
Coastal	249 (92%)	tide, astronomical tide, storm-tide, surge, storm surge, swell, storm swell, waves, sea surface height, sea level, ocean level, sea water level, total sea level, non-tidal residuals, NTR, H, S, T, W
Pluvial	149 (55%)	precipitation, flash flood, rainfall, rainfall runoff, rainfall anomalies, rainfall extremes, surface runoff, surface inundation, P
Fluvial	141 (52%)	river discharge, riverine discharge, riverine flow, streamflow, streamflow discharge, river level, fluvial discharge, channel discharge, channel flow, Q, R
Groundwater	6 (2.2%)	water table, groundwater level, groundwater head
Soil Moisture	4 (1.5%)	soil saturation, soil moisture extremes, soil moisture anomalies, antecedent soil moisture
Snow	4 (1.5%)	snowmelt, snowfall, glacial melt, freshwater melt
Damming/Dam Failure	2 (0.74%)	dam, levee, barrier, wall, reservoir; dam breach, dam failure, dyke breach, dyke failure, levee breach, levee failure, reservoir breach, reservoir failure
Temp/Heat	2 (0.74%)	temperature extremes, temperature anomalies, extreme heat,
Fire	2 (0.74%)	wildfire
Tsunami	2 (0.74%)	--
Drought	1 (0.37%)	--


552 *Table 3. List of unique flood drivers, precursor events, and environmental conditions (plus terms and variables) observed in*
 553 *compound flood research from the literature review database.*

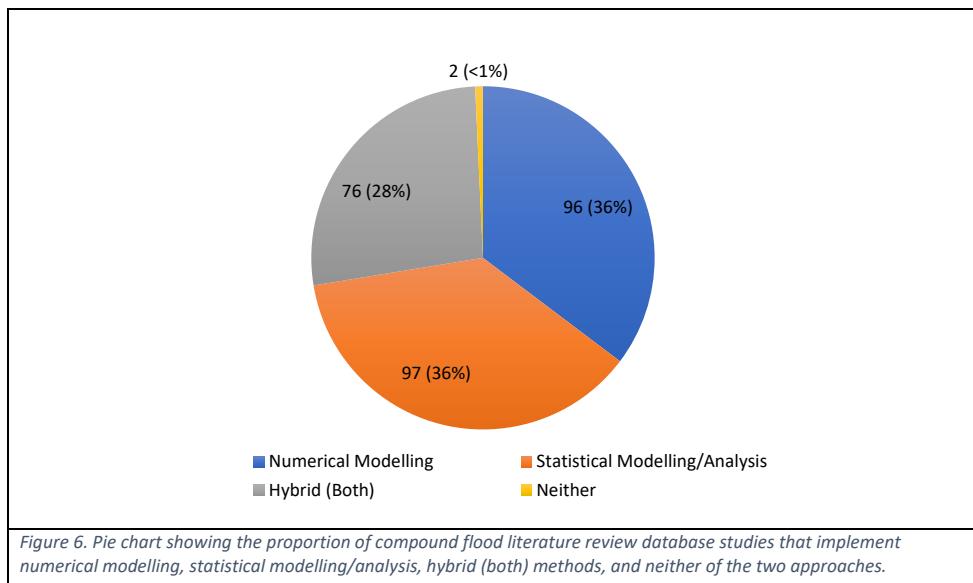
554

555

556

557

558 5.5) Review of Research Approaches


559 Across the database, the compound flood studies have tended to apply approaches that
560 generally fall into two categories: (1) physical (process-based) numerical modelling, and/or (2)
561 statistical modelling and analysis; similar findings to that of Tilloy et al. (2019). The number of
562 studies applying each approach are illustrated in Figure 6. In total, 96 (36%) studies used only
563 numerical modelling approaches, 97 (36%) used only statistical approaches, and 76 (28%) studies
564 applied hybrid methods involving a combination of numerical and statistical approaches. Within the
565 main two approach classes are many different methods for investigating compound floods, each of
566 which exhibiting their own benefits and limitations as discussed in Section 6. Lastly, 2 (<1%) studies
567 used neither of these approaches, instead completing qualitative survey-based investigations related

568 to the perception and understanding of compound flooding by disaster managers and the wider

569 public (Curtis et al., 2022; Modrakowski et al., 2022).

570

571

572 5.6) Review of Research Applications

573 Across the database, the compound flood studies have tended to relate to six main application

574 themes, as illustrated in Figure 7. Assessing the individual research application categories

575 nonexclusively, 129 (48%) studies consider Earth System Processes, 127 (47%) Risk Assessment, 12

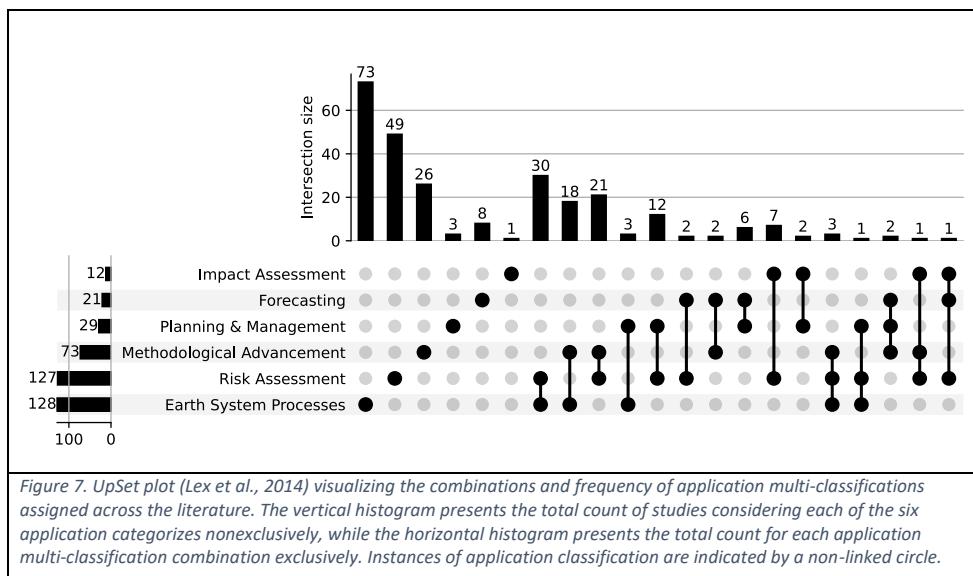
576 (4.4%) Impact Assessment, 21 (7.7%) Forecasting, 29 (11%) Planning & Management, and 73 (27%)

577 Methodological Advancement (Figure 7). These applications are discussed in more detail in Section

578 6.7. Reflecting on the exclusive multi-classification of applications, the three most common

579 classifications are 'Earth System Processes' (73, 27%), 'Risk Assessment' (49, 18%), and 'Earth System

580 Processes, Risk Assessment' (30, 11%) which together account for over half of the literature


581 database entries (Figure 7). This is to be expected as they are the broadest of application categories,

582 but also the primary objective of most research. Other prominent research application classification

583 categories include 'Methodological Advancement' (26, 9.6%); 'Methodological Advancement, Risk
584 Assessment' (21, 7.7%); 'Earth System Processes, Methodological Advancement' (18, 6.6%); and
585 'Planning & Management, Risk Assessment' (12, 4.4%) (Figure 7).

586

587

588 6) Discussion

589 Our fifth objective is to synthesize the key findings (e.g., dependence hotspots and driver
590 dominance), considerations (e.g., uncertainty and climate change), and standard practices (e.g.,
591 application cases and analytical methods) of the compound flood research from across the database.
592 First, we examine the global and regional hotspots of compound flooding, outlining where and when
593 different driver pairs exhibit significant dependence (Section 6.1). Next, we discuss the tendency for
594 certain drivers to dominate the compound flooding process and examine how this changes spatially
595 as influenced by landscape characteristics (Section 6.2). We then consider compound flooding in the
596 context of urban and coastal infrastructure and how these environments are particularly susceptible
597 to the compounding drivers as it is a common consideration throughout the literature (Section 6.3).
598 Next, we assess how climate change is expected to affect the frequency, variability, and severity of

599 compound flooding in the future (Section 6.4). Then, we reflect on the different approaches that
600 have been used in the literature to analyse compound flooding (Section 6.5). Finally, we investigate
601 the range of different applications considered across the literature (Section 6.6).

602 **6.1) Compound Flood Hotspots and Spatiotemporal Dependence Patterns**

603 Our review highlights that knowledge of compound flooding hotspots, spatiotemporal patterns,
604 and multivariate dependence characteristics has advanced considerably in recent years. However,
605 the ways in which global meteorological and climate modulators affect the propensity of compound
606 flooding in one region over another is not fully understood, and few studies consider the non-
607 stationarity of multivariate flood variable dependence. Nonetheless, large-scale patterns in seasonal
608 and interannual occurrence of compound events have become apparent in several regions (Wu et
609 al., 2018; Ganguli and Merz, 2019b, a; Ridder et al., 2020; Lai et al., 2021a; Lai et al., 2021b; Camus
610 et al., 2022; Stephens and Wu, 2022).

611 Existing compound event literature has identified certain areas around the world that are
612 especially prone to compound flooding, namely: Southern Asia, where monsoon floods and cyclones
613 cause widespread damage; the Gulf and East Coasts of the United States, where hurricanes induce
614 storm surge and heavy rainfall which exacerbate river flooding; global low-lying delta regions (e.g.,
615 Ganges, Irrawaddy, Mekong, Mississippi, Rhine, and Pearl) where riverine and coastal waters
616 together induce severe flooding; northern and western Europe which are prone to river flooding plus
617 extreme precipitation and surge from storm events; and coastal areas of East Asia, Southeast Asia,
618 and Oceania, where TCs/ETCs drive joint fluvial and coastal flooding (Apel et al., 2016; Ikeuchi et al.,
619 2017; Bevacqua et al., 2020; Couasnon et al., 2020; Eilander et al., 2020; Camus et al., 2021; Lai et
620 al., 2021a). Below we further detail the spatiotemporal patterns in compound flooding and driver
621 interdependence by region.

622 North America: The coasts of North America are the most studied in terms of compound
623 flooding globally. Compound flooding predominantly occurs along the mid-eastern US coastline and
624 the Gulf of Mexico due to TCs/ETCs that generate heavy rainfall and extreme sea levels (Ridder et al.,

625 2020; Camus et al., 2021; Najafi et al., 2021; Camus et al., 2022). Joint pluvial-fluvial extremes
626 account for the majority of compound flood events and occur frequently with low return periods
627 (<0.5 year) over the entire contiguous US, but particularly along the coasts (Ridder et al., 2020).
628 Coastal-fluvial drivers too exhibit positive dependence at both coasts (Ridder et al., 2020).
629 Dependence is also measured between flood drivers along Canada's coasts, albeit less frequent
630 relative to the US (Jalili Pirani and Najafi, 2020). Throughout the Great Lakes, consistent significant
631 positive dependence is found between pluvial-coastal drivers. On the east coast, pluvial-fluvial
632 extremes are frequent in late spring and early summer during the Atlantic hurricane season (Ridder
633 et al., 2020; Nasr et al., 2021). This region exhibits strong correlations between pluvial-coastal (Wahl
634 et al., 2015; Lai et al., 2021a) and fluvial-coastal (Moftakhari et al., 2017) drivers (Camus et al., 2021;
635 Nasr et al., 2021). Lastly, the west coast features positive dependence for fluvial-coastal (Ward et al.,
636 2018) and pluvial-coastal (Lai et al., 2021a) pairs during the winter ETC season (Nasr et al., 2021).

637 Central & South America: Current knowledge of compound flood events in Central and South
638 America is lacking due to a void of localized research. Global studies on compound flooding indicate
639 that fluvial-pluvial extremes are the most frequent cause of compound flooding in South America;
640 and largely occur in the eastern half of the continent (particularly Brazil) during austral summer/late
641 autumn (Ridder et al., 2020). Similarly, there is positive dependence between fluvial-coastal flood
642 drivers on the southeast coast of Brazil, with large clustering in the highly populated states of São
643 Paulo and Rio de Janeiro (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020). On the west
644 coast, co-occurring fluvial-coastal extremes are located at the southern portion of Chile in austral
645 summer (Couasnon et al., 2020; Ridder et al., 2020).

646 Europe: Across Europe, large-scale low-pressure systems are a prominent modulator of
647 compound floods (Ridder et al., 2020), with most (~90%) (Camus et al., 2021) events occurring in the
648 winter ETC season (Ridder et al., 2020; Lai et al., 2021a; Camus et al., 2022). The main hotspots of
649 compound flooding are the west coast of the UK, the northwest coast of the Iberian Peninsula,
650 around the Strait of Gibraltar, coasts along the North Sea, and the eastern portion of the Baltic Sea

651 (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020; Camus et al., 2021). Concomitant
652 pluvial-fluvial and pluvial-coastal extremes are most prominent in western Europe (Couasnon et al.,
653 2020; Ridder et al., 2020; Camus et al., 2021; Lai et al., 2021a). In Ireland and the UK, joint
654 occurrence of high skew surges and high river discharge are more common on the west and
655 southwest coasts compared to the east coast (Svensson and Jones, 2002, 2004; Ward et al., 2018;
656 Hendry et al., 2019; Camus et al., 2021). Pluvial-fluvial drivers also show strong positive correlations
657 in southern Italy, the east coast of Turkey, the eastern Mediterranean, the coasts along the North
658 Sea, and parts of the Baltics. Compound rainfall and river discharge occur primarily in the early
659 summer to late autumn. For fluvial-coastal and pluvial-coastal driver dependence, there are strong
660 correlations along the Iberian coasts, the Strait of Gibraltar, and the UK west coast (Svensson and
661 Jones, 2003; Svensson and Jones, 2004; Ward et al., 2018; Camus et al., 2021; Lai et al., 2021a).
662 Lastly, positive pairwise dependence of temporally compounding pluvial-pluvial (“wet-wet”)
663 conditions are prominent along the coastal Mediterranean (De Michele et al., 2020).
664 Africa: Research in Africa is sparse relative to the other continents; however, a few compound
665 flood patterns have been ascertained along the northern, southern, and eastern coasts. Portions of
666 northern Africa show significant positive pluvial-fluvial correlation along the southern
667 Mediterranean and eastern Atlantic coasts including Libya, Tunisia, Algeria, and especially Morocco
668 (Camus et al., 2021). In fact, Morocco has the greatest compound flood potential in northern Africa
669 as it also demonstrates strong dependence for coastal-pluvial (Zellou and Rahali, 2019) and coastal-
670 fluvial extremes (Camus et al., 2021). Analysis of rain gauges across northern Africa also reveals a
671 select few sites in Algeria with pluvial-pluvial (“wet-wet”) pairwise dependence (De Michele et al.,
672 2020). In southern and eastern Africa, both South Africa and Mozambique experience compound
673 flooding from seasonal TCs during austral summer (Bischiniotis et al., 2018; Ward et al., 2018;
674 Couasnon et al., 2020; Ridder et al., 2020; Claassen et al., 2023). As a result, this region has strong
675 dependence relationships between the flood driver pairs coastal-fluvial, coastal-pluvial, and pluvial-
676 fluvial (Van Berchum et al., 2020; Eilander et al., 2022a; Kupfer et al., 2022). Lastly, Madagascar has

677 significant positive coastal-fluvial dependence (Couasnon et al., 2020; Ridder et al., 2020) also due to
678 its exposure to TCs (Claassen et al., 2023).

679 Asia: Compound flood spatiotemporal distributions are highly varied throughout Asia but tend
680 to be most frequent in the south, southeast, and east. Strong correlations for fluvial-coastal
681 extremes are seen at the coasts of India and Bangladesh (Bay of Bengal), Indonesia (North Natuna
682 Sea), Vietnam (East Sea), Philippines (West/East Philippine Seas), Malaysia, China, Taiwan, and Japan
683 (Sea of Japan) (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020). Similarly, there is
684 positive dependence for pluvial-fluvial drivers in India, Bangladesh, and Japan (Ridder et al., 2020;
685 Claassen et al., 2023). Co-occurring pluvial-coastal extremes are most prominent in east Asia
686 (particularly China, Taiwan, and Japan) (Lai et al., 2021a; Lai et al., 2021b) and southeast Asia during
687 the wet monsoon season (Lu et al., 2022). Most compound flood events within Asia occur from
688 summer to late autumn, corresponding with the TC/ETC seasonality in the western Pacific.

689 Oceania: Within Oceania, compound flood events have been primarily observed in Australia
690 and to a lesser degree New Zealand. In Australia, the highest frequency of compound flood events is
691 along the northern coastlines (bearing the brunt of TCs (Claassen et al., 2023)) followed by the east
692 and west coasts; all of which predominantly occur during TC season in austral summer. Examining
693 dependence, these patterns are consistent for nearly all flood driver pair combinations, with strong
694 positive correlation in all areas except the southern coast (particularly Victoria) for pluvial-coastal,
695 fluvial-coastal, pluvial-fluvial, (Zheng et al., 2013; Ward et al., 2018; Wu et al., 2018; Couasnon et al.,
696 2020; Ridder et al., 2020; Lai et al., 2021a; Lai et al., 2021b). In New Zealand, compound flood events
697 from pluvial-coastal and fluvial-coastal drivers have been observed as being substantial but are not
698 strongly correlated (Stephens and Wu, 2022). Compound flooding likely affects small Pacific Island
699 Nations; however they have been scarcely studied. To-date, there are only two localized studies
700 (Chou, 1989; Habel et al., 2020) on co-occurring flood extremes for the entirety of Micronesia,
701 Melanesia, and Polynesia. Habel et al. (2020) confirmed the occurrence of coastal-groundwater and

702 pluvial-coastal flooding processes in Hawaii, and Chou (1989) quantified the frequency of compound
703 flooding from tide and storm surge along Saipan in the Mariana Islands.

704 **6.2) Dominant Drivers of Compound Flooding**

705 While compound flood events involve a combination of drivers, often one of the components
706 contributes more than the other(s). Understanding how drivers dominate the flooding process and
707 how these change with space and time is essential to improving compound flood forecasting and risk
708 assessment. Most compound flood events highlighted in the literature contain regions that are
709 pluvial-, fluvial-, coastal-, groundwater-, or compound-dominated in nature. Only a handful of
710 studies examine driver dominance at a global scale (Eilander et al., 2020; Lai et al., 2021b), but those
711 that do reveal general patterns that also tend to be supported by more localized research. First,
712 estuaries tend to have a mixture of dominant drivers. In a global assessment of 3,433 estuaries,
713 Eilander et al. (2020) classified 19.7% as compound dominant, 69.2% as fluvial dominant, and 7.8%
714 as coastal dominant. Next, coastal-only environments (i.e., coastal areas with little or no river
715 interaction) have a much larger proportion of coastal-dominant compound floods due to the direct
716 proximity of tide-surge processes and wave actions; and groundwater-dominated floods where sea
717 level (and salinity differences) push the water table up. Excluding river processes, Lai et al. (2021b)
718 deduced that coastal (storm surge) and pluvial flooding contributed 65% and 35% to the global
719 change in annual compound floods, respectively. Finally, urban coastal regions are expected to have
720 greater number of pluvial-dominated compound floods.

721 Flood driver dominance can depend on topography and channel morphology (i.e., depth, width,
722 size, shape, volume, slope, friction, and damping) (Eilander et al., 2020; Bermúdez et al., 2021;
723 Tanim and Goharian, 2021; Familkhalili et al., 2022; Harrison et al., 2022), spatial extent (i.e.,
724 location within hydrological network and distance to the coast) (Moftakhari et al., 2019; Bermúdez
725 et al., 2021; Del-Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al., 2021; Gori and Lin, 2022;
726 Juárez et al., 2022; Sampurno et al., 2022a; Sebastian, 2022; Zhang and Chen, 2022), elevation
727 (Huang et al., 2021; Liang and Zhou, 2022), ground-surface connectivity (Jane et al., 2020), and

728 meteorologic modulator characteristics (i.e., storm event timing and intensity) (Tanim and Goharian,
729 2021; Gori and Lin, 2022). Pluvial flooding is the least frequently reported dominating driver, and
730 primarily only occurs in areas disconnected from the river network with no fluvial inundation (Apel
731 et al., 2016; Ye et al., 2021; Gori and Lin, 2022) or at higher elevation (Berghuijs et al., 2019; Huang
732 et al., 2021). Pluvial-dominated flooding is also prevalent in urban zones when the capacity of
733 drainage systems is exceeded (Shi et al., 2022), areas with high antecedent soil moisture (e.g.,
734 Europe as a whole) and/or snow (rain-on-snow) (e.g., Scandinavia and northeast Europe) (Berghuijs
735 et al., 2019), and regions with strong connectivity of surface and groundwater networks (Jane et al.,
736 2020). Fluvial processes dominate inland flooding in watershed catchments from channelized
737 freshwater in dynamic hydrological networks. Flooding can also be fluvial-dominant in coastal
738 regions fed by steep mountainous rivers that respond quickly to rainfall and snowmelt (e.g., Zhejiang
739 China) (Liang and Zhou, 2022). Within primarily coastal influenced regions, driver dominance can be
740 further broken down into surge-, wave-, and tide-dominated. Which of the components of extreme
741 sea level is the principal driver varies on continental to regional scale depending on meteorological
742 modulators and characteristics of landmasses.

743 In the case of mixed fluvial and coastal flooding in estuaries and deltas, identifying the
744 dominant driver is more challenging as it varies based on location and channel geomorphology.
745 River-sea interactions are highly dynamic, and the sensitivities of flood components can fluctuate
746 greatly within a single estuary (Harrison et al., 2022). Common methods of classifying regions of
747 driver dominance usually involve using Flow Interaction Indices (Valle-Levinson et al., 2020; Juárez et
748 al., 2022) and Compound Hazard Ratio Indices (Shen et al., 2019; Valle-Levinson et al., 2020; Jalili
749 Pirani and Najafi, 2022; Juárez et al., 2022). As might be expected, most researchers have found that
750 the lower estuary is tide- or surge-dominated, the middle estuary transition zone may be considered
751 compound-dominated, and the upper river region is discharge-dominated (Moftakhar et al., 2019;
752 Bermúdez et al., 2021; Del-Rosal-Salido et al., 2021; Huang et al., 2021; Ye et al., 2021; Gori and Lin,
753 2022; Juárez et al., 2022; Qiu et al., 2022; Sampurno et al., 2022a; Sebastian, 2022; Zhang and Chen,

754 2022). General patterns of driver dominance are different across estuaries depending on the
755 properties of watershed drainage basins (i.e., topography and morphology) and behaviour of storm
756 events (i.e., path, orientation, intensity, duration, and time lag between drivers). Numerous studies
757 map out regions dominated by each of the different flood drivers (Chen et al., 2010; De Bruijn et al.,
758 2014; Gori et al., 2020b; Bilskie et al., 2021; Del-Rosal-Salido et al., 2021; Maymandi et al., 2022),
759 often zoned as coastal, hydrological (fluvial and/or pluvial), or transition/compound (combined
760 drivers determine the max water levels) based on numerical model simulations using different
761 scenarios. The exact scenario definitions however often vary between studies making it difficult to
762 compare results. Compound-dominant floods usually have greater surge extremes and quicker
763 discharge due in part to flatter topography (Eilander et al., 2022b). Large rivers are usually fluvial-
764 dominant, while smaller and less connected rivers are more likely to be influenced by precipitation
765 at the coast (Bevacqua et al., 2020). Similarly, increasing channel depth reduces the impact of fluvial
766 processes while amplifying the effect of coastal drivers on total water level (Familkhilili et al., 2022) .
767 Therefore, channel deepening pushes the compound-dominated region further upstream and
768 shortens the length of fluvial-dominated estuary. Flood dominance can also be significantly affected
769 by the magnitude and severity of storm events such that a single location can be dominated by
770 different drivers from different return period storms. Gori et al. (2022) observed surge-dominated
771 flooding at the coast for low return period events, but compound-dominated flooding for high (100-
772 year) return periods.

773 Fewer studies have examined the role of timing on flood driver dominance. In the case of
774 TC/ETC events there is a time lag such that it can be hypothesized that coastal areas are first
775 inundated by storm-tide followed by river discharge from upstream rainfall. Thus, at the beginning
776 of storm events flooding is likely coastal (and/or pluvial) dominated and later switches to being
777 compound dominated and then finally fluvial (and/or pluvial) dominated. For instance, the 1991
778 cyclone that hit Chittagong Bangladesh had a 5-hour difference between peak surge and peak
779 rainfall (Tanim and Goharian, 2021). As a result, the flooding began as coastal-dominated and then

780 shifted towards being pluvial-dominated. The importance of timing may also fluctuate depending on
781 the size of the water bodies in question. Dykstra and Dzwonkowski (2021) found that slowing of river
782 propagation in larger watersheds ($>5000 \text{ km}^2$) led to a greater time lag between storm surge and
783 river discharge, indicating greater risk of fluvial-coastal compounding in smaller watersheds where
784 discharge travels downstream faster. Likewise, differences observed in the UK's Humber and Dyfi
785 estuaries explain why maximum flood depth from fluvial-coastal compounding is less sensitive to
786 timing in the case of a larger estuary (Humber) subject to slow river discharge, compared with short
787 intense discharge in a smaller estuary (Dyfi) (Harrison et al., 2022).

788 **6.3) Urban and Coastal Infrastructure**

789 Urban areas are identified in the literature database to be especially vulnerable to compound
790 flooding, as the built environment can exacerbate the effects of flooding, and the concentration of
791 people and infrastructure can lead to significant losses. In the coastal environment, hazard
792 modelling and risk assessment practices regularly consider the influence of flood defence structure
793 (i.e., barriers, sea walls, groynes, breakwaters), however other aspects of human activity (e.g.,
794 coastal and floodplain development and modification, land use/land cover change) and urban
795 infrastructure (e.g., sewer waste drainage systems, water management reservoirs) receive less
796 attention. Furthermore, existing urban infrastructure planning and risk assessment practices
797 generally do not consider the ramifications of compounding flood drivers and thus underperform or
798 have greater chance of failure from compound flooding (Archetti et al., 2011; Jasim et al., 2020;
799 Najafi et al., 2021). For instance, in Jasim et al. (2020), coastal earthen levees were simulated to
800 experienced 8.7% and 18.6% reductions in the factor of safety for 2-year and 50-year recurrence
801 intervals under compound pluvial-fluvial flood conditions compared to fluvial-only flooding.
802 Similarly, Khanam et al. (2021) found that FEMA maps significantly underestimate risk at several
803 power grid substations in coastal Connecticut by not accounting for compound flood interactions
804 This section will discuss the ways in which compound floods influence the performance of urban and

805 coastal infrastructure, and how infrastructure in these settings can either amplify or reduce the risks
806 and impacts of compound floods.

807 It is well established that the risks and impacts of compound flooding can be elevated in coastal
808 and urban settings. Private property and public utilities developed within floodplains and along
809 shorelines are more likely to be exposed to multiple coinciding flood mechanisms. Over the past
810 century, changes in land use/land cover have made the urban environment increasingly susceptible
811 to flooding. Urban areas experience increased precipitation as unstable warm city air masses rise
812 (i.e., urban heat island effect) and then cool, forming rainclouds. This rain falls onto impervious
813 surfaces (i.e., asphalt and concrete) and compacted soils (from construction and agriculture) which
814 prevent surface water from seeping into the ground and percolating down into underlying aquifers
815 (Shahapure et al., 2010). Instead, water finds its way into river channels and urban drainage
816 networks which act as highways and rapidly deliver vast volumes of water to the coast. During TC
817 events, rainfall and river discharge are more likely to temporally overlap with coastal storm surge
818 due to the heightened mobility of water within the urban environment. It is this combination of
819 urban land cover and storm-sewer drainage infrastructure that play a substantial part in amplifying
820 the impacts of urban coastal compound flood (Meyers et al., 2021). It has been well demonstrated
821 that elevated water levels at the coast from storm surge can significantly reduce the rates of urban
822 drainage resulting in more severe flooding (Bunya et al., 2010; Zellou and Rahali, 2019; Shi et al.,
823 2022). Accumulated surface runoff in cities is meant to flow into rivers and ultimately the ocean, but
824 high tides or waves can either block or force this water back inland. It has also been shown that
825 poorly maintained and leaking stormwater drainage systems can cause compound pluvial-
826 groundwater and fluvial-groundwater flooding where seawater travels inland via drainage systems
827 (known as 'drainage backflow' and 'seawater intrusion') and flood areas near (and sometimes far
828 from) the coast (Habel et al., 2020; Qiang et al., 2021; Sangsefidi et al., 2022; Sebastian, 2022).
829 Furthermore, human activity including coastal and riverine modifications (i.e., dredging and
830 straightening) (Muñoz et al., 2022b) in favour of water utilities (e.g., hydroelectric) and

831 transportation (e.g., marine shipping) also may increase the risks and impacts of compound flooding.
832 Changing the morphology of coastal channels as often seen in urban ports, can amplify fluvial-
833 coastal and pluvial-coastal compound flooding due to of reduced dissipation of energy and thus
834 increased extreme peaks. Lastly, urban environments also pose the rare but catastrophic potential of
835 damming/dam failure related compound flooding. For instance, in 2013 a German dyke breach led
836 to a compound pluvial-damming/dam failure flood that affected hundreds of households and caused
837 major damages to transportation infrastructure (Thieken et al., 2022).

838 Urban infrastructure can also reduce the risks and impacts of compound flooding if designed to
839 be resilient and forward looking. Management and policy decisions regarding urban infrastructure
840 investment, maintenance, and outreach can play a large role in shaping compound event risk
841 through the lens of population exposure and vulnerability (Raymond et al., 2020). Well-maintained
842 and operated coastal urban infrastructure from flood defence (e.g., storm surge barriers, sea walls,
843 levees, breakwaters, and groynes) to flow management systems (e.g., dams, stormwater sewers,
844 sump pumps, dry wells) can act to minimize compound flood risk when the dependence of multiple
845 drivers is adequately considered. Furthermore, sustainable urban drainage systems (e.g., swales,
846 infiltration trenches, retention basins, green roofs, and permeable paving)(Eaa, 2017) can reduce the
847 likelihood of compound flooding as they can create a time lag between peak pluvial, groundwater,
848 and coastal processes. Lastly, natural flood management practices (e.g., wetland/floodplain/lake
849 restoration, riverbed material re-naturalisation, river re-meandering)(Eaa, 2017), can also serve to
850 spread out the duration and reduce acute impact of compounding involving fluvial and coastal
851 drivers, advancing the resiliency of urban and coastal environments.

852 **6.4) Compound Flooding and Changing Climate**

853 Many studies in the database stress that future compound flood risk is likely to increase from
854 changes in the variability, intensity, frequency, phasing, and seasonality of sea level, precipitation,
855 river discharge, and temperature driven by climate change (Zscheischler et al., 2020; Harrison et al.,
856 2022). Under a changing climate the interrelationships and dependence between variables

857 contributing to compound events are likely to change. These potential changes in dependence give
858 rise to uncertainty around compound flood prevalence. Projected increasing rainfall and TCs/ETCs
859 will pose higher risks of compound flooding in coastal and tropical regions (Zhang et al., 2022). Long-
860 term increases in the frequency of compound coastal river flooding from intensifying precipitation
861 has already been observed throughout the past century (Dykstra and Dzwonkowski, 2021). A
862 warmer atmospheres will bring more frequent and extreme storm events in many parts of the world
863 including Europe and the Mediterranean (Bevacqua et al., 2019). The UK is expected to see
864 increased clustering and intensity of storms (particularly in the winter) such as those seen in
865 2013/14 (Harrison et al., 2022; Jenkins et al., 2023). In North America, coastal regions will be at
866 further risk of compound flooding from changes in rainfall and storm surge (Wahl et al., 2015). A rise
867 in the annual number of compound floods from rainfall and storm surge (1-4 per decade) has
868 already been observed in northern Europe and the US east coast (Lai et al., 2021b). Increasing trends
869 in concurrent extreme precipitation and storm surge events have been observed across most of the
870 world (Lai et al., 2021b). SLR will likely pose the largest threat of compound flooding at the coast
871 (Ganguli et al., 2020; Bermúdez et al., 2021; Ghanbari et al., 2021; Harrison et al., 2022) with global
872 mean sea level projected to increase 0.61-1.10m (RCP8.5) by 2100 (relative to 1986-2005) (Church et
873 al., 2013). This is already drastically affecting island nations in Southeast Asia and the Pacific that are
874 vulnerable to pluvial-coastal flooding from storm events. Furthermore, extreme sea level frequency
875 will “very likely” increase over the century from the compounding of SLR, storm surge, and waves
876 (Oppenheimer et al., 2019). At a global scale (mid-latitudes especially), compound flooding will be
877 increasingly driven by precipitation extremes and atmospheric driven storm surge.

878 In summary, across the studies reviewed, climate change is shown to be having a profound
879 impact on the frequency and severity of compound flooding events (Sebastian, 2022). The
880 combination of heavy precipitation events, SLR, and changes in the frequency and intensity of
881 storms and hurricanes are all contributing to the increased likelihood of these events.

882 **6.5) Research Approaches**

883 As highlighted in Section 5.4, we identified two main categories of approaches that have been
884 used to assess compound flooding, namely, (1) physical (process-based) numerical modelling; (2)
885 and/or statistical modelling/analysis. In both approach classes we observed a diversity of methods,
886 similarly to the findings of Tilloy et al. (2019). Below, we discuss the use of computational numerical
887 methods for compound flood modelling (Section 6.5.1), then provide an overview of the statistical
888 and data science-based techniques for analysing compound flooding (Section 6.5.2), and finally
889 reflect on the benefits of hybrid (numerical-statistical) approaches (Section 6.5.3).

890 **6.5.1) Numerical Modelling**

891 Compound flood events are often examined by numerically modelling the physics-based
892 interactions of their processes and mechanisms. Through the simulation of historic and synthetic
893 compound flood events, researchers can develop a better understanding of present and future
894 inundation magnitude and extent. Given the highly complex nature of compound flooding,
895 numerical modelling often requires a combination of hydrological, hydrodynamic, and
896 atmospheric/climate models to represent all earth systems components contributing to compound
897 flooding. A range of different numerical models are used in the literature, as we briefly discuss here.
898 Further information on the hydrological, hydrodynamic, and atmospheric models, frameworks,
899 systems, and toolsets used in the reviewed studies is provided in Table A2.

900 Hydrological models are used to simulate the movement, storage, and transformation of water
901 within the hydrological cycle. These include land-atmosphere water exchange (precipitation and
902 evapotranspiration), flow of water through the landscape (streamflow and rainfall-runoff), and the
903 infiltration of water into the ground (groundwater recharge). Hydrodynamic models use a series of
904 governing equations (e.g. shallow-water equations) to simulate the flow of water in rivers, oceans,
905 estuaries, and coastal areas. Coastal hydrodynamic models replicate the propagation and advection
906 of water based on a combination of tide, surge, and waves. In the realm of compound flooding,
907 hydrodynamic models are vital for simulating the effects of complex river-ocean interactions, storm

908 surge, lake seiche, and flood infrastructure. Atmospheric models simulate various atmospheric
909 processes based on primitive dynamic equations explaining radiation, convection, heat flux, gas
910 exchange, kinematics of air masses, behaviour of water vapor (precipitation and clouds), and
911 land/ocean-atmosphere interactions. In compound flood research, numerical atmospheric modelling
912 is generally used to simulate synthetic or historical storm events (TCs/ETCs) and to generate
913 meteorological inputs (e.g., precipitation, atmospheric pressure, and wind velocity) that force
914 hydrological and hydrodynamic models.

915 Compound flood modelling often involves the use of coupled or linked models. Individually,
916 hydrological and hydrodynamic models are unable to capture the full dynamic interactions between
917 inland and coastal processes (Ye et al., 2020). However, integrating the capabilities of both types of
918 models can serve to better simulate the movement and transformation of water within a particular
919 system as shortcomings of one model can be complemented by the strengths of another. Santiago-
920 Collazo et al. (2019) define four techniques for linking different types of models: one-way coupled;
921 two-way (or loosely) coupled; tightly-coupled; and fully-coupled. One-way coupling involves using
922 the output of one model as the direct input for another model, such that data only transfers in one
923 direction. Alternatively, two-way coupling describes a relationship in which the outputs of both
924 models transfer information to each other iteratively, creating a two-way loop that influences
925 behaviour of both. Tight coupling refers to the integration of two independent models into single
926 model framework at the source code level. A common example of tight-coupling is the ADCIRC-
927 SWAN model. SWAN sends simulated waves to ADCIRC, and ADCIRC sends water levels and wind
928 velocities back to SWAN. Lastly, full coupling is the complete integration of all model components
929 such that physical processes are calculated simultaneously under the same framework using the
930 same governing equations. We observed that most of the existing compound flood indentation
931 modelling implements simple one-way or two-way coupling approaches (Santiago-Collazo et al.,
932 2019; Xu et al., 2022). Fully coupled numerical models are rare in compound flood research, as most

933 models only specialize in one or two earth systems (i.e., meteorology, climatology, hydrology, and
934 oceanography).

935 **6.5.2) Statistical Approaches and Dependence Analysis**

936 Across the studies we have reviewed, a wide variety of statistical-based approaches have been
937 employed to understand trends, patterns, and relationships using observed data, sometimes
938 complemented by physically simulated data. This predominantly involves the use of statistical
939 models as an indirect measure of compound flooding potential to better understand the
940 dependence between different flood drivers and the likelihood of their joint occurrence.

941 There are several broad statistical techniques that are frequently used for compound flood
942 research. Some of the most prominent methods include varying forms of spatial and temporal
943 analysis, regression analysis, extreme value analysis, Bayesian probability, principal component
944 analysis, index analysis, Markov chains, and machine learning (ML). Spatial and temporal analysis
945 investigate correlations, covariance, trends, and patterns in where and when compound flood
946 events occur. This can include identifying compound flood hotspots (Ganguli and Merz, 2019b;
947 Ridder et al., 2020; Camus et al., 2021; Lai et al., 2021b; Camus et al., 2022) and temporal clustering
948 (Haigh et al., 2016; Santos et al., 2017; Camus et al., 2021; Banfi and De Michele, 2022; Manoj J et
949 al., 2022) or examining the underlying spatiotemporal preconditions and interactions of flood
950 components (Camus et al., 2022; Manoj J et al., 2022). Regression analysis involves using statistical
951 functions to identify relationships between independent and dependent flood variables by fitting
952 data to linear and higher order non-linear functions (Zhong et al., 2013; Orton et al., 2015; Van Den
953 Hurk et al., 2015; Serafin et al., 2019; Bermúdez et al., 2021; Ghanbari et al., 2021; Lai et al., 2021b;
954 Meyers et al., 2021; Mohammadi et al., 2021; Robins et al., 2021; Santos et al., 2021b; Zhang et al.,
955 2021b; Jang and Chang, 2022; Sampurno et al., 2022b). Extreme value analysis examines the tail
956 distribution or threshold exceedances of extreme flood variables to better understand joint-
957 probability, uncertainty, and severity (Dixon and Tawn, 1994; Sui and Koehler, 2001; Kew et al.,
958 2013; Orton et al., 2016; Vitousek et al., 2017; Pasquier et al., 2019). Bayesian statistical approaches

959 can iteratively recalculate the likelihood of an event based on new evidence. Bayesian frameworks
960 are often used to update predictions about compound flood hazards based on new data and to
961 understand the uncertainties associated with these hazards (Orton et al., 2015; Bass and Bedient,
962 2018; Couasnon et al., 2018; Bermúdez et al., 2021; Mohammadi et al., 2021; Steinschneider, 2021;
963 Gori and Lin, 2022; Naseri and Hummel, 2022). Principal component analysis is a method of reducing
964 the dimensionality of data by selecting the most important variables and combining them into a
965 smaller volume of composite variables. In compound flood research this approach can be used to
966 reduce the complexity of compound flood data to identify the key factors contributing to compound
967 flood hazards (Camus et al., 2022). Index analysis is a method of data interpretation in which
968 statistical indices simplify our understanding of the behaviour of multiple variables, a practice
969 commonly used for flood risk and impact analysis (Rueda et al., 2016; Valle-Levinson et al., 2020;
970 Tanir et al., 2021; Huang, 2022; Jalili Pirani and Najafi, 2022; Juárez et al., 2022; Khatun et al., 2022;
971 Preisser et al., 2022; Tao et al., 2022). Compound flood research takes this further using various
972 indices that also consider the synergy of multiple flood drivers (Tanir et al., 2021; Jalili Pirani and
973 Najafi, 2022; Juárez et al., 2022; Khatun et al., 2022; Preisser et al., 2022; Tao et al., 2022; Jalili Pirani
974 and Najafi, 2023). Markov chains use records of past variable states to describe the probability of
975 future states. With this approach, flood variable data such as rainfall and river levels can be fit to
976 stochastic models to simulate the probability of joint extreme states. Additionally, Monte Carlo
977 Markov Chain (MCMC) approaches involving stochastic sampling of variables are sometimes also
978 applied in compound flood research (De Michele et al., 2020; Ganguli et al., 2020; Jong-Levinger et
979 al., 2022; Jalili Pirani and Najafi, 2023). Lastly, in recent years ML models involving varying neural
980 network structures have been trained using compound flood datasets to predict flood extremes or
981 map inundation extents (Karamouz et al., 2014; Bass and Bedient, 2018; Serafin et al., 2019; Muñoz
982 et al., 2021; Santos et al., 2021b; Huang, 2022; Sampurno et al., 2022b).
983 Understanding the dependence of compound flood variables is crucial as it tells us about their
984 joint exceedance probability (Ward et al., 2018; Xu et al., 2022). Failure to investigate driver

985 dependence will lead to an underestimation of flood probabilities. Varying forms of the Joint
986 Probability Method (JPM) (Myers, 1970; Ho and Myers, 1975; Pugh and Vassie, 1980), involving
987 aspects of extreme value analysis, are commonly used to measure potential co-occurrence and
988 dependence between compound flood drivers. Over time the analytical approaches have evolved,
989 but generally involves three main steps for investigating dependence and frequency of cooccurring
990 events. First, the flood variable event sets are sampled. The second step involves a simple calculation
991 of varying correlation coefficients from the driver data. The third step consists of fitting a
992 multivariate distribution function.

993 In preparation of the following steps, flood variables datasets are created by sampling events
994 (according to varying compound scenarios, i.e., AND, OR, Kendall) via block-maxima or threshold-
995 excess (peak-over-threshold, POT) methods. Block maxima sampling selects the maximum events
996 within a given temporal block (annual, seasonal, daily), while the threshold-excess method selects
997 events above a defined 'extreme' threshold value. Next, the correlation coefficient step typically
998 implements different types of rank correlation coefficients and tail coefficients. Correlation
999 coefficients such as Kendall's tau τ and Spearman's ρ can reveal non-linear relationships between
1000 random variables based on their ordinal associations. Alternatively, the lower (λ_L) and upper (λ_U) tail
1001 coefficients help examine dependence between random variables at the extremes of their
1002 distributions. While random variables may appear to show no correlation, the co-movement of their
1003 tails may reveal dependence relationships that only occur at the extremes. The joint probability
1004 distribution is then constructed from the sampled variable event datasets as the probability of all
1005 possible pairs across each input variable. The joint probability distribution thus defines the
1006 probability of two or more simultaneous events, where the variables are at least partially
1007 dependent, and thus influence each other's occurrence.

1008 In recent years copula have also been used to measure dependence, gaining considerable
1009 attention for their ability to simplify the analysis of highly stochastic multivariate processes. A total
1010 of 64 (24%) studies were observed using copula-based methods to assess dependence. Defined in

1011 Sklar's theorem (Sklar, 1959), a copula is multivariate cumulative distribution made by joining or
1012 "coupling" the univariate marginal probability distributions of two or more individual variables. This
1013 can be done using several dependence structures, with common copula families being Elliptical and
1014 Archimedean. In addition to measuring dependence, copulas are used in compound flood research
1015 to assess the non-linear relationships and uncertainties between extreme flood variables (Salvadori
1016 and De Michele, 2004, 2007). By fitting copula functions to multivariate flood data, it is possible to
1017 understand the strength and nature of the dependence between these variables and to predict the
1018 likelihood of compound flood events. To date, the majority of compound flood research involves
1019 bivariate case studies. Nonetheless, several studies have implemented trivariate approaches to
1020 simultaneously analyse three partially dependent variables (Hawkes et al., 2002; Yang and Qian,
1021 2019; Jalili Pirani and Najafi, 2020; Jane et al., 2020; Santos et al., 2021a; Jalili Pirani and Najafi,
1022 2022; Latif and Simonovic, 2022b, a; Ming et al., 2022; Zhang and Chen, 2022; Latif and Simonovic,
1023 2023), and others have taken more complex procedures integrating copulas with MCMC (Sadegh et
1024 al., 2018; Moftakhi et al., 2019; De Michele et al., 2020; Ganguli et al., 2020) and Bayesian network
1025 (Couasnon et al., 2018; Moftakhi et al., 2019; Naseri and Hummel, 2022; Jalili Pirani and Najafi,
1026 2023) approaches. For further detail on copula-based multivariate flood analysis see Latif and
1027 Mustafa (2020).

1028 **6.5.3) Hybrid Modelling and Analysis Approaches**

1029 Hybrid methods, involving linking numerical and statistical approaches off were commonly
1030 observed throughout the literature database, with around one-third of compound flood studies
1031 employing hybrid techniques (Figure 6). Hybrid approaches can complement each other or focus on
1032 multiple aspects of modelling in a way that would not be possible when using numerical or statistical
1033 approaches in isolation. For example, process-based numerical modelling of compound flood
1034 hazards may be ideal for physics-based inundation mapping and floodplain delineation, but can be
1035 very computationally expensive (this has pushed development of more computationally efficient
1036 models such as SFINCS (Leijnse et al., 2021)). Conversely, simplified statistical models are less

1037 computational expensive, but typically make general assumption about input data that do not fully
1038 consider the physical processes at play. In contrast, hybrid numerical-statistical approaches offer the
1039 benefit of computational efficiency of surrogate statistical modelling while still maintaining a realistic
1040 representation of the physical processes (Serafin et al., 2019). Additionally, numerical modelling can
1041 also be severely inhibited by historical data availability. Hydrodynamic modelling of astronomical
1042 tide and storm surge require atmospheric pressure and wind velocity forcing data, while past river
1043 level and rainfall data is dependent on the presence of in-situ tide and rain gauge monitors. If these
1044 datasets don't exist or have poor spatiotemporal coverage, numerical hydrodynamic models must
1045 rely on reanalysis data. Statistical approaches to compound flood analysis however can sometimes
1046 make do with limited data by interpolating or extrapolating extreme hazard probabilities and
1047 distributions. In the absence of historical data, one solution is to numerically simulate synthetic
1048 events that are physically capable of occurring, albeit not present in short term observations (Serafin
1049 et al., 2019). Many hybrid approach compound flood studies statistically simulate storm events that
1050 drive physical hydrodynamic and hydrological models (Moftakhari et al., 2019; Serafin et al., 2019).

1051 **6.6) Research Applications**

1052 As highlighted in Section 5.5, we identified that six main applications have been the focus of
1053 most compound flood studies in the database. Discussed in the following order, prominent case
1054 study applications include earth system processes (Section 6.6.1); risk assessment (Section 6.6.2);
1055 impact assessment (Section 6.6.3); forecasting (Section 6.6.4); planning and management (Section
1056 6.6.5); and methodological advancement (Section 6.6.6). Note, many of the compound flood studies
1057 fall into multiple application categories.

1058 **6.6.1) Earth System Processes**

1059 From the 271 literature database entries, 128 (47%) seek to better understand the processes,
1060 interactions, and behaviour of earth systems associated with compound flooding. Research papers
1061 within the earth system processes application theme examine a variety of topics including the role of
1062 various dynamic earth systems on compound flooding, the environmental and landscape

1063 characteristics influencing flood drivers, the relationships between and relative significance of flood
1064 drivers, and the spatiotemporal distributions and frequency of compound flood events. Many of the
1065 papers discussed in Sections 6.1, 6.2, and 6.5 fall within this application category.

1066 Focusing on flood drivers relationships, there is a plethora of research examining aspects of
1067 spatiotemporal distribution, correlation, covariance, dominance, and dependence structures as
1068 demonstrated in the US (Serafin and Ruggiero, 2014; Nasr et al., 2021; Juárez et al., 2022; Maymandi
1069 et al., 2022), UK (Svensson and Jones, 2002, 2004; Haigh et al., 2016; Santos et al., 2017; Hendry et
1070 al., 2019), Europe (Klerk et al., 2015; Petroliagkis, 2018; Ganguli and Merz, 2019a; Camus et al.,
1071 2021), Australia (Zheng et al., 2013; Zheng et al., 2014; Wu et al., 2018; Wu and Leonard, 2019),
1072 Canada (Jalili Pirani and Najafi, 2020, 2022), China (Qiu et al., 2022; Tao et al., 2022; Zhang and Chen,
1073 2022), South Africa (Kupfer et al., 2022), India (Manoj J et al., 2022), Indonesia (Sampurno et al.,
1074 2022a), New Zealand (Stephens and Wu, 2022), Germany (Sui and Koehler, 2001), and globally
1075 (Ward et al., 2018; Couasnon et al., 2020; Ridder et al., 2020; Lai et al., 2021a). Many have simulated
1076 or projected how climate change (e.g., SLR and storm intensification) are expected to affect the
1077 future compounding interactions of flood drivers (Wahl et al., 2015; Bevacqua et al., 2019; Pasquier
1078 et al., 2019; Ganguli et al., 2020; Bermúdez et al., 2021; Ghanbari et al., 2021).

1079 There is also notable insight into the large-scale meteorological and climatological modulators
1080 and underlying earth systems influencing the nature of compound flooding and behaviour of flood
1081 drivers. For instance, Camus et al. (2022), Hendry et al. (2019), and Rueda et al. (2016) identify the
1082 meteorological conditions associated with the compound occurrence of extreme flood drivers in the
1083 North Atlantic, the UK, and Spain respectively. Gori et al. (2020a) and Gori et al. (2020b) determine
1084 the type of TC events likely to cause compound pluvial-coastal flooding in North Carolina. Stephens
1085 and Wu (2022) identify the weather types corresponding with both univariate and coincident pluvial,
1086 fluvial, and coastal extremes in New Zealand. Furthermore, Wu and Leonard (2019) demonstrate
1087 how ENSO climate forcings impact the dependence between rainfall and storm surge extremes.

1088 Other common focuses of earth system processes themed literature include characterizing the
1089 physical mechanics and environmental properties that shape the ways in which flood drivers
1090 interact. Several papers including Vongvisessomjai and Rojanakamthorn (1989), Poulos et al. (2022),
1091 and Pietrafesa et al. (2019) evaluate the timing and mechanisms behind downstream blocking and
1092 dampening that often explain fluvial-coastal flooding. Similarly, Maymandi et al. (2022) measure the
1093 timing, extent, and intensity of storm surge, river discharge, and rainfall components to understand
1094 their relative importance. Likewise, Tanim and Goharian (2021) observe how changes in tidal phase
1095 alter the depth and duration of urban compound pluvial-coastal flooding. Harrison et al. (2022) and
1096 Helaire et al. (2020) measure how estuary characteristics (e.g., shape, size, width) influence fluvial-
1097 coastal dynamics. Wolf (2009) consider how wind-stress, bottom friction, depth, bathymetry, and
1098 ocean current refraction change co-occurring surge and wave extremes (coastal-coastal). Torres et
1099 al. (2015) and Gori et al. (2020b) examine the influence of hurricane landfall location, angle of
1100 approach, and forward speed on compound rainfall-runoff and storm surge flooding (pluvial-
1101 coastal). Tao et al. (2022) explore compound fluvial-pluvial flood scenarios involving upstream and
1102 downstream water levels, and how intensity, timing, duration, and dependence change based on
1103 synoptic and topographic conditions.

1104 Lastly, while the occurrence of compound flooding is well recognized in coastal, estuary, and
1105 delta environments, we note that emerging research has enhanced the understanding of compound
1106 flood processes in the context of coastal lake environments (Saharia et al., 2021; Steinschneider,
1107 2021; Banfi and De Michele, 2022; Jalili Pirani and Najafi, 2022). For example, Banfi and De Michele
1108 (2022) determine that flooding of Italy's Lake Como is primarily (70%) from temporal compounding
1109 of rainfall (pluvial-pluvial). In Lake Erie, Saharia et al. (2021) analyses compound flooding involving
1110 river flow and lake seiche (fluvial-coastal), showing for the first time how seiches can combine with
1111 hydrological processes to exacerbate flooding. Finally, along Lake Ontario, Steinschneider (2021)
1112 quantified the compounding nature and variability of storm surge and total water level (coastal-
1113 coastal).

1114 6.6.2) Risk Assessment

1115 The overarching goal of most compound flood research is to better understand risk, hence why
1116 127 (46%) studies involve aspects of risk assessment. As defined by the UNDRR (2016), risk
1117 assessment is an approach for determining the state of risk posed by a potential hazard taking into
1118 account conditions of exposure and vulnerability. Risk assessment inherently plays a key role in
1119 several of the reviews' other research application categories including hazard planning and
1120 management as well as impact assessment.

1121 As the field of compound event sciences advances, it has become increasingly clear that
1122 conventional univariate analysis cannot accurately capture the synergistic and non-linear risk of
1123 compound processes (Kappes et al., 2010; Leonard et al., 2014; Eshrati et al., 2015; Zscheischler and
1124 Seneviratne, 2017; Sadegh et al., 2018; Zscheischler et al., 2018; Ridder et al., 2020). A plethora of
1125 studies have concluded that traditional hazard analysis, in which flood variables dependence and
1126 synergy is not considered, underestimate the risk of compound extremes (Bevacqua et al., 2017;
1127 Bilskie and Hagen, 2018; Kumbier et al., 2018; Hendry et al., 2019; Huang et al., 2021; Eilander et al.,
1128 2022b). Jang and Chang (2022) determine that by not considering the multivariate nature of pluvial-
1129 coastal flooding, Taiwan's flood risk would be severely misestimated causing incorrect warning
1130 alarms and inadequate protection. Khalil et al. (2022) assert that failing to consider the interactions
1131 of multiple flood drivers would reduce flood levels by 0.62m and 0.12m in Jidalee and Brisbane.
1132 Similarly, Santos et al. (2021a) measured 15-35cm higher water levels for 1% annual exceedance
1133 probability events when considering dependence for trivariate fluvial-pluvial-coastal flooding in
1134 Sabine Lake, Texas.

1135 There is a diversity of topics within the risk-themed compound flood literature, but many
1136 papers involve simple regional case studies or framework proposals (Najafi et al., 2021; Ming et al.,
1137 2022; Naseri and Hummel, 2022; Peña et al., 2022). Čepienė et al. (2022) examine risk associated
1138 with combined fluvial-coastal flooding and how it will change with SLR at the port city of Klaipėda.
1139 Bischiniotis et al. (2018) assess the influence of antecedent soil moisture on flood risk in sub-Saharan

1140 Africa, showing that precipitation alone cannot explain flood occurrence. Along the coasts of
1141 Mozambique, Eilander et al. (2022a) demonstrate a globally applicable compound flood risk
1142 framework and Van Berchum et al. (2020) present the novel Flood Risk Reduction Evaluation and
1143 Screening (FLORES) model. Bass and Bedient (2018) create joint pluvial-coastal flooding probabilistic
1144 risk models built upon TC risk products in Texas. A few studies examine the risk of Potential Loss of
1145 Life (PLL) such as De Bruijn et al. (2014) who present a Monte Carlo-based analysis framework for
1146 fluvial-coastal interactions in the Rhine-Meuse delta.

1147 **6.6.3) Impact Assessment**

1148 Impact assessment is the least common compound flood application with only 12 (4%) relevant
1149 studies. This may be because flood impact assessments have historically only been designed to
1150 address a single type of flooding at a time (Láng-Ritter et al., 2022). Additionally, flood loss modelling
1151 has largely targeted riverine floods, with less attention given to pluvial, coastal, or groundwater
1152 drivers (Mohor et al., 2020). This is slowly changing, and in recent years a small portion of research
1153 has been dedicated to analysing the impacts of compound flood events (Habel et al., 2020; Mohor et
1154 al., 2020; Tanir et al., 2021; Láng-Ritter et al., 2022; Preisser et al., 2022). Impact assessment differs
1155 from risk assessment in that it looks at the realized or impending outcomes of flood events rather
1156 than simply the event likelihood as a product of exposure and vulnerability. This involves identifying
1157 and analysing the physical (e.g., building and infrastructure damage), social (e.g., loss of essential
1158 services, household displacement, and community cohesion), and economic (e.g., loss of income,
1159 damage to business and industry, and disruption of transportation and supply chain) impacts of
1160 flooding.

1161 Physical parameters for quantifying the empirical impact of flooding in an affected area can
1162 include water depth, flow velocity, inundation duration, water quality (contamination), land
1163 use/land cover change, and infrastructure damage. For example, Habel et al. (2020) look at the
1164 influence of compound floods and SLR on urban infrastructure and identify the roadways, drainage
1165 inlets, and cesspools that would fail under compound extreme conditions.

1166 Social and economic flood impacts are routinely measured using multifaceted indices and
1167 damage models. Preisser et al. (2022) and Tanir et al. (2021) assessed impacts of compound flooding
1168 with SVI (Social Vulnerability Index; 42 variables) and SOVI (Socio-Economic Vulnerability Index; 41
1169 variables) respectively. Karamouz et al. (2017) apply a flood damage estimator (FDE) model to
1170 quantify pluvial-coastal flood damages to buildings structures in New York City. Similarly, Ming et al.
1171 (2022) calculate the average annual loss in value of residential buildings in the Thames River
1172 catchment from compound flooding. Lastly, Thieken et al. (2022) assessed the differing impacts and
1173 coping abilities (financial damage, psychological burden, and recovery) of residents following
1174 compound river-dyke breach (fluvial-damming/dam failure) and flash flood-surface saturation
1175 (pluvial-soil moisture) events.

1176 **6.6.4) Forecasting**

1177 A total of 21 (8%) compound flood studies in the database focus on flood forecasting. Flood
1178 forecasts are valuable emergency management tools that provide information on location, timing,
1179 magnitude, and potential impact of impending flood scenarios (Merz et al., 2020). Together with
1180 monitoring and prediction, forecasts guide time sensitive early warning systems and disaster
1181 reduction strategies to help communities prepare for and respond to flooding. As compound event-
1182 based perspectives gain traction, there has been emerging development of flood forecast models
1183 that consider the compound interaction of multiple drivers.

1184 Several studies have demonstrated the capabilities of integrated near-real-time observation-
1185 based hydrological river and hydrodynamic coastal flood models forced by already established
1186 meteorological forecasting systems (Stamey et al., 2007; Mashriqui et al., 2010; Park et al., 2011;
1187 Blanton et al., 2012; Dresback et al., 2013; Mashriqui et al., 2014; Blanton et al., 2018; Tehranirad et
1188 al., 2020; Cifelli et al., 2021). For instance, the fluvial-coastal flood forecasting system Hydro-CoSMoS
1189 detailed in Tehranirad et al. (2020) can predict tidal river interactions in San Francisco Bay. Over the
1190 Korean peninsula, Park et al. (2011) design a model for real-time water level forecasting of pluvial-
1191 coastal inundation such as seen during Typhoon Maemi.

1192 Much of the existing compound flood forecasting research has focused on advances in the
1193 development of monitoring and early warning systems for the US East Coast and Gulf of Mexico.
1194 Blanton et al. (2012) feature development of the North Carolina Forecasting System (NCFs) which
1195 predicts fluvial-pluvial-coastal flood variables. Van Cooten et al. (2011) showcase the Coastal and
1196 Inland Flooding Observation and Warning (CI-FLOW) Project's 7-day total water levels forecasts and
1197 potential for near-real-time fluvial-pluvial-coastal flood prediction. Dresback et al. (2013) develop
1198 the coupled hydrological-hydrodynamic model ASGS-STORM for forecasting joint fluvial-coastal
1199 inundation. Multiple studies also concentrate on flood forecasting in the Chesapeake Bay and tidally-
1200 influenced Potomac River . Stamey et al. (2007) introduce the Chesapeake Bay Inundation Prediction
1201 System (CIPS), a prototype operational flood forecasting system for TC/ETC storm system induced
1202 fluvial-coastal flooding. This is followed by Mashriqui et al. (2010) and Mashriqui et al. (2014) who
1203 build a River-Estuary-Ocean (REO) forecast system to fill gaps in existing operational models.
1204 Accurate forecast products are crucial to effective emergency management practices and
1205 reliable early warning systems. Ensemble modelling has been implemented in two compound
1206 forecasting studies as a means of minimizing uncertainty. Blanton et al. (2018) develop a hurricane
1207 ensemble hazard prediction framework and demonstrate the ability to forecast pluvial-coastal
1208 flooding with a 7-day lead simulation of Hurricane Isabel. Similarly, Saleh et al. (2017) showcase a 4-
1209 day advance operational ensemble forecasting framework for fluvial-coastal flooding in Newark Bay
1210 during Hurricanes Irene and Sandy.
1211 A number of studies have also investigated the use-case of ML for forecasting compound
1212 flooding (Bass and Bedient, 2018; Huang, 2022; Sampurno et al., 2022b).. For instance, Sampurno et
1213 al. (2022b) use a combined hydrodynamic and ML approach to forecast fluvial-pluvial-coastal
1214 flooding in Indonesia's Kapuas River delta. Bass and Bedient (2018) take peak inundation levels from
1215 a coupled hydrological-hydrodynamic model results to train an Artificial Neural Network (ANN) and
1216 Kriging ML model for rapid forecasting of TC-driven pluvial-coastal extremes in Houston, Texas as a
1217 result of Hurricanes Allison and Ike. Finally, Huang (2022) constructs a Recurrent Neural Network

1218 (RNN) model that considers downstream geomorphological and hydrological characteristics to
1219 predict joint pluvial-coastal flooding in Taiwan.

1220 **6.6.5) Planning and Management**

1221 Within the literature database there are 29 (11%) papers that focus on different aspects of
1222 flood management from emergency response planning to risk mitigation strategies. The Undrr
1223 (2016) define disaster management as the organization, planning, and application of measures for
1224 disaster response and recovery. Subsequently, disaster risk management is described as the use of
1225 disaster risk reduction strategies and policies to prevent, reduce, and manage risk (Undrr, 2016).

1226 Flood management strategies might involve identifying areas for prioritized flood protection and
1227 building risk reduction structures such as building levees, dykes, barriers, and sea walls; or enacting
1228 changes in land use planning and zoning policy to minimize habitation and activity in floodplains.

1229 Flood defence and water management structures have long been in use; however these
1230 features have predominantly been designed for responding to a single flood driver (e.g., storm
1231 surge) (Sebastian, 2022). Several studies examine the effectiveness of flood defence structures
1232 protecting against compound events. Christian et al. (2015) investigate the feasibility of a proposed
1233 storm surge barrier for mitigating pluvial-coastal flooding in the Houston Shipping Channel. Findings
1234 on the magnitude of reductions in surface height and floodplain area help guide project
1235 development decision making by coastal and port authorities. Del-Rosal-Salido et al. (2021) develop
1236 management maps to support decision making and long-term climate and SLR adaptation planning
1237 in Spain's Guadalete estuary, identifying sites for potential flood barriers.

1238 During extreme flood events, unpredictable impacts to utility and transportation infrastructure
1239 can exacerbate loss. Thus, another key component of flood management is flexible emergency
1240 response planning. Several articles address these elements of response planning, identify evacuation
1241 areas, routes, and emergency shelters in the event of compound flooding. In their analysis of urban
1242 infrastructure failure from compound flooding in Hawaii, Habel et al. (2020) locate road networks
1243 and urban spaces that are likely to be impassable and estimate the effects of traffic on resident

1244 evacuation. In the event of Typhon landfall in the Korean peninsula, Park et al. (2011) design an early
1245 warning system for pluvial-coastal flooding that supports decision making and response from local
1246 officials by identifying areas to evacuate. Blanton et al. (2018) also address emergency planning,
1247 developing a hurricane-driven inundation evacuation model that dynamically accounts for
1248 interactions of compound drivers.

1249 Effective communication and outreach are additional critical components of flood hazard
1250 planning and mitigation. This includes educating the public about the types and considerations of
1251 flooding, collaborating with hazard managers and policy makers to address challenges in flood
1252 management, and timely dissemination of information on flood risk, evacuation routes, and
1253 emergency shelters. In a unique narrative paper, Curtis et al. (2022) interview emergency managers
1254 and planners on compound flood risk perceptions and challenges and reveal inadequacies in
1255 communication mediums and the ability to convey compound flood severity to the public. Similarly,
1256 Thieken et al. (2022) survey German residents affected by two compound flood events on their
1257 understanding of compounding drivers and the communication medium through which they learned
1258 about the events. Modrakowski et al. (2022) centres on the use of precautionary risk management
1259 strategies in the Netherlands, and how perception of compound flood events in-part shapes the
1260 flood management practices of local authorities. Interestingly, both Curtis et al. (2022) and Thieken
1261 et al. (2022) discovered a greater perception of risk from fluvial and coastal dominant flooding as
1262 opposed to pluvial inundation. Conversely, Modrakowski et al. (2022) found that pluvial flooding
1263 (specifically heavy rainfall from cloudbursts) had a larger perceived risk, being equal if not greater
1264 than fluvial and coastal. These findings on compound flood communication and perception help
1265 hazard managers determine how to approach emergency response and risk mitigation planning.

1266 **6.6.6) Methodological Advancement**

1267 The third most common application category is methodological advancement with 73 (27%) of
1268 the 271 studies aimed at testing and developing methodologies for research on compound floods.
1269 Methodological advancement is a broad application category, but most often describes research

1270 studies that investigate either new setups and frameworks for running numerical model simulations,
1271 or novel statistical modelling and analysis techniques for quantifying the likelihood of compounding
1272 extremes or behaviour of interacting drivers. Papers classified as methodological advancement seek
1273 to better understand and showcase the feasibility, development, and/or performance of compound
1274 flood research methods. Here forward see Table A2 for full model names and descriptions.

1275 In relation to advancements in numerical-based methodologies, many papers explicitly state
1276 their primary research objective is the development of a compound flood modelling system itself,
1277 such as Chen and Liu (2014) and Lee et al. (2019), who test whether their respective SELFE and HEC-
1278 HMS + Delft3D-FLOW model frameworks can sufficiently replicate the fluvial-coastal flood conditions
1279 observed during historical storm events. Bates et al. (2021) showcase a sophisticated 30m resolution
1280 large-scale LISFLOOD-FP centric model of the contiguous US that incorporates pluvial, fluvial, and
1281 coastal processes under the same methodological framework. Numerous papers focus on assessing
1282 the performance of specific computational software applications for simulating compound flooding.

1283 These primarily seek to provide insight for future development and use case application. For
1284 instance, Bush et al. (2022) examine the benefits and drawbacks between ADCIRC and combined
1285 ADCIRC + HEC-RAS simulations of fluvial-coastal flooding. Bilskie et al. (2021) demonstrate a new
1286 approach for delineating coastal floodplains and simulating water level using ADCIRCs “rain-on-
1287 mesh” modules forced by antecedent rainfall, TC-driven rainfall, and storm surge. Ye et al. (2020)
1288 use SCHISM to develop a 3D model that incorporate the baroclinic effects of storm surge and
1289 compare its performance against 3D barotropic and 2D models alternatives. Numerous studies
1290 incorporate sensitivity assessments, experimenting with model parameters and settings, and
1291 examining how they influence performance and uncertainty (McInnes et al., 2002; Brown et al.,
1292 2007; Orton et al., 2012; Olbert et al., 2017; Silva-Araya et al., 2018; Leijnse et al., 2021; Khalil et al.,
1293 2022; Lyddon et al., 2022). For example, Khalil et al. (2022) investigate how model mesh resolution
1294 affects flood discharge rates, revealing that finer meshes best replicate peak flows. Some studies
1295 introduce newly developed numerical models, such as Olbert et al. (2017), who present the first

1296 instance of a dynamically linked and nested POM + MSN_Flood framework for fluvial-pluvial-coastal
1297 flooding. Others focus on the computational efficiency of compound flood frameworks, for instance
1298 Leijnse et al. (2021) assess the reduced-physical solver SFINCS's ability to accurately simulate fluvial-
1299 pluvial-coastal interactions with less computational resources.

1300 Many of the literature database studies showcase innovations in statistical approaches to
1301 compound flood research. Sampurno et al. (2022b) assess the operational viability and performance
1302 of three ML algorithms for compound flood forecasting system. Similarly, Muñoz et al. (2021)
1303 examine the capability of ML and data fusion-based approaches for post-event mapping of
1304 compound floods from satellite imagery. Muñoz et al. (2022a) demonstrate techniques for
1305 employing data assimilation to reduce uncertainty in compound flood modelling. Wu et al. (2021)
1306 experiment with three methods of compound flood frequency analysis and discuss the advantages
1307 and disadvantages of each approach. Phillips et al. (2022) examine combinations of varying copula
1308 structure and statistical fitting frameworks to further approaches for measuring driver dependence.
1309 Thompson and Frazier (2014) test out different means of deterministic and probabilistic modelling
1310 for quantifying compound flood risk. Lastly, some studies expand on existing methodologies to
1311 overcome known limitations, such as Gouldby et al. (2017) who develop a method of full
1312 multivariate probability analysis that overcomes drawbacks of the prevalent joint probability
1313 contours (JPC) method by directly quantifying response variable extremes.

1314 **7) Knowledge Gaps and Improvements for Future Research**

1315 Our final objective is to reflect on the knowledge gaps in compound flood research and suggest
1316 potential directions for research going forward. Based on our detailed review we have five main
1317 recommendations moving forward, as follows:

1318 **Recommendation 1 - Adopt consistent definitions, terminology, and approaches:** Definitions
1319 and use-cases of compound event, compound hazard, multi-hazard, and associated terminology
1320 (Table 1) are highly inconsistent throughout the literature (Kappes et al., 2012; Gallina et al., 2016;
1321 Tilloy et al., 2019). This is well recognized in Tilloy et al. (2019), who refer to the variety of terms as a

1322 “fragmentation of [the] literature.” Similarly, Pescaroli and Alexander (2018) draw attention to
1323 trends in “superficial” and “ambiguous” use of hazard terms by academics and practitioners. This
1324 tendency to use differing concepts synonymously is blurring the state of compound flood research
1325 (something we observed ourselves while completing this review). They warn of potential confusion
1326 and duplication of research as a result of overlapping definitions. In summary, compound event and
1327 related terms have a wide range of overlapping and interlinked definitions, and there is a
1328 considerable need for clarity. Recent preliminary efforts by the collaborative MYRIAD-EU project to
1329 develop a multi-hazard and multi-risk definitions handbook appear promising for fostering a
1330 common understanding of hazard concepts across disciplines (Gill et al., 2020).

1331 **Recommendation 2 - Expand the geographic coverage of research:** Geographically, much of
1332 the existing compound flood research is too narrowly focused on a select few regions (i.e., North
1333 America, Europe, Southeast Asia, UK, China, the Netherlands, Australia) (Figure 3b). To date there
1334 are no English-language studies, to our knowledge, on compound flooding in any parts of South
1335 America, Central America, or the Middle East. South America regularly experiences catastrophic
1336 flooding from both long-term heavy rainfall and extreme river discharge (e.g., 2015/16 (Reliefweb,
1337 2016) and 2016/17 (Reliefweb, 2017) South American floods), however existing research in these
1338 regions has not considered their combined interactions. Furthermore, there are very few compound
1339 flood papers within the African subcontinent (Bischinotis et al., 2018; De Michele et al., 2020; Van
1340 Berchum et al., 2020; Kupfer et al., 2022) (a region deserving of greater attention given the
1341 projected extreme coastal hazard exposure as a result of SLR, population growth, and coastal
1342 urbanization (Neumann et al., 2015)) due to a lack of data. Thus, for much of the world, knowledge
1343 on the interactions and dependence of flood variables is missing. Future compound flood research
1344 must be dedicated to improving our understanding of these neglected regions and developing
1345 methodologies for assessing compound flooding in data sparse areas.

1346 **Recommendation 3 - Pursue more inter-comparison and collaborative compound flood**
1347 **projects:** Current methodologies for analysing compound flooding are highly diverse, inhibiting

1348 quantitative comparisons between studies. Considerable subjectivity is observed in compound event
1349 mechanism and variable selection, temporal and spatial bounds, hazard scenario design, conditional
1350 and joint probability, and dependence measurement (Zscheischler et al., 2020). Standard
1351 approaches for compound flood risk analysis have yet to be established (Kappes et al., 2012;
1352 Sebastian, 2022). Furthermore, methods for analysing compound events vary across scientific
1353 communities (Pietrafesa et al., 2019; Tilloy et al., 2019). Discussions between emergency manager
1354 and stakeholder have revealed the leading barrier to the use of multi-hazard and multi-risk
1355 approaches was a lack of common methodologies and data (Komendantova et al., 2014). Further
1356 highlighting this point, Tilloy et al. (2019) identified a staggering 79 unique uses of 19 different
1357 methods for analysing compound events. There is a substantial need for a standardized framework
1358 that addresses assorted analytical methods and considerations (Sebastian, 2022) including flood
1359 variable choice and pairing, flood threshold definition, case study hazard design, spatiotemporal
1360 scales and resolutions, statistical model assumptions, and numerical parameter choice. Future water
1361 management practices and coastal hazard mitigation strategies must better reflect the perspectives
1362 of compound events. To aid this we would recommend that the community create a compound
1363 flood inter-comparison project, similar to that set up for the wave and coastal modelling
1364 communities (i.e., COWCLIP (Hemer et al., 2010) and CoastMIP (Hinkel et al., 2014)).

1365 **Recommendation 4 - Develop modelling frameworks that holistically represent dynamic**
1366 **earth systems:** While there have been substantial advancements in compound flood research over
1367 the past decade, the overall ability to identify, model, quantify, and forecast compound flood events
1368 remains a substantial challenge. These difficulties stem from the highly complex and chaotic nature
1369 of hydrological, meteorological, and oceanographic systems (Sebastian, 2022). Connections between
1370 flood modulators and drivers are spatiotemporally dynamic, and how those relationships are
1371 affected by the changing climate is uncertain and everchanging. Stand-alone numerical models
1372 generally lack the ability to holistically simulate the dynamic interconnected systems necessary to
1373 explain compound flooding (especially in the coastal setting). The skill of compound flood

1374 forecasting systems and numerical models have improved but still largely remains inadequate
1375 (Mashriqui et al., 2014; Pietrafesa et al., 2019). Going forward, we recommend adoption of
1376 standardized modelling interfaces (e.g., Basic Model Interface (Hutton et al., 2020)) to facilitate
1377 coupling between numerical models to develop holistic modelling frameworks that better
1378 disentangle the complex earth system processes driving compound floods. Compound flood
1379 research also serves to greatly benefit from the use of hybrid modelling frameworks that couple
1380 numerical and statistical models. While this review discovered many studies that employed hybrid
1381 numerical-statistical methods, few explicitly outlined a standardized frameworks for linking the
1382 models. Thus, we additionally recommend further evaluation of hybrid frameworks as the linking of
1383 statistical and numerical models has considerable room for improvement.

1384 **Recommendation 5 – Plan and design urban and coastal infrastructure with compound
1385 flooding in mind:** We advise reshaping the planning, design, and operation of urban and coastal
1386 infrastructure to fully recognize the dependence and synergetic extremes of interacting flood
1387 drivers. As we look to a future of increasing flood frequency, proactive flood management is vital to
1388 lowering the vulnerability and exposure of urban and coastal communities. This can include investing
1389 in long-term resilient infrastructure (i.e., >100-year extremes), developing flood hazard maps that
1390 consider compound flood return periods to aid planning (e.g. update Fema hazard maps), supporting
1391 development blue-green and natural flood management (e.g., wetland protection, riverbank
1392 restoration, and leaky dams), enacting operational early warning systems and emergency response
1393 measures, and educating the public about the risks of inhabiting coastal floodplains.

1394 8) Conclusions

1395 We have long known that high-impact hazard events involve a combination of drivers, however
1396 existing research has largely been limited to single-factor or univariate analysis of climate extremes
1397 due to technical or methodological constraints. Such is the case with flooding, as standard flood
1398 hazard assessment practices have traditionally accounted for the effects of the different drivers of

1399 flooding independently. Only in recent years has flood research more closely examined the non-
1400 linear combination of these variables through the lens of compound events.
1401 This paper has presented a systematic review of the existing literature on compound flooding in
1402 coastal regions. Analysis of 271 studies up to 2022 has revealed significantly increased attention to
1403 compound flood research in recent years. This review identified different definitions and
1404 terminologies of compound flood events, categories of compound flood drivers, numerical modelling
1405 frameworks, and statistical analysis techniques. Furthermore, several compound flood hotspots
1406 have been identified throughout the world including the US East Coast and Gulf of Mexico, Northern
1407 Europe, East Asia, Southern Asia, Southeast Asia, Northern Australia, and global low-lying deltas and
1408 estuaries. Research has shown that compound floods are likely to have increasing frequency and
1409 severity in the future as a result of climate change, and that societal risks of extreme climate hazards
1410 are underestimated when the compound effects of climatic processes are not considered in
1411 combination. Compound flood research thus requires a more holistic and integrated approach to risk
1412 analysis that reflects on the complex interactions and nonstationary of Earth systems. We must
1413 recognize the threats posed by the interactions between hazard drivers for accurate risk assessment.
1414 Further research must also focus on identifying the dominant drivers of flooding, the precursors that
1415 make certain regions particularly susceptible to compound flooding, the dependence relationships
1416 between flood drivers, and investigate how all these aspects change spatiotemporally. Going
1417 forward, an improved understanding of compound flooding processes and precursors is vital to
1418 coastal management, hazard risk reduction, and community resilience in the face of changing
1419 climates.

1420 **Acknowledgements**

1421 We thank Kate Davis¹ for creation of schematic diagram (Figure 1). JG time was supported by the
1422 UKRI Natural Environmental Research Council (NERC) grant NE/S007210/1. ID time was supported by
1423 NERC grant NE/S010262/1. JN time was supported by the NERC grant NE/S015639/1. T.W.
1424 acknowledges support by the National Science Foundation (grant numbers 1929382 and 2103754)
1425 and the USACE Climate Preparedness and Resilience Community of Practice and Programs.

1426

1427 **Author CRediT (Contributor Roles Taxonomy)**

1428 Joshua Green: – Conceptualization, Writing - Original Draft Preparation, Writing - Review & Editing,
1429 Data Curation, Methodology, Formal Analysis
1430 Ivan D. Haigh: – Conceptualization, Writing - Review & Editing
1431 Niall Quinn: Writing - Review & Editing
1432 Jeff Neal: Writing - Review & Editing
1433 Thomas Wahl: Writing - Review & Editing
1434 Melissa Wood: Writing - Review & Editing
1435 Dirk Eilander: Writing - Review & Editing
1436 Marleen de Ruiter: Writing - Review & Editing
1437 Philip Ward: Writing - Review & Editing
1438 Paula Camus: Writing - Review & Editing

1439

1440 **Competing Interests**

1441 Co-author Philip Ward is a member of the NHESS editorial board.

1442

1443 **References**

1444 Abbaszadeh, P., Muñoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on
1445 uncertainty quantification and reduction in compound flood modeling and forecasting,
1446 *iScience*, 25, 105201, 10.1016/j.isci.2022.105201, 2022.

1447

1448 Acreman, M. C.: Assessing the Joint Probability of Fluvial and Tidal Floods in the River Roding, Water
1449 and Environment Journal, 8, 490-496, 10.1111/j.1747-6593.1994.tb01140.x, 1994.

1450

1451 Adhikari, P., Hong, Y., Douglas, K. R., Kirschbaum, D. B., Gourley, J., Adler, R., and Brakenridge, G. R.:
1452 A digitized global flood inventory (1998-2008): Compilation and preliminary results, *Natural*
1453 *Hazards*, 55, 405-422, 10.1007/S11069-010-9537-2, 2010.

1454

1455 AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H.,
1456 Papalexiou, S. M., Ragno, E., and Sadegh, M.: Climate Extremes and Compound Hazards in a
1457 Warming World, *Annual Review of Earth and Planetary Sciences*, 48, 519-548,
1458 10.1146/annurev-earth-071719-055228, 2020.

1459

1460 Apel, H., Martínez Trepat, O., Nghia Hung, N., Thi Chinh, D., Merz, B., and Viet Dung, N.: Combined
1461 fluvial and pluvial urban flood hazard analysis: Concept development and application to Can
1462 Tho city, Mekong Delta, Vietnam, *Natural Hazards and Earth System Sciences*, 16, 941-961,
1463 10.5194/NHESS-16-941-2016, 2016.

1464

1465 Archetti, R., Bolognesi, A., Casadio, A., and Maglionico, M.: Development of flood probability charts
1466 for urban drainage network in coastal areas through a simplified joint assessment approach,
1467 *Hydrology and Earth System Sciences*, 15, 3115-3122, 10.5194/HESS-15-3115-2011, 2011.

1468

1469 Banfi, F. and De Michele, C.: Compound flood hazard at Lake Como, Italy, is driven by temporal
1470 clustering of rainfall events, *Communications Earth & Environment* 2022 3:1, 3, 1-10,
1471 10.1038/s43247-022-00557-9, 2022.

1472

1473 Bass, B. and Bedient, P.: Surrogate modeling of joint flood risk across coastal watersheds, *Journal of*
1474 *Hydrology*, 558, 159-173, 10.1016/j.jhydrol.2018.01.014, 2018.

1475

1476 Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J.,
1477 Schumann, G., Giustarini, L., Coxon, G., Porter, J. R., Amodeo, M. F., Chu, Z., Lewis-Gruss, S.,
1478 Freeman, N. B., Houser, T., Delgado, M., Hamidi, A., Bolliger, I., E. McCusker, K., Emanuel, K.,
1479 Ferreira, C. M., Khalid, A., Haigh, I. D., Couasnon, A., E. Kopp, R., Hsiang, S., and Krajewski, W.
1480 F.: Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and
1481 Future Climates, *Water Resources Research*, 57, 10.1029/2020WR028673, 2021.

1482

1483 Baxter, R. M.: Environmental Effects of Dams and Impoundments, *Annual Review of Ecology and*
1484 *Systematics*, 8, 255-283, 1977.

1485

1486 Bayazit, Y. and Koç, C.: The impact of forest fires on floods and erosion: Marmaris, Turkey,
1487 *Environment, Development and Sustainability*, 24, 13426-13445, 10.1007/s10668-022-
1488 02624-9, 2022.

1489

1490 Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A., and Voss, C. I.: Increasing threat of coastal
1491 groundwater hazards from sea-level rise in California, *Nature Climate Change*, 10, 946-952,
1492 10.1038/s41558-020-0874-1, 2020.

1493
1494 Bender, J., Wahl, T., Müller, A., and Jensen, J.: A multivariate design framework for river confluences,
1495 Hydrological Sciences Journal, 61, 471-482, 10.1080/02626667.2015.1052816, 2016.
1496
1497 Benestad, R. E. and Haugen, J. E.: On complex extremes: Flood hazards and combined high spring-
1498 time precipitation and temperature in Norway, Climatic Change, 85, 381-406,
1499 10.1007/S10584-007-9263-2, 2007.
1500
1501 Bensi, M., Mohammadi, S., Kao, S.-C., and DeNeale, S. T.: Multi-Mechanism Flood Hazard
1502 Assessment: Critical Review of Current Practice and Approaches, Oak Ridge National Lab,
1503 United States, 10.2172/1637939, 2020.
1504
1505 Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J., and Kirchner, J. W.: The Relative Importance of
1506 Different Flood-Generating Mechanisms Across Europe, Water Resources Research, 55,
1507 4582-4593, 10.1029/2019WR024841, 2019.
1508
1509 Bermúdez, M., Farfán, J. F., Willems, P., and Cea, L.: Assessing the Effects of Climate Change on
1510 Compound Flooding in Coastal River Areas, Water Resources Research, 57,
1511 10.1029/2020WR029321, 2021.
1512
1513 Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of
1514 using precipitation or river discharge data when assessing global coastal compound flooding,
1515 Natural Hazards and Earth System Sciences, 20, 1765-1782, 10.5194/NHESS-20-1765-2020,
1516 2020.
1517
1518 Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M., and Vrac, M.: Multivariate statistical
1519 modelling of compound events via pair-copula constructions: Analysis of floods in Ravenna
1520 (Italy), Hydrology and Earth System Sciences, 21, 2701-2723, 10.5194/HESS-21-2701-2017,
1521 2017.
1522
1523 Bevacqua, E., Maraun, D., Vousdoukas, M. I., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann,
1524 M.: Higher probability of compound flooding from precipitation and storm surge in Europe
1525 under anthropogenic climate change, Science Advances, 5, 10.1126/SCIAADV.AAW5531,
1526 2019.
1527
1528 Bevacqua, E., De Michele, C., Manning, C., Couasnon, A., Ribeiro, A. F. S., Ramos, A. M., Vignotto, E.,
1529 Bastos, A., Blesić, S., Durante, F., Hillier, J., Oliveira, S. C., Pinto, J. G., Ragno, E., Rivoire, P.,
1530 Saunders, K., van der Wiel, K., Wu, W., Zhang, T., and Zscheischler, J.: Guidelines for Studying
1531 Diverse Types of Compound Weather and Climate Events, Earth's Future, 9,
1532 10.1029/2021EF002340, 2021.
1533
1534 Bevere, L. and Remondi, F.: Natural catastrophes in 2021: the floodgates are open, Swiss Re
1535 Institute, Zurich, Switzerland, 2022.
1536
1537 Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions,
1538 Geophysical Research Letters, 45, 2761-2770, 10.1002/2018GL077524, 2018.
1539
1540 Bilskie, M. V., Zhao, H., Resio, D., Atkinson, J., Cobell, Z., and Hagen, S. C.: Enhancing Flood Hazard
1541 Assessments in Coastal Louisiana Through Coupled Hydrologic and Surge Processes,
1542 Frontiers in Water, 3, 10.3389/FRWA.2021.609231, 2021.
1543

1544 Bischiniotis, K., van den Hurk, B., Jongman, B., Coughlan de Perez, E., Veldkamp, T., de Moel, H., and
1545 Aerts, J.: The influence of antecedent conditions on flood risk in sub-Saharan Africa, *Natural*
1546 *Hazards and Earth System Sciences*, 18, 271-285, 10.5194/nhess-18-271-2018, 2018.

1547

1548 Blanton, B., McGee, J., Fleming, J., Kaiser, C., Kaiser, H., Lander, H., Luettich, R., Dresback, K., and
1549 Kolar, R.: Urgent Computing of Storm Surge for North Carolina's Coast, *Procedia Computer*
1550 *Science*, 9, 1677-1686, 10.1016/J.PROCS.2012.04.185, 2012.

1551

1552 Blanton, B., Dresback, K., Colle, B., Kolar, R., Vergara, H., Hong, Y., Leonardo, N., Davidson, R., Nozick,
1553 L., and Wachtendorf, T.: An Integrated Scenario Ensemble-Based Framework for Hurricane
1554 Evacuation Modeling: Part 2—Hazard Modeling, *Risk Analysis*, 40, 117-133,
1555 10.1111/RISA.13004, 2018.

1556

1557 Borrero, J. C., Cronin, S. J., Latu'ila, F. H., Tukuafu, P., Heni, N., Tupou, A. M., Kula, T., Fa'anunu, O.,
1558 Bosserelle, C., Lane, E., Lynett, P., and Kong, L.: Tsunami Runup and Inundation in Tonga
1559 from the January 2022 Eruption of Hunga Volcano, *Pure and Applied Geophysics*, 180, 1-22,
1560 10.1007/s00024-022-03215-5, 2023.

1561

1562 Brown, J. D., Spencer, T., and Moeller, I.: Modeling storm surge flooding of an urban area with
1563 particular reference to modeling uncertainties: A case study of Canvey Island, United
1564 Kingdom, *Water Resources Research*, 43, 10.1029/2005WR004597, 2007.

1565

1566 Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R.,
1567 Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H.
1568 J., and Roberts, H. J.: A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and
1569 Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and
1570 Validation, *Monthly Weather Review*, 138, 345-377, 10.1175/2009MWR2906.1, 2010.

1571

1572 Bush, S. T., Dresback, K. M., Szpilka, C. M., and Kolar, R. L.: Use of 1D Unsteady HEC-RAS in a Coupled
1573 System for Compound Flood Modeling: North Carolina Case Study, *Journal of Marine Science*
1574 and Engineering, 10, 10.3390/JMSE10030306, 2022.

1575

1576 Camus, P., Haigh, I. D., Nasr, A. A., Wahl, T., Darby, S. E., and Nicholls, R. J.: Regional analysis of
1577 multivariate compound coastal flooding potential around Europe and environs: Sensitivity
1578 analysis and spatial patterns, *Natural Hazards and Earth System Sciences*, 21, 2021-2040,
1579 10.5194/nhess-21-2021-2021, 2021.

1580

1581 Camus, P., Haigh, I. D., Wahl, T., Nasr, A. A., Méndez, F. J., Darby, S. E., and Nicholls, R. J.: Daily
1582 synoptic conditions associated with occurrences of compound events in estuaries along
1583 North Atlantic coastlines, *International Journal of Climatology*, 42, 5694-5713,
1584 10.1002/IJC.7556, 2022.

1585

1586 Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for
1587 floods and debris flows from recently burned areas in southwestern Colorado and southern
1588 California, *Geomorphology*, 96, 250-269, 10.1016/j.geomorph.2007.03.019, 2008.

1589

1590 Čepienė, E., Dailidytė, L., Stoenišius, E., and Dailidienė, I.: Sea Level Rise Impact on Compound
1591 Coastal River Flood Risk in Klaipėda City (Baltic Coast, Lithuania), *Water*, 14,
1592 10.3390/W14030414, 2022.

1593

1594 Chen, A. S., Djordjević, S., Leandro, J., and Savić, D. A.: An analysis of the combined consequences of
1595 pluvial and fluvial flooding, *Water Science and Technology*, 62, 1491-1498,
1596 10.2166/wst.2010.486, 2010.

1597

1598 Chen, W. B. and Liu, W. C.: Modeling flood inundation induced by river flow and storm surges over a
1599 river basin, *Water*, 6, 3182-3199, 10.3390/W6103182, 2014.

1600

1601 Chou, L. W.: Typhoon water surface analysis for west coast of Saipan: Mariana Islands, *Coastal*
1602 *Engineering Research Center*, 1989.

1603

1604 Christian, J., Fang, Z., Torres, J., Deitz, R., and Bedient, P.: Modeling the Hydraulic Effectiveness of a
1605 Proposed Storm Surge Barrier System for the Houston Ship Channel during Hurricane Events,
1606 *Natural Hazards Review*, 16, 10.1061/(ASCE)NH.1527-6996.0000150, 2015.

1607

1608 Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G.,
1609 Nerem, R., and Nunn, P.: *Climate Change 2013: The Physical Science Basis: Contribution of*
1610 *Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate*
1611 *Change*, Cambridge University Press, Cambridge, United Kingdom, New York, USA, 1137 -
1612 1216, 10.1017/CBO9781107415324.026, 2013.

1613

1614 Church, J. A., Gregory, J. M., Huybrechts, P., Kuhn, M., Lambeck, K., Nhuan, M. T., Qin, D., and
1615 Woodworth, P. L.: Changes in Sea Level, in: *Climate Change 2001: The Scientific Basis: Contribution of*
1616 *Working Group I to the Third Assessment Report of the Intergovernmental*
1617 *Panel*, 639-694, 10013/epic.15081.d001, 2001.

1618

1619 Cifelli, R., Johnson, L. E., Kim, J., Coleman, T., Pratt, G., Herdman, L., Martyr-Koller, R., Finzihart, J. A.,
1620 Erikson, L., Barnard, P., and Anderson, M.: Assessment of flood forecast products for a
1621 coupled tributary-coastal model, *Water*, 13, 1-24, 10.3390/W13030312, 2021.

1622

1623 Claassen, J., Ward, P., Daniell, J., Koks, E., Tiggeloven, T., and de Ruiter, M.: *MYRIAD-HESA: A New*
1624 *Method to Generate Global Multi-Hazard Event Sets*, Vrije Universiteit Amsterdam,
1625 10.21203/rs.3.rs-2635188/v1, 2023.

1626

1627 Coles, S., Heffernan, J., and Tawn, J.: Dependence Measures for Extreme Value Analyses, *Extremes*,
1628 2, 339-365, 10.1023/A:1009963131610, 1999.

1629

1630 Coles, S. G. and Tawn, J. A.: Statistical Methods for Multivariate Extremes: An Application to
1631 Structural Design, *Journal of the Royal Statistical Society Series C: Applied Statistics*, 43, 1-48,
1632 10.2307/2986112, 1994.

1633

1634 Costa, J. E.: Floods from dam failures, *Report* 85-560, 10.3133/ofr85560, 1985.

1635

1636 Couasnon, A., Sebastian, A., and Morales-Nápoles, O.: A Copula-based bayesian network for
1637 modeling compound flood hazard from riverine and coastal interactions at the catchment
1638 scale: An application to the houston ship channel, Texas, *Water*, 10, 10.3390/W10091190,
1639 2018.

1640

1641 Couasnon, A., Eilander, D., Muis, S., Veldkamp, T. I. E., Haigh, I. D., Wahl, T., Winsemius, H. C., and
1642 Ward, P. J.: Measuring compound flood potential from river discharge and storm surge
1643 extremes at the global scale, *Natural Hazards and Earth System Sciences*, 20, 489-504,
1644 10.5194/NHESS-20-489-2020, 2020.

1645
1646 Curtis, S., Mukherji, A., Kruse, J., Helgeson, J., Ghosh, A., and Adeniji, N.: Perceptions of risk to
1647 compound coastal water events: A case study in eastern North Carolina, USA, *Progress in*
1648 *Disaster Science*, 16, 100266-100266, 10.1016/J.PDISAS.2022.100266, 2022.

1649
1650 Cutter, S. L.: Compound, Cascading, or Complex Disasters: What's in a Name?, *Environment: Science*
1651 and *Policy for Sustainable Development*, 60, 16-25, 10.1080/00139157.2018.1517518, 2018.

1652
1653 De Bruijn, K. M., Diermanse, F. L. M., and Beckers, J. V. L.: An advanced method for flood risk analysis
1654 in river deltas, applied to societal flood fatality risk in the Netherlands, *Natural Hazards and*
1655 *Earth System Sciences*, 14, 2767-2781, 10.5194/nhess-14-2767-2014, 2014.

1656
1657 De Michele, C., Meroni, V., Rahimi, L., Deidda, C., and Ghezzi, A.: Dependence Types in a Binarized
1658 *Precipitation Network*, *Geophysical Research Letters*, 47, 10.1029/2020GL090196, 2020.

1659
1660 De Ruiter, M. C., Couasnon, A., van den Homberg, M. J. C., Daniell, J. E., Gill, J. C., and Ward, P. J.:
1661 Why We Can No Longer Ignore Consecutive Disasters, *Earth's Future*, 8,
1662 10.1029/2019EF001425, 2020.

1663
1664 Del-Rosal-Salido, J., Folgueras, P., Bermúdez, M., Ortega-Sánchez, M., and Losada, M.: Flood
1665 management challenges in transitional environments: Assessing the effects of sea-level rise
1666 on compound flooding in the 21st century, *Coastal Engineering*, 167,
1667 10.1016/J.COASTALENG.2021.103872, 2021.

1668
1669 Dixon, M. J. and Tawn, J. A.: Extreme sea-levels at the UK A-class sites: site-by-site analyses,
1670 *Proudman Oceanographic Laboratory*, 1994.

1671
1672 Dresback, K. M., Fleming, J. G., Blanton, B. O., Kaiser, C., Gourley, J. J., Tromble, E. M., Luettich, R. A.,
1673 Kolar, R. L., Hong, Y., Van Cooten, S., Vergara, H. J., Flamig, Z. L., Lander, H. M., Kelleher, K.
1674 E., and Nemunaitis-Monroe, K. L.: Skill assessment of a real-time forecast system utilizing a
1675 coupled hydrologic and coastal hydrodynamic model during Hurricane Irene (2011),
1676 *Continental Shelf Research*, 71, 78-94, 10.1016/J.CSR.2013.10.007, 2013.

1677
1678 Dykstra, S. L. and Dzwonkowski, B.: The Role of Intensifying Precipitation on Coastal River Flooding
1679 and Compound River-Storm Surge Events, *Northeast Gulf of Mexico, Water Resources*
1680 *Research*, 57, e2020WR029363, 10.1029/2020WR029363, 2021.

1681
1682 EAA: Green Infrastructure and Flood Management, European Environment Agency (EEA),
1683 Copenhagen, Denmark14/2017, 10.2800/3242, 2017.

1684
1685 Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius, H. C., and Ward, P. J.: The
1686 effect of surge on riverine flood hazard and impact in deltas globally, *Environmental*
1687 *Research Letters*, 15, 104007-104007, 10.1088/1748-9326/AB8CA6, 2020.

1688
1689 Eilander, D., Couasnon, A., Sperna Weiland, F. C., Ligtvoet, W., Bouwman, A., Winsemius, H. C., and
1690 Ward, P. J.: Modeling compound flood risk and risk reduction using a globally-applicable
1691 framework: A case study in the Sofala region, *Natural Hazards and Earth System Sciences*
1692 *Discussions*, 1-31, 10.5194/nhess-2022-248, 2022a.

1693

1694 Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., Dullaart, J., Winsemius, H.
1695 C., and Ward, P. J.: A globally-applicable framework for compound flood hazard modeling,
1696 EGUsphere, 1-40, 10.5194/egusphere-2022-149, 2022b.

1697

1698 EM-DAT: International Disaster Database [dataset], 2022.

1699

1700 Eshrati, L., Mahmoudzadeh, A., and Taghvaei, M.: Multi hazards risk assessment, a new
1701 methodology, International Journal of Health System and Disaster Management, 3, 79-79,
1702 10.4103/2347-9019.151315, 2015.

1703

1704 Familkhalili, R., Talke, S. A., and Jay, D. A.: Compound flooding in convergent estuaries: insights from
1705 an analytical model, Ocean Science, 18, 1203-1220, 10.5194/os-18-1203-2022, 2022.

1706

1707 Flick, R. E.: Joint Occurrence of High Tide and Storm Surge in California, World Marina'91, 52-60,
1708 1991.

1709

1710 Gallien, T. W., Kalligeris, N., Delisle, M. P. C., Tang, B. X., Lucey, J. T. D., and Winters, M. A.: Coastal
1711 flood modeling challenges in defended urban backshores, Geosciences, 8,
1712 10.3390/geosciences8120450, 2018.

1713

1714 Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk
1715 methodologies for natural hazards: Consequences and challenges for a climate change
1716 impact assessment, Journal of Environmental Management, 168, 123-132,
1717 10.1016/J.JENVMAN.2015.11.011, 2016.

1718

1719 Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014,
1720 Geophysical Research Letters, 46, 10810-10820, 10.1029/2019GL084220, 2019a.

1721

1722 Ganguli, P. and Merz, B.: Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in
1723 Northwestern Europe, Scientific Reports, 9, 10.1038/s41598-019-49822-6, 2019b.

1724

1725 Ganguli, P., Paprotny, D., Hasan, M., Güntner, A., and Merz, B.: Projected Changes in Compound
1726 Flood Hazard From Riverine and Coastal Floods in Northwestern Europe, Earth's Future, 8,
1727 10.1029/2020EF001752, 2020.

1728

1729 Ghanbari, M., Arabi, M., Kao, S. C., Obeysekera, J., and Sweet, W.: Climate Change and Changes in
1730 Compound Coastal-Riverine Flooding Hazard Along the U.S. Coasts, Earth's Future, 9,
1731 10.1029/2021EF002055, 2021.

1732

1733 Gill, J. C. and Malamud, B. D.: Reviewing and visualizing the interactions of natural hazards, Reviews
1734 of Geophysics, 52, 680-722, 10.1002/2013RG000445, 2014.

1735

1736 Gill, J. C., Duncan, M., Ciurean, R., Smale, L., Stuparu, D., Schlumberger, J., de Ruiter, M., Tiggeloven,
1737 T., Torresan, S., Gottardo, S., Mysiak, J., Harris, R., Petrescu, E.-C., Girard, T., Khazai, B.,
1738 Claassen, J., Dai, R., Champion, A., Daloz, A. S., Blanco Cipollone, F., Campillo Torres, C.,
1739 Palomino Antolin, I., Ferrario, D., Tatman, S., Tijessen, A., Vaidya, S., Adesiyun, A., Goger, T.,
1740 Angiuli, A., Audren, M., Machado, M., Hochrainer-Stigler, S., Šakić Trogrlić, R., Daniell, J.,
1741 Bulder, B., Krishna Swamy, S., Wiggelinkhuizen, E.-J., Díaz Pacheco, J., López Díez, A.,
1742 Mendoza Jiménez, J., Padrón-Fumero, N., Appulo, L., Orth, R., Sillmann, J., and Ward, P.:
1743 MYRIAD-EU Project D1.2 Handbook of multi-hazard, multi-risk definitions and concepts, 75,
1744 2020.

1745
1746 Gori, A. and Lin, N.: Projecting compound flood hazard under climate change with physical models
1747 and joint probability methods, *Earth's Future*, 10.1029/2022EF003097, 2022.
1748
1749 Gori, A., Lin, N., and Smith, J.: Assessing Compound Flooding From Landfalling Tropical Cyclones on
1750 the North Carolina Coast, *Water Resources Research*, 56, 10.1029/2019WR026788, 2020a.
1751
1752 Gori, A., Lin, N., and Xi, D.: Tropical Cyclone Compound Flood Hazard Assessment: From Investigating
1753 Drivers to Quantifying Extreme Water Levels, *Earth's Future*, 8, 10.1029/2020EF001660,
1754 2020b.
1755
1756 Gori, A., Lin, N., Xi, D., and Emanuel, K.: Tropical cyclone climatology change greatly exacerbates US
1757 extreme rainfall–surge hazard, *Nature Climate Change*, 12, 171–178, 10.1038/s41558-021-
1758 01272-7, 2022.
1759
1760 Gouldby, B., Wyncoll, D., Panzeri, M., Franklin, M., Hunt, T., Hames, D., Tozer, N., Hawkes, P.,
1761 Dornbusch, U., and Pullen, T.: Multivariate extreme value modelling of sea conditions
1762 around the coast of England, *Proceedings of the Institution of Civil Engineers - Maritime
1763 Engineering*, 170, 3-20, 10.1680/jmaen.2016.16, 2017.
1764
1765 Gutenson, J. L., Tavakoly, A. A., Islam, M. S., Wing, O. E. J., Lehman, W. P., Hamilton, C. O., Wahl, M.
1766 D., and Massey, T. C.: Comparison of Flood Inundation Modeling Frameworks within a Small
1767 Coastal Watershed during a Compound Flood Event, *Natural Hazards and Earth System
1768 Sciences*, 10.5194/nhess-2022-27, 2022.
1769
1770 Habel, S., Fletcher, C. H., Anderson, T. R., and Thompson, P. R.: Sea-Level Rise Induced Multi-
1771 Mechanism Flooding and Contribution to Urban Infrastructure Failure, *Scientific Reports*, 10,
1772 1–12, 10.1038/s41598-020-60762-4, 2020.
1773
1774 Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., Horsburgh, K., and
1775 Gouldby, B.: Spatial and temporal analysis of extreme sea level and storm surge events
1776 around the coastline of the UK, *Scientific Data*, 3, 10.1038/SDATA.2016.107, 2016.
1777
1778 Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal
1779 cities, *Nature Climate Change*, 3, 802–806, 10.1038/NCLIMATE1979, 2013.
1780
1781 Hao, Z. and Singh, V. P.: Compound Events under Global Warming: A Dependence Perspective,
1782 *Journal of Hydrologic Engineering*, 25, 10.1061/(ASCE)HE.1943-5584.0001991, 2020.
1783
1784 Hao, Z., Singh, V. P., and Hao, F.: Compound extremes in hydroclimatology: A review, *Water*, 10,
1785 10.3390/W10060718, 2018.
1786
1787 Harrison, L. M., Coulthard, T. J., Robins, P. E., and Lewis, M. J.: Sensitivity of Estuaries to Compound
1788 Flooding, *Estuaries and Coasts*, 45, 1250–1269, 10.1007/S12237-021-00996-1, 2022.
1789
1790 Hawkes, P. J., Gouldby, B. P., Tawn, J. A., and Owen, M. W.: The joint probability of waves and water
1791 levels in coastal engineering, *Journal of Hydraulic Research*, 40, 241–251,
1792 10.1080/00221680209499940, 2002.
1793

1794 Helaire, L. T., Talke, S. A., Jay, D. A., and Chang, H.: Present and Future Flood Hazard in the Lower
1795 Columbia River Estuary: Changing Flood Hazards in the Portland-Vancouver Metropolitan
1796 Area, *Journal of Geophysical Research: Oceans*, 125, 10.1029/2019JC015928, 2020.

1797

1798 Hemer, M. A., Wang, X. L., Church, J. A., and Swail, V. R.: Coordinating Global Ocean Wave Climate
1799 Projections, *Bulletin of the American Meteorological Society*, 91, 451-454,
1800 10.1175/2009BAMS2951.1, 2010.

1801

1802 Hendry, A., Haigh, I. D., Nicholls, R. J., Winter, H., Neal, R., Wahl, T., Joly-Lauge, A., and Darby, S. E.:
1803 Assessing the characteristics and drivers of compound flooding events around the UK coast,
1804 *Hydrology and Earth System Sciences*, 23, 3117-3139, 10.5194/HESS-23-3117-2019, 2019.

1805

1806 Herring, D.: What is an "extreme event"? Is there evidence that global warming has caused or
1807 contributed to any particular extreme event?, *National Oceanic and Atmospheric*
1808 *Administration (NOAA)*, <https://www.climate.gov/news-features/climate-qa/what-extreme-event-there-evidence-global-warming-has-caused-or-contributed>, last access: Jan 1, 2024,
1809 2020.

1810

1811

1812 Hewitt, K. and Burton, I.: Hazardousness of a place: A regional ecology of damaging events,
1813 University of Toronto Press, 1971.

1814

1815 Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., Marzeion, B., Fettweis, X.,
1816 Ionescu, C., and Levermann, A.: Coastal flood damage and adaptation costs under 21st
1817 century sea-level rise, *Proceedings of the National Academy of Sciences of the United States*
1818 *of America*, 111, 3292-3297, 10.1073/PNAS.1222469111, 2014.

1819

1820 Ho, F. P. and Myers, V. A.: Joint probability method of tide frequency analysis applied to Apalachicola
1821 Bay and St. George Sound, Florida, NOAA, 1975.

1822

1823 Holt, C.: What is groundwater flooding?, *Environment Agency, UK*,
1824 <https://environmentagency.blog.gov.uk/2019/12/23/what-is-groundwater-flooding/>, last
1825 access: Jan 1, 2024, 2019.

1826

1827 Huang, P. C.: An effective alternative for predicting coastal floodplain inundation by considering
1828 rainfall, storm surge, and downstream topographic characteristics, *Journal of Hydrology*,
1829 607, 127544-127544, 10.1016/J.JHYDROL.2022.127544, 2022.

1830

1831 Huang, W., Ye, F., Zhang, Y. J., Park, K., Du, J., Moghimi, S., Myers, E., Pe'eri, S., Calzada, J. R., Yu, H.
1832 C., Nunez, K., and Liu, Z.: Compounding factors for extreme flooding around Galveston Bay
1833 during Hurricane Harvey, *Ocean Modelling*, 158, 10.1016/j.ocemod.2020.101735, 2021.

1834

1835 Hutton, E. W. H., Piper, M. D., and Tucker, G. E.: The Basic Model Interface 2.0: A standard interface
1836 for coupling numerical models in the geosciences, *Journal of Open Source Software*, 51, 5,
1837 10.21105/joss.02317, 2020.

1838

1839 Ikeuchi, H., Hirabayashi, Y., Yamazaki, D., Muis, S., Ward, P. J., Winsemius, H. C., Verlaan, M., and
1840 Kanae, S.: Compound simulation of fluvial floods and storm surges in a global coupled river-
1841 coast flood model: Model development and its application to 2007 Cyclone Sidr in
1842 Bangladesh, *Journal of Advances in Modeling Earth Systems*, 9, 1847-1862,
1843 10.1002/2017MS000943, 2017.

1844

1845 IOTIC: What Causes Tsunami, Indian Ocean Tsunami Information Centre (IOTIC), <https://iotic.ioc-unesco.org/what-causes-tsunami/>, last access, 2020.

1846

1847

1848 IPCC: Glossary of Terms, Cambridge University Press, Cambridge, United Kingdom, New York,
1849 USA9781107025066, 555-564, 10.1017/CBO9781139177245.014, 2012.

1850

1851 IPCC: Annex II: Glossary, IPCC, Geneva, Switzerland, 117-130, 2014.

1852

1853 Jafarzadegan, K., Moradkhani, H., Pappenberger, F., Moftakhar, H., Bates, P., Abbaszadeh, P.,
1854 Marsooli, R., Ferreira, C., Cloke, H. L., Ogden, F., and Duan, Q.: Recent Advances and New
1855 Frontiers in Riverine and Coastal Flood Modeling, *Reviews of Geophysics*, 61,
1856 e2022RG000788, 10.1029/2022RG000788, 2023.

1857

1858 Jalili Pirani, F. and Najafi, M. R.: Recent Trends in Individual and Multivariate Compound Flood
1859 Drivers in Canada's Coasts, *Water Resources Research*, 56, 10.1029/2020WR027785, 2020.

1860

1861 Jalili Pirani, F. and Najafi, M. R.: Multivariate Analysis of Compound Flood Hazard Across Canada's
1862 Atlantic, Pacific and Great Lakes Coastal Areas, *Earth's Future*, 10, 10.1029/2022EF002655,
1863 2022.

1864

1865 Jalili Pirani, F. and Najafi, M. R.: Characterizing compound flooding potential and the corresponding
1866 driving mechanisms across coastal environments, *Stochastic Environmental Research and*
1867 *Risk Assessment*, 10.1007/s00477-022-02374-0, 2023.

1868

1869 Jane, R., Cadavid, L., Obeysekera, J., and Wahl, T.: Multivariate statistical modelling of the drivers of
1870 compound flood events in south Florida, *Natural Hazards and Earth System Sciences*, 20,
1871 2681-2699, 10.5194/NHESS-20-2681-2020, 2020.

1872

1873 Jang, J. H. and Chang, T. H.: Flood risk estimation under the compound influence of rainfall and tide,
1874 *Journal of Hydrology*, 606, 10.1016/j.jhydrol.2022.127446, 2022.

1875

1876 Jasim, F. H., Vahedifard, F., Alborzi, A., Moftakhar, H., and AghaKouchak, A.: Effect of Compound
1877 Flooding on Performance of Earthen Levees, *Geo-Congress 2020*, 2020/2//, 707-716,
1878 10.1061/9780784482797.069,

1879 Jenkins, L. J., Haigh, I. D., Camus, P., Pender, D., Sansom, J., Lamb, R., and Kassem, H.: The temporal
1880 clustering of storm surge, wave height, and high sea level exceedances around the UK
1881 coastline, *Natural Hazards*, 115, 1761-1797, 10.1007/s11069-022-05617-z, 2023.

1882

1883 Jones, D.: *Joint Probability Fluvial-Tidal Analyses: Structure Functions and Historical Emulation*,
1884 Institute of Hydrology, 1998.

1885

1886 Jong-Levinger, A., Banerjee, T., Houston, D., and Sanders, B. F.: Compound Post-Fire Flood Hazards
1887 Considering Infrastructure Sedimentation, *Earth's Future*, 10, 10.1029/2022EF002670, 2022.

1888

1889 Juárez, B., Stockton, S. A., Serafin, K. A., and Valle-Levinson, A.: Compound Flooding in a Subtropical
1890 Estuary Caused by Hurricane Irma 2017, *Geophysical Research Letters*, 49,
1891 10.1029/2022GL099360, 2022.

1892

1893 Kappes, M., Keiler, M., and Glade, T.: From Single- to Multi-Hazard Risk analyses: a concept
1894 addressing emerging challenges, *Mountain Risks International Conference*, Strasbourg,
1895 France, 2010/11/2010.

1896

1897 Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of analyzing multi-hazard risk:

1898 A review, *Natural Hazards*, 64, 1925-1958, 10.1007/S11069-012-0294-2, 2012.

1899

1900 Karamouz, M., Ahmadvand, F., and Zahmatkesh, Z.: Distributed Hydrologic Modeling of Coastal

1901 Flood Inundation and Damage: Nonstationary Approach, *Journal of Irrigation and Drainage*

1902 Engineering

1903

1904 Karamouz, M., Zahmatkesh, Z., Goharian, E., and Nazif, S.: Combined Impact of Inland and Coastal

1905 Floods: Mapping Knowledge Base for Development of Planning Strategies, *Journal of Water*

1906 *Resources Planning and Management*, 141, 10.1061/(ASCE)WR.1943-5452.0000497, 2014.

1907

1908 Katwala, A.: How Long Droughts Make Flooding Worse, 2022.

1909

1910 Kew, S. F., Selten, F. M., Lentink, G., and Hazeleger, W.: The simultaneous occurrence of surge and

1911 discharge extremes for the Rhine delta, *Natural Hazards and Earth System Sciences*, 13,

1912 2017-2029, 10.5194/NHESS-13-2017-2013, 2013.

1913

1914 Khalil, U., Yang, S., Sivakumar, M., Enever, K., Bin Riaz, M. Z., and Sajid, M.: Modelling the compound

1915 flood hydrodynamics under mesh convergence and future storm surge events in Brisbane

1916 River Estuary, Australia, *Natural Hazards and Earth System Sciences Discussions*, 1-30,

1917 10.5194/nhess-2021-284, 2022.

1918

1919 Khanam, M., Sofia, G., Koukoula, M., Lazin, R., Nikolopoulos, E. I., Shen, X., and Anagnostou, E. N.:

1920 Impact of compound flood event on coastal critical infrastructures considering current and

1921 future climate, *Natural Hazards and Earth System Sciences*, 21, 587-605, 10.5194/NHESS-21-

1922 587-2021, 2021.

1923

1924 Khatun, A., Ganguli, P., Bisht, D. S., Chatterjee, C., and Sahoo, B.: Understanding the impacts of

1925 predecessor rain events on flood hazard in a changing climate, *Hydrological Processes*, 36,

1926 e14500-e14500, 10.1002/HYP.14500, 2022.

1927

1928 Klerk, W. J., Winsemius, H. C., Van Verseveld, W. J., Bakker, A. M. R., and Diermanse, F. L. M.: The co-

1929 incidence of storm surges and extreme discharges within the Rhine-Meuse Delta,

1930 *Environmental Research Letters*, 10, 10.1088/1748-9326/10/3/035005, 2015.

1931

1932 Komendantova, N., Mrzyglocki, R., Mignan, A., Khazai, B., Wenzel, F., Patt, A., and Fleming, K.: Multi-

1933 hazard and multi-risk decision-support tools as a part of participatory risk governance:

1934 Feedback from civil protection stakeholders, *International Journal of Disaster Risk Reduction*,

1935 8, 50-67, 10.1016/J.IJDRR.2013.12.006, 2014.

1936

1937 Koskinas, A., Tegos, A., Tsira, P., Dimitriadis, P., Iliopoulou, T., Papanicolaou, P., Koutsoyiannis, D.,

1938 and Williamson, T.: Insights into the Oroville Dam 2017 Spillway Incident,

1939 10.3390/geosciences9010037, 2019.

1940

1941 Kowalik, Z. and Proshutinsky, A.: Tsunami-tide interactions: A Cook Inlet case study, *Continental*

1942 *Shelf Research*, 633-642, 10.1016/j.csr.2009.10.004, 2010.

1943

1944 Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe, C. D.: Investigating compound flooding in

1945 an estuary using hydrodynamic modelling: A case study from the Shoalhaven River,

1946 Australia, *Natural Hazards and Earth System Sciences*, 18, 463-477, 10.5194/NHESS-18-463-
1947 2018, 2018.

1948

1949 Kupfer, S., Santamaría-Aguilar, S., Van Niekerk, L., Lück-Vogel, M., and Vafeidis, A. T.: Investigating
1950 the interaction of waves and river discharge during compound flooding at Breede Estuary,
1951 South Africa, *Natural Hazards and Earth System Sciences*, 22, 187-205, 10.5194/NHESS-22-
1952 187-2022, 2022.

1953

1954 Lai, Y., Li, J., Gu, X., Liu, C., and Chen, Y. D.: Global compound floods from precipitation and storm
1955 surge: Hazards and the roles of cyclones, *Journal of Climate*, 34, 8319-8339, 10.1175/JCLI-D-
1956 21-0050.1, 2021a.

1957

1958 Lai, Y., Li, Q., Li, J., Zhou, Q., Zhang, X., and Wu, G.: Evolution of Frequency and Intensity of
1959 Concurrent Heavy Precipitation and Storm Surge at the Global Scale: Implications for
1960 Compound Floods, *Frontiers in Earth Science*, 9, 10.3389/feart.2021.660359, 2021b.

1961

1962 Láng-Ritter, J., Berenguer, M., Dottori, F., Kalas, M., and Sempere-Torres, D.: Compound flood
1963 impact forecasting: Integrating fluvial and flash flood impact assessments into a unified
1964 system, *Hydrology and Earth System Sciences*, 26, 689-709, 10.5194/hess-26-689-2022,
1965 2022.

1966

1967 Latif, S. and Mustafa, F.: Copula-based multivariate flood probability construction: a review, *Arabian
1968 Journal of Geosciences*, 13, 132, 10.1007/s12517-020-5077-6, 2020.

1969

1970 Latif, S. and Simonovic, S. P.: Trivariate Joint Distribution Modelling of Compound Events Using the
1971 Nonparametric D-Vine Copula Developed Based on a Bernstein and Beta Kernel Copula
1972 Density Framework, *Hydrology*, 9, 221, 2022a.

1973

1974 Latif, S. and Simonovic, S. P.: Parametric Vine Copula Framework in the Trivariate Probability Analysis
1975 of Compound Flooding Events, *Water*, 14, 10.3390/W14142214, 2022b.

1976

1977 Latif, S. and Simonovic, S. P.: Compounding joint impact of rainfall, storm surge and river discharge
1978 on coastal flood risk: an approach based on 3D fully nested Archimedean copulas,
1979 *Environmental Earth Sciences*, 82, 63, 10.1007/s12665-022-10719-9, 2023.

1980

1981 Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Brunstein, D., Vautier, F., Leone, F., Flohic, F., De
1982 Coster, B., Gunawan, T., Gomez, C., Setiawan, A., Cahyadi, R., and Fachrizal: Reconstruction
1983 of Tsunami Inland Propagation on December 26, 2004 in Banda Aceh, Indonesia, through
1984 Field Investigations, *Pure and Applied Geophysics*, 166, 259-281, 10.1007/s00024-008-0431-
1985 8, 2009.

1986

1987 Lee, C., Hwang, S., Do, K., and Son, S.: Increasing flood risk due to river runoff in the estuarine area
1988 during a storm landfall, *Estuarine, Coastal and Shelf Science*, 221, 104-118,
1989 10.1016/J.ECSS.2019.03.021, 2019.

1990

1991 Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling compound flooding in
1992 coastal systems using a computationally efficient reduced-physics solver: Including fluvial,
1993 pluvial, tidal, wind- and wave-driven processes, *Coastal Engineering*, 163,
1994 10.1016/j.coastaleng.2020.103796, 2021.

1995

1996 Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D., and Stafford-Smith, M.: A compound event framework for understanding extreme impacts, *Wiley Interdisciplinary Reviews: Climate Change*, 5, 113-128, 10.1002/WCC.252, 2014.

2000 Leone, F., Lavigne, F., Paris, R., Denain, J.-C., and Vinet, F.: A spatial analysis of the December 26th, 2004 tsunami-induced damages: Lessons learned for a better risk assessment integrating buildings vulnerability, *Applied Geography*, 31, 363-375, 10.1016/j.apgeog.2010.07.009, 2011.

2005 Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H.: UpSet: Visualization of Intersecting Sets, *IEEE Transactions on Visualization and Computer Graphics (InfoVis)*, 20, 1983-1992, 10.1109/TVCG.2014.2346248, 2014.

2009 Liang, H. and Zhou, X.: Impact of Tides and Surges on Fluvial Floods in Coastal Regions, *Remote Sensing*, 14, 5779-5779, 10.3390/RS14225779, 2022.

2012 Loganathan, G. V., Kuo, C. Y., and Yannaccone, J.: Joint Probability Distribution of Streamflows and Tides in Estuaries, *Hydrology Research*, 18, 237-246, 10.2166/NH.1987.0017, 1987.

2015 Lu, W., Tang, L., Yang, D., Wu, H., and Liu, Z.: Compounding Effects of Fluvial Flooding and Storm Tides on Coastal Flooding Risk in the Coastal-Estuarian Region of Southeastern China, *Atmosphere*, 13, 10.3390/ATMOS13020238, 2022.

2019 Lyddon, C., Robins, P., Lewis, M., Barkwith, A., Vasilopoulos, G., Haigh, I., and Coulthard, T.: Historic Spatial Patterns of Storm-Driven Compound Events in UK Estuaries, *Estuaries and Coasts*, 10.1007/S12237-022-01115-4, 2022.

2023 Manneela, S. and Kumar, S.: Overview of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Tsunami, *Journal of the Geological Society of India*, 98, 299-304, 10.1007/s12594-022-1980-7, 2022.

2027 Manoj J. A., Guntu, R. K., and Agarwal, A.: Spatiotemporal dependence of soil moisture and precipitation over India, *Journal of Hydrology*, 610, 127898-127898, 10.1016/J.JHYDROL.2022.127898, 2022.

2031 Mantz, P. A. and Wakeling, H. L.: Forecasting Flood Levels for Joint Events of Rainfall and Tidal Surge Flooding using Extreme Values Statistics, *Proceedings of the Institution of Civil Engineers*, 67, 31-50, 10.1680/iicep.1979.2315, 1979.

2035 Mashriqui, H. S., Halgren, J. S., and Reed, S. M.: 1D River Hydraulic Model for Operational Flood Forecasting in the Tidal Potomac: Evaluation for Freshwater, Tidal, and Wind-Driven Events, *Journal of Hydraulic Engineering*, 140, 10.1061/(ASCE)HY.1943-7900.0000862, 2014.

2039 Mashriqui, H. S., Reed, S., and Aschwanden, C.: Toward Modeling of River-Estuary-Ocean Interactions to Enhance Operational River Forecasting in the NOAA National Weather Service, 2nd Joint Federal Interagency Conference, Las Vegas, NV, 2010/6//2010.

2043 Maymandi, N., Hummel, M. A., and Zhang, Y.: Compound Coastal, Fluvial, and Pluvial Flooding During Historical Hurricane Events in the Sabine–Neches Estuary, Texas, *Water Resources Research*, 58, 10.1029/2022WR033144, 2022.

2047
2048 McInnes, K. L., Hubbert, G. D., Abbs, D. J., and Oliver, S. E.: A numerical modelling study of coastal
2049 flooding, *Meteorology and Atmospheric Physics*, 80, 217-233, 10.1007/S007030200027,
2050 2002.
2051
2052 Melone, A. M.: Flood Producing Mechanisms in Coastal British Columbia, *Canadian Water Resources*
2053 *Journal*, 10, 46-64, 10.4296/cwrj1003046, 1985.
2054
2055 Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., Domeisen, D. I. V., Feser, F.,
2056 Koszalka, I., Kreibich, H., Pantillon, F., Parolai, S., Pinto, J. G., Punge, H. J., Rivalta, E.,
2057 Schröter, K., Strehlow, K., Weisse, R., and Wurpts, A.: Impact Forecasting to Support
2058 Emergency Management of Natural Hazards, *Reviews of Geophysics*, 58, e2020RG000704,
2059 10.1029/2020RG000704, 2020.
2060
2061 Meyers, S. D., Landry, S., Beck, M. W., and Luther, M. E.: Using logistic regression to model the risk of
2062 sewer overflows triggered by compound flooding with application to sea level rise, *Urban*
2063 *Climate*, 35, 10.1016/j.uclim.2020.100752, 2021.
2064
2065 Ming, X., Liang, Q., Dawson, R., Xia, X., and Hou, J.: A quantitative multi-hazard risk assessment
2066 framework for compound flooding considering hazard inter-dependencies and interactions,
2067 *Journal of Hydrology*, 607, 10.1016/j.jhydrol.2022.127477, 2022.
2068
2069 Mishra, A., Alnahit, A., and Campbell, B.: Impact of land uses, drought, flood, wildfire, and cascading
2070 events on water quality and microbial communities: A review and analysis, *Journal of*
2071 *Hydrology*, 596, 125707, 10.1016/j.jhydrol.2020.125707, 2021.
2072
2073 Mishra, A., Mukherjee, S., Merz, B., Singh, V. P., Wright, D. B., Villarini, G., Paul, S., Kumar, D. N.,
2074 Khedun, C. P., Niyogi, D., Schumann, G., and Stedinger, J. R.: An Overview of Flood Concepts,
2075 Challenges, and Future Directions, *Journal of Hydrologic Engineering*, 27, 03122001-
2076 03122001, 10.1061/(ASCE)HE.1943-5584.0002164, 2022.
2077
2078 Modrakowski, L.-C., Su, J., and Nielsen, A. B.: The Precautionary Principles of the Potential Risks of
2079 Compound Events in Danish Municipalities, *Frontiers in Climate*, 3,
2080 10.3389/fclim.2021.772629, 2022.
2081
2082 Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., and Sanders, B. F.: Linking statistical
2083 and hydrodynamic modeling for compound flood hazard assessment in tidal channels and
2084 estuaries, *Advances in Water Resources*, 128, 28-38, 10.1016/j.advwatres.2019.04.009,
2085 2019.
2086
2087 Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.: Compounding
2088 effects of sea level rise and fluvial flooding, *Proceedings of the National Academy of Sciences*
2089 *of the United States of America*, 114, 9785-9790, 10.1073/PNAS.1620325114, 2017.
2090
2091 Mohammadi, S., Bensi, M., Kao, S.-C., and Deneale, S. T.: Multi-Mechanism Flood Hazard
2092 Assessment: Example Use Case Studies, 10.2172/1637939, 2021.
2093
2094 Mohor, G. S., Hudson, P., and Thielen, A. H.: A Comparison of Factors Driving Flood Losses in
2095 Households Affected by Different Flood Types, *Water Resources Research*, 56,
2096 10.1029/2019WR025943, 2020.
2097

2098 Muñoz, D. F., Abbaszadeh, P., Moftakhari, H., and Moradkhani, H.: Accounting for uncertainties in
2099 compound flood hazard assessment: The value of data assimilation, *Coastal Engineering*,
2100 171, 10.1016/j.coastaleng.2021.104057, 2022a.

2101
2102 Muñoz, D. F., Moftakhari, H., Kumar, M., and Moradkhani, H.: Compound Effects of Flood Drivers,
2103 Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation
2104 Dynamics, *Frontiers in Marine Science*, 9, 10.3389/fmars.2022.906376, 2022b.

2105
2106 Muñoz, D. F., Muñoz, P., Moftakhari, H., and Moradkhani, H.: From local to regional compound flood
2107 mapping with deep learning and data fusion techniques, *Science of the Total Environment*,
2108 782, 10.1016/j.scitotenv.2021.146927, 2021.

2109
2110 Myers, V. A.: Joint probability method of tide frequency analysis applied to Atlantic City and Long
2111 Beach Island, N.J, Environmental Sciences Services Administration (ESSA),
2112 10.7282/T3ZK5DVQ, 1970.

2113
2114 Najafi, M. R., Zhang, Y., and Martyn, N.: A flood risk assessment framework for interdependent
2115 infrastructure systems in coastal environments, *Sustainable Cities and Society*, 64,
2116 10.1016/j.scs.2020.102516, 2021.

2117
2118 Naseri, K. and Hummel, M. A.: A Bayesian copula-based nonstationary framework for compound
2119 flood risk assessment along US coastlines, *Journal of Hydrology*, 610,
2120 10.1016/j.jhydrol.2022.128005, 2022.

2121
2122 Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh, I. D.: Assessing the dependence structure
2123 between oceanographic, fluvial, and pluvial flooding drivers along the United States
2124 coastline, *Hydrology and Earth System Sciences*, 25, 6203-6222, 10.5194/hess-25-6203-
2125 2021, 2021.

2126
2127 NCEI: U.S. Billion-Dollar Weather and Climate Disasters, National Centers for Environmental
2128 Information (NCEI), 10.25921/stkw-7w73, 2023.

2129
2130 Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth
2131 and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment, *PLOS ONE*, 10,
2132 e0118571, 10.1371/journal.pone.0118571, 2015.

2133
2134 Olbert, A. I., Comer, J., Nash, S., and Hartnett, M.: High-resolution multi-scale modelling of coastal
2135 flooding due to tides, storm surges and rivers inflows. A Cork City example, *Coastal*
2136 *Engineering*, 121, 278-296, 10.1016/J.COASTALENG.2016.12.006, 2017.

2137
2138 Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A., Abd-Elgawad, A., Cai, R.,
2139 Cifuentes-Jara, M., DeConto, R., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and
2140 Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities,
2141 Intergovernmental Panel on Climate Change, Geneva, 2019.

2142
2143 Orton, P., Georgas, N., Blumberg, A., and Pullen, J.: Detailed modeling of recent severe storm tides in
2144 estuaries of the New York City region, *Journal of Geophysical Research: Oceans*, 117,
2145 10.1029/2012JC008220, 2012.

2146
2147 Orton, P., Conticello, F., Cioffi, F., Hall, T., Georgas, N., Lall, U., Blumberg, A., Conticello, F., Cioffi, F.,
2148 Hall, T., Georgas, N., Lall, U., and Blumberg, A.: Hazard Assessment from Storm Tides and

2149 Rainfall on a Tidal River Estuary, 36th IAHR World Congress, The Hague, Netherlands,
2150 2015/6/, 1-10, 2015.

2151

2152 Orton, P. M., Hall, T. M., Talke, S. A., Blumberg, A. F., Georgas, N., and Vinogradov, S.: A validated
2153 tropical-extratropical flood hazard assessment for New York Harbor, *Journal of Geophysical*
2154 *Research: Oceans*, 121, 8904-8929, 10.1002/2016JC011679, 2016.

2155

2156 Park, G. H., Kim, I. C., Suh, K. S., and Lee, J. L.: Prediction of Storm Surge and Runoff Combined
2157 Inundation, *Journal of Coastal Research*, 1150-1154, 2011.

2158

2159 Pasquier, U., He, Y., Hooton, S., Goulden, M., and Hiscock, K. M.: An integrated 1D–2D hydraulic
2160 modelling approach to assess the sensitivity of a coastal region to compound flooding hazard
2161 under climate change, *Natural Hazards*, 98, 915-937, 10.1007/S11069-018-3462-1, 2019.

2162

2163 Peña, F., Nardi, F., Melesse, A., Obeysekera, J., Castelli, F., Price, R. M., Crowl, T., and Gonzalez-
2164 Ramirez, N.: Compound flood modeling framework for surface-subsurface water
2165 interactions, *Natural Hazards and Earth System Sciences*, 22, 775-793, 10.5194/NHESS-22-
2166 775-2022, 2022.

2167

2168 Pescaroli, G. and Alexander, D.: A definition of cascading disasters and cascading effects: Going
2169 beyond the “toppling dominos” metaphor, *Planet@Risk*, 03/12, 58-67,

2170 Pescaroli, G. and Alexander, D.: Understanding Compound, Interconnected, Interacting, and
2171 Cascading Risks: A Holistic Framework, *Risk Analysis*, 38, 2245-2257, 10.1111/RISA.13128,
2172 2018.

2173

2174 Petroliagkis, T. I.: Estimations of statistical dependence as joint return period modulator of
2175 compound events-Part 1: Storm surge and wave height, *Natural Hazards and Earth System*
2176 *Sciences*, 18, 1937-1955, 10.5194/NHESS-18-1937-2018, 2018.

2177

2178 Phillips, R. C., Samadi, S., Hitchcock, D. B., Meadows, M. E., and Wilson, C. A. M. E.: The Devil Is in the
2179 Tail Dependence: An Assessment of Multivariate Copula-Based Frameworks and
2180 Dependence Concepts for Coastal Compound Flood Dynamics, *Earth's Future*, 10,
2181 10.1029/2022EF002705, 2022.

2182

2183 Pietrafesa, L. J., Zhang, H., Bao, S., Gayes, P. T., and Hallstrom, J. O.: Coastal flooding and inundation
2184 and inland flooding due to downstream blocking, *Journal of Marine Science and Engineering*,
2185 7, 10.3390/JMSE7100336, 2019.

2186

2187 Plane, E., Hill, K., and May, C.: A Rapid Assessment Method to Identify Potential Groundwater
2188 Flooding Hotspots as Sea Levels Rise in Coastal Cities, 10.3390/w1112228, 2019.

2189

2190 Poulos, S., Karditsa, A., Hatzaki, M., Tsapanou, A., Papapostolou, C., and Chouvardas, K.: An Insight
2191 into the Factors Controlling Delta Flood Events: The Case of the Evros River Deltaic Plain (NE
2192 Aegean Sea), *Water*, 14, 10.3390/W14030497, 2022.

2193

2194 Prandle, D. and Wolf, J.: The interaction of surge and tide in the North Sea and River Thames,
2195 *Geophysical Journal International*, 55, 203-216, 10.1111/j.1365-246X.1978.tb04758.x, 1978.

2196

2197 Preisser, M., Passalacqua, P., Bixler, R. P., and Hofmann, J.: Intersecting near-real time fluvial and
2198 pluvial inundation estimates with sociodemographic vulnerability to quantify a household

2199 flood impact index, *Hydrology and Earth System Sciences*, 26, 3941-3964, 10.5194/hess-26-
2200 3941-2022, 2022.

2201
2202 Pugh, D. T. and Vassie, J. M.: Applications of the Joint Probability Method for Extreme Sea Level
2203 Computations, *Proceedings of the Institution of Civil Engineers*, 69, 959-975,
2204 10.1680/iicep.1980.2179, 1980.

2205
2206 Qiang, Y., He, J., Xiao, T., Lu, W., Li, J., and Zhang, L.: Coastal town flooding upon compound rainfall-
2207 wave overtopping-storm surge during extreme tropical cyclones in Hong Kong, *Journal of*
2208 *Hydrology: Regional Studies*, 37, 10.1016/j.ejrh.2021.100890, 2021.

2209
2210 Qiu, J., Liu, B., Yang, F., Wang, X., and He, X.: Quantitative Stress Test of Compound Coastal-Fluvial
2211 Floods in China's Pearl River Delta, *Earth's Future*, 10, 10.1029/2021EF002638, 2022.

2212
2213 Rahimi, R., Tavakol-Davani, H., Graves, C., Gomez, A., and Valipour, M. F.: Compound inundation
2214 impacts of coastal climate change: Sea-level rise, groundwater rise, and coastal
2215 precipitation, *Water*, 12, 10.3390/W12102776, 2020.

2216
2217 Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., Bowen, S. G.,
2218 Camargo, S. J., Hess, J., Kornhuber, K., Oppenheimer, M., Ruane, A. C., Wahl, T., and White,
2219 K.: Understanding and managing connected extreme events, *Nature Climate Change*, 10,
2220 611-621, 10.1038/s41558-020-0790-4, 2020.

2221
2222 Re, M.: *Topics Geo natural catastrophes 2016: analyses, assessments, positions*, Munich
2223 Reinsurance, 2017.

2224
2225 Reimann, L., Vafeidis, A. T., and Honsel, L. E.: Population development as a driver of coastal risk:
2226 Current trends and future pathways, *Cambridge Prisms: Coastal Futures*, 1, e14,
2227 10.1017/cft.2023.3, 2023.

2228
2229 ReliefWeb: South America: Floods and Landslides - Nov 2015-Dec 2016, UN Office for the
2230 Coordination of Humanitarian Affairs, 2016.

2231
2232 ReliefWeb: South America: Floods and Landslides - Dec 2016, UN Office for the Coordination of
2233 Humanitarian Affairs, 2017.

2234
2235 ReliefWeb: Libya: Flood update Flash Update No.3 September 16 2023, UN Office for the
2236 Coordination of Humanitarian Affairs, 2023.

2237
2238 Rentschler, J., Salhab, M., and Jafino, B. A.: Flood exposure and poverty in 188 countries, *Nature*
2239 *Communications*, 13, 3527, 10.1038/s41467-022-30727-4, 2022.

2240
2241 Ridder, N., De Vries, H., and Drijfhout, S.: The role of atmospheric rivers in compound events
2242 consisting of heavy precipitation and high storm surges along the Dutch coast, *Natural*
2243 *Hazards and Earth System Sciences*, 18, 3311-3326, 10.5194/NHESS-18-3311-2018, 2018.

2244
2245 Ridder, N. N., Pitman, A. J., Westra, S., Ukkola, A., Hong, X. D., Bador, M., Hirsch, A. L., Evans, J. P., Di
2246 Luca, A., and Zscheischler, J.: Global hotspots for the occurrence of compound events,
2247 *Nature Communications*, 11, 1-10, 10.1038/s41467-020-19639-3, 2020.

2248

2249 Robins, P. E., Lewis, M. J., Elnahrawi, M., Lyddon, C., Dickson, N., and Coulthard, T. J.: Compound
2250 Flooding: Dependence at Sub-daily Scales Between Extreme Storm Surge and Fluvial Flow,
2251 *Frontiers in Built Environment*, 7, 10.3389/fbuil.2021.727294, 2021.

2252

2253 Rodríguez, G., Nistal, A., and Pérez, B.: Joint occurrence of high tide, surge and storm-waves on the
2254 northwest Spanish coast, *Boletín-Instituto Español de Oceanografía*, 1999.

2255

2256 Rozell, D. J.: Overestimating coastal urban resilience: The groundwater problem, *Cities*, 118, 103369,
2257 10.1016/j.cities.2021.103369, 2021.

2258

2259 Rueda, A., Camus, P., Tomás, A., Vitousek, S., and Méndez, F. J.: A multivariate extreme wave and
2260 storm surge climate emulator based on weather patterns, *Ocean Modelling*, 104, 242-251,
2261 10.1016/J.OCEMOD.2016.06.008, 2016.

2262

2263 Sadegh, M., Moftakhar, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., and
2264 AghaKouchak, A.: Multihazard Scenarios for Analysis of Compound Extreme Events,
2265 *Geophysical Research Letters*, 45, 5470-5480, 10.1029/2018GL077317, 2018.

2266

2267 Saharia, A. M., Zhu, Z., and Atkinson, J. F.: Compound flooding from lake seiche and river flow in a
2268 freshwater coastal river, *Journal of Hydrology*, 603, 10.1016/j.jhydrol.2021.126969, 2021.

2269

2270 Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., and Pullen, J.: A multi-scale
2271 ensemble-based framework for forecasting compound coastal-riverine flooding: The
2272 Hackensack-Passaic watershed and Newark Bay, *Advances in Water Resources*, 110, 371-
2273 386, 10.1016/j.advwatres.2017.10.026, 2017.

2274

2275 Salvadori, G. and De Michele, C.: Frequency analysis via copulas: Theoretical aspects and applications
2276 to hydrological events, *Water Resources Research*, 40, 10.1029/2004WR003133, 2004.

2277

2278 Salvadori, G. and De Michele, C.: On the Use of Copulas in Hydrology: Theory and Practice, *Journal of
2279 Hydrologic Engineering*, 12, 369-380, 10.1061/(ASCE)1084-0699(2007)12:4(369), 2007.

2280

2281 Sampurno, J., Vallaey, V., Ardianto, R., and Hanert, E.: Modeling interactions between tides, storm
2282 surges, and river discharges in the Kapuas River delta, *Biogeosciences*, 19, 2741-2757,
2283 10.5194/bg-19-2741-2022, 2022a.

2284

2285 Sampurno, J., Vallaey, V., Ardianto, R., and Hanert, E.: Integrated hydrodynamic and machine
2286 learning models for compound flooding prediction in a data-scarce estuarine delta,
2287 *Nonlinear Processes in Geophysics*, 29, 301-315, 10.5194/npg-29-301-2022, 2022b.

2288

2289 Sangsefidi, Y., Bagheri, K., Davani, H., and Merrifield, M.: Vulnerability of coastal drainage
2290 infrastructure to compound flooding under climate change, *Journal of Hydrology*, 128823-
2291 128823, 10.1016/j.jhydrol.2022.128823, 2022.

2292

2293 Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A comprehensive review of compound
2294 inundation models in low-gradient coastal watersheds, *Environmental Modelling and
2295 Software*, 119, 166-181, 10.1016/j.envsoft.2019.06.002, 2019.

2296

2297 Santos, V. M., Haigh, I. D., and Wahl, T.: Spatial and temporal clustering analysis of extreme wave
2298 events around the UK coastline, *Journal of Marine Science and Engineering*, 5,
2299 10.3390/JMSE5030028, 2017.

2300

2301 Santos, V. M., Wahl, T., Jane, R., Misra, S. K., and White, K. D.: Assessing compound flooding

2302 potential with multivariate statistical models in a complex estuarine system under data

2303 constraints, *Journal of Flood Risk Management*, 14, 10.1111/JFR3.12749, 2021a.

2304

2305 Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., Van Den Hurk, B., Hao, Z., Kalmár, T., Zhu, L.,

2306 and Najafi, H.: Statistical modelling and climate variability of compound surge and

2307 precipitation events in a managed water system: A case study in the Netherlands, *Hydrology*

2308 and Earth System Sciences

2309 25, 3595-3615, 10.5194/HESS-25-3595-2021, 2021b.

2310

2311 Sarewitz, D. and Pielke, R.: Extreme Events: A Research and Policy Framework for Disasters in

2312 Context, *International Geology Review*, 43, 406-418, 10.1080/00206810109465022, 2001.

2313

2314 Sebastian, A.: Chapter 7 - Compound Flooding, in: *Coastal Flood Risk Reduction: The Netherlands*

2315 and the U.S. Upper Texas Coast

2316 Elsevier, 77-88, 10.1016/B978-0-323-85251-7.00007-X, 2022.

2317

2318 Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., Luo, Y., Marengo,

2319 J., Mc Innes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M.,

2320 Semenov, V., Alexander, L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D., Della-

2321 Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel, C., Van den Hurk, B.,

2322 Kharin, V. V., Kitoh, A., Klein Tank, A. M. G., Li, G., Mason, S., Mc Guire, W., Van Oldenborgh,

2323 G. J., Orlowsky, B., Smith, S., Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., and

2324 Zwiers, F. W.: *Changes in Climate Extremes and their Impacts on the Natural Physical*

2325 *Environment*, Cambridge University Press, Cambridge, United Kingdom, New York,

2326 USA9781139177245, 109-230, 10.1017/CBO9781139177245.006, 2012.

2327

2328 Serafin, K. A. and Ruggiero, P.: Simulating extreme total water levels using a time-dependent,

2329 extreme value approach, *Journal of Geophysical Research: Oceans*, 119, 6305-6329,

2330 10.1002/2014JC010093, 2014.

2331

2332 Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What's streamflow got to do with it? A

2333 probabilistic simulation of the competing oceanographic and fluvial processes driving

2334 extreme along-river water levels, *Natural Hazards and Earth System Sciences*, 19, 1415-1431,

2335 10.5194/NHESS-19-1415-2019, 2019.

2336

2337 Shahapure, S. S., Eldho, T. I., and Rao, E. P.: Coastal Urban Flood Simulation Using FEM, GIS and

2338 Remote Sensing, *Water Resources Management*, 24, 3615-3640, 10.1007/s11269-010-9623-

2339 y, 2010.

2340

2341 Shen, Y., Morsy, M. M., Huxley, C., Tahvildari, N., and Goodall, J. L.: Flood risk assessment and

2342 increased resilience for coastal urban watersheds under the combined impact of storm tide

2343 and heavy rainfall, *Journal of Hydrology*, 579, 124159-124159,

2344 10.1016/J.JHYDROL.2019.124159, 2019.

2345

2346 Shi, S., Yang, B., and Jiang, W.: Numerical simulations of compound flooding caused by storm surge

2347 and heavy rain with the presence of urban drainage system, coastal dam and tide gates: A

2348 case study of Xiangshan, China, *Coastal Engineering*, 172, 10.1016/j.coastaleng.2021.104064,

2349 2022.

2350 Silva-Araya, W. F., Santiago-Collazo, F. L., Gonzalez-Lopez, J., and Maldonado-Maldonado, J.:
2351 Dynamic Modeling of Surface Runoff and Storm Surge during Hurricane and Tropical Storm
2352 Events, *Hydrology*, 5, 13-13, 10.3390/HYDROLOGY5010013, 2018.

2353
2354 Simmonds, R., White, C. J., Douglas, J., Sauter, C., and Brett, L.: A review of interacting natural
2355 hazards and cascading impacts in Scotland Research funded by the National Centre for
2356 Resilience, 2022.

2357
2358 Sklar, M.: Fonctions de répartition à n dimensions et leurs marges, *Annales de l'ISUP*, 229-231,
2359 Stamey, B., Smith, W., Carey, K., Garbin, D., Klein, F., Wang, H., Shen, J., Gong, W., Cho, J., Forrest,
2360 D., Friedrichs, C., Boicourt, W., Li, M., Kotterba, M., King, D., Titlow, J., Smith, E., Siebers, A.,
2361 Billet, J., Lee, J., Manning, D., Szatkowski, G., Wilson, D., Ahnert, P., and Ostrowski, J.:
2362 Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national
2363 problem, *Oceans, Vancouver*, 2007/9//, 10.1109/OCEANS.2007.4449222,
2364 Stein, L., Pianosi, F., and Woods, R.: Event-based classification for global study of river flood
2365 generating processes, *Hydrological Processes*, 34, 1514-1529, 10.1002/hyp.13678, 2019.

2366
2367 Steinschneider, S.: A hierarchical Bayesian model of storm surge and total water levels across the
2368 Great Lakes shoreline – Lake Ontario, *Journal of Great Lakes Research*, 47, 829-843,
2369 10.1016/J.JGLR.2021.03.007, 2021.

2370
2371 Stephens, S. A. and Wu, W.: Mapping Dependence between Extreme Skew-Surge, Rainfall, and River-
2372 Flow, *Journal of Marine Science and Engineering* 2022, Vol. 10, Page 1818, 10, 1818-1818,
2373 10.3390/JMSE10121818, 2022.

2374
2375 Sui, J. and Koehler, G.: Rain-on-snow induced flood events in southern Germany, *Journal of
2376 Hydrology*, 252, 205-220, 10.1016/S0022-1694(01)00460-7, 2001.

2377
2378 Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation
2379 in eastern Britain, *International Journal of Climatology*, 22, 1149-1168, 10.1002/JOC.794,
2380 2002.

2381
2382 Svensson, C. and Jones, D. A.: Dependence between extreme sea surge, river flow and precipitation:
2383 a study in south and west Britain., *CEH Wallingford*, 2003.

2384
2385 Svensson, C. and Jones, D. A.: Dependence between sea surge, river flow and precipitation in south
2386 and west Britain, *Hydrology and Earth System Sciences*, 8, 973-992, 10.5194/HESS-8-973-
2387 2004, 2004.

2388
2389 Tanim, A. H. and Goharian, E.: Developing a hybrid modeling and multivariate analysis framework for
2390 storm surge and runoff interactions in urban coastal flooding, *Journal of Hydrology*, 595,
2391 10.1016/j.jhydrol.2020.125670, 2021.

2392
2393 Tanir, T., Sumi, S. J., de Lima, A. d. S., de A. Coelho, G., Uzun, S., Cassalho, F., and Ferreira, C. M.:
2394 Multi-scale comparison of urban socio-economic vulnerability in the Washington, DC
2395 metropolitan region resulting from compound flooding, *International Journal of Disaster Risk
2396 Reduction*, 61, 10.1016/j.ijdr.2021.102362, 2021.

2397
2398 Tao, K., Fang, J., Yang, W., Fang, J., and Liu, B.: Characterizing compound floods from heavy rainfall
2399 and upstream-downstream extreme flow in middle Yangtze River from 1980 to 2020,
2400 *Natural Hazards*, 10.1007/S11069-022-05585-4, 2022.

2401
2402 Tawn, J. A.: Estimating Probabilities of Extreme Sea-Levels, *Journal of the Royal Statistical Society*
2403 Series C: Applied Statistics, 41, 77-93, 10.2307/2347619, 1992.
2404
2405 Tehranirad, B., Herdman, L., Nederhoff, K., Erikson, L., Cifelli, R., Pratt, G., Leon, M., and Barnard, P.:
2406 Effect of fluvial discharges and remote non-tidal residuals on compound flood forecasting in
2407 San Francisco Bay, *Water*, 12, 10.3390/W12092481, 2020.
2408
2409 Thielen, A. H., Sampogna Mohor, G., Kreibich, H., and Müller, M.: Compound inland flood events:
2410 Different pathways, different impacts and different coping options, *Natural Hazards and*
2411 *Earth System Sciences*, 22, 165-185, 10.5194/NHESS-22-165-2022, 2022.
2412
2413 Thompson, C. M. and Frazier, T. G.: Deterministic and probabilistic flood modeling for contemporary
2414 and future coastal and inland precipitation inundation, *Applied Geography*, 50, 1-14,
2415 10.1016/J.APGEOG.2014.01.013, 2014.
2416
2417 Tilloy, A., Malamud, B. D., Winter, H., and Joly-Lauzel, A.: A review of quantification methodologies
2418 for multi-hazard interrelationships, *Earth-Science Reviews*, 196, 102881-102881,
2419 10.1016/J.EARSCIREV.2019.102881, 2019.
2420
2421 Torres, J. M., Bass, B., Irza, N., Fang, Z., Proft, J., Dawson, C., Kiani, M., and Bedient, P.: Characterizing
2422 the hydraulic interactions of hurricane storm surge and rainfall-runoff for the Houston-
2423 Galveston region, *Coastal Engineering*, 106, 7-19, 10.1016/j.coastaleng.2015.09.004, 2015.
2424
2425 UNDRR: Sendai Framework for Disaster Risk Reduction 2015-2030, United Nations Office for Disaster
2426 Risk Reduction (UNDRR), New York, 2015.
2427
2428 UNDRR: Report of the open ended intergovernmental expert working group on indicators and
2429 terminology relating to disaster risk reduction, United Nations Office for Disaster Risk
2430 Reduction (UNDRR), 41, 2016.
2431
2432 UNDRR: Global Assessment Report on Disaster Risk Reduction, United Nations Office for Disaster
2433 Risk Reduction (UNDRR), Geneva, Switzerland, 425, 2019.
2434
2435 Valle-Levinson, A., Olabarrieta, M., and Heilman, L.: Compound flooding in Houston-Galveston Bay
2436 during Hurricane Harvey, *Science of the Total Environment*, 747,
2437 10.1016/j.scitotenv.2020.141272, 2020.
2438
2439 Van Berchum, E. C., Van Ledden, M., Timmermans, J. S., Kwakkel, J. H., and Jonkman, S. N.: Rapid
2440 flood risk screening model for compound flood events in Beira, Mozambique, *Natural*
2441 *Hazards and Earth System Sciences*, 20, 2633-2646, 10.5194/NHESS-20-2633-2020, 2020.
2442
2443 Van Cooten, S., Kelleher, K. E., Howard, K., Zhang, J., Gourley, J. J., Kain, J. S., Nemunaitis-Monroe, K.,
2444 Flamig, Z., Moser, H., Arthur, A., Langston, C., Kolar, R., Hong, Y., Dresback, K., Tromble, E.,
2445 Vergara, H., Luettich, R. A., Blanton, B., Lander, H., Galluppi, K., Losego, J. P., Blain, C. A.,
2446 Thigpen, J., Mosher, K., Figurskey, D., Moneypenny, M., Blaes, J., Orrock, J., Bandy, R.,
2447 Goodall, C., Kelley, J. G. W., Greenlaw, J., Wengren, M., Eslinger, D., Payne, J., Olmi, G., Feldt,
2448 J., Schmidt, J., Hamill, T., Bacon, R., Stickney, R., and Spence, L.: The CI-FLOW Project: A
2449 System for Total Water Level Prediction from the Summit to the Sea, *Bulletin of the*
2450 *American Meteorological Society*, 92, 1427-1442, 10.1175/2011BAMS3150.1, 2011.
2451

2452 Van Den Hurk, B., Van Meijgaard, E., De Valk, P., Van Heeringen, K. J., and Gooijer, J.: Analysis of a
2453 compounding surge and precipitation event in the Netherlands, *Environmental Research*
2454 *Letters*, 10, 10.1088/1748-9326/10/3/035001, 2015.

2455

2456 Van den Hurk, B. J. J. M., White, C. J., Ramos, A. M., Ward, P. J., Martius, O., Olbert, I., Roscoe, K.,
2457 Goulart, H. M. D., and Zscheischler, J.: Consideration of compound drivers and impacts in the
2458 disaster risk reduction cycle, *iScience*, 26, 106030, 10.1016/j.isci.2023.106030, 2023.

2459

2460 Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., and Storlazzi, C. D.: Doubling of
2461 coastal flooding frequency within decades due to sea-level rise, *Scientific Reports*, 7, 1-9,
2462 10.1038/s41598-017-01362-7, 2017.

2463

2464 Vongvisessomjai, S. and Rojanakamthorn, S.: Interaction of Tide and River Flow, *Journal of*
2465 *Waterway, Port, Coastal, and Ocean Engineering*, 115, 86-104, 10.1061/(ASCE)0733-
2466 950X(1989)115:1(86), 1989.

2467

2468 Vormoor, K., Lawrence, D., Heistermann, M., and Bronstert, A.: Climate change impacts on the
2469 seasonality and generation processes of floods – projections and uncertainties for
2470 catchments with mixed snowmelt/rainfall regimes, *Hydrol. Earth Syst. Sci.*, 19, 913-931,
2471 10.5194/hess-19-913-2015, 2015.

2472

2473 Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing risk of compound flooding
2474 from storm surge and rainfall for major US cities, *Nature Climate Change*, 5, 1093-1097,
2475 10.1038/NCLIMATE2736, 2015.

2476

2477 Walden, A. T., Prescott, P., and Webber, N. B.: The examination of surge-tide interaction at two ports
2478 on the central south coast of England, *Coastal Engineering*, 6, 59-70, 10.1016/0378-
2479 3839(82)90015-1, 1982.

2480

2481 Ward, P. J., Couasnon, A., Eilander, D., Haigh, I. D., Hendry, A., Muis, S., Veldkamp, T. I. E.,
2482 Winsemius, H. C., and Wahl, T.: Dependence between high sea-level and high river discharge
2483 increases flood hazard in global deltas and estuaries, *Environmental Research Letters*, 13,
2484 10.1088/1748-9326/AAD400, 2018.

2485

2486 Wolf, J.: Coastal flooding: Impacts of coupled wave-surge-tide models, *Natural Hazards*, 49, 241-260,
2487 10.1007/S11069-008-9316-5, 2009.

2488

2489 Wood, M., Haigh, I. D., Le, Q. Q., Nguyen, H. N., Tran, H. B., Darby, S. E., Marsh, R., Skliris, N., Hirschi,
2490 J. J. M., Nicholls, R. J., and Bloemendaal, N.: Climate-induced storminess forces major
2491 increases in future storm surge hazard in the South China Sea region, *Natural Hazards and*
2492 *Earth System Science*, 23, 2475-2504, 10.5194/nhess-23-2475-2023, 2023.

2493

2494 Woodruff, J. D., Irish, J. L., and Camargo, S. J.: Coastal flooding by tropical cyclones and sea-level rise,
2495 *Nature*, 504, 44-52, 10.1038/nature12855, 2013.

2496

2497 Wu, W. and Leonard, M.: Impact of ENSO on dependence between extreme rainfall and storm surge,
2498 *Environmental Research Letters*, 14, 10.1088/1748-9326/AB59C2, 2019.

2499

2500 Wu, W., Westra, S., and Leonard, M.: Estimating the probability of compound floods in estuarine
2501 regions, *Hydrology and Earth System Sciences*, 25, 2821-2841, 10.5194/HESS-25-2821-2021,
2502 2021.

2503

2504 Wu, W., Emerton, R., Duan, Q., Wood, A. W., Wetterhall, F., and Robertson, D. E.: Ensemble flood
2505 forecasting: Current status and future opportunities, *Wiley Interdisciplinary Reviews: Water*,
2506 7, e1432-e1432, 10.1002/WAT2.1432, 2020.

2507

2508 Wu, W., McInnes, K., O'Grady, J., Hoeke, R., Leonard, M., and Westra, S.: Mapping Dependence
2509 Between Extreme Rainfall and Storm Surge, *Journal of Geophysical Research: Oceans*, 123,
2510 2461-2474, 10.1002/2017JC013472, 2018.

2511

2512 Xu, K., Wang, C., and Bin, L.: Compound flood models in coastal areas: a review of methods and
2513 uncertainty analysis, *Natural Hazards*, 10.1007/s11069-022-05683-3, 2022.

2514

2515 Xu, Z., Zhang, Y., Blöschl, G., and Piao, S.: Mega Forest Fires Intensify Flood Magnitudes in Southeast
2516 Australia, *Geophysical Research Letters*, 50, e2023GL103812, 10.1029/2023GL103812, 2023.

2517

2518 Yang, X. and Qian, J.: Joint occurrence probability analysis of typhoon-induced storm surges and
2519 rainstorms using trivariate Archimedean copulas, *Ocean Engineering*, 171, 533-539,
2520 10.1016/j.oceaneng.2018.11.039, 2019.

2521

2522 Ye, F., Huang, W., Zhang, Y. J., Moghimi, S., Myers, E., Pe'eri, S., and Yu, H. C.: A cross-scale study for
2523 compound flooding processes during Hurricane Florence, *Natural Hazards and Earth System
2524 Sciences*, 21, 1703-1719, 10.5194/nhess-21-1703-2021, 2021.

2525

2526 Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H. V., Roland,
2527 A., Martins, K., Bertin, X., Du, J., and Liu, Z.: Simulating storm surge and compound flooding
2528 events with a creek-to-ocean model: Importance of baroclinic effects, *Ocean Modelling*, 145,
2529 10.1016/j.ocemod.2019.101526, 2020.

2530

2531 Zellou, B. and Rahali, H.: Assessment of the joint impact of extreme rainfall and storm surge on the
2532 risk of flooding in a coastal area, *Journal of Hydrology*, 569, 647-665,
2533 10.1016/J.JHYDROL.2018.12.028, 2019.

2534

2535 Zhang, L. and Chen, X.: Temporal and spatial distribution of compound flood potential in China's
2536 coastal areas, *Journal of Hydrology*, 615, 128719-128719, 10.1016/J.JHYDROL.2022.128719,
2537 2022.

2538

2539 Zhang, W., Liu, Y., Tang, W., Wang, W., and Liu, Z.: Assessment of the effects of natural and
2540 anthropogenic drivers on extreme flood events in coastal regions, *Stochastic Environmental
2541 Research and Risk Assessment*, 10.1007/S00477-022-02306-Y, 2022.

2542

2543 Zhang, W., Luo, M., Gao, S., Chen, W., Hari, V., and Khouakhi, A.: Compound Hydrometeorological
2544 Extremes: Drivers, Mechanisms and Methods, *Frontiers in Earth Science*, 9,
2545 10.3389/FEART.2021.673495, 2021a.

2546

2547 Zhang, Y., Sun, X., and Chen, C.: Characteristics of concurrent precipitation and wind speed extremes
2548 in China, *Weather and Climate Extremes*, 32, 100322-100322, 10.1016/j.wace.2021.100322,
2549 2021b.

2550

2551 Zhang, Y. J., Witter, R. C., and Priest, G. R.: Tsunami-tide interaction in 1964 Prince William Sound
2552 tsunami, *Ocean Modelling*, 40, 246-259, 10.1016/J.OCEMOD.2011.09.005, 2011.

2553

2554 Zheng, F., Westra, S., and Sisson, S. A.: Quantifying the dependence between extreme rainfall and
2555 storm surge in the coastal zone, *Journal of Hydrology*, 505, 172-187,
2556 10.1016/j.jhydrol.2013.09.054, 2013.

2557

2558 Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence between extreme rainfall
2559 and storm surge to estimate coastal flooding risk, *Water Resources Research*, 50, 2050-2071,
2560 10.1002/2013wr014616, 2014.

2561

2562 Zhong, H., van Overloop, P. J., and van Gelder, P. H. A. J. M.: A joint probability approach using a 1-D
2563 hydrodynamic model for estimating high water level frequencies in the Lower Rhine Delta,
2564 *Natural Hazards and Earth System Sciences*, 13, 1841-1852, 10.5194/NHESS-13-1841-2013,
2565 2013.

2566

2567 Zschau, J.: Where are we with multihazards, multirisks assessment capacities?, *European Union Joint*
2568 *Research Council*, Luxembourg, 10.2788/688605, 2017.

2569

2570 Zscheischler, J. and Seneviratne, S. I.: Dependence of drivers affects risks associated with compound
2571 events, *Science Advances*, 3, 10.1126/SCIADV.1700263/SUPPL_FILE/1700263_SM.PDF, 2017.

2572

2573 Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A.,
2574 Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., and Zhang, X.: Future climate risk
2575 from compound events, *Nature Climate Change*, 8, 469-477, 10.1038/S41558-018-0156-3,
2576 2018.

2577

2578 Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., van den Hurk, B.,
2579 Aghakouchak, A., Jézéquel, A., Mahecha, M. D., Maraun, D., Ramos, A. M., Ridder, N. N.,
2580 Thiery, W., and Vignotto, E.: A typology of compound weather and climate events, *Nature*
2581 *Reviews Earth and Environment*, 1, 333-347, 10.1038/s43017-020-0060-z, 2020.

2582

2583

Appendix

Table A1. Overview of the literature database containing 271 compound flood research publications. Note: Numerical models without defined names are given simple descriptions. Statistical methods are defined as explicitly stated in the literature and then simplified for brevity.

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Acreman 1994	UK (River Roding)	Varying climate change scenarios, Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	ONDA	Joint Probability Method (JPM)
Ai et al. 2018	China (Jiangsu)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Apel et al. 2016	Vietnam (Can Tho, Mekong Delta)	-	Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	2D Hydrodynamic Model	Joint Probability Method (JPM), Copula, Peak-over-Threshold (POT)
Archetti et al. 2011	Italy (Rimini)	-	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodynamic Drainage Model (InfoWorks CS)	Joint Probability Method (JPM), Copula
Bacopoulos et al. 2017	US (Florida)	Tropical Storm Fay	Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAT	-
Bakhtyar et al. 2020	US (Delaware, Delaware Bay Estuary)	-	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, D-FLOW FM, HEC-RAS, NWM, WW3	-
Banfi and Michele 2022	Italy (Lake Como)	Lake Flood Events (1980–2020)	Earth System Processes	Pluvial	FALSE	TRUE	FALSE	-	Temporal Analysis (Clustering), Peak-over-Threshold (POT)
Bao et al. 2022	US (North Carolina, Cape Fear River Basin)	-	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	COAWST	-
Bass and Biedent 2018	US (Texas)	Tropical Storm Allison (2001), Hurricane Ike (2008)	Forecasting, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS, SWAN	Machine Learning (Artificial Neural Networks (ANN)), Storm Surge Statistical Emulator (Kriging/Gaussian Process Regression (GPR)), Principal Components Analysis, Bayesian Regularization Algorithm
Bates et al. 2021	US (CONUS)	Varying climate change scenarios	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	LISFLOOD-FP	-
Beardsley et al. 2013	US (Massachusetts)	2010 Nor'easter Storm	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	FVCOM	-
Benestad and Haugen 2007	Norway	-	Earth System Processes	Pluvial, Temp/Heat, Snow	FALSE	TRUE	FALSE	ECHAM4, HIRHAM	Joint Probability Method (JPM), Monte Carlo Simulation
Bermúdez et al. 2019	Spain (Betanzos, Mandeo River)	-	Earth System Processes, Methodological Advancement	Fluvial, Coastal	TRUE	TRUE	TRUE	Iber	Least Square Support Vector Machine (LS-SVM) Regression
Bermúdez et al. 2021	Spain (Betanzos, Mandeo River)	Varying climate change scenarios	Earth System Processes, Methodological Advancement	Fluvial, Pluvial, Coastal, Temp/Heat	TRUE	TRUE	TRUE	Iber, MISDc	Machine Learning (Artificial Neural Networks (ANN)), Least Square Support Vector Machine (LS-SVM) Regression, Bayesian Regularization Algorithm
Bevacqua et al. 2017	Italy (Ravenna)	February 2015 Flood Event	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Linear Gaussian Autoregressive Model
Bevacqua et al. 2019	Europe	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Bevacqua et al. 2020a	Global	Varying climate change scenarios	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-Flow	Joint Probability Method (JPM), Copula
Bevacqua et al. 2020b	Global	Varying return period scenarios	Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Bevacqua et al. 2022	Australia (Perth, Swan River Estuary)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Multivariate Non-linear Regression, Copula, Temporal Analysis, Kendall's Correlation Coefficient tau (τ), Tail Dependence Coefficient (λ), Block Maxima
Bilskie et al. 2021	US (Louisiana, Barataria and Lake Maurepas Watersheds)	21 Tropical Cyclone Events (1948–2008)	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Bischiniotis et al. 2018	Africa (Sub-Saharan Region)	501 Flood Events (1980 - 2010)	Forecasting, Risk Assessment	Pluvial, Soil Moisture	FALSE	TRUE	FALSE	-	Temporal Analysis, Risk Ratio (RR)
Blanton et al. 2012	US (North Carolina)	Hurricane Irene (2011)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HLRDHM	-
Blanton et al. 2018	US (North Carolina)	Hurricane Isabel (2003)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, CREST, WRF	-
Bliskie and Hagen, 2018	US (Louisiana)	Hurricane Gustav (2008) and 2016 Louisiana Flood	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Brown et al. 2007	UK (Canvey Island)	-	Methodological Advancement	Coastal	TRUE	FALSE	FALSE	Delft-FLS, SWAN	-
Bunya et al. 2010	US (Louisiana and Mississippi)	-	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, ECWAM, H*WIND, IOKA, STWAVE,	-
Bush et al. 2022	US (North Carolina)	-	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	-
Camus et al. 2021	Europe	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ)), Block Maxima, Peak-over-Threshold (POT)
Camus et al. 2022	Global (US and Europe, North Atlantic)	Flood Events (1980-2014)	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	CaMa-Flood, GTSM	Joint Occurrence Method, Spatial Analysis (Clustering K-Means Algorithm (KMA)), Principal Component Analysis (PCA), Temporal Analysis, Kendall's Correlation Coefficient tau (τ), Peak-over-Threshold (POT)
Cannon et al. 2008	US (Colorado and California)	-	Earth System Processes	Pluvial, Fire	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis
Čepienė et al. 2022	Lithuania (Klaipėda)	-	Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Chen and Liu 2014	Taiwan (Tainan City, Tsengwen River basin)	Typhoon Krosa (2007), Kalmegei (2008), Morakot (2009), and Haiyan (2013)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	SELFE	-
Chen and Liu, 2016	Taiwan (Kaohsiung City, Gaoping River)	Typhoon Kalmegai (2008), Morakot (2009), Fanapi (2010), Nanmadol (2011), and Talim (2012), Varying return period scenarios	Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	SELFE	-
Chen et al. 2010	UK (Bradford, Keighley, River Aire)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Pluvial	TRUE	FALSE	FALSE	SIPSON, UIM	-
Chen et al. 2013	Taiwan (Tainan City)	Typhoon Haitang (2005) and Kalmaegi (2008), Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	SELFE	-
Chou 1989	Saipan (West Coast)	168 Synthetic Typhoon Events, Varying return period scenarios	Risk Assessment	Coastal	TRUE	TRUE	TRUE	SHAWLWV, WIFM	Joint Probability Method (JPM), Frequency Analysis

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Christian et al. 2015	US (Texas, Galveston Bay)	Hurricane Ike (2008)	Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS, Vflo	-
Cifelli et al. 2021	US (California, San Francisco)	-	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	Hydro-CosMoS	-
Coles and Tawn 1994	UK (Cornwall)	-	Methodological Advancement, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Chi Squared Test (χ^2)
Coles et al. 1999	UK (Southwest Coast)	-	Methodological Advancement, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Chi Squared Test (χ^2)
Comer et al. 2017	Ireland (Cork City)	2009 Flood Event	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	-
Couasnon et al. 2018	US (Texas)	-	Methodological Advancement, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodynamic Model	Bayesian Network (BN), Copula
Couasnon et al. 2020	Global	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis, Spearman's Correlation Coefficient rho (ρ)
Curtis et al. (2022)	US (North Carolina)	-	Risk Assessment	Fluvial, Coastal	FALSE	FALSE	FALSE	-	-
Daoued et al. 2021	France (Le Havre)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Probabilistic Flood Hazard Assessment (PFHA), Belief Functions, Peak-over-Threshold (POT)
De Brujin et al. 2014	Netherlands (Rhine-Meuse Delta)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, FN-Curve, Potential Loss of Life (PLL), Monte Carlo Simulation
De Michele et al. 2020	Global (Europe and North Africa)	-	Earth System Processes	Pluvial	FALSE	TRUE	FALSE	-	Copula, Binary Markov Chain Network, Monte Carlo Simulation
Deidda et al. 2021	UK	-	Earth System Processes	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Joint Occurrence Method, Spatial Analysis, Kendall's Correlation Coefficient tau (τ), Block Maxima
Del-Rosal-Salido et al. 2021	Europe (Iberian Peninsula, Guadalete Estuary)	Varying climate change scenarios, Varying return period scenarios	Forecasting, Planning & Management	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D	Spatial Analysis (Vector Autoregressive (VAR) Model), Block Maxima, Peak-over-Threshold (POT),
Dietrich et al. 2010	US (Louisiana and Mississippi)	Hurricane Katrina (2005) and Rita (2005)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, IOKA, H*WIND, STWAVE, WAM	-
Dixon and Tawn 1994	UK	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Chi Squared Test (χ^2)
Dresback et al. 2013	US (North Carolina)	Hurricane Irene (2011)	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ASGS-STORM, ADCIRC, Holland Wind Model, HL-RDHM, SWAN	-
Dykstra et al. 2021	US (Gulf Coast; Ascogoula, Tombigbee-Alabama River, and Apalachicola watersheds)	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (τ), Frequency Analysis, Temporal Analysis (Pettitt Test), Wavelet Transformations (Mortlet-type Wave), Peak-over-Threshold (POT), Bootstrap Method
Eilander 2022	Global	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	HydroMT	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Eilander et al. 2020	Global	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa-Flood, FES2012, GTSM	-
Eilander et al. 2022	Mozambique (Sofala)	Varying return period scenarios	Impact Assessment, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	CaMa-Flood, Delft-FIAT, SFINCS	Copula, Block Maxima
Erikson et al. 2018	US (California, San Francisco)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CoSMoS	-
Familkhalili et al. 2022	US (North Carolina, Cape Fear Estuary)	Hurricane Irene (2011)	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodynamic Model	-
Fang et al. 2021	China	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Kendall's Correlation Coefficient tau (t), Temporal Analysis, Peak-over-Threshold (POT)
Feng and Brubaker, 2016	US (Washington DC)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Ferrarin et al. 2022	Italy (Venice, Adriatic Sea)	November 2019 Flood Event	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Temporal Analysis, Mann-Whitney U Test
Flick 1991	US (California, San Francisco)	-	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM)
Galiatsatou and Prinos 2016	Greece (Aegean Sea)	-	Earth System Processes	Coastal	TRUE	TRUE	TRUE	RegCM3, SWAN	Joint Probability Method (JPM), Copula, Block Maxima
Ganguli and Merz 2019a	Europe (Northwest)	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Compound Hazard Ratio (CHR) Index, Kendall's Correlation Coefficient tau (t)
Ganguli and Merz 2019b	Europe (Northwest)	Flood Events (1970-2014)	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Frequency Analysis, Compound Hazard Ratio (CHR) Index, Kendall's Correlation Coefficient tau (t)
Ganguli et al. 2020	Europe (Northwest)	Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FLOW, WGHM	Copula, Markov Chain, Monte Carlo Simulation
Georgas et al. 2016	US (New York and New Jersey)	Winter Storm Jonas (2016)	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	ESTOFS, ETSS, sECOM, SFAS, NAM, NYHOPS	-
Ghanbari et al. 2021	US (CONUS)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Quantile Regression, Kendall's Correlation Coefficient tau (t), Peak-over-Threshold (POT)
Gori and Lin 2022	US (North Carolina, Cape Fear River)	Varying climate change scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS	Joint Probability Method Optimal Sampling Bayesian Quadrature Optimization (JPM-OS-BQ)
Gori et al. 2020a	US (North Carolina, Cape Fear River)	Varying return period scenarios	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-HMS, HEC-RAS	-
Gori et al. 2020b	US (North Carolina, Cape Fear River)	Tropical Cyclone Fran (1996), Floyd (1999), and Matthew (2016), Varying return period scenarios	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-HMS, HEC-RAS	Joint Probability Method (JPM), Copula
Gori et al. 2022	US (East Coast and Gulf of Mexico)	Varying climate change scenarios, Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (t), Statistical-Deterministic TC Model, Spatial Analysis, Temporal Analysis, Bootstrap Method
Gouldby et al. 2017	UK (South Coast)	Varying return period scenarios	Methodological Advancement	Coastal	TRUE	TRUE	TRUE	SWAN, WW3	Joint Probability Method (JPM), Wave Transformation Model Emulator, Monte Carlo Simulation

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Gutenson et al. 2022	US (Texas, Galveston Bay)	Hurricane Harvey (2017)	Impact Assessment, Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	AutoRoute, HEC-RAS, LISFLOOD-FP	Spatial Analysis
Habel et al. 2020	US (Hawaii, Honolulu)	Varying climate change scenarios, Varying return period scenarios	Impact Assessment, Planning & Management	Coastal, Groundwater	TRUE	TRUE	TRUE	MODFLOW	Frequency Analysis, Bayesian Hierarchical Model, Spatial Analysis
Haigh et al. 2016	UK	2013-2014 Winter Storm Season	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT)
Harrison et al. 2022	UK (Humber and Dyfi Estuaries)	-	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	2D Hydrodynamic Model	-
Hawkes 2003	UK	-	Earth System Processes, Methodological Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model
Hawkes 2006	UK	-	Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Chi Squared Test (χ^2)
Hawkes 2008	UK (South Coast)	-	Methodological Advancement, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Temporal Analysis, Monte Carlo Simulation
Hawkes and Svensson 2003	UK	-	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), JOIN-SEA Model, Monte Carlo Simulation
Hawkes et al. 2002	UK (England and Wales)	Varying return period scenarios	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Monte Carlo Simulation
Helaire et al. 2020	US (Washington, Portland-Vancouver, Columbia River Estuary)	Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D	-
Hendry et al. 2019	UK	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Occurrence Method, Kendall's Correlation Coefficient tau (τ), Temporal Analysis, Block Maxima, Peak-over-Threshold (POT)
Herdman et al. 2018	US (California, San Francisco)	-	Forecasting	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D-FM	-
Ho and Myers 1975	US (Florida, St. George Sound, Apalachicola Bay)	Varying return period scenarios	Methodological Advancement, Risk Assessment	Coastal	TRUE	TRUE	TRUE	SPLASH, 2D Hydrodynamic Bay-Ocean Model (Overland 1975)	Joint Probability Method (JPM), Frequency Analysis
Hsiao et al. 2021	Taiwan	Typhoon Megi (2016), Low-Pressure Rainstorm (2018), Varying climate change scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SCHISM, COS-Flow, 39 General Circulation Models (GCM)	Index Method (2 Hazard Indices, 4 Exposure Indices, 6 Vulnerability Indices)
Huang 2022	Taiwan (Touqian and Fengshan Rivers)	Hurricane Harvey (2017)	Forecasting	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC	Machine Learning (Recurrent Neural Network (RNN)), Topographic Wetness Index (TWI)
Huang et al. 2021	US (Texas, Galveston Bay)	-	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SCHISM	Compound Ratio (CR), Spatial Analysis
Ikeuchi et al. 2017	Bangladesh (Ganges-Brahmaputra-Meghna Delta)	Cyclone Sidr (2007)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa-Flood, MATSIRO-GW	-
Jalili Pirani and Reza Najafi 2020	Canada	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Probability Space (PS) Index, Correlation

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
									Coefficients (Kendall's tau (τ), Spearman's rho (ρ))
Jalili Pirani and Reza Najafi 2022	Canada (East and West Coast, Great Lakes)	Varying return period scenarios	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Compound Hazard Ratio (CHR) Index, Copula, Kendall's Correlation tau (τ)
Jane et al. 2020	US (Florida)	-	Earth System Processes	Pluvial, Coastal, Groundwater	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ)
Jane et al. 2022	US (Texas, Sabine and Brazos River Basins)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Peak-over-Threshold (POT)
Jang and Chang 2022	Taiwan (Chiayi)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	COS-Flow	Joint Probability Method (JPM), Copula, Monte Carlo Simulation
Jasim et al. 2020	US (California, Sherman Island)	Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	RS3	Joint Probability Method (JPM), Frequency Analysis, Copula
Jones 1998	UK (Thames Estuary)	-	Earth System Processes, Methodological Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis, Historical Emulation Model
Jong-Levinger et al. 2022	US (California)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Pluvial, Fire	FALSE	TRUE	FALSE	-	Markov Chain Monte Carlo (MCMC) Algorithm
Joyce et al. 2018	US (Florida)	Varying climate change scenarios	Methodological Advancement, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAN, ICPR	-
Juárez et al. 2022	US (Florida, Jacksonville, Lower St. Johns River)	Hurricane Irma (2017), Varying climate change scenarios	Earth System Processes, Methodological Advancement	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Flow Interaction Index (μ), Temporal Analysis
Karamouz et al. 2014	US (New York, New York City)	Varying return period scenarios, Varying climate change scenarios	Planning & Management	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, GSSHA, SWMM	Machine Learning (Multilayer Perceptron (MLP)) Feedforward Neural Network (FNN)), Markov Chain Monte Carlo (MCMC) Algorithm, DREAM_ZS, Max Relevance Min Redundancy (MRMR) Algorithm
Karamouz et al. 2017	US (New York, New York City)	Hurricane Irene (2011) and Sandy (2012), Varying future climate change flood scenarios, Varying return period scenarios	Methodological Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	GSSHA	Joint Probability Method (JPM), Frequency Analysis, Copula
Karamouz et al. 2017	US (New York, New York City)	Varying return period scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	GSSHA	Joint Probability Method (JPM), Frequency Analysis, Flood Damage Estimator (FDE) Model, Copula, Correlation Coefficients (Kendall's tau (τ), Pearson's (r), Spearman's rho (ρ)))
Kerr et al. 2013	US (Louisiana and New Orleans, Mississippi River)	Hurricane Betsy (1965), Camille (1969), Andrew (1992), Katrina (2005), Rita (2005), Gustav (2008), Ike (2008), 15 Synthetic Storm Events	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, H*WIND, SWAN	Joint Probability Method (JPM) with Optimal Sampling (JPM-OS), Frequency Analysis
Kew et al. 2013	Netherlands (Rhine Delta)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ECHAM5, MPI-OM	Joint Probability Method (JPM), Extreme Value Analysis, Peak-over-Threshold (POT)
Khalil et al. 2022	Australia (Brisbane, Brisbane River)	Flood Events (2006, 2011, 2013)	Earth System Processes, Methodological	Fluvial, Coastal	TRUE	FALSE	FALSE	MIKE21	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
	and Moreton Bay)		al Advancement						
Khanal et al. 2019	Europe (Rhine River Basin)	-	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	DCSM, HBV, RACMO2, SPHY, WAQUA	Joint Probability Method (JPM), Temporal Analysis
Khanam et al. 2021	US (Connecticut)	Varying climate change scenarios	Impact Assessment, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	CREST-SVAS, HEC-RAS, WRF	-
Khatun et al. 2022	India (Upper Mahanadi River basin)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes	Fluvial, Pluvial	TRUE	TRUE	TRUE	MIKE11, NAM	Bivariate Hazard Ratio (BHR) Index, Copula, Kendall's Correlation Coefficient tau (τ), Peak-over-Threshold (POT)
Kim et al. 2022	US (Texas, Houston, Dickinson Bayou Watershed)	Hurricane Harvey (2017)	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (τ), Peak-over-Threshold (POT)
Kirkpatrick and Olbert 2020	Ireland (Cork City)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	-	-
Klerk et al. 2015	Netherlands (Hoek van Holland and Lobith, Rhine-Meuse Delta)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	CKF, Delft3D-FLOW, DCSM, HBV-96	Temporal Analysis, Chi Squared Test (χ^2), Peak-over-Threshold (POT)
Kowalik and Proshutinsky 2010	US (Alaska, Cook Inlet)	-	Earth System Processes	Coastal, Tsunami	TRUE	FALSE	FALSE	1D/2D Hydrodynamic Models	-
Kudryavtseva et al. 2020	Europe (Baltic Sea)	-	Risk Assessment	Coastal	TRUE	TRUE	TRUE	NEMO, WAM	Joint Probability Method (JPM), Copula
Kumbier et al. 2018	Australia (New South Wales, Nowra, Shoalhaven River)	2016 Cyclone	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D-FLOW	-
Kupfer et al. 2022	South Africa (Bredene Estuary)	Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D-FLOW, Delft3D-WAVE	-
Lai et al. 2021a	Global	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Peak-over-Threshold (POT)
Lai et al. 2021b	Global	Varying climate change scenarios, Varying return period scenarios, Flood Events (1948–2014, 1979–2014)	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Frequency Analysis, Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Multivariate Regression, Peak-over-Threshold (POT)
Láng-Ritter et al. 2022	Spain	-	Forecasting, Impact Assessment, Risk Assessment	Fluvial, Pluvial	TRUE	FALSE	FALSE	EFAS, ReAFFIRM	-
Latif and Simonovic 2022a	Canada (West Coast)	-	Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Latif and Simonovic 2022b	Canada (West Coast)	-	Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Lawrence et al. 2014	Norway	Varying return period scenarios	Risk Assessment	Pluvial, Snow	TRUE	TRUE	TRUE	HBV, PQRUT	Stochastic Probability (SCHADEX Probabilistic Method, GRADEX Probabilistic Method)
Lee et al. 2019	South Korea	Typhoon Maemi (2003)	Methodological Advancement, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	Delft3D, HEC-HMS	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Lee et al. 2020	South Korea (Busan, Marine City)	-	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, FLOW-3D, SWAN, XPSWMM	-
Leijnse et al. 2021	US (Florida, Jacksonville) and Philippines	Hurricane Irma (2017) and Typhoon Haiyan (2013)	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	SFINCS	-
Li and Jun 2020	South Korea (Han River)	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodynamic Model	-
Li et al. 2022	Hong Kong (Hong Kong-Zhuhai-Macao Bridge)	-	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	MIKE+	Joint Probability Method (JPM), Temporal Analysis, Damage Curves
Lian et al. 2013	China (Fuzhou City)	Typhoon Longwang (2005), Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, SWAT	Joint Probability Method (JPM), Copula, Peak-over-Threshold (POT)
Lian et al. 2017	China (Hainan Province, Haikou)	-	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS, SWMM	Disaster Reduction Analysis, Cost-Benefit Analysis (CBA)
Liang and Zhou 2022	China (Zhejiang, Qiantang River)	Typhoon Lekima (2019)	Methodological Advancement, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	CaMa-Flood, MIKE21	-
Lin et al. 2010	US (East Coast, Chesapeake Bay)	-	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, WRF	-
Liu et al. 2022	China (Haikou City)	-	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	Delft3D	-
Loganathan et al. 1987	US (Virginia, Rappahannock River)	-	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Box-Cox Transformation, Chi Squared Test (χ^2)
Loveland et al. 2021	US (Texas, Lower Neches River)	Hurricane Harvey (2017)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	-
Lu et al. 2022	China (Southeast)	-	Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Multivariate Copula Analysis Toolbox (MvCAT), Kendall's Correlation Coefficient tau (τ)
Lucey et al. 2022	US (California, Los Angeles, Huntington Beach, San Diego)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Correlation Coefficients (Kendall's tau (τ), Pearson's (r), Spearman's rho (ρ)))
Lyddon et al. 2022	UK	-	Earth System Processes, Methodological Advancement	Coastal	FALSE	TRUE	FALSE	-	Frequency Analysis, Temporal Analysis, Spatial Analysis, Kendall's Correlation Coefficient tau (τ), Annual Mean Compound Event Measure, Block Maxima, Peak-over-Threshold (POT)
Manoj et al. 2022	India	-	Earth System Processes	Pluvial, Soil Moisture	FALSE	TRUE	FALSE	-	Event Coincidence Analysis (ECA), Chi Squared Test (χ^2), Spatial Analysis, Temporal Analysis
Mantz and Wakeling 1979	UK (Norfolk, Yare Basin)	Varying return period scenarios	Planning & Management, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis
Martyr et al. 2013	US (Louisiana)	Hurricane Gustave (2008)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Mashriqui et al. 2010	US (Washington DC)	1996 Flood, Hurricane Isabel (2003)	Forecasting, Methodological Advancement, Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Mashriqui et al. 2014	US (Washington DC)	Hurricane Isabel (2003)	Forecasting, Methodological Advancement, Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	-
Masina et al. 2015	Italy (Ravenna)	-	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (τ), Pearson's (r), Spearman's rho (ρ))
Maskell et al. 2014	UK (England)	Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	FVCOM, LISFLOOD-FP	-
Maymandi et al. 2022	US (Texas, Sabine-Neches Estuary)	Hurricane Rita (2005), Ike (2008), and Harvey (2017)	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, Delft3D	-
Mazas et al. 2014	France (Brest)	Varying return period scenarios	Methodological Advancement, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Revised Joint Probability Method (RJPM), Chi Squared Test (χ^2), Peak-over-Threshold (POT)
McInnes et al. 2002	Australia (Queensland, Gold Coast Broadwater)	Tropical Cyclones (1989 and 1974)	Earth System Processes, Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	GCOM2D, RAMS, WAM	-
Meyers et al. 2021	US (Florida)	Hurricane Hermine (2017), 79 Sanitary Sewer Overflow Events (1996 - 2017), Varying climate change scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Logistic Regression Model (LRM), Temporal Analysis
Ming et al. 2022	UK (London, Thames Estuary)	Varying return period scenarios, 27 Flood Scenarios	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HiPIMS	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ)), Peak-over-Threshold (POT),
Modrakowski et al. 2022	Netherlands (Odense, Hvidovre, Vejle)	-	Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal, Soil Moisture	FALSE	FALSE	FALSE	-	-
Moftakhar et al. 2017	US (Philadelphia, Pennsylvania; San Francisco, California; and Washington DC)	Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (τ), Block Maxima
Moftakhar et al. 2019	US (California, Newport Bay)	-	Methodological Advancement, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	BreZo	Joint Probability Method (JPM), Copula, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ)))
Mohammadi et al. 2021	US (Idaho, Clearwater River; Montana, Yellowstone River; New Jersey, Delaware River)	-	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal, Snow	FALSE	TRUE	FALSE	-	Copula, Bayesian Network (BN), Storm Surge Statistical Emulator (Kriging/Gaussian Process Regression (GPR))
Mohor et al. 2020	Germany	Flood Events (2002-2013)	Impact Assessment	Fluvial, Pluvial, Groundwater, Damming/Dam Failure	FALSE	TRUE	FALSE	-	Multivariate Ordinary Least Squares (OLS) Regression, Building Loss Ratio, Chi Squared Test (χ^2), Univariate Normality and Variance (Levene's Test, Box's M Test, Kruskal-Wallis Test, Dunn's Test), Bootstrap Method
Muñoz et al. 2020	US (Georgia, Savannah, Savannah River Delta)	Hurricane Matthew (2016), Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Spatial Analysis, Copula, Multi-hazard Scenario Analysis Toolbox (MhAST), Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ)))

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Muñoz et al. 2021	US (Southeast Coast; Savannah River Estuary, Florida, Georgia, South Carolina, and North Carolina)	Hurricane Matthew (2016)	Methodological Advancement	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Machine Learning (Convolutional Neural Network (CNN)), Data Fusion (DF)
Muñoz et al. 2022a	US (Alabama, Mobile Bay)	Varying climate change scenarios	Earth System Processes, Planning & Management, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Joint Probability Method (JPM), Copula, Multi-hazard Scenario Analysis Toolbox (MhAST), Peak-over-Threshold (POT)
Muñoz et al. 2022b	US (Texas, Galveston Bay; Delaware, Delaware Bay)	Hurricane Harvey (2017), Hurricane Sandy (2012)	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FM	Bayesian Data Assimilation (DA), Ensemble Kalman Filter (EnKF)
Myers 1970	US (New Jersey, Atlantic City, Long Beach Island)	-	Methodological Advancement, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Frequency Analysis
Najafi et al. 2021	Saint Lucia	Hurricane Matthew (2016)	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HyMOD, LISFLOOD-FP	Strongest Path Method (SPM) Network Risk Analysis, Risklogik Platform, Monte Carlo Simulation
Naseri and Hummel 2022	US (CONUS)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Kendall's Correlation Coefficient tau (t), Spatial Analysis, Temporal Analysis (Mann-Kendall Test), Markov Chain Monte Carlo (MCMC) Algorithm
Nash et al. 2018	Ireland (Cork City)	November 2009 Flood	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	-
Nasr et al. 2021	US (CONUS)	-	Earth System Processes, Methodological Advancement	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Temporal Analysis, Spatial Analysis, Kendall's Correlation Coefficient tau (t), Tail Dependence Measure chi (x), Bootstrap Method
Olbert et al. 2013	Ireland	48 Storm Events (1959-2005), Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM)
Olbert et al. 2017	Ireland (Cork City)	2009 Flood Event	Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	MSN_Flood, POM	-
Orton et al. 2012	US (New York)	-	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	sECOM, WRF	-
Orton et al. 2015	US (New York)	533 Synthetic Tropical Cyclones, 76 Flood Events	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	sECOM, SELFE	Bayesian Simultaneous Quantile Regression, Markov Chain Monte Carlo (MCMC) Algorithm
Orton et al. 2016	US (New York, New York Harbor)	Hurricane Irene (2011), Northeaster Storm (2010), 42 Storm Events (1950-2013), 606 Synthetic Storms, Varying return period scenarios	Risk Assessment	Coastal	TRUE	TRUE	TRUE	NYHOPS, sECOM, Holland Wind Model	Hall Stochastic TC Life Cycle Model (Hall and Jewson 2007; Hall and Yonemura 2013), Extreme Value Analysis, Markov Chain Monte Carlo (MCMC) Algorithm, Bootstrap Method
Orton et al. 2018	US (New York, Hudson River)	76 Storm Events (1900-2010)	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	sECOM	Hall Stochastic TC Life Cycle Model, Bayesian Simultaneous Quantile Regression, Extreme Value Analysis
Pandey et al. 2021	India (Mahanadi River)	Cyclone Odisha (1999) and Phailin (2013)	Earth System Processes, Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS	-
Paprotny et al. 2020	Europe (Northwest)	-	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	EFAS, Delft3D,	Tail Dependence Coefficient (λ), Correlation Coefficients (Kendall's tau (t), Spearman's

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
								LISFLOOD-FP	rho (p)), Peak-over-Threshold (POT)
Park et al. 2011	South Korea	Typhoon Meami (2003)	Forecasting, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	Holland Wind Model, Hydrodynamic Model (MATLAB)	-
Pasquier et al. 2019	UK (East Coast)	Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-RAS	Extreme Value Analysis, Peak-over-Threshold (POT)
Peña et al. 2022	US (Florida, Arch Creek Basin)	-	Earth System Processes, Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	FLO-2D, MODFLOW-2005	-
Petroliagkis et al. 2016	Europe	-	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-Flow, ECWAM, LISFLOOD,	Joint Probability Method (JPM), Tail Dependence Measure chi (x), Peak-over-Threshold (POT)
Petroliagkis et al. 2018	Europe (Rhine River)	Top 80 Compound Events at 32 Rivers Each	Earth System Processes	Coastal	FALSE	TRUE	FALSE	Delft3D-FLOW, ECWAM	Joint Probability Method (JPM), Tail Dependence Measure chi (x), Peak-over-Threshold (POT)
Phillips et al. 2022	US (Southeast Coast; Florida, Georgia, and South Carolina)	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Locally Weighted Scatterplot Smoothing (LOWESS) Autoregressive Moving Average (ARMA) Model
Pieuch et al. 2022	US (West Coast; California, Oregon, and Washington)	Atmospheric Rivers Events (1980-2016)	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Temporal Analysis, Regression Analysis, Peak-over-Threshold (POT), Bootstrap Method
Pietrafesa et al. 2019	US (North Carolina)	Hurricanes Dennis and Floyd (1999)	Earth System Processes, Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	POM	-
Poulos et al. 2022	Greece (Thrace, Evros River Delta)	8 Flood Events (2005–2018)	Earth System Processes, Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Temporal Analysis, Spatial Analysis, Spearman's Correlation Coefficient rho (p)
Prandle and Wolf (1978)	UK (East Coast, North Sea, River Thames)	-	Earth System Processes	Coastal	TRUE	FALSE	FALSE	1D Hydrodynamic Model (Prandle 1978)	-
Preisser et al. 2022	US (Texas, Austin)	2015 Memorial Day Flood	Impact Assessment, Risk Assessment	Fluvial, Pluvial	TRUE	TRUE	TRUE	GeoFlood, GeoNet, ProMaides	Social Vulnerability Index (SVI), Principal Component Analysis (PCA), Spatial Analysis
Qiang et al. 2021	Hong Kong (Tseung Kwan O Town Centre)	Typhoon Mangkhut (2018)	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	FLO-2D, SWMM	-
Qiu et al. 2022	China (Guangdong, Pearl River Delta)	76 Tropical Cyclone Events (1957-2018), Varying climate change scenarios	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Quagliolo et al. 2021	Italy (Liguria)	-	Methodological Advancement, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	InVEST-UFRM	-
Rahimi et al. 2020	US (California, Oakland Flatlands)	-	Methodological Advancement, Risk Assessment	Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	HEC-RAS	-
Ray et al. 2011	US (Texas, Galveston Bay)	Hurricane Ike (2008)	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS	-

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Razmi et al. 2022	US (New York, New York City)	Hurricane Sandy (2012), Hurricane Irene (2011), Varying return period scenarios	Earth System Processes, Methodological Advancement	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Temporal Analysis (Mann-Kendall Test)
Ridder et al. 2018	Netherlands	-	Earth System Processes	Pluvial, Coastal	TRUE	FALSE	FALSE	WAQUA	-
Ridder et al. 2020	Global	27 Hazard Pairs (1980–2014), Spatial analysis	Earth System Processes	Pluvial, Coastal, Drought, Soil Moisture	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Spatial Analysis, Likelihood Multiplication Factor (LMF)
Robins et al. 2011	UK (Dyfi Estuary)	Varying climate change scenarios	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	TELEMAC	-
Robins et al. 2021	UK (Humber and Dyfi Estuaries)	56 Flood Events	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Linear Regression, Temporal Analysis, Cross-correlation Analysis, Correlation Coefficients (Kendall's tau (t), Spearman's rho (p)), Chi Squared Test (x ²)
Rodríguez et al. 1999	Spain (Northwest Coast)	-	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM)
Rueda et al. 2016	Spain (Santander)	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Climate-based Extremal Index (Θ), Extreme Value Analysis, Monte Carlo Simulation
Ruggiero et al. 2019	US (Washington, Grays Harbor)	Varying climate change scenarios, Varying return period scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-RAS, SWAN	Managing Uncertainty in Complex Models (MUCM) Hydrodynamic Emulator, Temporal Analysis
Sadegh et al. 2018	US (Washington DC, Potomac River)	Varying return period scenarios	Methodological Advancement, Risk Assessment	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Correlation Coefficients (Kendall's tau (t), Pearson's (r), Spearman's rho (p)), Block Maxima
Saharia et al. 2021	US (New York, Buffalo River & Lake Erie)	Varying return period scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t)
Saleh et al. 2017	US (New Jersey, Newark Bay)	Hurricane Irene (2011) and Sandy (2012)	Forecasting	Pluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS, sECOM, NYHOPS	-
Sampurno et al. 2022a	Indonesia (Pontianak, Kapuas River Delta)	December 2018 Flood Event	Forecasting, Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	SLIM, SWAT	Machine Learning (Random Forest (RF), Multiple Linear Regression (MLR), Support Vector Machine (SVM))
Sampurno et al. 2022b	Indonesia (Pontianak, Kapuas River Delta)	-	Earth System Processes	Fluvial, Coastal	TRUE	FALSE	FALSE	SLIM	-
Samuels and Burt 2002	UK (Wales, Pontypridd, Taff River, Ely River)	Varying return period scenarios, Varying climate change scenarios	Planning & Management, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	Flood Modeller/IS	Joint Probability Method (JPM), JOIN-SEA Model, Monte Carlo Simulation
Sangsefidi et al. 2022	US (California, Imperial Beach)	-	Risk Assessment	Pluvial, Coastal, Groundwater	TRUE	FALSE	FALSE	PCSWMM	-
Santiago-Collazo et al. 2021	US (Mississippi, Mississippi River Delta)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC	-
Santos et al. 2017	UK	92 Extreme Wave Events (2002–2016), Varying return period scenarios	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Spatial Analysis, Temporal Analysis, Extreme Value Analysis, Kendall's Correlation tau (t), Peak-over-Threshold (POT)
Santos et al. 2021a	US (Texas, Sabine Lake)	-	Earth System Processes, Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Copula, Multiple Linear Regression (MLR), Extreme Value Analysis, Kendall's Correlation tau (t), Peak-over-Threshold (POT)

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Santos et al. 2021b	Netherlands	Varying return period scenarios	Earth System Processes, Methodological Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	RTC-Tools	Joint Probability Method (JPM), Copula, Machine Learning (Artificial Neural Network (ANN), Multiple Linear Regression (MLR), Random Forest (RF)), Kendall's Correlation Coefficient tau (t), Block Maxima
Serafin and Ruggiero 2014	US (Oregon)	Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Total Water Level Full Simulation Model (TWL-FSM), Temporal Analysis (Declustering), Extreme Value Analysis, Monte Carlo Simulation, Peak-over-Threshold (POT)
Serafin et al. 2019	US (Washington)	Varying return period scenarios	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, HEC-RAS, SWAN	Total Water Level Full Simulation Model (TWL-FSM), Extreme Value Analysis, Temporal Analysis, Spatial Analysis, Monte Carlo Simulation
Shahapure et al. 2010	India (Maharashtra, Navi Mumbai)	5 Rainfall Events	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	1D Hydrodynamic Model (GIS-based)	-
Shen et al. 2019	US (Virginia, Norfolk)	Varying return period scenarios	Planning & Management, Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	ESTRY, TUFLOW	Transition Zone Index (TZI), Spatial Analysis, Temporal Analysis
Sheng et al. 2022	US (Florida)	Varying Tropical Cyclone events, Varying climate change scenarios, Varying return period scenarios	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ADCIRC, CAM, CESM, CH3D, HIRAM, RFMS, SWAN	Joint Probability Method with Optimal Sampling (JPM-OS), Monte Carlo Life-Cycle (MCLC) Simulation, Peak-over-Threshold (POT)
Shi et al. 2022	China (Zhejiang, Xiangshan)	Typhoons Haikui (2012) and Fitow (2013)	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, SWMM	-
Silva-Araya et al. 2018	US (Puerto Rico)	Hurricane Georges (1998)	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, GSSHA, SWAN	-
Skinner et al. 2015	UK (Humber Estuary)	2013 Storm Event	Methodological Advancement, Risk Assessment	Coastal	TRUE	FALSE	FALSE	CAESAR-LISFLOOD, LISFLOOD-FP	-
Sopelana et al. 2018	Spain (Betanzos)	40 Flood Events	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	Iber	-
Stamey et al. 2007	US (Maryland and Virginia)	Hurricane Isabel (2003), Tropical Storm Ernesto (2006), and 2006 Nor'easter Storm	Forecasting, Planning & Management	Fluvial, Coastal	TRUE	FALSE	FALSE	AHPS, ELCIRC, RAMS, ROMS, UnTRIM, WRF	-
Steinschneider 2021	Canada (Ontario, Lake Ontario)	-	Earth System Processes, Risk Assessment	Coastal	TRUE	TRUE	TRUE	LOOFS	Bayesian Hierarchical Model, Monte Carlo Simulation, Spatial Analysis, Chi Squared Test (χ^2)
Stephens and Wu 2022	New Zealand	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (t), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT)
Sui and Koehler 2001	Germany	Varying return period scenarios	Earth System Processes	Pluvial, Snow	FALSE	TRUE	FALSE	-	Extreme Value Analysis, Spatial Analysis, Temporal Analysis
Svensson and Jones 2002	UK (East Coast)	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Dependence Measure chi (χ), Temporal Analysis, Spatial Analysis, Peak-over-Threshold (POT), Bootstrap Method
Svensson and Jones 2004	UK (South and West Coast)	-	Earth System Processes	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Dependence Measure chi (χ), Temporal Analysis, Spatial Analysis, Peak-over-Threshold (POT), Bootstrap Method

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Tahvildari et al. 2022	US (Virginia)	Hurricane Irene (2011)	Planning & Management	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FLOW, TUFLOW	Spatial Analysis (Traffic Network Analysis)
Tanim and Goharian 2021	Bangladesh (Chittagong)	-	Earth System Processes, Methodological Advancement	Pluvial, Coastal	TRUE	TRUE	TRUE	Delft3D-FLOW, SWAN, SWMM	Joint Probability Method (JPM), Copula, Spearman's Correlation Coefficient rho (p), Spatial Analysis, Temporal Analysis
Tanir et al. 2021	US (Washington DC, Potomac River)	-	Impact Assessment, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	HEC-RAS	Socio-Economic Vulnerability Index (SOVI), Exposure Index (EI), Flood Socio-Economic Vulnerability Index (FSOVI), HAZUS-MH Damage Assessment Tool, Principal Component Analysis (PCA), Spatial Analysis
Tao et al. 2022	China (Wuhan, Yangtze River)	Compound Events (1980-2020)	Earth System Processes, Risk Assessment	Fluvial, Pluvial	FALSE	TRUE	FALSE	-	Compound Intensity Index (CII), Joint Probability Method (JPM), Copula, Multivariate Copula Analysis Toolbox (MvCAT), Correlation Coefficients (Kendall's tau (t), Pearson's (r), Spearman's rho (p)), Temporal Analysis (Mann-Kendall Test)
Tawn 1992	UK	-	Methodological Advancement, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Revised Joint Probability Method (RJPM), Extreme Value Analysis
Tehranirad et al. 2020	US (California, San Francisco Bay)	February 2019 Storm Event	Forecasting, Planning & Management	Fluvial, Pluvial	TRUE	FALSE	FALSE	Hydro-CoSMoS	-
Thieken et al. 2022	Germany	2013 and 2016 Flood Events	Impact Assessment, Planning & Management	Pluvial, Damming/Dam Failure	FALSE	TRUE	FALSE	-	Socioeconomic Metrics, Mann-Whitney U Test, Chi Squared (χ^2) Value, Spatial Analysis
Thompson and Frazier, 2014	US (Florida, Sarasota County)	Varying climate change scenarios	Methodological Advancement, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	ICPR, SLOSH	Spatial Analysis (Geographic Weighted Regression (GWR), Moran's I, Linear Probability Model (LPM))
Torres et al. 2015	US (Texas, Galveston Bay)	Hurricane Katrina (2005), Ike (2008), and Isaac (2012)	Earth System Processes, Planning & Management	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HEC-RAS, SWAN, Vflo	-
Tromble et al. 2010	US (North Carolina, Tar and Neuse River)	Tropical Storm Alberto (2006)	Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, HLRDHM, Vflo	-
Tu et al. 2018	China (Xiangxiang Basin)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (t), Block Maxima, Peak-over-Threshold (POT)
Valle-Levinson et al. 2020	US (Texas, Houston, Galveston Bay)	Hurricane Harvey (2017)	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Flow Interaction Index (μ), Temporal Analysis
Van Berchum et al. 2020	Mozambique (Beira)	-	Risk Assessment	Pluvial, Coastal	TRUE	FALSE	FALSE	FLORES	-
Van Cooten et al. 2011	US (North Carolina)	Hurricane Isabelle (2003), Earl (2010) and Irene (2011), Tropical Storm Nicole (2010)	Forecasting, Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	ADCIRC, CI-FLOW, HLRDHM, RUC	-
Van Den Hurk et al. 2015	Netherlands	January 2012 Near Flood, 800-Year Climate Simulation	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	EC-Earth, RACMO2, RTC-Tools	Joint Probability Method (JPM), Spatial Analysis, Temporal Analysis
Vitousek et al. 2017	Global	Varying climate change scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Extreme Value Analysis, Monte Carlo Simulation
Vongvisessomjai and Rojanakamthorn 1989	Thailand (Chao Phraya River)	-	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodynamic Model	Analytical Perturbation Method, Harmonic Analysis, Temporal Analysis

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Wadey et al. 2015	UK (Sefton and Suffolk)	Cyclone Xaver (2013), Varying return period scenarios	Earth System Processes, Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis (Clustering)
Wahl et al. 2015	US (CONUS)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Temporal Analysis, Kendall's Correlation Coefficient tau (τ)
Walden et al. (1982)	UK (South Coast)	-	Earth System Processes, Methodological Advancement	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Temporal Analysis
Wang et al. 2014	US (New York, New York City)	Hurricane Sandy (2012)	Methodological Advancement	Coastal	TRUE	FALSE	FALSE	SELFE, RAMS, UnTRIM	-
Wang et al. 2015	US (Washington DC, Potomac River)	Hurricane Isabel (2003)	Methodological Advancement	Fluvial, Coastal	TRUE	FALSE	FALSE	UnTRIM	-
Wang et al. 2021	Canada (Newfoundland and Labrador)	Varying return period scenarios, Varying climate change scenarios	Earth System Processes, Risk Assessment	Fluvial, Coastal	TRUE	FALSE	FALSE	HEC-HMS, HEC-RAS, WRF	-
Ward et al. 2018	Global	-	Earth System Processes	Fluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Spatial Analysis, Block Maxima, Peak-over-Threshold (POT)
Webster et al. 2014	Canada (Nova Scotia, Bridgewater, LaHave River estuary)	Varying climate change scenarios, Varying return period scenarios	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	MIKE11, MIKE21	Joint Probability Method (JPM), Extreme Value Analysis
White 2007	UK (East Sussex, Lewes, Ouse River)	October 2000 Flood Event	Earth System Processes, Methodological Advancement, Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	-	Joint Probability Method (JPM), Dependence Measure chi (χ), Block Maxima, Peak-over-Threshold (POT)
Williams et al. 2016	Europe (UK, US, Netherlands, and Ireland)	-	Earth System Processes	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Kendall's Correlation Coefficient tau (τ), Temporal Analysis
Wolf 2009	Myanmar (Irrawaddy River Delta)	May 2008 Flood Event	Earth System Processes	Coastal	TRUE	FALSE	FALSE	ADCIRC, SWAN	-
Wu and Leonard 2019	Australia	-	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Joint Probability Method (JPM), Kendall's Correlation tau (τ), Spatial Analysis, Peak-over-Threshold (POT)
Wu et al. 2018	Australia	-	Earth System Processes	Pluvial, Coastal	TRUE	TRUE	TRUE	ROMS	Extreme Value Analysis, Temporal Analysis, Spatial Analysis, Pearson's Correlation Coefficient (r), Peak-over-Threshold (POT)
Wu et al. 2021	Australia (Swan River)	Varying return period scenarios	Methodological Advancement, Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	TRUE	TRUE	MIKE21	Joint Probability Method (JPM), Frequency Analysis, Peak-over-Threshold (POT)
Xiao et al. 2021	US (Delaware, Delaware Bay Estuary)	Hurricane Irene (2011), Isabel (2003), Sandy (2012); and Tropical Storm Lee (2011)	Earth System Processes	Fluvial, Coastal	TRUE	TRUE	TRUE	FVCOM	Temporal Analysis (Complex Demodulation, Singular Spectral Analysis (SSA))
Xu et al. 2014	China (Fuzhou City)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Temporal Analysis (Mann-Kendall U Test, Pettitt Test)
Xu et al. 2019	China (Haikou City)	-	Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula
Xu et al. 2022	China (Shanghai)	Tropical Cyclones and Peak Water Level Events (1961-2018)	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	D-Flow FM	Copula, Correlation Coefficients (Kendall's tau (τ), Spearman's rho (ρ))

Author	Geographic Region	Scenario / Event	Application	Compound Drivers	Numerical	Statistical	Numerical & Statistical	Numerical Models	Statistical Methods / Tools
Xu et al. 2022	China (Hainan, Haikou)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	PCSWM	Joint Probability Method (JPM), Copula, Monte Carlo Simulation, Kendall's Correlation Coefficient tau (τ)
Yang and Qian 2019	China (Shenzhen, Pearl River)	-	Earth System Processes, Methodological Advancement	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Particle Swarm Optimization (PSO)
Yang et al. 2020	China (Jiangsu Province, Lianyungang, Yancheng and Nantong)	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Particle Swarm Optimization (PSO)
Ye et al. 2020	US (East Coast and Gulf of Mexico, Delaware Bay)	Hurricane Irene (2011)	Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	NWM, SCHISM, 3D Baroclinic Atmospheric Model	-
Ye et al. 2021	US (Southeast Coast, North Carolina & South Carolina)	Hurricane Florence (2018)	Earth System Processes, Methodological Advancement	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HYCOM, NWM, SCHISM, SMS	-
Yeh et al. 2006	Taiwan (Longdong, Hualien, Chiku, and Eluanbi)	30 Typhoon Events (2001-2005), Varying return period scenarios	Risk Assessment	Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Frequency Analysis
Zellou and Rahali 2019	Morocco (Bouregreg River)	Varying return period scenarios	Risk Assessment	Pluvial, Coastal	TRUE	TRUE	TRUE	CAESAR-LISFLOOD	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Tail Dependence Coefficient (λ)
Zhang and Chen 2022	China	-	Earth System Processes, Risk Assessment	Fluvial, Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Copula, Kendall's Correlation Coefficient tau (τ), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT), Block Maxima
Zhang and Najafi 2020	Saint Lucia	Hurricane Mathew (2016)	Risk Assessment	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	HYMOD, LISFLOOD-FP	-
Zhang et al. 2011	US (Alaska, Prince William Sound)	1964 Alaska Tsunami	Earth System Processes	Coastal, Tsunami	TRUE	FALSE	FALSE	SELFE	-
Zhang et al. 2020	US (Delaware, Delaware Bay)	Hurricane Irene (2011)	Earth System Processes, Methodological Advancement	Pluvial, Coastal	TRUE	FALSE	FALSE	SCHISM	-
Zhang et al. 2022	China (Zhejiang, Ling River Basin)	Typhoon Lekima (2019) and Wipha (2007)	Earth System Processes	Fluvial, Pluvial, Coastal	TRUE	FALSE	FALSE	1D/2D Coupled Hydrodynamic Model	-
Zheng et al. 2013	Australia	-	Earth System Processes	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Dependence Measure chi (χ), Spatial Analysis, Temporal Analysis, Peak-over-Threshold (POT)
Zheng et al. 2014	Australia (Sydney, Hawkesbury-Nepean Catchment)	-	Earth System Processes, Risk Assessment	Pluvial, Coastal	FALSE	TRUE	FALSE	-	Joint Probability Method (JPM), Extreme Value Analysis, Block Maxima, Peak-over-Threshold (POT)
Zhong et al. 2013	Netherlands (Lower Rhine Delta)	Varying climate change scenarios	Risk Assessment	Fluvial, Coastal	TRUE	TRUE	TRUE	1D Hydrodynamic Model	Joint Probability Method (JPM), Copula, Temporal Analysis (Mann-Kendall Test), Monte Carlo Simulation, Correlation Coefficient (Kendall's tau (τ)), Spearman's rho (ρ)), Chi Squared Test (χ^2)

588

589 Table A2. Table of numerical models, frameworks, systems, and toolsets observed in literature database studies for simulating hydrologic,
590 hydrodynamic, oceanographic, and atmospheric systems that contribute to compound flooding.

Model Acronym	Full Names	Model Type
ADCIRC	Advanced CIRCulation	Hydrodynamic Model
ADCIRC-SWAN		Coupled Hydrodynamic Model System of ADCIRC and SWAN
AHPS	Advanced Hydrologic Prediction Service	Coupled Atmospheric & Hydrological Model System
ASGS	ADCIRC Surge Guidance System	Hydrodynamic Model System
ASGS-STORM	ASGS-Scalable, Terrestrial, Ocean, River, Meteorology	Coupled Model System of ASGS, SWAN, HL-RDHM, DAH, and NAM
AutoRoute	-	Hydrological Model
BreZo	-	Hydrodynamic Model
CAESAR-Lisflood	-	Coupled Model System of Lisflood-FP and CAESAR
CAM	Community Atmosphere Model	Atmospheric Model
CaMa-Flood	Catchment-based Macro-scale Floodplain	Hydrodynamic Model
CESM	Community Earth System Model	Atmospheric Model
CH3D	Curvilinear-grid Hydrodynamics 3D Model	Hydrodynamic Model
CI-FLOW	Coastal and Inland Flooding Observation and Warning Project	Hydrological Model
CKF	Climate Knowledge Facility System	Coupled Hydrological & Hydrodynamic Model System
COAWST	Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System	Coupled Hydrodynamic & Atmospheric Model System
COS-Flow	Coupled Overland-Sewer Flow model	Hydrodynamic Model
CoSMoS	Coastal Storm Modeling System	Atmospheric Model
CREST	Coupled Routing and Excess Storage	Hydrological Model
CREST-SVAS	Coupled Routing and Excess Storage-Soil-Vegetation-Atmosphere-Snow	Hydrological Model
D-Flow FM	D-Flow Flexible Mesh	Hydrodynamic Model
DCSM	Dutch Continental Shelf Model	Hydrodynamic Model
Delft3D-FM	Delft 3D Flexible Mesh Suite	Toolset
Delft3D-FLOW	-	Hydrodynamic Model
Delft3D-WAVE	-	Coupled Hydrodynamic Model of Delft3D and SWAN
Delft-FIAT	Flood Impact Analysis Tool	Toolset
Delft-FLS	DELFT FLooding System	Hydrodynamic Model
EC-Earth	European community Earth System Model	Atmospheric, Hydrological, & Hydrodynamic Model System
ECHAM5	ECMWF Hamburg Model Version 5	Atmospheric Model
ECWAM	ECMWF Ocean Wave Model	Hydrodynamic Model
EFAS	European Flood Awareness System	Hydrological Model
ELCIRC	Eulerian-Lagrangian CIRCulation	Hydrodynamic Model
ESTRY	-	Hydrodynamic Model
ESTOFS	Extra Tropical Storm and Tide Operational Forecast System	Hydrodynamic Model
ETSS	Extratropical Storm Surge model	Hydrodynamic Model
FES2012	Finite Element Solution Model	Hydrodynamic Model
FLO-2D	-	Hydrodynamic Model
Flood Modeller/ISIS	-	Hydrodynamic Model
FLORES	Flood risk Reduction Evaluation and Screening	Hydrodynamic Model
FLOW-3D	-	Hydrodynamic Model
FVCOM	Finite Volume Community Ocean Model	Hydrodynamic Model

GCOM2D	Global Environmental Modelling Systems (GEMS) 2D Coastal Ocean Model	Hydrodynamic Model
GeoFlood	-	Hydrological Model
GeoNet	-	Toolset
GSSHA	Gridded Surface Subsurface Hydrologic Analysis	Hydrological Model
GTSM	Global Tide and Surge Model	Hydrodynamic Model
H*WIND	Hurricane Wind Analysis System	Atmospheric Model
HADGEM	HADley Centre Global Environment Model	Coupled Atmospheric & Hydrodynamic Model System
HBV	Hydrologiska Byråns Vattenbalansavdelning	Hydrological Model
HEC-HMS	Hydrologic Engineering Centre's - Hydrologic Modeling System	Hydrological Model
HEC-RAS	Hydrologic Engineering Centre's - River Analysis System	Hydrological Model
HiPIMS	High-Performance Integrated Hydrodynamic Modelling Software	Hydrological & Hydrodynamic Model
HiRHAM	High Resolution Atmospheric Model	Atmospheric Model
HL-RDHM	Hydrology Laboratory - Research Distributed Hydrologic Model	Hydrological Model
Holland Wind Model	Holland Wind Model	Atmospheric Model
HYCOM	HYbrid Coordinate Ocean Model	Hydrodynamic Model
Hydro-CoSMoS	Hydro-Coastal Storm Modeling System	Hydrodynamic Model
HydroMT	Hydro Model Tools	Toolset
HyMOD	HYdrological MODEl	Hydrological Model
Iber	Iberaula	Hydrodynamic Model
ICRP	Interconnected Channel and Pond Routing Model	Hydrological & Hydrodynamic Model
InVEST-UFRM	Integrated Valuation of Ecosystem Services and Tradeoffs - Urban Flood Risk Mitigation model	Toolset
IOKA	Oceanweather's Interactive Kinematic Objective Analysis System	Atmospheric Model
LISFLOOD-FP	-	Hydrodynamic Model
LOOFS	Lake Ontario Operational Forecast System	Coupled Hydrodynamic Model System of FVCOM and CICE
MATSIRO-GW	Minimal Advanced Treatments of Surface Integration and RunOff - Groundwater	Hydrological Model
MIKE+	-	Hydrological & Hydrodynamic Model
MIKE11	-	Hydrodynamic Model
MIKE21	-	Hydrodynamic Model
MISDc	Modello Idrologico SemiDistribuito in continuo	Hydrological Model
MODFLOW	Modular Hydrologic Model	Hydrological Model
Mog2D		Hydrodynamic Model
MPI-OM	Max Planck Institute - Ocean/Sea-Ice Model	Hydrodynamic Model
MRI-CGCM2	Meteorological Research Institute coupled General Circulation Model Version 2	Coupled Atmospheric & Hydrodynamic Model
MSN_Flood	-	Hydrodynamic Model
NAM	Nedbor-Afstromnings Model	Hydrological Model
NAM	North American Mesoscale Forecast System	Atmospheric Model
NEMO	Nucleus for European Modelling of the Ocean	Hydrodynamic Model
NWM	National Water Model	Hydrological Model
NYHOPS	New York Harbor Observing and Prediction System	Hydrodynamic Model
ONDA	-	Hydrodynamic Model
PCSWMM	Personal Computer Storm Water Management Model	Hydrological & Hydrodynamic Model System
POM	Princeton Ocean Model	Hydrodynamic Model

PQRUT	-	Hydrological Model
ProMalDes	Protection Measures against Inundation Decision Support	Hydrodynamic Model & Toolset
RACMO2	Regional Atmospheric Climate Model Version 2	Atmospheric Model
RAMS	Regional Atmospheric Modelling System	Atmospheric Model
ReAFFIRM	Real-time Assessment of Flash Flood Impacts Framework	Hydrological Model
RegCM3	Regional Climate Model Version 3	Atmospheric Model
RFMS	Rapid Forecasting and Mapping System	Coupled Hydrodynamic Model System of SLOSH and CH3D
ROMS	Regional Ocean Modelling System	Hydrodynamic Model
RS3	Rocscience 3D Finite Element Analysis	Toolset
RTC-Tools	-	Hydrological Model & Toolset
RUC	Rapid Update Cycle	Atmospheric Model
SCHISM	Semi-implicit Cross-scale Hydroscience Integrated System Model	Hydrodynamic Model
sECOM	Stevens Estuarine and Coastal Ocean Model	Hydrodynamic Model
sECOM-NYHOPS	-	Coupled Hydrodynamic Model System of sECOM and NYHOPS
SELFE	Semi-Implicit Finite-Element/Volume Eulerian-Lagrangian Algorithm	Hydrodynamic Model
SFAS	Stevens Flood Advisory System	Coupled Hydrologic & Hydrodynamic Model System
SFINCS	Super-Fast Inundation of CoastS	Hydrodynamic Model
SHAWLWV	Model for Simulation of Shallow Water Wave Growth, Propagation, and Decay	Hydrodynamic Model
SIPSON	Simulation of Interaction between Pipe flow and Surface Overland flow in Networks	Hydrodynamic Model
SLIM	Second-generation Louvain-la-Neuve Ice-ocean Model	Hydrodynamic Model
SLOSH	Sea, Lake, and Overland Surges from Hurricanes	Hydrodynamic Model
SMS	Surface-water Modeling System	Toolset
SNAP	Stevens Northwest Atlantic Prediction Model	Hydrodynamic Model
SPHY	Spatial Processes in HYdrology	Hydrological Model
SPLASH	Special Program to List Amplitudes of Surges from Hurricanes	Atmospheric and Hydrodynamic Model System
STWAVE	Steady State Spectral Wave	Hydrodynamic Model
SWAN	Simulating Waves Nearshore	Hydrodynamic Model
SWAT	Soil & Water Assessment Tool	Toolset
SWMM	Storm Water Management Model	Hydrological Model
TELEMAC	TELEMAC-MASCARET	Hydrodynamic Model
TUFLOW	-	Hydrodynamic Model
UIM	Urban Inundation Model	Hydrodynamic Model
UnTRIM	-	Hydrodynamic Model
Vflo	Vieux FLOod	Hydrological Model
WAM	Wave Model	Hydrodynamic Model
WAQUA	WAter movement and water QUAlity modelling	Hydrodynamic Model
WGHM	WaterGAP Global Hydrology Model	Hydrological Model
WIFM	WES Implicit Flooding Model	Hydrodynamic Model
WRF	Weather Research and Forecast Model	Atmospheric Model
WW3/WaveWatch III	WAVE-height, WATer depth and Current Hindcasting Version 3	Hydrodynamic Model Framework
XPSWMM	XP Solutions Storm Water Management Model	Hydrological & Hydrodynamic Model