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Abstract

A methodology for defining variational principles for a class of PDE models from continuum mechanics
is demonstrated, and some of its features explored. The scheme is applied to quasi-static and dynamic
models of rate-independent and rate-dependent, single crystal plasticity at finite deformation.

1 Introduction

In this paper we explore a strategy for designing variational principles for a significant class of static and
dynamical models from continuum mechanics, naturally stated as systems of partial differential equations
(PDE). The models can be dissipative or conservative. Action functionals are designed, whose Euler-Lagrange
equations recover the primal PDE system and side conditions in a well-defined sense. The essential ideas
behind the approach may be understood from [Ach23, Sec. 2], [Ach22b, Sec. 7], and [Ach22a, Sec. 6.1]. The
variational principles govern a dual set of fields corresponding to the primal ones of the continuum mechanical
model, and the scheme provides a mapping to recover the primal fields with the guarantee that the latter
are weak solutions of the primal model. The Lagrangian of the dual variational problem is convex (with
a trivial sign change), and therefore existence of a minimizer appears to rest on only the coercivity of the
dual functional. Correspondingly, the Euler-Lagrange equations of the dual functional are shown to possess
a local degenerate ellipticity, regardless of the properties of the primal system. In the context of solving
the primal PDE system, these features are crucially enabled by the ‘free’ choice of a (family of) potential(s)
in the primal variables that may be interpreted as defining a ‘target’ whose integral is to be extremized,
subject to the primal PDE system as constraints. The dual fields then are simply the Lagrange multipliers
of the formulation, and since the target is free to choose, one chooses it to have as strongly positive-definite
an Hessian as needed to dominate the non-monotonicity of the constraint equations. Everything said above
is of recent origin [Ach22a, Ach22b, Ach23] and mathematically formal, but potentially useful, as borne
out by encouraging results in computational implementations of model problems [KA23]-[Aro23, Sec. 6]-
[SGA24, KA24] involving a range of linear and nonlinear, ODE and PDE, time-dependent and independent
problems related to continuum mechanics (linear transport, heat equation, Euler’s equations for a rigid
body, double-well elastostatics in 1-d, inviscid Burgers in conservation and Hamilton-Jacobi form, the inverse
problem of a liquid crystal membrane attaining a prescribed shape, constrained to meet a prescribed principal
stretch field), and all approximated by the simplest Galerkin discretization (in these first instances) for solving
boundary value problems in domains in space(-time). The work [SGA24] also contains new, rigorous results
on the existence of a variational dual solution for the Saint-Venant Kirchhoff model of nonlinear elasticity
whose energy density is not quasiconvex (and hence existence of variational solutions by any other means is
not known).

The essential idea behind the approach may be simply understood as follows: Suppose one is interested in
solving the generally nonlinear set of equations G(U) = 0, U ∈ Rn, G : Rn → Rm. The goal is to convert this
question of solving a system of equations to an optimization problem, preferably a convex one. To do this,
consider, for the moment, an objective function U 7→ H(U) ∈ R and the governing equations for the critical
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points of the optimization of H subject to the constraints G(U) = 0. These equations are, for Lagrange
multipliers λ ∈ Rm,

H(U)− λ ·G(U) =: LH(U, λ)

∇H(U)− λ · ∇G(U) = ∂ULH(U, λ) = 0 (1a)

G(U) = ∂λLH(U, λ) = 0,

and the interest would be in solving for a pair (U, λ) that satisfies the above set of equations. One now makes
the observation that in this formulation of the question of solving G(U) = 0 for a U , given the function G, the
choice of H is quite arbitrary and hence, one approach to solving the above set of equations is to solve (1a)
for U in terms of λ by making an appropriate choice of H to construct a function U (H) : O → Rn,O ⊂ Rm

which satisfies (1a) for all λ ∈ O, and then look for a solution of λ ∈ O that satisfies G
(
U (H)(λ)

)
= 0. This

approach defines an adapted change of variables for the problem and ensures that the number of the (dual)
variables to be solved for is maintained at the number of the primal equations (the idea carries over to fields
as well); more details along these lines are provided in Appendix A. Clearly, to the extent that the convexity
of the function H dominates any noncovexity of λ ·G in U for each fixed λ ∈ O, the easier it is to construct
the function U (H). Further discussion on the choice of the function H and its effect on the scheme can be
found in the preamble of [SGA24, Sec. 5].

An important property of the scheme is that the function ŜH : Rn × Rm → R defined by ŜH(U, λ) =

H(U)−λ ·G(U) = LH(U, λ) is affine in λ and hence concave as well, and therefore SH(λ) := infU ŜH(U, λ) is
concave (but not necessarily strictly so) so that, roughly speaking, obtaining a critical point by the procedure
above may be thought of as a problem of concave maximization (or convex minimization), regardless of the
nature of the nonlinearities of G.

When G = 0 is a system of ordinary or partial differential equations (could involve inequalities too, as in

this paper), ŜH , S become functionals with LH the Lagrangian for ŜH and the critical point equations involve
variational derivatives. For boundary-value-problems, all ‘primal’ boundary conditions (whether Dirichlet
or Neumann) become natural boundary conditions on the dual side, in quite an ‘obvious’ manner. For
primal initial-(boundary)-value-problems an added insight is required; the dual Euler-Lagrange equations are
second-order in time and require final-time boundary conditions and it is known that initial value problems do
not admit such boundary conditions. It turns out that the dual problem admits (rather arbitrary) Dirichlet
boundary conditions on the dual fields without affecting the primal solution obtained through the mapping
U (H), say when the primal problem has uniqueness of solutions. This has been demonstrated in [Ach22b,
Sec. 7]-[KA23, KA24]-[SGA24, Sec. 6.3.4].

As examples of this overall approach, in this paper we apply the strategy to develop action principles for
classical rate-dependent and independent, dynamic and quasi-static, single crystal plasticity theories without
restriction to rate problems, time discretization, energy minimizing paths, associated plasticity, hardening
matrix derived from an energy potential, treating plastic slip as an energetic state variable, the existence of
a dissipation potential or even a free energy function. Variational principles for plasticity is a subject with a
substantial body of work, e.g. [Hil58, Hil59, Hil79, Suq88, Str79]-[Pet03, Pet20, and earlier references therein]-
[OM89, OR99, OS99, CHM02, MR15, MDM06, DMDS11], with a detailed review presented in [Pet20]. Our
work is complementary to these points of view, and presents a different formalism that exploits the ‘free’
choice of an added target function in the primal variables with strong convexity properties, especially in
providing a somewhat unified point of view in dealing with quasi-static and dynamic problems without
utilizing time-discretization. The possibility of making such a choice in aiding the solution to problems has
the flavor of the use of the ‘linear comparison solid’ related to the literature on effective properties, cf.,
[CS97, CW99].

Rigorous results on a weak formulation and existence of solutions of the governing PDE of plasticity were
first provided in the seminal work [Suq88, and earlier references] and subsequent works , e.g. [HR12]. As is
well-understood by experts but simply to avoid possible confusion, we explicitly note that the existence of
a variational principle for a set of (O)PDE is a different question than that of posing a variational (weak)
statement for that set of equations.

An outline of the paper is as follows: in Sec. 2 we present the dual formulation. In Sec. 3 a computation
is presented to motivate the degenerate ellipticity of the dual problem. Secs. 4 and 5 contain the algorith-
mic steps to implement the scheme on the theories of rate-dependent and rate-independent single crystal
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plasticity, respectively. Sec. 6 contains some concluding remarks.
A few words on notation: except for Sec. 5, we always use the summation convention on ranges of indices,

and the placement of indices as super or subscripts has no special siginifcance. The use of direct notation
would have required too many definitions to be put in place for many of the explicit calculations - hence,
despite their clumsy appearance, I have chosen to explicitly write out the computations - it is hoped that
this avoids any ambiguity. Also, whenever a function is declared as capable of being defined arbitrarily,
such arbitrariness is assumed to be restricted by natural smoothness requirements for the problem context
to make sense.

We mention at the very outset that from the point of view of this paper, the variational principles
developed are purely mathematical devices with their sole justification resting on contributing to solution
strategies for the primal system of physical equations involved. Thus, the whole burden of physical modeling
rests on the development of the primal system, which is considered a ‘given’ in this work. This paper
is not concerned with the quality of physical modeling of plasticity with the considered models, or their
connection to the micromechanics of the phenomenon. Those are separate concerns dealt with in [AA20a,
AA20b, AZA20, AAA22, AAA23] - in fact, this more sophisticated model (which incorporates many of the
features of the classical theory), which, among other things, is a first example of a setting in continuum
solid mechanics where non-singular, finite deformation elastic fields of arbitrary dislocation distributions can
be calculated, served as the primary motivation for the development of the formalism presented here, as
discussed in [Ach23].

2 A dual formulation for models from continuum mechanics

This paper started out with the specific goal of demonstrating some variational principles for the equations of
plasticity theory. However, I soon realized that the main ideas were most efficiently conveyed in the general
setting described below, in the spirit of not missing the forest for the trees by sparing the reader the details
of some tedious calculations. This provides the main motivation for this Section.

Lower-case Latin indices belong to the set {1, 2, 3} representing Rectangular Cartesian spatial coordinates,
and t is time. Let upper-case Latin indices belong to the set {1, 2, 3, · · · , N}, indexing the components of the
N × 1 array of primal variables, U , with, possibly, a conversion to first-order form as necessary. We consider
the system of equations

CΓI∂tUI + ∂jFΓj(U) +GΓ (U, x, t) = 0 in Ω × (0, T ), Γ = 1, . . . , N∗ (2a)

CΓIUI(x, 0) = CΓIU
(0)
I (x) specified on Ω (initial conditions) (2b)

(FΓj(U)nj)|(x,t) = (BΓjnj)|(x,t) specified on ∂ΩΓ (boundary conditions), (2c)

where Ω is a fixed domain in R3 with boundary ∂Ω ⊃
⋃

Γ ∂ΩΓ , upper-case Greek indices index the number
of equations involved, after conversion to first-order form when needed. Here, C is an N∗ ×N matrix, F , G
are given functions of their argument, and U (0), B are specified functions.

It can be shown that nonlinear elastostatics, elastodynamics, (in)compressible Euler and Navier Stokes
can all be written in this form. In this work, we will explicitly consider the cases of classical rate-dependent
and rate-independent single crystal plasticity, the latter furnishing a concrete setting for considering in-
equality constraints, converted to equalities by the addition of slack variables. As an example, consider the
equations of nonlinear elastostatics given by

∂jP̂ij(F ) = 0 in Ω (3a)

∂jyi − Fij = 0 in Ω (3b)

P̂ijnj = pi on ∂Ωp ; yi = y
(b)
i on ∂Ωy (3c)

where P̂ is the First Piola-Kirchhoff stress response function. Let (y1, y2, y3) form the first three components
of the array U . The conversion to first-order form (so that the Lagrangian LH that appears subsequently
in (6) contains no derivatives in the primal variables) requires the addition of nine more primal variables F
(3b). These additional nine relations can be written in the form

AΓIj∂jUI − BΓIUI = 0, Γ = 4, . . . 12, (4)
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where A,B are constant matrices (with B diagonal in many cases) that define the augmentation of the primal
list from (y) to (y, F ), and define the augmenting primal variables as, in general, linear combinations of the
partial derivatives of components of U . The equation set (4) can be expressed in the form (2a), and we note,
for the convenience of the reader, that the arrays B and B are not the same.

Boundary conditions are best considered on a specific case-by-case basis. It is shown in Appendix B how
Dirichlet boundary conditions can be accommodated within the setup (2).

Define the pre-dual functional by forming the scalar products of (2a) with the dual fields D, integrating
by parts, substituting the prescribed initial and boundary conditions (ignoring, for now, space-time boundary
contributions that are not specified) and adding a potential H as shown:

ŜH [U,D] =

∫
Ω

∫ T

0

(
−CΓI∂jUI∂tDΓ −FΓj

∣∣
U
∂jDΓ +GΓ

∣∣
(U,x,t)

DΓ +H(U, x, t)
)
dxdt

−
∫
Ω

CΓIU
(0)
I (x)D(x, 0) dx+

∑
Γ

∫
∂ΩΓ

∫ T

0

BΓj DΓ nj dadt,

(5)

(where the arguments (x, t) are suppressed except to display the explicit dependence of G,H and in the
initial condition).

Define
D := (∂tD,∇D,D)

LH(U,D, x, t) := −CΓIUI∂tDΓ −FΓj

∣∣
U
∂jDΓ +GΓ (U, x, t)DΓ +H(U, x, t)

(6)

and require the choice of the potential H to be such that it facilitates the existence of a function

U = U (H)(D, x, t)

which satisfies
∂LH

∂U

(
U (H)(D, x, t),D, x, t

)
= 0 ∀ (D, x, t). (7)

When such a dual-to-primal (DtP) ‘change of variables’ mapping, U (H), exists, defining the dual functional
as

SH [D] := ŜH

[
U (H), D

]
=

∫
Ω

∫ T

0

LH

(
U (H)(D, x, t),D, x, t

)
dxdt−

∫
Ω

CΓIU
(0)
I (x)DΓ (x, 0) dx+

∑
Γ

∫
∂ΩΓ

∫ T

0

BΓj DΓ nj dadt,

with D specified (arbitrarily) on parts of the space-time domain boundary complementary to those

that appear explicitly above,

and noting (7), the first variation of SH (about a state (x, t) 7→ D(x, t) in the direction δD, the latter
constrained to vanish on parts of the boundary where D is specified), is given by

δSH

∣∣∣∣
δD

[D] =

∫
Ω

∫
T

0

∂LH

∂D

(
U (H)(D, x, t),D, x, t

)
· δD dxdt−

∫
Ω

CΓIU
(0)
I (x)δDΓ (x, 0) dx

+
∑
Γ

∫
∂ΩΓ

∫ T

0

BΓj δDΓ nj dadt.

Noting, now, that LH is necessarily affine in D, its second argument, it can be checked that the Euler-
Lagrange (E-L) equations and natural boundary conditions of the dual functional SH are exactly the system
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(2a) with U substituted by U (H)(D|(x,·), x, ·); the first variation is explicitly given as

δSH

∣∣∣
δD

[D] =∫
Ω

∫ T

0

(
∂t

(
CΓIU

(H)
I

∣∣∣
(D|(x,t),x,t)

)
+ ∂jFΓj

(
U (H)

∣∣∣
(D|(x,t),x,t)

)
+GΓ

(
U (H)

∣∣∣
(D|(x,t),x,t)

, x, t

))
δDΓ (x, t) dxdt

+
∑
Γ

∫
ΩΓ

∫ T

0

(
BΓj(x, t)−FΓj

(
U (H)

∣∣∣
(D|(x,t),x,t)

))
nj(x, t)δDΓ (x, t) dadt

+

∫
Ω

CΓI

(
U

(H)
I

∣∣∣
(D|(x,0),x,0)

− U
(0)
I (x)

)
δD(x, 0) dx.

It is this simple idea that we exploit to develop variational principles for a class of models from continuum
mechanics.

It is an important consistency check of our scheme that considering the potential H of the form

H(U, x, t) =
1

2
aU
∣∣U − Ū(x, t)

∣∣2 + 1

p
bU
∣∣U − Ū(x, t)

∣∣p , (8)

where aU , bU are positive constants, typically large, with p > 2 tailored to the nonlinearities present in the
functions F , G, and for (x, t) 7→ Ū(x, t) an arbitrarily specified function,

∂L
∂UI

= −CΓI∂tDΓ − ∂FΓj

∂UI
∂jDΓ +

∂GΓ

∂UI
DΓ +

(
aU + bU

∣∣U − Ū
∣∣p−2

) (
UI − ŪI

)
= 0 (9)

is solved,

for D(x, t) := (∂tD(x, t),∇D(x, t), D(x, t)) = (0, 0, 0), by U (H)(D(x, t), x, t) = Ū(x, t).

If we now choose Ū as a solution to the primal problem (2), then a (smooth) solution exists to the E-L
equations of the dual problem given by (x, t) 7→ D(x, t) = 0. This is an existence result for our dual problem.
As well, it shows that all solutions to the primal problem can be recovered by the dual scheme by a family
of appropriately designed dual problems.

Of course, it is the goal of our strategy to design and use specific H’s, without the knowledge of exact
solutions to the primal problem, as a selection criterion to recover special sets of (possibly unstable) solutions
of the primal problem in a ‘stable’ manner by solving the dual problem. We note that there are examples in
continuum mechanics, e.g. nonconvex elastostatics in 1-d, where an unstable solution (or critical point) of a
primal energy functional is actually the limit of an energy minimizing sequence, which is then recovered as
a minima of a relaxed primal problem.

Another important point to note is that the dual E-L equations corresponding to primal initial -(boundary)-
value problems contain second order time derivatives in the dual variables, after conversion of the primal
system to first-order form; this can be understood by considering the form of the DtP mapping (9) and the
primal system (2a). This generally requires two ‘boundary’ conditions in the time-like direction on such
variables, when at most, only one is available from the primal problem. This raises the question of how the
second condition ought to be specified and what effect it has on the recovery of the correct primal solution,
especially when the primal system has a unique solution as an initial-value problem. It turns out that a
final time boundary condition can be arbitrarily specified on the dual variables and this does not have an
effect on the recovery of correct primal solutions as the DtP mapping, for standard initial value problems,
necessarily depends on ∂tD, see e.g. (9), and specifying D at the final time leaves the time derivative free to
adjust to the demands of achieving the required primal solution through the DtP mapping. This fact has
been discussed and demonstrated in specific contexts in [Ach22b, Sec. 7] and [KA23].

3 Local degenerate ellipticity of the dual formulation of contin-
uum mechanics

For this section, let Greek lower-case indices belong to the set {0, 1, 2, 3} representing Rectangular Cartesian
space-time coordinates xα, α = 0, 1, 2, 3; 0 represents the time coordinate when the PDE is time-dependent.
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Let upper-case Latin indices belong to the set {1, 2, 3, · · · , N}, indexing the components of the N × 1 array
of primal variables, U , with, possibly, a conversion to first-order form as necessary. Now consider the system
of primal PDE

∂α(FΓα(U)) +GΓ (U, x) = 0, Γ = 1, . . . , N∗ (10)

where upper-case Greek indices index the number of equations involved, after conversion to first-order form
when needed.

We assume that the functions U 7→ ∂2FΓ

∂UP ∂UR
(U) and U 7→ ∂2GΓ

∂UP ∂UR
(U) are bounded functions on their

domains.
Let D be the N∗×1 array of dual fields and, as earlier, let us consider a shifted quadratic for the potential

H, characterized by a diagonal matrix [akj ] with constant positive diagonal entries so that the Lagrangian
takes the form (with H chosen as a quadratic form for simplicity of presentation)

L(U,D,∇D, Ū) := −FΓα(U)∂αDΓ +DΓGΓ (U) +
1

2
(Uk − Ūk)akj(Uj − Ūj).

Then the corresponding DtP mapping, obtained by ‘solving ∂L
∂U = 0 for U in terms of (∇D,D, Ū),’ is given

by the implicit equation

U
(Q)
J (∇D,D, Ū) = ŪJ + (a−1)JK

(
∂FΓα

∂UK

∣∣∣∣
U(Q)(∇D,D,Ū)

∂αDΓ −DΓ
∂GΓ

∂UK

∣∣∣∣
U(Q)(∇D,D,Ū)

)
. (11)

It is a fundamental property of the dual scheme that the dual E-L equation is then given by

∂α

(
FΓα

(
U(∇D,D, Ū))

)
+GΓ (U(∇D,D, Ū)) = 0 (12)

(where we have dropped the superscript (Q) for notational convenience), whose ellipticity is governed by the
term

AΓαΠµ(∇D,D, Ū) :=
∂FΓα

∂UP

∣∣∣∣
U(∇D,D,Ū)

∂UP

∂(∇D)Πµ

∣∣∣∣
U(∇D,D,Ū)

.

From (11) we have

a−1
PR

(
δΓΠδµα

∂FΓα

∂UR
+ ∂αDΓ

∂2FΓα

∂UR∂US

∂US

∂(∇D)Πµ
−DΓ

∂2GΓ

∂UR∂US

∂US

∂(∇D)Πµ

)
=

∂UP

∂(∇D)Πµ

=⇒
(
δPS − a−1

PR∂αDΓ
∂2FΓα

∂UR∂US
+ a−1

PRDΓ
∂2GΓ

∂UR∂US

)
∂US

∂(∇D)Πµ
= a−1

PR

∂FΠµ

∂UR
,

and so

AΓαΠµ(0, 0, Ū) =
∂FΓα

∂UP

∣∣∣∣
Ū

a−1
PR

∂FΠµ

∂UR

∣∣∣∣
Ū

,

which is positive semi-definite on the space of N∗ × 3 (or N∗ × 4) matrices. This establishes the degenerate
ellipticity of the dual system at the state x 7→ D(x) = 0.

To examine the ellipticity-related properties of the system in a bounded neighborhood, say N , of (D =
0,∇D = 0) ∈ RN∗ × RN∗×ᾱ, ᾱ = 3, 4, we define

MPS := δPS − a−1
PR

(
∂αDΓ

∂2FΓα

∂UR∂US
−DΓ

∂2GΓ

∂UR∂US

)
,

and note that
∂UP

∂(∇D)Πµ
= M−1

PQa
−1
QR

∂FΠµ

∂UR
,

where M−1 exists and is positive definite by the boundedness of N and the second derivatives of the functions
F and GΓ , along with an appropriately large choice of the elements of the diagonal matrix [aij ] (in case the
second-derivatives are not bounded in some regions of the domain of primal variables we assume that the
functions are such that the positive-definiteness of M is maintained. Alternatively, the choice of H can be
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enhanced (as, e.g. in (8)) to dominate the growth of the second derivatives, catering to the specifics of the
second-derivative functions in any particular problem).

The degenerate ellipticity or ‘convexity’ of the system (10) in the neighborhood N is now defined as the
positive semi-definiteness of the matrix A on the space RN∗×ᾱ of matrices, and this in turn is governed by
the matrix

A(sym)
ΓαΠµ

∣∣∣∣
(∇D,D,Ū)

=
∂FΓα

∂UP

∣∣∣∣
U(∇D,D,Ū)

1

2

(
M−1

PQ

∣∣∣∣
U(∇D,D,Ū)

a−1
QR +M−1

RQ

∣∣∣∣
U(∇D,D,Ū)

a−1
QP

)
∂FΠµ

∂UR

∣∣∣∣
U(∇D,D,Ū)

.

By the positive definiteness of the matrix [MPS ] in the neighborhood N , it follows that

ξΓα A(sym)
ΓαΠµ

∣∣∣∣
(∇D,D,Ū)

ξΠµ ≥ 0 ∀ (D,∇D) ∈ N , ξ ∈ RN∗×ᾱ

which establishes a ‘local’ degenerate ellipticity of the system (10). We note that degenerate ellipticity is
stronger than the Legendre-Hadamard condition given by the requirement of positive semi-definiteness of
A on the space of tensor products from RN∗ ⊗ Rᾱ, and not directly comparable to the strong-ellipticity
condition, since it is weaker than the latter when restricted to the space RN∗ ⊗ Rᾱ but simultaneously
requiring semi-definiteness on the larger space of RN∗×ᾱ. Also of note is that degenerate ellipticity does not
preclude the failure of ellipticity characterized by the condition det[AΓαΠµnαnµ] ̸= 0 for all unit direction
n ∈ Rᾱ, ᾱ = 3 or 4, thus allowing for weak (gradient) discontinuities of weak solutions x 7→ D(x) of (12) (or
at least its linearized counterpart), a feature that is important for recovering discontinuous solutions of the
primal problem (e.g. inviscid Burgers) expressed as combinations of derivatives of the dual fields through
the DtP mapping as, e.g., demonstrated in the context of the linear transport equation in [KA23].

If a solution of the primal system is close to the base state Ū , then it seems natural to expect, due to this
local degenerate ellipticity, that such a solution can be obtained in a ‘stable’ manner by the dual formulation
designed by the choice of the auxiliary potential H as a shifted quadratic (or ‘power law’) about the base state
Ū , for instance by an iterative scheme starting from a guess (D = 0, U = Ū).

Our experience [KA23, SGA24, KA24, Aro23] shows that this observation is of great practical relevance
in using the dual scheme, and we consistently exploit it in all our computational approximations.

To make contact with the parlance of the classical ‘rate problems’ of Hill [Hil57, Hil56, Hil79], degenerate
ellipticity here corresponds to the absence of negative ‘energy’ modes of the linearized, or ‘incremental/rate,’
dual problem at dual states whose corresponding primal state, obtained via the DtP mapping, may well entail
a loss of positive-semi-definiteness of the physical incremental moduli on the space of dyads a⊗n (a, n ∈ R3)
in the primal rate problem under quasi-static conditions.

Furthermore, by a theorem of Ball [Bal76] and in the context of nonlinear hyperelasticity as the primal
problem, quasiconvexity implies the Legendre-Hadamard condition (for the primal problem) so that it is
possible that the dual problem remains degenerate elliptic/convex, even when the primal problem is not
quasiconvex.

4 A variational principle for rate-dependent, dynamic, single crys-
tal plasticity

We follow the scheme described in Sec. 2 to develop the required variational principle. The specifics of
rate-dependent single crystal plasticity theory can be found in the expositions of [Hut76, Asa83].

Let Ω ⊂ R3 be a given, fixed reference configuration with all spatial derivatives below being w.r.t rectan-
gular Cartesian coordinates parametrizing this reference, and partial derivatives w.r.t time, t, representing
material time derivatives, also alternatively written with a superposed dot. The interval [0, T ] is fixed, but
chosen arbitrarily. Lowercase Greek (super)subscripts refer to numbering of slip systems. We consider the

7



following set of equations on Ω:

ρ0v̇ − ∂jNij(F, P ) = 0

Ṗij −
∑
α

(
rα(F, P, g)mα

i n
α
k

)
Pkj = 0

ġα − hαβ(g) r
β(F, P, g) = 0

ẏi − vi = 0

∂jyi − Fij = 0,

(13)

with the boundary conditions

Nij(F, P )
∣∣
(x,t)

nj

∣∣
x
= t̄i(x, t), x ∈ ∂Ωt̄; yi(x, t) = y

(b)
i (x, t), x ∈ ∂Ωy, (14)

and initial conditions

yi(x, 0) = y
(0)
i (x), vi(x, 0) = v

(0)
i (x), Pij(x, 0) = P

(0)
ij (x), gα(x, 0) = gα(0)(x), x ∈ Ω. (15)

In the above, ρ0 is a given mass density field on the reference configuration, N is the response function
for the first Piola-Kirchhoff stress w.r.t. the reference configuration, y, v, F are the position, velocity, and
deformation gradient fields, respectively, P is the plastic distortion tensor, rα are response functions for the
slip system rates (e.g., the power law [Hut76] or the Perzyna overstress model [Per66]), (mα, nα) are the
elastically unstretched slip direction and slip normal vectors, gα are the strengths, and hαβ are the hardening
matrix response functions [Hil66]. All quantities indexed by α refer to an object corresponding to the αth

slip system. The functions t̄, y(b), y(0), v(0), P (0), gα(0) are prescribed.
Now define the array of primal fields

U = (y, v, F, P, g),

the dual fields
D = (ξ, γ, Φ,Π, Γ ),

and assume the potential H to be of the form

H(y, v, F, P, g, x, t) =

1

2

(
ay

∣∣∣y − ȳ|(x,t)
∣∣∣2 + av

∣∣∣v − v̄|(x,t)
∣∣∣2 + aF

∣∣∣F − F̄ |(x,t)
∣∣∣2 + aP

∣∣∣P − P̄ |(x,t)
∣∣∣2 + ag

∣∣∣g − ḡ|(x,t)
∣∣∣2)

+
1

p

(
bF
∣∣F − F̄ |(x,t)

∣∣∣p + bP

∣∣∣P − P̄ |(x,t)
∣∣∣p + bg

∣∣∣g − ḡ|(x,t)
∣∣∣p) ,

for p > 2 as needed.
Here, the base states, the collection of space-time fields with overhead bars, are arbitrarily specified, with

their closeness to an actual solution of the primal problem resulting in a better design of the variational
principle.

The introduction of the power p is simply to ensure strict convexity of the ensuing Lagrangian LH in
the primal variables U for each fixed set of values of (D, x, t), which in turn is closely dictated by the
nonlinearities of the primal problem. The non-negative real-valued constants a(·), b(·) are chosen arbitrarily,
typically large, when non-zero, to facilitate the strict convexity of LH that appears below. Clearly, there is
a great deal of freedom in making the choices of H; e.g., the power p in the specific choice above does not
even have to be the same on each of the terms.
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We now define the pre-dual functional

Ŝ[U,D] =

∫
Ω

∫ T

0

LH(U,D, x, t) dxdt+ inital and boundary contributions

:=

∫
Ω

∫ T

0

−ρ0vi∂tγi +Nij

∣∣
(F,P )

∂jγi − Pij∂tΠij −Πij

∑
α

rα
∣∣
(F,P,g)

mα
i n

α
kPkj dxdt

−
∫
Ω

ρ0v
(0)
i (x)γi(x, 0) + P

(0)
ij (x)Πij(x, 0) dx−

∫
∂Ωt̄

∫ T

0

t̄iγi dadt

−
∫
Ω

∫ T

0

gα∂tΓ
α + Γαhαβ

∣∣
g
rβ
∣∣
(F,P,g)

+ yi∂tξi + ξivi + yi∂jΦij + ΦijFij dxdt

−
∫
Ω

gα(0)(x)Γα(x, 0) + y
(0)
i (x)ξi(x, 0) dx+

∫
∂Ωy

∫ T

0

y
(b)
i Φijnj dadt

+

∫
Ω

∫ T

0

H(y, v, F, P, g, x, t) dxdt,

(16)

where the array D is defined as

D = (∂tγ,∇γ, ∂tΠ,Π, ∂tΓ, Γ, ∂tξ, ξ, div Φ, Φ).

In order to define the function U (H) we need to consider the (x, t)-pointwise equations for U (H) for the given
values (D(x, t), Ū(x, t)) (we will drop the superscript (H) for notational convenience):

∂LH

∂yi
: −∂tξi − ∂jΦij + ay (yi − ȳi) = 0

∂LH

∂vi
: −ρ0∂tγi − ξi + av (vi − v̄i) = 0

∂LH

∂Fij
: ∂lγk

∂Nkl

∂Fij

∣∣∣∣
(F,P )

−Πrs

∑
α

∂rα

∂Fij

∣∣∣∣
(F,P,g)

mα
r n

α
kPks

− Γαhαβ |g
∂rβ

∂Fij

∣∣∣∣
(F,P,g)

− Φij +
(
aF + bF

∣∣F − F̄
∣∣p−2

) (
Fij − F̄ij

)
= 0

∂LH

∂Prs
: ∂lγk

∂Nkl

∂Prs

∣∣∣∣
(F,P )

− ∂tΠrs −Πij

∑
α

∂rα

∂Prs

∣∣∣∣
(F,P,g)

mα
i n

α
kPkj

−Πis

∑
α

rα|(F,P,g)m
α
i n

α
r − Γαhαβ |g

∂rβ

∂Prs

∣∣∣∣
(F,P,g)

+
(
aP + bP

∣∣P − P̄
∣∣p−2

) (
Pij − P̄ij

)
= 0

∂LH

∂gα
: −Πij

∑
κ

∂rκ

∂gα

∣∣∣∣
(F,P,g)

mκ
i n

κ
kPkj − ∂tΓ

α − Γκhκβ |g
∂rβ

∂gα

∣∣∣∣
(F,P,g)

+
(
ag + bg |g − ḡ|p−2

)
(gα − ḡα) = 0.

By making suitable choices for the various constants appearing in H, the expectation is that LH can be
made strictly convex in U (H) so that a (unique) solution for U (H) exists and can be solved by standard
techniques without difficulty at (almost) every point of the domain.

We now define a dual functional for dynamic rate-dependent, single crystal plasticity as

S[D] = Ŝ
[
U (H), D

]
interpreted as replacing all occurrences of U in the right-hand-side of (16) by U (H)

(
D, Ū(x, t)

)
subject to

the following essential ‘boundary conditions’ on parts of the space-time domain boundary given by B :=
(∂Ω × (0, T )) ∪ (Ω × {0, T}):

(arbitrarily) specified γ on B\( (∂Ωt̄ × (0, T )) ∪ (Ω × {0}) ) and Φ on B\(∂Ωy × (0, T )) and

(arbitrarily) specified Π,Γ, ξ on B\(Ω × {0}).

The Euler-Lagrange equations and the natural boundary conditions of S are the equations (13)-(14)-(15),
with the replacement U → U (H)

(
D, Ū(x, t)

)
.
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5 A variational principle for rate-independent, quasi-static, single
crystal plasticity

The specifics of rate-independent single crystal plasticity theory may be found in the expositions [Hav92,
Bas93].

In this section, the summation convention is not used on lower-case Greek indices which index the slip
systems. We consider the following set of equations on a fixed reference Ω ⊂ R3:

∂jNij(F, P ) = 0

Ṗij −
∑
α

(
rα mα

i n
α
k

)
Pkj = 0

ġα −
∑
β

hαβ(g) r
β(F, P, g) = 0

∂jyi − Fij = 0

Y α(F, P, g) + s2α = 0

rαY α = 0

rα − p2α = 0,

(17)

with the boundary conditions

Nij(F, P )
∣∣
(x,t)

nj

∣∣
x
= t̄i(x, t), x ∈ ∂Ωt̄; yi(x, t) = y

(b)
i (x, t), x ∈ ∂Ωy, (18)

and initial conditions
Pij(x, 0) = P

(0)
ij (x), gα(x, 0) = gα(0)(x), x ∈ Ω. (19)

In the above, N is the response function for the first Piola-Kirchhoff stress w.r.t. the reference configuration,
y, F are the position and deformation gradient fields, respectively, P is the plastic distortion tensor, rα

is a slip-rate, (mα, nα) are the unstretched slip direction and slip normal vectors, gα is a strength, hαβ

are the hardening matrix response functions, Y α is an yield response function (the canonical example being
Y α = τα−gα, where τα is the resolved shear stress on the slip system α given by τα = (F emα)iTij(F

e−Tnα)j
where F e := FP−1 is the elastic distortion, and T = (detF )−1NFT is the Cauchy stress tensor), and sα, pα
are slack variables. All quantities indexed by α refer to an object corresponding to the αth slip system. The
slack variables enable the imposition of the inequalities

Y α ≤ 0; rα ≥ 0.

The functions t̄, y(b), P (0), gα(0) are prescribed.
Now define the array of primal fields

U = (y, F, P, g, r, s, p),

the dual fields
D = (γ, Φ,Π, Γ, µ, ρ, ν),

and assume the potential H to be of the form

H(y, v, F, P, g, r, s, p, x, t) =

1

2

(
ay

∣∣∣y − ȳ|(x,t)
∣∣∣2 + aF

∣∣∣F − F̄ |(x,t)
∣∣∣2 + aP

∣∣∣P − P̄ |(x,t)
∣∣∣2 + ag

∣∣∣g − ḡ|(x,t)
∣∣∣2)

+
1

2

(
ar
∣∣r − r̄|(x,t)

∣∣2 + as
∣∣s− s̄|(x,t)

∣∣2 + ap
∣∣p− p̄|(x,t)

∣∣2)
+

1

p

(
bF

∣∣∣F − F̄ |(x,t)
∣∣∣p + bP

∣∣∣P − P̄ |(x,t)
∣∣∣p + bg

∣∣∣g − ḡ|(x,t)
∣∣∣p) ,

10



for p > 2 as needed, with the same understanding operative for base states and the various constants that
appear as in the previous Section 4.

We now define the pre-dual functional

Ŝ[U,D] =

∫
Ω

∫ T

0

LH(U,D, x, t) dxdt+ inital and boundary contributions

:=

∫
Ω

∫ T

0

−Nij

∣∣
(F,P )

∂jγi − Pij∂tΠij −Πij

∑
α

rα mα
i n

α
kPkj dxdt

−
∫
Ω

P
(0)
ij (x)Πij(x, 0) dx+

∫
∂Ωt̄

∫ T

0

t̄iγi dadt+

∫
∂Ωy

∫ T

0

y
(b)
i Φijnj dadt

−
∫
Ω

∫ T

0

yi∂jΦij + ΦijFij +
∑
α

gα∂tΓ
α +

∑
α

∑
β

Γαhαβ

∣∣
g
rβ dxdt

+

∫
Ω

∫ T

0

∑
α

(
ραY α

∣∣
(F,P,g)

+ ραs2α + rαY α
∣∣
(F,P,g)

µα + rανα − ναp2α

)
dxdt

−
∫
Ω

gα(0)(x)Γα(x, 0) dx

+

∫
Ω

∫ T

0

H(y, v, F, P, g, r, s, p, x, t) dxdt,

(20)

where the array D is defined as

D = (∇γ, ∂tΠ,Π, div Φ, Φ, ρ, µ, ν, ∂tΓ, Γ ).

In order to define the function U (H) we need to consider the following (x, t)-pointwise equations for U (H) for
the given values (D(x, t), Ū(x, t)) (we will drop the superscript (H) for notational convenience):

∂LH

∂yi
: −∂jΦij + ay (yi − ȳi) = 0

∂LH

∂Frs
: −∂jγi

∂Nij

∂Frs

∣∣∣∣
(F,P )

− Φij +
∑
α

(ρα + rαµα)
∂Y α

∂Frs

∣∣∣∣
(F,P,g)

+
(
aF + bF

∣∣F − F̄
∣∣p−2

) (
Frs − F̄rs

)
= 0

∂LH

∂Prs
: −∂lγk

∂Nkl

∂Prs

∣∣∣∣
(F,P )

− ∂tΠrs −Πis

∑
α

rαmα
i n

α
r +

∑
α

(ρα + rαµα)
∂Y α

∂Prs

∣∣∣∣
(F,P,g)

+
(
aP + bP

∣∣P − P̄
∣∣p−2

) (
Prs − P̄rs

)
= 0

∂LH

∂gµ
:

∑
α

(ρα + rαµα)
∂Y α

∂gµ

∣∣∣∣
(F,P,g)

− ∂tΓ
µ −

∑
α

∑
β

Γα ∂hαβ

∂gµ

∣∣∣∣
g

rβ +
(
ag + bg |g − ḡ|p−2

)
(gµ − ḡµ) = 0

∂LH

∂rα
: −Πijm

α
i n

α
kPkj + Y α

∣∣
(F,P,g)

µα + να −
∑
κ

Γκhκα

∣∣
g
+ ar(r

α − r̄α) = 0

∂LH

∂sα
: 2sαρ

α + as(s
α − s̄α) = 0

∂LH

∂pα
: −2pαν

α + ap(p
α − p̄α) = 0.

Again, by making suitable choices for the various constants appearing in H, LH can be made strictly convex
in U (H) so that a (unique) solution for U (H) exists and can be solved by standard techniques without difficulty
at (almost) every point of the domain.

We now define a dual functional for quasi-static, rate-dependent, single crystal plasticity as

S[D] = Ŝ
[
U (H), D

]
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interpreted as replacing all occurrences of U in the right-hand-side of (20) by U (H)
(
D, Ū(x, t)

)
subject to

the following essential ‘boundary conditions’ on parts of the space-time domain boundary given by B :=
(∂Ω × (0, T )) ∪ (Ω × {0, T}):

(arbitrarily) specified γ on B\( (∂Ωt̄ × (0, T )) ∪ (Ω × {0}) ) and Φ on B\(∂Ωy × (0, T )) and

(arbitrarily) specified Π,Γ on B\(Ω × {0}).

The Euler-Lagrange equations and the natural boundary conditions of S are the equations (17)-(18)-(19),
with the replacement U → U (H)

(
D, Ū(x, t)

)
.

6 Concluding remarks and outlook

A formal scheme for developing variational principles for systems of nonlinear partial differential equations
arising in continuum mechanics has been proposed. It is based on the realization that such a system
of equations may be viewed as an ‘invariant’ or a ‘symmetry’ of a family of dual variational principles
parametrized by a set of scalar potentials of the primal variables, the parametrization acting as the symmetry
operation, and the invariant being the Euler-Lagrange equations of any of the variational principles in that
family.

The scheme appears to be best suited for problems which are difficult to solve in the ‘primal’ setting, be
it due to lack of existence of solutions as defined by extant strategies, uniqueness, or stability, cf. [Aro23,
SGA24], and not meant as a competitor for problems that are solved robustly by existing techniques for
the primal problem. It offers the possibility of defining the notion of a very weak solution of the primal
problem as the solution to the dual variational problem, which with enough regularity, defines a genuine
weak solution of the primal PDE system. This can be useful, as nonlinear PDE systems are generally much
harder to solve than a variational minimization/maximization problem. The Euler-Lagrange equations of the
dual problem have a certain degenerate ellipticity, and knowledge of ‘base states’ close to desired solutions
can be incorporated in the scheme without approximation; these two features combined together help in
obtaining (un)stable solutions of the primal problem in a stable way within the dual formulation - a case
study is provided in [SGA24]. Degenerate ellipticity by itself is not a very strong property (depending on
taste, e.g. when compared to strong ellipticity or strict convexity when physically natural), but does take on
significance when the primal PDE system loses ellipticity (along with becoming indefinite) or hyperbolicity.

As a (non-rigorous) sketch of how our scheme may have the potential of achieving the above objec-
tive, consider the case of nonlinear hyperelasticity without higher-order regularization. The dominant (and,
perhaps, only) strategy available [Bal76] is to declare minimizers of the elastic energy as solutions to the
problem. It is well-understood that, more or less, quasiconvexity of the functional (along with some coerciv-
ity) is equivalent to the existence of minimizers. As laid out in many works, quasiconvexity is hard to check,
and it is known to fail for many physical energy functionals whose limits of energy minimizing sequences
have no status as minimizers of such energy functionals due to the lack of lower semicontinuity. Juxtaposing
the present scheme with this approach, it seeks to define some notion of a solution to the PDE of elasto-
statics given an elastic stress response function (a system that may be the formal Euler-Lagrange equations
of the physical energy functional) thus ‘severing’ the link with looking for minimizers of the physical energy
functional and hence its quasiconvexity - and produces a convex variational principle on the dual side, whose
critical points and minimizers can nevertheless be sought and, with sufficient regularity in them and the DtP
mapping, be deemed as solutions to the PDE of elastostatics - such solutions, of course, need not have a
connection to being minimizers of the primal energy functional. Perhaps more importantly, even when the
regularity-related steps cannot be carried through, the obtained critical points of the dual problem can be
declared as some sort of very weak solutions of the primal PDE system, because of their consistency with
the primal problem in the presence of regularity. These steps have been carried out in [SGA24].

The formalism has been used in this paper to present variational principles for a class of single crystal
plasticity problems which demonstrate its relevance to the theory of generally non-associated, multi-surface
plasticity. A particular spin-off of the approach is a potentially robust technique [Ach23, Sec. 2] for computing
solutions for non-monotone systems of nonlinear algebraic equations that are not, in the first instance,
the gradients of a scalar objective, as can arise in the local material update of classical plasticity models.
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In these situations, the dual scheme always produces symmetric Jacobians and, as is well-appreciated in
computational plasticity circles, this is of practical significance.

From the perspective of robust computation of approximate solutions of the scheme, the ‘universal’ de-
generate ellipticity of the scheme appears to make it particularly suitable for the application of Discontinuous
Galerkin methods for elliptic problems [ABCM00].

In closing, we mention that the ideas presented herein have strong links to modern mathematical thinking
on Hidden Convexity in PDE advanced in [Bre18, Bre20] (with the terminology of ‘Hidden Convexity’ credited
by Brenier to L. C. Evans), and appear to be also related to the recent work [Roc23] on Hidden Convexity
in Augmented Lagrangian techniques.

Appendices

A Simple examples of the formalism and a conceptual outline

A.1 An optimization problem for an algebraic system of equations

This section is excerpted from [Ach23].
Consider a generally nonlinear system of algebraic equations in the variables x ∈ Rn given by

Aα(x) = 0, (21)

where A : Rn → RN is a given function (a simple example would be Aα(x) = Āαi x
i − bα, α = 1 . . . N, i =

1 . . . n, where Ā is a constant matrix, not necessarily symmetric (when n = N), and b is a constant vector).

We allow for all possibilities 0 < n ⪋ N > 0.

The goal is to construct an objective function whose critical points solve the system (21) (when a solution
exists) by defining an appropriate x∗ ∈ Rn satisfying Aα(x

∗) = 0.
For this, consider first the auxiliary function

ŜH(x, z) = zαAα(x) +H(x)

(where H belongs to a class of scalar-valued function to be defined shortly) and define

SH(z) = zαAα(xH(z)) +H(xH(z))

with the requirement that the system of equations

zα
∂Aα

∂xi
(x) +

∂H

∂xi
(x) = 0 (22)

be solvable for the function x = xH(z) through the choice of H, and any function H that facilitates such a
solution qualifies for the proposed scheme.

In other words, given a specific H, it should be possible to define a function xH(z) that satisfies

zα∂xiAα(xH(z)) + ∂xiH(xH(z)) = 0 ∀z ∈ RN

(the domain of the function xH may accommodate more intricacies, but for now we stick to the simplest
possibility). Note that (22) is a set of n equations in n unknowns regardless of N (z for this argument is a
parameter).

Assuming this is possible, we have

∂SH

∂zβ
(z) = Aβ(xH(z)) +

(
zα

∂Aα

∂xi
(xH(z)) +

∂H

∂xi
(xH(z))

)
∂xi

H

∂zβ
(z) = Aβ(xH(z)),

using (22). Thus,

• if z0 is a critical point of the objective function SH satisfying ∂zβSH(z0) = 0, then the system Aα(x) = 0
has a solution defined by xH(z0);
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x2 + y2 = 1

Figure 1: Schematic of Circle-line intersection.

• if the system Aα(x) = 0 has a unique solution, say y, and if zH0 is any critical point of SH , then
xH

(
zH0
)
= y, for all admissible H.

• If Aα(x) = 0 has non-unique solutions, but ∂zβS(z) = 0 (N equations in N unknowns) has a unique
solution for a specific choice of the function z 7→ xH(z) related to a choice of H, then such a choice of
H may be considered a selection criterion for imparting uniqueness to the problem Aα(x) = 0.

• Finally, to see the difference of this approach with the Least-Squares (LS) Method, we note that the
optimality condition for the objective Aα(x)Aα(x) is Aα(x)∂xiAα(x) = 0 ≠⇒ Aα(x) = 0.

For a linear system Āx = b, the LS governing equations are given by

ĀT Āz = ĀT b,

with LS solution defined as z even when the original problem Āx = b does not have a solution (i.e.,
when b is not in the column space of Ā). The LS problem always has a solution, of course. In contrast,
in the present duality-based approach with quadratic H(x) = 1

2x
Tx the governing equation is

−ĀĀT z = b

with solution to Āx = b given by x = −ĀT z, and the problem has a solution only when Āx = b has a
solution, since the column spaces of the matrices Ā and ĀĀT are identical.

A.2 Application of base states: a simple example

This section is excerpted from [KA24].
Consider the following algebraic system of equations for (x, y) ∈ R2, α ∈ R:

x2 + y2 = 1

x = α.
(23)

A schematic is shown in Fig. 1, and solutions are given by {(α,±
√
1− α2) : |α| ≤ 1}. We use the logic of

Appendix A.1 to multiply each of the above equations by a dual multiplier and add a quadratic auxiliary
potential H:

Ŝ(x, y, λ, γ) = λ(x2 + y2 − 1) + γ(x− α) +
1

2
(x− x̄)2 +

1

2
(y − ȳ)2,

where x̄, ȳ ∈ R are constants (in this algebraic problem), and we will refer to the pair as a ‘base state.’ Next
we need to generate the analog of the mapping function xH of Appendix A.1, also referred to as the DtP
mapping in the text:

∂S

∂x
= 0 : 2λx+ γ + (x− x̄) = 0 ⇒ for λ ̸= −1

2
, xH(λ, γ) =

x̄− γ

2λ+ 1
;

∂S

∂y
= 0 : 2λy + (y − ȳ) = 0 ⇒ for λ ̸= −1

2
, yH(λ) =

ȳ

2λ+ 1
.

(24)
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λ ̸= −1
2
: Considering only the case λ ̸= − 1

2 for the moment, the dual objective function is now obtained

by substituting the DtP mapping into Ŝ:

S(λ, γ) = λ
(
x2
H(λ, γ) + y2H(λ, γ)− 1

)
+ γ (xH(λ, γ)− α) +

1

2
(xH(λ, γ)− x̄)

2
+

1

2
(yH(λ, γ)− ȳ)

2
.

The critical point equations for this objective, by design, are the equations (23) with the substitution
(x → xH , y → yH):

(x̄− γ)2

(2λ+ 1)2
+

ȳ2

(2λ+ 1)2
= 1

x̄− γ

2λ+ 1
= α.

A necessary condition for solutions is

(2λ+ 1)2(1− α2)− ȳ2 = 0

which implies that dual solutions exist only for |α| ≤ 1 and when |α| = 1 only if ȳ = 0.
Thus, for |α| < 1, ȳ ̸= 0,

λ =
1

2

(
± |ȳ|√

1− α2
− 1

)
; γ = x̄− α(2λ+ 1).

are the extrema of S.
Since only λ ̸= − 1

2 is being considered, we do not consider the case |α| < 1, ȳ = 0 here.
For |α| = 1, ȳ = 0, the pairs

−1

2
̸= λ ∈ R arbitrary; γ = x̄− α(2λ+ 1).

are the extrema of S.
Putting these dual solutions back into the DtP mapping (24), we recover the correct primal solutions as

expected.
λ = −1

2
: When λ = − 1

2 , extrema of S exist only for ȳ = 0 and are given by (λ = − 1
2 , γ = x̄). However, note

that this class of dual solutions does not define solutions to the primal problem in a non-vacuous manner
(i.e. while all primal solutions are admitted, it does not provide specific guidance for generating primal
solutions).

The following conclusion can be drawn from this simple, yet non-trivial, example:

• A ‘good’ choice of the auxiliary function can be crucial for the success of the dual scheme in generating
solutions to the primal problem. For example, if ‘no base states’ are invoked within this class of
quadratic auxiliary functions, i.e. (x̄, ȳ) = (0, 0), while dual extrema exist, the scheme essentially fails
to define primal solutions, except for the case |α| = 1. And when the latter is the case for the primal
problem, then a base state with non-zero ȳ is not feasible for defining dual and primal solutions to the
problem.

A.3 The idea behind the general formalism

This section is excerpted from [Ach22b].
The proposed scheme for generating variational principles for nonlinear PDE systems may be abstracted

as follows: We first pose the given system of PDE as a first-order system (introducing extra fields representing
(higher-order) space and time derivatives of the fields of the given system); as before let us denote this
collection of primal fields by U . ‘Multiplying’ the primal equations by dual Lagrange multiplier fields, the
collection denoted by D, adding a function H(U), solely in the variables U (the purpose of which, and
associated requirements, will be clear shortly), and integrating by parts over the space-time domain, we
form a ‘mixed’ functional in the primal and dual fields given by

ŜH [U,D] =

∫
[0,T ]×Ω

LH(D, U) dtdx
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where D is a collection of local objects in D and at most its first order derivatives. We then require that the
family of functions H be such that it allows the definition of a function UH(D) such that

∂LH

∂U
(D, UH(D)) = 0

so that the dual functional, defined solely on the space of the dual fields D, given by

SH [D] =

∫
[0,T ]×Ω

LH(D, UH(D)) dtdx

has the first variation

δSH =

∫
[0,T ]×Ω

∂LH

∂D
δD dtdx.

By the process of formation of the functional ŜH , it can then be seen that the (formal) E-L equations arising
from δSH have to be the original first-order primal system, with U substituted by UH(D), regardless of the
H employed.

Thus, the proposed scheme may be summarized as follows: we wish to pursue the following (local-global)
critical point problem

extremize
D

∫
[0,T ]×Ω

extremize
U

LH(D(t, x), U) dtdx,

where the pointwise extremization of LH over U , for fixed D, is made possible by the choice of H.
Furthermore, assume the Lagrangian LH can be expressed in the form

LH(D, U) := −P (D) · U + f(U,D) +H(U)

for some function P defined by the structure of the primal first-order system ((linear terms in) first derivatives
of U after multiplication by the dual fields and integration by parts always produce such terms), and for some
function f which, when non-zero, does not contain any linear dependence in U . Our scheme requires the
existence of a function UH defined from ‘solving ∂L

∂U (D, U) = 0 for U ,’ i.e. ∃ UH(P (D),D) s.t. the equation

−P (D) +
∂f

∂U
(UH(P (D),D),D) +

∂H

∂U
(UH(P (D),D)) = 0

is satisfied. This requirement may be understood as follows: define

f(U,D) +H(U) =: M(U,D)

and assume that it is possible, through the choice of H, to make the function ∂M
∂U (U,D) monotone in U so

that a function UH(P,D) can be defined that satisfies

∂M

∂U
(UH(P,D),D) = P, ∀P.

Then the Lagrangian is

L(D, UH(P (D),D)) = −P (D) · UH(P (D),D) +M(UH(P (D),D),D) =: −M∗(P (D),D)

where M∗(P,D) is the Legendre transform of the function M w.r.t U , with D considered as a parameter.
Thus, our scheme may also be interpreted as designing a concrete realization of abstract saddle point

problems in optimization theory [Roc74], where we exploit the fact that, in the context of ‘solving’ PDE
viewed as constraints implemented by Lagrange multipliers to generate an unconstrained problem, there is
a good deal of freedom in choosing an objective function(al) to be minimized. We exploit this freedom in
choosing the function H to develop dual variational principles corresponding to general systems of PDE.
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B Dirichlet boundary conditions for elastostatics in first-order
form (2)

Consider the system (3) with

U = (y1, y2, y3, F11, F12, F13, F21, F22, F23, F31, F32, F33).

For Γ = 4, . . . , 12; j = 1, . . . , 3, we consider FΓj to be of the form

FΓj(U) := AΓIjUI

with A,B constant matrices with 0 entries, unless otherwise specified. Then,

A411 = 1; B44 = 1 =⇒ ∂1y1 − F11 = 0

A512 = 1; B55 = 1 =⇒ ∂2y1 − F12 = 0

A613 = 1; B66 = 1 =⇒ ∂3y1 − F13 = 0

A721 = 1; B77 = 1 =⇒ ∂1y2 − F21 = 0

A822 = 1; B88 = 1 =⇒ ∂2y2 − F22 = 0

A923 = 1; B99 = 1 =⇒ ∂3y2 − F23 = 0

A10 31 = 1; B10 10 = 1 =⇒ ∂1y3 − F31 = 0

A11 32 = 1; B11 11 = 1 =⇒ ∂2y3 − F32 = 0

A12 33 = 1; B12 12 = 1 =⇒ ∂3y3 − F33 = 0.

Let the matrix entries BΓj = 0 unless otherwise specified and n be the outward unit normal field on the
boundary ∂Ω.

Now, let y∗1 be the desired Dirichlet b.c. on y1 on ∂Ω4 = ∂Ω5 = ∂Ω6 =: ∂Ω456, and for Γ = 4, 5, 6 let
BΓjnj be defined as

BΓjnj := AΓIjnjy
∗
I on ∂Ω456,

with y∗I = 0, I ̸= 1 without loss of generality. Then(2c) implies the Dirichlet b.c.

(y1 − y∗1)nj = 0 ∀ j = 1, 2, 3 on =⇒ y1 − y∗1 = 0 on ∂Ω456.

Similarly, let y∗2 be the desired Dirichlet b.c. on y2 on ∂Ω7 = ∂Ω8 = ∂Ω9 =: ∂Ω789, and for Γ = 7, 8, 9 let
BΓjnj be defined as

BΓjnj := AΓIjnjy
∗
I on ∂Ω789,

with y∗I = 0, I ̸= 2 without loss of generality. Then(2c) implies the Dirichlet b.c.

(y2 − y∗2)nj = 0 ∀ j = 1, 2, 3 on =⇒ y2 − y∗2 = 0 on ∂Ω789,

and let y∗3 be the desired Dirichlet b.c. on y3 on ∂Ω10 = ∂Ω11 = ∂Ω12 =: ∂Ω10 11 12, and for Γ = 10, 11, 12
let BΓjnj be defined as

BΓjnj := AΓIjnjy
∗
I on ∂Ω10 11 12,

with y∗I = 0, I ̸= 3 without loss of generality. Then(2c) implies the Dirichlet b.c.

(y3 − y∗3)nj = 0 ∀ j = 1, 2, 3 on =⇒ y3 − y∗3 = 0 on ∂Ω10 11 12.
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