
RESOLUTION AND ALTERATION WITH

AMPLE EXCEPTIONAL DIVISOR

JÁNOS KOLLÁR AND JAKUB WITASZEK

Abstract. In this note we construct resolutions or regular alterations ad-
mitting an ample exceptional divisor, assuming the existence of projective
resolutions or regular alterations. In particular, this implies the existence of
such resolutions for three-dimensional schemes.

It is frequently advantageous to have resolutions or alterations that have an
ample exceptional divisor. While Hironaka-type methods automatically produce a
resolution with ample exceptional divisors, neither the resolution of 3-dimensional
schemes presented in [CP19], nor the method of alterations in [dJ96] yields ample
exceptional divisors right away. The aim of this note is to outline a simple trick
that ensures the existence of ample exceptional divisors. This is especially useful
when one needs to run a relative minimal model program; see for instance [CS20,
BMP+20, Kol21, VP21, BK23].

Note that if D is exceptional and ample, then −D is effective by the Negativity
lemma; see [KM98, 3.39].

Definition 1. A morphism π : Y → X is component-wise dominant if every ir-
reducible component of Y dominates an irreducible component of X. A proper,
component-wise dominant, generically finite morphism π : Y → X is called an al-
teration. An alteration of reduced schemes is birational if there are dense open
subsets Y ◦ ⊂ Y and X◦ ⊂ X, such that π induces an isomorphism π◦ : Y ◦ ∼= X◦.

Let π : Y → X be component-wise dominant and locally of finite type. Let
Ex(π) ⊂ Y denote the smallest closed subset such that π is quasi-finite on Y \Ex(π);
it exists by the upper-semicontinuity of the fiber dimension, see [Sta22, Tag 02FZ].

A proper morphism π : Y → X is a resolution if Y is regular, and π : Y → red(X)
is birational. A resolution is a log resolution if, in addition, the exceptional locus
Ex(π) is a simple normal crossing divisor.

An alteration π : Y → X is called regular if Y is regular, and Galois with group
G = Aut(Y/X) if Y/G → X is generically purely inseparable.

The main results are the following.

Theorem 2. Let X be a Noetherian, normal scheme. Assume that projective
resolutions (resp. log resolutions) exist for every scheme X ′ → X that is projective
and birational over X.

Then X has a projective resolution (resp. log resolution) g : R(X) → X by a
scheme R(X), such that Ex(g) supports a g-ample divisor.
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Theorem 3. Let X be a Noetherian, normal scheme. Assume that regular, pro-
jective, Galois alterations exist for every scheme X ′ → X that is projective and
generically purely inseparable over X.

Then X has a regular, projective, Galois alteration g : A(X) → X by a scheme
A(X), such that Ex(g) supports a g-ample divisor.

Note that Theorems 2–3 are also valid for algebraic spaces and stacks; see Re-
mark 12 for details. Although both theorems are stated for arbitrary Noetherian
schemes, the assumed existence of resolutions implies that the schemes are quasi-
excellent, see [Gro60, IV2, §7.9].

Combining these theorems with [CP19] and [dJ96] gives the following conse-
quences.

Corollary 4. Let X be a scheme (or algebraic space) of dimension at most three,
that is separated and of finite type over an affine, quasi-excellent scheme S. Then
X admits a projective log resolution g : R(X) → X by a scheme R(X), such that
Ex(g) supports a g-ample divisor.

Corollary 5. Let X be a scheme (or algebraic space), that is separated and of
finite type over a Noetherian, excellent scheme S with dimS ≤ 2. Then X admits
a regular, projective, Galois alteration g : A(X) → X by a scheme A(X), such that
Ex(g) supports a g-ample divisor.

Remark 6. It is clear from the proof that one can find g : R(X) → X and
g : A(X) → X with other useful properties. For example, we can choose R(X)
(resp. A(X)) to dominate any finite number of resolutions (resp. alterations).

Also, if Zi ⊂ X are finitely many closed subschemes, and embedded resolutions
(resp. regular, Galois alterations) exist over X, then we can choose R(X) (resp.
A(X)) to be an embedded resolution (resp. regular, Galois alteration) for the Zi.

The log version of alterations does not seem to be treated in the literature.

To fix our notation, recall that a normal scheme X is Q-factorial if, for every
Weil divisor D on X, mD is a Cartier divisor for some m > 0. Equivalently, if L is
a rank 1, reflexive sheaf, then there is an m > 0 such that L[m] (the reflexive hull
of L⊗m) is invertible.

We start with three lemmas; the first two are well known.

Lemma 7. Let X be a Noetherian, normal, Q-factorial scheme, π : X ′ → X
a projective, birational morphism with X ′ normal. Then there is a π-ample, π-
exceptional divisor E on X ′.

Proof. Let H be a π-ample line bundle on X ′. Choose m > 0 such that (π∗H)[m] is
invertible. Then Hm ⊗ π∗

(

(π∗H)[−m]
)

is π-ample and trivial on X ′ \ Ex(π). Thus
it is linearly equivalent to a π-exceptional divisor E. �

Lemma 8. Let X be a Noetherian, normal scheme, π1 : X1 → X a projective,
generically purely inseparable morphism, and H1 a line bundle on X1. Set U1 :=
X1 \ Ex(π1).

Then there is a coherent, rank 1, reflexive sheaf L on X and q > 0, such that,
π∗
1L|U1

∼= Hq
1 |U1

.

Proof. Consider the Stein factorization X1
ρ′

−→ X ′ ρ
−→ X of π1. The images of U1

give U ′ ⊂ X ′ and U ⊂ X. So ρ′∗H1 is a line bundle on U ′. Since U ′ → U is finite
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and purely inseparable, it factors through a power of Frobenius; cf. [Sta22, Tag
0CNF]. Hence there is a line bundle LU on U such that ρ∗LU

∼= ρ′∗H
q
1 |U ′ , where

we can take q = deg ρ. We can then extend LU to a coherent, reflexive sheaf L on
X. �

Lemma 9. Let X be a Noetherian, normal scheme and π1 : X1 → X a projective,
generically purely inseparable morphism. Assume that X1 is Q-factorial and let H1

be a π1-ample line bundle on X1. Let L be a coherent, rank 1, reflexive sheaf on X
as in Lemma 8. Set M := HomX(L,OX) and

π2 : X2 := ProjX ⊕m≥0

(

M⊗m/(torsion)
)

→ X.

Let π3 : X3 → X be a projective, generically purely inseparable morphism that dom-
inates both X1 and X2, with X3 normal. Then there is a π3-ample, π3-exceptional
divisor E on X3.

Note that we work with ⊕m≥0

(

M⊗m/(torsion)
)

, not with ⊕m≥0M
[m], since the

latter may not be finitely generated; see [Kol10, Sec.5] for such examples related to
flips and flops.

Proof. For i = 1, 2, let τi : X3 → Xi be the natural maps and X3
τ ′

−→ X ′
1

τ
−→ X1

the Stein factorization of τ1. As in Lemma 8, τ is either an isomorphism or factors
through a power of Frobenius.

Applying Lemma 8 to X ′
1

τ
−→ X1 and U1 := X1 we see that X ′

1 is Q-factorial
since X1 is Q-factorial.

By Lemma 7 there is a τ ′-ample, τ ′-exceptional divisor E3 onX3. Then τ∗1H
m
1 (E3)

is π3-ample for m � 0.
Set H2 := OX2

(1). Since H2 is π2-ample, its pull-back τ∗2H2 is π3-nef. Therefore
τ∗2H

m
2 ⊗ τ∗1H

qm
1 (qE3) is π3-ample for every q > 0.

Set U3 := X3 \ Ex(π3); its images give open subschemes U ⊂ X and Ui ⊂ Xi.
By Lemma 8 there is a coherent, rank 1, reflexive sheaf L on X and q > 0, such
that, π∗

1L|U1

∼= Hq
1 |U1

. Then

τ∗2H
m
2 ⊗ τ∗1H

qm
1 (qE3)|U3

∼= π∗
3

(

Mm|U ⊗ Lm|U
)

∼= OU3
.

This gives a rational section of τ∗2H
m
2 ⊗ τ∗1H

qm
1 (qE3) whose divisor is π3-ample and

π3-exceptional. �

10 (Proof of Theorem 2). Wemay assume thatX is integral. Start with a projective
(log) resolution π1 : X1 → X and construct π2 : X2 → X as in Lemma 9. Let
X12 ⊂ X1 ×X X2 be the irreducible component that dominates X, and X3 → X12

a projective (log) resolution. By Lemma 9, π3 : X3 → X has a π3-ample, π3-
exceptional divisor. �

11 (Proof of Theorem 3). Start with a regular, projective, Galois alteration π̄1 :
X̄1 → X. Let π1 : X1 → X be its quotient by the Galois group of k(X̄1/X). Note
that X1 is Q-factorial.

Construct π2 : X2 → X as in Lemma 9. Let X12 ⊂ X1 ×X X2 be the irreducible
component that dominates X, and X̄3 → X12 a regular, projective, Galois alter-
ation. Let X3 → X12 be its quotient by the Galois group of k(X̄3/X12). By Lemma
9, π3 : X3 → X has a π3-ample, π3-exceptional divisor. Its pull-back to X̄3 is a
π̄3-ample, π̄3-exceptional divisor, where π̄3 : X̄3 → X is the natural morphism. �
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Remark 12. Theorems 2–3 are valid for every integral, Noetherian algebraic space
(resp. stack) X with R(X) or A(X) being an algebraic space (resp. stack), assum-
ing the appropriate representable resolutions or regular alterations by algebraic
spaces (resp. stacks) exist for every algebraic space (resp. stack) X ′ admitting a
representable projective birational (resp. generically purely inseparable) morphism
to X. As for algebraic spaces, we note that all of the above constructions can be
performed in the category of algebraic spaces and their validity may be verified
étale locally. As for algebraic stacks, we note that every algebraic stack admits a
presentation as a quotient of an algebraic space by a smooth groupoid [Sta22, Tag
04T3], and that quotients of algebraic spaces by smooth groupoids always exist
[Sta22, Tag 04TK]. We can then conclude, since each step in our constructions is
equivariant with respect to a chosen presentation.

If X is an algebraic space and the appropriate resolutions or regular alterations
of all algebraic spaces admiting representable, projective, birational or generically
purely inseparable morphisms to X exist as schemes, then we can achieve that
R(X) and A(X) are schemes.

Here, a representable morphism of quasi-compact quasi-separated algebraic spaces
(resp. algebraic stacks) is projective if it is proper and there exists a relatively ample
invertible sheaf (cf. [Ryd16, Definition 8.5 and Theorem 8.6]).

13 (Proof of Corollary 4). We may harmlessly replace X by the irreducible com-
ponents of its normalization. Thus we may assume that X is normal and integral.

When X is a scheme, the assumptions of Theorem 2 are valid for integral affine
quasi-excellent schemes of dimension at most three by [CP19], see [BMP+20, The-
orem 2.5 and 2.7].

If X is an algebraic space, then by Chow’s lemma [Sta22, Tag 088U] we can
find a projective birational morphism h : Y → X such that the scheme Y is quasi-
projective over S. Temkin extended [CP19] to give a projective resolution for such
a scheme Y ; the proof is discussed in [BMP+20, Sec.2.3].

Similarly, we obtain projective resolutions of all algebraic spaces admitting a
projective birational morphism to X. By Remark 12 we can obtain R(X) as a
scheme.

14 (Proof of Corollary 5). As before, we may assume that X is normal and integral.
When X is a scheme, the assumptions of Theorem 3 are valid for all integral

schemes that are separated and of finite type over an excellent scheme S with
dimS ≤ 2 (see [dJ97, Corollary 5.15] and [Tem17, 4.3.1]).

If X is an algebraic space, then a regular, projective, Galois alteration of X
(and of all algebraic spaces admitting a projective generically purely inseparable
morphism to X) exists by Chow’s lemma as in the proof of Corollary 4, and so we
can conclude by Remark 12 to get A(X), which is a scheme.

Remark 15. The above proofs of Corollaries 4–5 do not immediately apply to alge-
braic stacks. Indeed, Chow’s lemma for algebraic stacks only ensures the existence
of a proper surjective cover by a quasi-projective scheme. This cover need not be
birational. On the other hand, one could try to construct a resolution equivariantly
with respect to a presentation, but we do not know whether the algorithms for the
existence of resolutions and regular alterations from [CP19] and [dJ96] can be run
equivariantly (in contrast to the characteristic zero case). For Deligne-Mumford
stacks of finite type over a Noetherian scheme, the proper surjective cover from
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Chow’s lemma may be assumed to be generically étale [LMB00, Corollaire 16.6.1].
In particular, they admit regular alterations (and so also regular, Galois alterations)
and Corollary 5 holds for them.
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