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Abstract. In this paper we consider the vanishing viscosity limit of solutions to the initial
boundary value problem for the compressible viscoelastic equations in the half space. When the
initial deformation gradient does not degenerate and there is no vacuum initially, we establish
the uniform regularity estimates of solutions to the initial-boundary value problem for the
three-dimensional compressible viscoelastic equations in the Sobolev spaces. Then we justify
the vanishing viscosity limit of solutions of the compressible viscoelastic equations based on
the uniform regularity estimates and the compactness arguments. Both the no-slip boundary
condition and the Navier-slip type boundary condition on velocity are addressed in this paper.
On the one hand, for the corresponding vanishing viscosity limit of the compressible Navier-
Stokes equations with the no-slip boundary condition, it is impossible to derive such uniform
energy estimates of solutions due to the appearance of strong boundary layers. Consequently, our
results show that the deformation gradient can prevent the formation of strong boundary layers.
On the other hand, our results also provide two different kinds of boundary conditions suitable
for the well-posedness of the initial-boundary value problem of the elastodynamic equations via
the method of vanishing viscosity. Finally, it is worth noting that we take advantage of the
Lagrangian coordinates to study the vanishing viscosity limit for the fixed boundary problem
in this paper.

1. Introduction

1.1. Formulation in the Eulerian coordinates. In this paper we are concerned with the
vanishing viscosity limit of solutions to the compressible isentropic neo-Hookean viscoelastic
fluids in the half space R

3
+ = {(x, y, z) ∈ R

3 : (x, y) ∈ R
2, z ≥ 0}, governed by the following

equations:






∂tρ
ε + div(ρεuε) = 0,

∂t(ρ
εuε) + div(ρεuε ⊗ uε) +∇p(ρε)− divT ε = div(ρεF εF ε⊤),

∂tF
ε + uε · ∇F ε = ∇uεF ε,

(1.1)

where ρε denotes the density, uε = (uε1, u
ε
2, u

ε
3)

⊤ ∈ R
3 is the velocity, and F ε = (F ε

ij) ∈ M
3×3 is

the deformation gradient. The pressure p(ρε) takes the following form:

p(ρε) = A(ρε)γ , γ > 1, (1.2)

and without loss of generality we assume the constant A = 1 for simplicity. The viscous stress
tensor T ε is of the form

T ε = 2µεSuε + λεdivuεI, (1.3)

where Suε = 1
2(∇uε + (∇uε)⊤) is the symmetric part of ∇uε, µε and λε are the two viscosity

coefficients satisfying the physical constrains: µ > 0 and 2µ + 3λ > 0. In the paper ⊤ denotes
the transpose of a matrix.
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We will study the vanishing viscosity limit of solutions to the initial-boundary value problem
for the system (1.1)-(1.3) with the initial data:

(ρε, uε, F ε)|t=0 = (ρε0, u
ε
0, F

ε
0 ), (1.4)

under the following two types of boundary conditions:

Type I. No-slip boundary condition:

uε = 0, on {z = 0}. (1.5)

Type II. Navier-slip boundary condition:

uε · n = 0, (ρεF εF ε⊤n+ 2µεSuεn)τ = −αεuετ , on {z = 0}, (1.6)

where fτ = f − (f · n)n and n = (0, 0,−1) is the unit outward normal of the boundary of R3
+.

Formally, when ε → 0, the system (1.1)–(1.4) can be reduced to the compressible elastody-
namic system:







∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p(ρ) = div(ρFF⊤),

∂tF + u · ∇F = ∇uF,

(ρ, u, F )|t=0 = (ρ0, u0, F0).

(1.7)

The aim of this paper is to justify rigorously that the solutions of the initial-boundary value
problem (1.1)–(1.4) for the viscoelastic flows under the two different boundary conditions (1.5)
and (1.6) converge to the solutions of the elastodynamic equations (1.7) of inviscid flows under
the corresponding boundary conditions as the viscosity tends to zero. As a consequence, we shall
give two kinds of suitable boundary conditions for the well-posedness of the initial-boundary
value problem for the elastodynamic equations via the vanishing viscosity method.

1.2. Reformulation in the Lagrangian coordinates. We shall derive a priori estimates that
are uniform in ε for the solutions to the initial-boundary value problem (1.1)–(1.4) under two
different boundary conditions (1.5) and (1.6), respectively. Instead of the Eulerian coordinates,
we shall study the problem under the Lagrangian coordinates, as widely used in elastodynamics
(system (1.1) for ε = 0).

Let ηε(x, t) ∈ R
3
+ be the “position” of the compressible viscoelastic fluid particle x at time t,

that is,
{

∂tη
ε(x, t) = uε(ηε(x, t), t), for t > 0, x ∈ R

3
+,

ηε(x, 0) = ηε0(x), for x ∈ R
3
+,

(1.8)

where ηε0 is a diffeomorphism mapping from the reference domain R
3
+ to the initial domain R

3
+

satisfying

F ε
0 (η

ε
0) = ∇ηε0. (1.9)

We introduce the Lagrangian variables as follows:

f ε(x, t) = ρε(ηε(x, t), t), vε(x, t) = uε(ηε(x, t), t), Gε(x, t) = F ε(ηε(x, t), t),

and set

Aε = (∇ηε)−⊤, Jε = det∇ηε, aε = JεAε, q(f ε) = p(f ε).
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Then, after using the chain rule and Einstein’s summation convention for the repeated indices,
the compressible viscoelastic fluid equations (1.1)–(1.4) can be formulated in terms of the La-
grangian variables in R

3
+ as follows:







∂tη
ε = vε,

∂tf
ε + f εdivηv

ε = 0,

f ε∂tv
ε
i + ∂ηiq(f

ε)− 2µε∂ηk(Sη(v
ε))ik − λε∂ηi(divηv

ε)− ∂ηk(f
εGε

ijG
ε
kj) = 0,

∂tG
ε
ij = ∂ηkv

ε
iG

ε
kj ,

(f ε, vε, Gε, ηε)(x)|t=0 = (ρε0(η
ε
0(x)), u

ε
0(η

ε
0(x)), F

ε
0 (η

ε
0(x)), η

ε
0(x)),

(1.10)

where

∂ηi = Aε
iℓ∂ℓ, (Sηv)

ε
ik =

1

2
(∂ηkv

ε
i + ∂ηiv

ε
k), divηv

ε = ∂ηkv
ε
k.

From Jacobi’s formula

∂tJ
ε = JεAε

kj∂jv
ε
k = Jεdivηv

ε, (1.11)

the second equation in (1.10) can be directly solved to obtain ∂t(f
εJε) = 0, which implies

f ε = ρ̃ε0(J
ε)−1, and ρ̃ε0 := ρε0(η

ε
0)J

ε
0 . (1.12)

Next, from the fact that ∂tA
ε
ij = −Aε

ik∂kv
ε
lA

ε
lj and the fourth equation in (1.10), it is straight-

forward to verify that ∂t(A
ε⊤Gε) = 0, which yields

Gε = ∇ηε(∇ηε0)
−1F ε

0 (η
ε
0) = ∇ηε. (1.13)

Moreover, noticing that aε is the cofactor of ∇ηε one has the following Piola identity:

∂la
ε
kl = ∂l(J

εAε
kl) = 0, (1.14)

which leads to

−Aε
kl∂l(f

εGε
ijG

ε
kj) = −(Jε)−1∂l(A

ε
klf

εJεGε
ijG

ε
kj).

Therefore, based on (1.12) and (1.13), it suffices to consider the following system of equations
rather than the system (1.10),







∂tη
ε
i = vεi ,

ρ̃ε0∂tv
ε
i + aεik∂kq

ε − 2µεaεkl∂l(Sηv)
ε
ik − λεaεij∂j(divηv

ε)− ∂j(ρ̃
ε
0∂jη

ε
i ) = 0,

(vε, ηε)(x)|t=0 = (uε0(η
ε
0(x)), η

ε
0(x)).

(1.15)

Taking ε = 0 in (1.15) formally leads to the following elastodynamic equations in the Lagrangian
coordinates: 





∂tηi = vi,

ρ̃0∂tvi + aik∂kq − ∂j(ρ̃0∂jηi) = 0,

(v, η)(x)|t=0 = (u0(η0(x)), η0(x)).

(1.16)

We now remark why we introduce the Lagrangian flow map for the fixed boundary problem.
Notice that the deformation gradient effect is in fact related to the motion of the fluid itself.
Precisely, if we use the Lagrangian flow map, the system of equations (1.1) can be rewritten
in a relatively concise form of (1.15) with the boundary unchanged under the both boundary
conditions (1.5) and (1.6).

Under the Lagrangian coordinates, the corresponding boundary conditions can be written as
the following:

Type I. No-slip boundary condition:

vεi = 0 (i = 1, 2, 3), on {z = 0}. (1.17)
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Type II. Navier-slip boundary condition:






vε3 = 0, aε·3 = (0, 0, aε33) on {z = 0},
ρ̃ε0F

ε
i3 |aε·3|2 − ρ̃ε0J

εaεi3 + 2µε
(

(Sη(v
ε))i3a

ε
33 |aε·3|2 − (Sη(v

ε))33(a
ε
33)

2aεi3

)

= −αεvεi |aε·3|3 , on {z = 0}.
(1.18)

The boundary condition (1.18) indicates that

−αε |aε33| vεβ = ρ̃0F
ε
β3 + 2µε(Sη(v

ε))β3a
ε
33, on {z = 0}, β = 1, 2. (1.19)

Before introducing the main results in this paper, let us review the related known results briefly.
First, the viscoelastic system of equations is a fundamental system in complex fluids. The
well-posedness of solutions to both the compressible and incompressible viscoelastic equations
have been extensively studied, see [18–21, 27, 28, 32] and the references therein. Moreover, the
vanishing viscosity limit is also one of the important problems in hydrodynamics and applied
mathematics, and has attracted much attention from mathematicians. The vanishing viscosity
limit of solutions to the Cauchy problem has been studied in many works; see [6, 26, 34, 43] for
the incompressible Navier-Stokes equations, [2,24] for the incompressible viscoelastic equations,
and [17,22] and their references for the compressible Navier-Stokes equations.

When the vanishing viscosity limit problem is considered in a domain with a physical bound-
ary, it usually becomes more challenging due to the presence of boundary layers (e.g. [13,36,41,
44,48]). In particular, if there exists a strong boundary layer, the vanishing viscosity limit prob-
lem is extremely hard due to the uncontrollability of the vorticity of boundary layer correctors.
However, when the no-slip boundary condition is replaced by the Navier-slip type boundary
condition, the strong boundary layer usually disappears for the hydrodynamics equations, and
the vanishing viscosity limit has been proved in [47,49] for the compressible Navier-Stokes equa-
tions. We refer the readers to [1, 3, 23, 35, 50] and their references for the corresponding vanish-
ing viscosity limit of the incompressible Navier-Stokes equations with the Navier-slip boundary
conditions. However, the research of the vanishing viscosity limit problem in a domain with a
boundary under the no-slip boundary condition is relatively underdeveloped. To our best knowl-
edge, the vanishing viscosity limit of the unsteady incompressible Navier-Stokes equations with
the no-slip boundary condition was only proved in the analytic function spaces or in the Gevrey
classes; see [12, 33, 39, 40] and the references therein for more details. For the incompressible
magnetohydrodynamic (MHD) equations with the no-slip boundary condition on velocity, the
existence and uniqueness of solutions to the MHD boundary layer equations and the convergence
of the Prandtl boundary layer expansion in the Sobolev framework were established in [29, 30]
when the tangential component of magnetic field has a positive lower bound near the physical
boundary initially; and it was proved in [31] that the strong boundary layers do not happen in
the vanishing viscosity limit for the incompressible non-resistive MHD system when the mag-
netic field is transversal to the physical boundary initially. This phenomenon was also observed
for the compressible non-resistive MHD system and the MHD system with magnetic diffusion
in [8, 9]. However, the vanishing viscosity limit for the compressible Navier-Stokes equations
under the no-slip boundary condition in the half plane in the Sobolev spaces is still open, except
for the linearized Navier-Stokes equations [51] and the case considered in the analytic function
spaces [45]; and even in the Gevrey settings the vanishing viscosity limit is also unclear because
of the appearance of strong boundary layers [13, 48].

In this paper, we consider the vanishing viscosity limit of the compressible viscoelastic equa-
tions in the half space under two different kinds of boundary conditions. We show that the
deformation tensor in viscoelasticity produces a significant effect on the vanishing viscosity
process, and it can prevent the generation of strong boundary layers even under the no-slip
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boundary conditions on velocity. For this reason we are able to justify the vanishing viscoity
limit of solutions to the compressible viscous flows governed by the viscoelastic equations (1.1)
in a domain with a physical boundary. Moreover, the main results in this paper also give two
kinds of suitable boundary conditions for the well-posedness of initial boundary value problem
of elastodynamic equations by the method of vanishing viscosity limit. The similar effect of the
deformation tensor was also observed in [14,15] for the two-dimensional free boundary problem.
The vanishing viscosity limit of solutions to the compressible viscoelastic equations with the
no-slip boundary condition on velocity in the two-dimensional half plane was considered in [46],
where all of desired energy estimates are derived in the Eulerian coordinates, and the working
spaces are co-normal Sobolev spaces. Here, we use the Lagrangian flow map method to derive
all necessary energy estimates in the classical Sobolev spaces. Moreover, this vanishing viscosity
limit problem in both the two-dimensional and the three-dimensional cases can be solved at the
same time for the two different kinds of boundary conditions including the no-slip boundary
condition and Navier-slip boundary condition in this paper.

1.3. Main results. Before stating the main results, we introduce the notations that will be
used frequently throughout the paper. First Einstein’s summation convention will be adopted
for repeated indices. We denote by ∂α

τ := ∂α1

x Dα2

y (α = (α1, α2), |α| = α1 + α2) the tangential
derivatives, ∂t denotes the temporal derivative and ∂ also includes the normal derivative ∂z.
The standard Lp spaces, Sobolev spaces Hm = Wm,2 and Wm,p on both the domain R

3
+ and its

boundary Γ := {z = 0} are used. For the sake of simplicity, the norms for these function spaces
defined on R

3
+ are written as ∥·∥Lp , ∥·∥Wm,p and ∥·∥m, and the norms for these function spaces

defined on Γ are denoted by |·|Lp , |·|Wm,p and |·|m. For any real s ≥ 0, the Hilbert space Hs(Γ)
and the related boundary norm |·|s (or |·|Hs(Γ)) are defined by interpolation. The negative-order

Sobolev space H−s(Γ) can be understood as duality: for real s ≥ 0, H−s(Γ) := [Hs(Γ)]′. The
norm of the space Lp([0, t];X) is denoted by ∥ · ∥Lp

t (X). We shall denote by C a generic constant

that depends only on the domain Ω and the boundary Γ. The notation f ≲ g means f ≤ Cg.
We shall use P (·) to denote a generic polynomial function of its arguments, which may vary
from line to line, but the polynomial coefficients are generic constants C independent of ε.

The aim of this paper is to establish the well-posedness and the vanishing viscosity limit of
classical solutions to (1.15) in a fixed time interval independent of the viscosity ε ∈ (0, 1]. To
obtain the uniform regularity estimates, we define the energy functional for the solutions to the
viscoelastic fluid equations (1.15) as

Eε(t) =

m∑

j=0

∥
∥
∥∂

j
t η

ε
∥
∥
∥

2

m−j
(t) + ∥∂j

t ∂
m−j
τ (∇ηε, vε, qε)∥20(t) +

m−1∑

j=0

ε∥∂j
t∇2ηε∥2m−1−j(t)

+

m∑

j=0

ˆ t

0

∥
∥
∥∂

j
t (∇ηε, vε, ε∇vε)

∥
∥
∥

2

m−j
+
∥
∥
∥
√
ε∂

j
t ∂

m−j
τ ∇vε

∥
∥
∥

2

0
dt. (1.20)

We also require that the initial data ∂ℓ
tv

ε(0), ∂ℓ
tη

ε(0), ∂ℓ
t q

ε(0), ℓ = 0, · · · ,m − 1 satisfy the
compatibility condition on the boundary. That is, for the no-slip boundary condition, the
compatibility condition is

∂ℓ
tv

ε(0) = 0, on Γ, (1.21)

where ∂ℓ
tv

ε(0), ∂ℓ
tη

ε(0), ∂ℓ
t q

ε(0) are defined by

∂ℓ
tv

ε
i (0) = ρ̃−1

0 ∂ℓ−1
t (−aεik∂kq

ε + 2µεaεkl∂lSη(v)
ε
ik + λεaεij∂jdivη(v)

ε + ∂j(ρ̃
ε
0∂jη

ε
i ))
∣
∣
t=0

,

∂ℓ
tη

ε
i (0) = ∂ℓ−1

t vεi (0), ∂ℓ
t q

ε(0) = ρ̃
γ
0∂

ℓ
t (J

ε)−γ
∣
∣
t=0

.



6 XUMIN GU, DEHUA WANG, AND FENG XIE

While for the Navier-slip boundary condition, the compatibility condition becomes

∂ℓ
tv

ε
3(0) = 0, ∂ℓ

t

(
αε |aε33| vεβ + ρ̃0∂3η

ε
β + 2µε(Sη(v

ε))β3a
ε
33

)
|t=0 = 0, β = 1, 2 on Γ. (1.22)

The local well-posedness and uniform regularity estimates of solutions to the initial-boundary
value problem (1.15), (1.17) or (1.18) can be stated in the following theorem.

Theorem 1.1. Let m ≥ 4. Suppose that the initial data (ρε0, η
ε
0, v

ε
0) satisfies the compatibility

condition (1.21) (or the compatibility condition (1.22)) and the following uniform bounds:

0 < c0 ≤ ρ̃ε0 ≤ C0, (1.23)

Eε(0) ≤ C0, (1.24)

for some generic constants c0 and C0. Then, there exists a T0 > 0 independent of ε, and a
unique solution (ηε, vε) to the initial-boundary value problem (1.15) with (1.17) (or with (1.18))
on the time interval [0, T0], such that

sup
t∈[0,T0]

Eε(t) ≤ C1, (1.25)

where C1 is a generic constant depending only on c0, C0.

Remark 1.1. The regularity of solutions implies that the flow map η is at least Lipschitz con-
tinuous, thus one can recover the corresponding classical solutions to (1.1) in the Eulerian co-
ordinates.

Based on the uniform regularity estimates achieved in Theorem 1.1, we can justify the van-
ishing viscosity limit of solutions to the initial-boundary value problem for the compressible vis-
coelastic flow and obtain the local existence of classical solutions to the related initial-boundary
value problem for the elastodynamic equations with two different kinds of boundary conditions.

Theorem 1.2. Under the assumptions of Theorem 1.1, if we further assume that there exists
(ρ0, η0, v0) such that

lim
ε→0

∥ρ̃ε0 − ρ0∥0 + ∥ηε0 − η0∥0 + ∥vε0 − v0∥0 = 0. (1.26)

Then, there exists (η, v)(t, ·) on the time interval [0, T0] such that

sup
t∈[0,T0]

E(t) ≤ C1, (1.27)

and

lim
ε→0

sup
t∈[0,T0]

(∥ηε(t)− η(t)∥m + ∥vε(t)− v(t)∥m−1) = 0. (1.28)

Moreover, (η, v) is the unique classical solution to the initial-boundary value problem of the
elastodynamic equations (1.16) with the following boundary condition:

v = 0 (or viai3 = 0, ρ̃0Fi3 |a·3|2 − ρ̃0Jai3 = 0) (1.29)

on Γ.

Remark 1.2. In fact, Theorem 1.2 provides two different kinds of boundary conditions for the
well-posedness of the initial-boundary value problem of the elastodynamic equations (1.16) by the
vanishing viscosity limit method. In the Eulerian coordinates, they can be written as u = 0 (or
u · n = 0, (ρFFTn)τ = 0).
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1.4. Comments on the main results and strategies of the proofs. We now explain the
main difficulties and the strategies of the proofs of the main theorems. As mentioned above,
when the vanishing viscosity limit is considered in a domain that has a physical boundary,
the uniform estimates of normal derivatives of solutions with respect to the small viscosity
parameter ε are difficult to achieve. On the one hand, in general it is impossible to obtain these
uniform estimates due to the appearance of strong boundary layers for the solutions to both the
compressible and incompressible Navier-Stokes equations under the no-slip boundary condition
on velocity. On the other hand, when the uniform estimates of normal derivatives of solutions
with respect to the small viscosity parameter ε are derived, it shows that the strong boundary
layer should disappear. In our results we find that if the deformation gradient in viscoelasticity
is taken into account, even though the no-slip boundary condition is given on the velocity, the
uniform estimates of normal derivatives for the solutions to the compressible viscoelastic fluid
equations can still be achieved provided that the deformation gradient does not degenerate. In
fact, the combination of deformation gradient and the pressure gives a good positive structure
for the normal derivatives of the flow map η, which is one of the main observations of this paper.
This structure helps us to control the normal derivatives uniformly with respect to the viscosity.

Briefly, by using the formula of q and (1.15), we have

−Aij∂
2
3η

ε
j − µεaεk3a

ε
k3∂

2
3v

ε
i − (µ+ λ)εaεi3a

ε
j3∂

2
3v

ε
j = Fi + Gi, (1.30)

where Fi,Gi only contain at most one normal derivatives of ηε, εvε, and

A = ρ̃ε0J
ε(I + γ(ρ̃ε0)

γ−1(Jε)−γ−1nε ⊗ nε), (1.31)

where nε = aε·3 denotes the third column of aε. Thus, with 0 < c0 ≤ ρ̃ε0, J
ε ≤ C0, it is

straightforward to justify that A is positive definite and show that ∂2
3η

ε can be controlled by
the lower order normal derivatives of ηε uniformly with respect to ε.

Consequently, according to the above arguments, the results stated in Theorem 1.1 show
that the strong boundary layers will disappear when the non-degenerate deformation gradient
is involved in the viscous flow. Moreover, our method is also valid for the initial-boundary value
problem for the compressible viscoelastic equations with the Navier-slip type condition, which
is also studied in this paper, and similar results can be obtained as stated in Theorem 1.1 and
Theorem 1.2.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries and
elementary lemmas. Section 3 is devoted to deriving the uniform energy estimates of solutions
to the initial-boundary value problem (1.15) and (1.18). In Section 4, we establish the uniform
estimates of solutions to the initial-boundary value problem (1.15) and (1.17). Based on the
uniform estimates established in Sections 3 and 4, we prove the main Theorems 1.1 and 1.2 in
Section 5.

2. Preliminaries

In this section, we recall some basic inequalities, identities and estimates.

Lemma 2.1. Let g ∈ H1([0, t];L2). Then, we have

∥g(t)∥20 ≲ t∥∂tg∥2L2
t (L

2) + ∥g(0)∥20. (2.1)

Proof. Since g ∈ H1([0, t];L2), it follows that g(t, x) ∈ C([0, t];L2). The elementary theorem in
calculus implies that

g(t, x) = g(0, x) +

ˆ t

0
gt(s, x)ds.

Thus, after using the Hölder and Minkowski inequalities, we arrive at (2.1). □
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2.1. Trace estimates. The following trace estimates will be used.

Lemma 2.2. For any function θ ∈ H1, one has

|θ|20 ≲ ∥θ∥20 + ∥θ∥0 ∥∇θ∥0 . (2.2)

Lemma 2.3. Denote the dual space of H
1

2 (Γ) by H
1

2 (Γ)′. Then the following inequality holds
true

|∂τω|− 1

2

:= |∂τω|
H

1
2 (Γ)′

≤ C |ω| 1
2

, ∀ω ∈ H
1

2 (Γ). (2.3)

Proof. The proof can be found in [7, Lemma 8.5]. □

2.2. Korn’s inequality. We refer to [35] for the following Korn-type inequality.

Lemma 2.4. For any f ∈ H1(Ω), it holds that

∥∇f∥20 ≲ P (∥∇η∥22)(∥Sη(f)−
1

3
divη(f)I∥20 + ∥f∥20). (2.4)

2.3. Geometric identities. By the definitions and the chain rule, differentiating Jε, Aε and
aε, we obtain

∂Jε = aεij∂j∂η
ε
i , ∂Aε

kj = −Aε
kl∂l∂η

ε
iA

ε
ij , ∂aεkj = aεli∂i∂ηlA

ε
kj − aεkl∂l∂η

ε
iA

ε
ij . (2.5)

3. Viscosity-Independent a priori Estimates

In this section, we focus on deriving the ε-independent estimates of smooth solutions to (1.15)
under two different types boundary conditions, which are stated in the following proposition.

Proposition 3.1. Let (ηε, vε) be a solution to (1.15) with the no-slip boundary condition (1.17)
or the Navier-slip boundary condition (1.18). Then there exists a time T independent of ε such
that

sup
t∈[0,T ]

Eε(t) ≤ 2M0, (3.1)

where M0 = P (Eε(0)).

Note that, since

ρ̃ε0 ≥ c0,
1

c0
> Jε

0 ≥ c0 > 0, (3.2)

for some c0 > 0, we can assume that there exists a sufficiently small Tε such that, for t ∈ [0, Tε],

|Jε(t)− Jε
0 | ≤

1

8
c0, |∂jηεi (t)− ∂jη

ε
0i| ≤

1

8
c0. (3.3)

Note that the lower order terms in Eε can be estimated directly. Indeed, using Lemma 2.1, we
have for t ∈ [0, T ] with T ≤ Tε,

Fε(t) :=
m∑

j=0

∥
∥
∥∂

j
t (η

ε, ε∇ηε)
∥
∥
∥

2

m−j
(t) ≲ M0 + TEε(T ). (3.4)

The proof of Proposition 3.1 can be divided into the proofs of several lemmas. We will prove
the proposition for the Navier-slip boundary condition in details first, and then extend the proof
to the no-slip boundary condition case. For simplicity of notation, we only keep the superscript
ε in the statements of lemmas but omit it in the proofs without causing any confusion.
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3.1. Basic energy estimates.

Lemma 3.2. For any t ∈ [0, Tε],

∥vε(t)∥20 + ∥∇ηε(t)∥20 + ∥Q(f ε)(t)∥L1 ≲ M0 + Tε, (3.5)

where

Q(f) =

ˆ f

1
q(µ)µ−2 dµ.

Proof. Taking the L2(Ω) inner product on the second equation in (1.15) with vi gives

1

2

d

dt

ˆ

Ω
ρ̃0|v|2dx+

ˆ

Ω
aik∂kqvidx− 2µε

ˆ

Ω
akl∂l(Sηv)ikvidx

− λε

ˆ

Ω
aij∂j(divηv)vi −

ˆ

Ω
∂j(ρ̃0∂jηi)vidx = 0.

Using the integration by parts and Piola’s identity (1.14), we have
ˆ

Ω
aik∂kqvidx− 2µε

ˆ

Ω
akl∂l(Sηv)ikvidx− λε

ˆ

Ω
aij∂j(divηv)vi −

ˆ

Ω
∂j(ρ̃0∂jηi)vidx

= −
ˆ

Ω
aik∂kviqdx+ 2µε

ˆ

Ω
(Sηv)ikakl∂lvidx+ λε

ˆ

Ω
J(divηv)

2dx+

ˆ

Ω
ρ̃0∂jηi∂jvidx

︸ ︷︷ ︸

Re

−
ˆ

Γ
qviai3 + 2µε

ˆ

Γ
(Sηv)ikak3vi + λε

ˆ

Γ
ai3vidivηv +

ˆ

Γ
ρ̃0∂3ηivi

︸ ︷︷ ︸

Rb

.

(3.6)

For Re in (3.6), by (1.11) and (1.18), one has

Re = −
ˆ

Ω
Jtqdx+

1

2

d

dt

ˆ

Ω
ρ̃0|∇η|2dx+ 2µε

ˆ

Ω
J |Sη(v)|2 dx+ λε

ˆ

Ω
J |divηv|2 dx

=

ˆ

Ω
ρ̃0ftf

−2q(f)dx+
1

2

d

dt

ˆ

Ω
ρ̃0|∇η|2dx+ 2µε

ˆ

Ω
J |Sη(v)|2 dx+ λε

ˆ

Ω
J |divηv|2 dx

=
d

dt

ˆ

Ω
ρ̃0Q(f)dx+

1

2

d

dt

ˆ

Ω
ρ̃0|∇η|2dx+ 2µε

ˆ

Ω
J |Sη(v)|2 dx+ λε

ˆ

Ω
J |divηv|2 dx,

(3.7)

where Q(f) =
´ f

1 q(µ)µ−2dµ.
For Rb, using the boundary condition (1.18) and (1.19), we arrive at

Rb =
∑

β=1,2

ˆ

Γ
ρ̃0Fi3 + 2µε(Sη(v

ε))β3a33v
ε
β = −

ˆ

Γ
αε |a33| |v|2 . (3.8)

Therefore, we conclude that

d

dt

(
1

2

ˆ

Ω
ρ̃0(|v|2 + |∇η|2 + 2Q(f))

)

+ 2µε

ˆ

Ω
J |Sη(v)|2 dx+ λε

ˆ

Ω
J |divηv|2 dx

−
ˆ

Γ
αε |a33| |v|2 = 0.

Then, integrating it in time yields
(
1

2

ˆ

Ω
ρ̃0(|v|2 + |∇η|2 + 2Q(f))

)

(t) + 2µε

ˆ t

0

ˆ

Ω
J

(

|Sη(v)|2 −
1

3
|divηv|2

)

dx

+

(
2

3
µ+ λ

)

ε

ˆ t

0

ˆ

Ω
J |divηv|2 dx−

ˆ t

0

ˆ

Γ
αε |a33| |v|2 =

1

2

ˆ

Ω
ρ̃0(|v0|2 + |∇η0|2 + 2Q(f0)).
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By the trace estimates (2.2) and Young’s inequality, we have
∣
∣
∣
∣

ˆ

Γ
αε |a33| |v|2

∣
∣
∣
∣
≲ ∥v∥20 + ε2 ∥∇v∥20 . (3.9)

Moreover, since µ > 0, 2µ+ 3λ > 0, and

|Sη(f)|2 −
1

3
|divηf |2 = |Sη(f)−

1

3
divηfI|2,

then (3.5) follows from Korn’s inequality, together with (3.2), (3.3) and (3.9). □

3.2. Estimates of q. Before deriving the higher-order estimates of solutions, we first prove the
following key lemma for the estimate of pressure.

Lemma 3.3. For any t ∈ [0, Tε], m ≥ 3,

m−1∑

j=0

ˆ t

0
∥∂j

t q
ε∥2m−j ≲ P

(

sup
t∈[0,Tε]

Eε(t)

)

. (3.10)

Proof. For the pressure q, we have from (1.2) and (1.12),

q = fγ = ρ̃
γ
0J

−γ . (3.11)

Then, using the apriori assumptions (3.2) and (3.3), we have, for j ≤ m− 1,
ˆ t

0
∥∂j

t q∥2m−j ≲ ∥ρ̃γ0∥2L∞

ˆ t

0
∥∂j

t (J
−γ)∥2m−j ≲

ˆ t

0

∥
∥
∥∂

j
t∇η

∥
∥
∥

2

m−j
≲ P

(

sup
t∈[0,T ]

Eε(t)

)

.

□

3.3. Tangential derivative estimates. We are ready to derive the estimates of high order
tangential derivatives.

Lemma 3.4. Let m ≥ 4, for any t ∈ [0, Tε], it follows that

m∑

j=0

∥∂j
t ∂

m−j
τ (vε,∇ηε)∥20(t) + ∥∂j

t ∂
m−j
τ qε∥20(t) +

ˆ t

0
ε∥∂j

t ∂
m−j
τ ∇vε∥20

≲ M0 + δ sup
t∈[0,Tε]

Eε(t) +
√

TεP

(

sup
t∈[0,Tε]

Eε(t)

)

. (3.12)

Proof. Applying ∂̄m := ∂
j
t ∂

m−j
τ on the second equation in (1.15) and taking the L2(Ω) inner

product with ∂̄mvi yield

1

2

d

dt

ˆ

Ω
ρ̃0|∂̄mv|2dx+

ˆ

Ω
aik∂k∂̄

mq∂̄mvidx− 2µε

ˆ

Ω
∂̄m(akl∂l(Sηv)ik)∂̄

mvidx

− λε

ˆ

Ω
∂̄m(aij∂jdivηv)∂̄

mvidx−
ˆ

Ω
∂j(∂̄

m(ρ̃0∂jηi))∂̄
mvidx

= −
ˆ

Ω
[∂̄m, ρ̃0]∂tvi∂̄

mvidx

︸ ︷︷ ︸

R1
η

−
ˆ

Ω
[∂̄m, aik]∂kq∂̄

mvidx

︸ ︷︷ ︸

R1
q

.

Using integration by parts and Piola’s identity (1.14), we have
ˆ

Ω
aik∂k∂̄

mq∂̄mvidx− 2µε

ˆ

Ω
∂̄m(akl∂l(Sηv)ik)∂̄

mvidx
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− λε

ˆ

Ω
∂̄m(aij∂jdivη(v))∂̄

mvidx−
ˆ

Ω
∂j(∂̄

m(ρ̃0∂jηi))∂̄
mvidx

= −
ˆ

Ω
aik∂̄

mq∂̄m∂kvidx+ 2µε

ˆ

Ω
∂̄m((Sηv)ikakl)∂l∂̄

mvidx

+ λε

ˆ

Ω
∂̄m(aijdivηv)∂j ∂̄

mvidx+

ˆ

Ω
∂̄m(ρ̃0∂jηi)∂j ∂̄

mvidx

−
ˆ

Γ
∂̄mqai3∂̄

mvi + λε

ˆ

Γ
∂̄m (ai3divη(v)) ∂̄

mvi

︸ ︷︷ ︸

Rb1

+2µε

ˆ

Γ
∂̄m(ak3Sη(v)ik)∂̄

mvi +

ˆ

Γ
∂̄m(ρ̃0∂3ηi)∂̄

mvi

︸ ︷︷ ︸

Rb2

. (3.13)

For Rb1, from the first boundary condition in (1.18) we see that it equals to zero.
For the four integrals defined on the domain Ω in (3.13), we have

−
ˆ

Ω
aik∂̄

mq∂̄m∂kvidx+ 2µε

ˆ

Ω
∂̄m((Sηv)ikakl)∂l∂̄

mvidx

+ λε

ˆ

Ω
∂̄m(aijdivηv)∂j ∂̄

mvidx+

ˆ

Ω
∂̄m(ρ̃0∂jηi)∂j ∂̄

mvidx

= −
ˆ

Ω
∂̄mq∂̄m(aik∂kvi)dx+

ˆ

Ω
∂̄mq[∂̄m, aik]∂kvidx

︸ ︷︷ ︸

R2
η

+2µε

ˆ

Ω
J |Sη(∂̄

mv)|2dx

+ λε

ˆ

Ω
J
∣
∣divη(∂̄

mv)
∣
∣2 dx+ 2µε

ˆ

Ω
[∂̄m, akl](Sηv)ik∂l∂̄

mvidx

︸ ︷︷ ︸

R1
ε

+ λε

ˆ

Ω
[∂̄m, aij ](divηv)∂j ∂̄

mvidx

︸ ︷︷ ︸

R2
ε

+2µε

ˆ

Ω
[∂̄m, Aij ]∂jvkJSη(∂̄

mv)ik
︸ ︷︷ ︸

R3
ε

+ λε

ˆ

Ω
[∂̄m, Aij ]∂jviJdivη(∂̄

mv)

︸ ︷︷ ︸

R4
ε

+

ˆ

Ω
ρ̃0∂j ∂̄

mηi∂j ∂̄
mvidx+

ˆ

Ω
[∂̄m, ρ̃0]∂jηi∂j ∂̄

mvidx

︸ ︷︷ ︸

R3
η

=
1

2

d

dt

ˆ

Ω
ρ̃0|∂̄m∇η|2dx−

ˆ

Ω
∂̄mq∂̄m∂tJdx+ 2µε

ˆ

Ω
J |Sη(∂̄

mv)|2dx+ λε

ˆ

Ω
J
∣
∣divη(∂̄

mv)
∣
∣2 dx

+R2
η +R3

η +

4∑

i=1

Ri
ε. (3.14)

Since (1.12) implies

∂tJ = ∂t(ρ̃0f
−1) = −ρ̃0

∂tf

f2
= −ρ̃0

∂tq

q′(f)f2
= − ρ̃0∂tq

γAfγ+1
= − Jγ+1

γAρ̃
γ
0

∂tq, (3.15)

then

−
ˆ

Ω
∂̄mq∂̄m∂tJdx =

1

γ

ˆ

Ω
∂̄mq∂̄m(ρ̃−γ

0 Jγ+1∂tq)dx
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=
1

γ

ˆ

Ω
ρ̃
−γ
0 Jγ+1∂̄mq∂t∂̄

mqdx+
1

γ

ˆ

Ω
∂̄mq[∂̄m, ρ̃

−γ
0 Jγ+1]∂tqdx

=
1

2γ

d

dt

ˆ

Ω
ρ̃
−γ
0 Jγ+1|∂̄mq|2dx−γ + 1

2γ

ˆ

Ω
ρ̃
−γ
0 JγJt|∂̄mq|2dx

︸ ︷︷ ︸

R2
q

+
1

γ

ˆ

Ω
∂̄mq[∂̄m, ρ̃

−γ
0 Jγ+1]∂tqdx

︸ ︷︷ ︸

R3
q

.

Consequently, collecting the above equations together, we can get the following

1

2

d

dt

ˆ

Ω
ρ̃0(|∂̄mv|2 + |∂̄m∇η|2)dx+

1

2γ

d

dt

ˆ

Ω
ρ̃
−γ
0 Jγ+1|∂̄mq|2dx

+ 2µε

ˆ

Ω
J |Sη(∂̄

mv)|2dx+ λε

ˆ

Ω
J
∣
∣divη(∂̄

mv)
∣
∣2 dx

= −
(

3∑

i=1

Ri
η +

3∑

i=1

Ri
q +

4∑

i=1

Ri
ε

)

−Rb2.

(3.16)

We turn to estimate each of the terms Rb2, R
i
η, R

i
q (i = 1, 2, 3) and R

j
ε (j = 1, 2, 3, 4).

Firstly, for Rb2, with the first boundary condition in (1.18) and (1.19), we have

Rb2 =
∑

β=1,2

ˆ

Γ
∂̄m (2µε(Sη(v))βkak3 + ρ̃0∂3ηβ) ∂̄

mvβ

=− αε

ˆ

Γ
∂̄m(|a33| v) · ∂̄mv = αε

ˆ

Γ
|a33|

∣
∣∂̄mv

∣
∣2 + αε

ˆ

Γ

[
∂̄m, |a33|

]
v · ∂̄mv. (3.17)

Thus, with the expression of a33 and the trace estimate (2.3), we arrive at
∣
∣
∣
∣
αε

ˆ

Γ
|a33|

∣
∣∂̄mv

∣
∣2
∣
∣
∣
∣
≲ P

(√

Fε
)(

ε2
∥
∥∂̄mv

∥
∥2

0
+ ε2

∥
∥∂̄m∇v

∥
∥2

0

)

, (3.18)

and
∣
∣
∣
∣

ˆ

Γ

[
∂̄m, |a33|

]
v · ∂̄mv

∣
∣
∣
∣
≲
∣
∣∂̄m∂τη

∣
∣
− 1

2

|∂τη| 3
2

∣
∣ε∂̄mv

∣
∣
1

2

≲ P
(√

Fε
)(

ε2
∥
∥∂̄mv

∥
∥2

0
+ ε2

∥
∥∇∂̄mv

∥
∥2

0
+
∥
∥∂̄m∇η

∥
∥2

0

)

. (3.19)

Next, for Ri
η (i = 1, 2, 3), we have

∣
∣
∣
∣

ˆ t

0
R1

η

∣
∣
∣
∣
≲

ˆ t

0
∥[∂̄m, ρ̃0]∂tvi∥0∥∂̄mvi∥0

≲

ˆ t

0
∥ρ̃0∥m ∥∂tv∥L∞

∥
∥∂̄mv

∥
∥
0
+
∥
∥∂̄ρ̃0

∥
∥
L∞

∥
∥∂̄mv

∥
∥2

0

≲ TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.20)

Similarly, the following holds
∣
∣
∣
∣

ˆ t

0
R2

η

∣
∣
∣
∣
≲

ˆ t

0

∥
∥∂̄mq

∥
∥
0

∥
∥
[
∂̄m, aik

]
∂kv
∥
∥
0

≲

ˆ t

0

∥
∥∂̄mq

∥
∥
0

(∥
∥∂̄m∇η

∥
∥
0
∥∇v∥L∞ +

∥
∥∂̄m∇η

∥
∥
0
∥a∥L∞ +

√

Fε
∥
∥∂̄∇v

∥
∥
L∞

)

≲
√
TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.21)
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For R3
η, using integration by parts with respect to t and Cauchy’s inequality, we obtain

∣
∣
∣
∣

ˆ t

0
R3

η

∣
∣
∣
∣
≲

∣
∣
∣
∣

ˆ

Ω
[∂̄m, ρ̃0]∂jηi∂j ∂̄

mηi

∣
∣
∣

t

0

∣
∣
∣
∣
+

∣
∣
∣
∣

ˆ t

0

ˆ

Ω
[∂̄m, ρ̃0]∂t∂jηi∂j ∂̄

mηi dxdt

∣
∣
∣
∣

≲ M0 + δ∥∂̄m∇η(t)∥20 + CδF
ε +

ˆ t

0

∥
∥∂̄m∇η

∥
∥2

0
∥ρ̃0∥m

≲ M0 + δ∥∂̄m∇η(t)∥20 + TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.22)

Now we estimate Ri
q (i = 1, 2, 3). For R1

q , from (3.3) we have
∣
∣
∣
∣

ˆ t

0
R1

q

∣
∣
∣
∣
≲

ˆ t

0

∥
∥
[
∂̄m, aik

]
∂kq
∥
∥
0

∥
∥∂̄mv

∥
∥
0

≲

ˆ t

0

(∥
∥∂̄m∇η

∥
∥
0
∥∇q∥L∞ +

∥
∥∂̄m−1∇q

∥
∥
0

∥
∥∂̄a

∥
∥
L∞

) ∥
∥∂̄mv

∥
∥
0

≲
√
TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.23)

In view of (3.2), (3.3), one can derive the following

∣
∣
∣
∣

ˆ t

0
R2

q

∣
∣
∣
∣
≲ TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.24)

It follows from (3.10) that
∣
∣
∣
∣

ˆ t

0
R3

q

∣
∣
∣
∣
≲

ˆ t

0
∥∂̄mq∥0∥[∂̄m, ρ̃

−γ
0 Jγ+1]∂tq∥0

≲

ˆ t

0
∥∂̄mq∥0

(

∥∂̄(ρ̃−γ
0 Jγ+1)∥L∞∥∂̄m−1∂tq∥0 + ∥∂tq∥L∞

∥
∥
∥∂̄m(ρ̃−γ

0 Jγ+1)
∥
∥
∥
0

)

≲ TP

(

sup
t∈[0,T ]

Eϵ(t)

)

. (3.25)

Finally, for R1,2
ε , one has

∣
∣
∣
∣

ˆ t

0
R1

ε +R2
ε

∣
∣
∣
∣
≲

ˆ t

0

∥
∥
√
ε[∂̄m, a](A∇v)

∥
∥
0

∥
∥
√
ε∇∂̄mv

∥
∥
0

≲ δε

ˆ t

0

∥
∥∇∂̄mv

∥
∥2

0
+ TP

(

sup
t∈[0,T ]

Eε(t)

)

. (3.26)

Similarly, we have
∣
∣
∣
∣

ˆ t

0
R3

ε +R4
ε

∣
∣
∣
∣
≲

ˆ t

0
∥
√
ε[∂̄m, A]∇v∥0

(

∥
√
ε
√
JSη(∂̄

mv)∥0 + ∥
√
ε
√
Jdivη(∂̄

mv)∥0
)

≲ δε

ˆ t

0
∥∇∂̄mv∥20 + TP

(

sup
t∈[0,T ]

Eε(t)

)

. (3.27)

Therefore, integrating (3.16) over [0, t], then using (3.19), (3.20)–(3.27) and Korn’s inequality,
we finish the proof of Lemma 3.4. □
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3.4. Normal derivative estimates. In this subsection, we will derive the estimates of normal
derivatives. To this end, we can first obtain from the second equation in (1.15), (3.11) and (2.5)
that

− ρ̃0J∆ηi − γ(ρ̃0J
−1)γaikars∂k∂sηr − µεaklakj∂j∂lvi − (µ+ λ)εaklaij∂l∂jvk

= −γ(ρ̃0J
−1)γ−1J−1aik∂kρ̃0 + ∂j ρ̃0J∂jηi − ρ̃0J∂tvi + µεJakl∂lAkj∂jvi

+ µεJakl∂lAkj∂jvi + λεJaij∂jAkl∂lvk.

As a consequence, we have

−Aij∂
2
3ηj − µεak3ak3∂

2
3vi − (µ+ λ)εai3aj3∂

2
3vj = Fi + Gi, (3.28)

where

Aij = ρ̃0Jδij + γ(ρ̃0J
−1)γai3aj3 = ρ̃0J(δij + γρ̃

γ−1
0 J−γ−1ai3aj3),

Fi =
∑

l ̸=3, or j ̸=3

(µεaklakj∂j∂lvi + (µ+ λ)εaklaij∂l∂jvk)

+ µεJakl∂lAkj∂jvi + µεJakl∂lAkj∂jvi + λεJaij∂jAkl∂lvk,

and

Gi =
∑

l ̸=3, or j ̸=3

γ(ρ̃0J
−1)γailarj∂

2
ljηr

− ρ̃0J∂tvi − ρ̃0J∂
2
1ηi − ρ̃0J∂

2
2ηi − γρ̃

γ−1
0 J−γaik∂kρ̃0 + J∇ρ̃0 · ∇ηi.

It is straightforward to check that A is symmetric, and A is positive definite. In fact, for any
vector x ∈ R

3, we have

x
TAx = ρ̃0J |x|2 + γ(ρ̃0J

−1)γ |a·3 · x|2 .
Since A is positive definite, with a priori assumption (3.3), one can estimate the normal deriva-
tives of η by using (3.28). Consequently, we have the following lemma.

Lemma 3.5. For any t ∈ [0, Tε], m ≥ 4, one has

m−1∑

j=0

∥
∥
∥
√
ε∂

j
t∇2ηε(t)

∥
∥
∥

2

m−1−j
+

m∑

j=0

ˆ t

0
∥∂j

t (∇ηε, vε, ε∇vε)∥2m−j

≲ M0 + δ sup
t∈[0,Tε]

Eε(t) +
√
TP

(

sup
t∈[0,Tε]

Eε(t)

)

. (3.29)

Proof: Applying the operator ∂̄β with |β| ≤ m− 1 to (3.28) yields that

−Aij ∂̄
β∂2

3ηj − µεak3ak3∂̄
β∂2

3vi − (µ+ λ)εai3aj3∂̄
β∂2

3vj
︸ ︷︷ ︸

Rn

= [∂̄β ,Aij ]∂
2
3ηj + µε[∂̄β , ak3ak3]∂

2
3vi + (µ+ λ)ε[∂̄β , ai3aj3]∂

2
3vj + ∂̄βFi + ∂̄βGi. (3.30)

Then, we square the left-hand side of (3.30) and integrate it over Ω to obtain
ˆ

Ω
|Rn|2 =

ˆ

Ω

∣
∣
∣A∂̄β∂2

3η
∣
∣
∣

2
+ µ2ε2

∣
∣
∣|a·3|2 ∂̄β∂2

3v
∣
∣
∣

2
+ (µ+ λ)2ε2

∣
∣
∣∂̄β∂2

3v · a·3
∣
∣
∣

2
|a·3|2

+
d

dt

ˆ

Ω
µε
∣
∣a2·3
∣
∣Aij ∂̄

β∂2
3ηi∂̄

β∂2
3ηj −

ˆ

Ω
µε∂t(|a·3|2Aij)∂̄

β∂2
3ηi∂̄

β∂2
3ηj

+
d

dt

ˆ

Ω
(µ+ λ)ερ̃0J(1 + γρ̃

γ−1
0 J−γ−1 |a·3|2)

∣
∣
∣∂̄β∂2

3η · a·3
∣
∣
∣

2
(3.31)
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−
ˆ

Ω
(µ+ λ)ε∂t(Aijai3ak3)∂̄

β∂2
3ηj ∂̄

β∂2
3ηk

+ 2

ˆ

Ω
µ(µ+ λ)ε2 |a·3|2

∣
∣
∣∂̄β∂2

3v · a·3
∣
∣
∣

2
,

where we used
Aijai3 = ρ̃0J(1 + γρ̃

γ−1
0 J−γ−1 |a·3|2)aj3.

Since µ > 0, 2µ+3λ > 0, then µ+ λ >
1

3
µ > 0. Using the fact that A is positive definite and

a priori assumption (3.3), we can integrate (3.31) over time to obtain,
∥
∥
∥
√
ε∂̄β∂2

3η
∥
∥
∥

2

0
(t) +

ˆ t

0

(∥
∥
∥∂̄β∂2

3η
∥
∥
∥

2

0
+
∥
∥
∥ε∂̄β∂2

3v
∥
∥
∥

2

0

)

≲
∥
∥
∥
√
ε∂̄β∂2

3η
∥
∥
∥

2

0
(0) +

ˆ t

0

∥
∥∂t∂̄η

∥
∥
L∞

∥
∥
∥
√
ε∂̄β∂2

3η
∥
∥
∥

2

0
+

ˆ t

0

∥
∥
∥[∂̄β ,A·j ]∂

2
3ηj

∥
∥
∥

2

0

+

ˆ t

0
ε2
∥
∥
∥[∂̄β , a·3a·3]∂

2
3v
∥
∥
∥

2

0
+
∥
∥
∥∂̄βF

∥
∥
∥

2

0
+
∥
∥
∥∂̄βG

∥
∥
∥

2

0
. (3.32)

It is straightforward to check that
ˆ t

0

∥
∥∂t∂̄η

∥
∥
L∞

∥
√
ε∂̄β∂2

3η∥20 ≲ TP

(

sup
t∈[0,T ]

Eε(t)

)

, (3.33)

ˆ t

0

∥
∥
∥[∂̄β ,A·j ]∂

2
3ηj

∥
∥
∥

2

0
≲

ˆ t

0

∥
∥∂̄A·j

∥
∥2

L∞

∥
∥
∥∂̄β−1∂2

3ηj

∥
∥
∥

2

0
+
∥
∥∂2

3ηj
∥
∥
2

L∞

∥
∥
∥∂̄βA·j

∥
∥
∥

2

0

≲ TP

(

sup
t∈[0,T ]

Eε(t)

)

, (3.34)

and
ˆ t

0
ε2∥[∂̄β , a·3a·3]∂

2
3v∥20 ≲

ˆ t

0

∥
∥∂̄(a·3a·3)

∥
∥2

L∞

∥
∥
∥
√
ε∂̄β−1∂2

3v
∥
∥
∥

2

0
+
∥
∥
√
ε∂2

3v
∥
∥
2

L∞

∥
∥
∥∂̄β(a·3a·3)

∥
∥
∥

2

0

≲ TP

(

sup
t∈[0,T ]

Eε(t)

)

. (3.35)

By using (3.3) and (3.12), we have
ˆ t

0

∥
∥
∥∂̄βF

∥
∥
∥

2

0
≲

ˆ t

0
ε∥aa∥2L∞

∥
∥
∥
√
ε∂̄β+1∇v

∥
∥
∥

2

0
+
∥
∥
∥ε[∂̄β , aa]∂̄∇v

∥
∥
∥

2

0

+

ˆ t

0

(
∥∇2η∥2L∞∥ε∇v∥2m−1 + ∥∇v∥2L∞∥ε∇2η∥2m−1

)

≲ M0 + δ sup
t∈[0,Tε]

Eε(t) +
√
TP

(

sup
t∈[0,Tε]

Eε(t)

)

, (3.36)

where δ may be adjusted when necessary.
Similarly, we also have

ˆ t

0

∥
∥
∥∂̄βG

∥
∥
∥

2

0
≲

ˆ t

0

(
∥
∥∂̄m∇η

∥
∥2

0
∥ρ̃0Jaa∥2L∞ +

∥
∥
∥∂̄β∇η

∥
∥
∥

2

0

∥
∥∂̄∇η

∥
∥2

L∞

)

(1 + ∥ρ̃0∥2m)

≲ TP

(

sup
t∈[0,T ]

E(t)

)

. (3.37)
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Therefore, substituting (3.33)-(3.37) into (3.32) yields
∥
∥
∥
√
ε∂̄β∂2

3η
∥
∥
∥

2

0
(t) +

ˆ t

0

(∥
∥
∥∂̄β∂2

3η
∥
∥
∥

2

0
+
∥
∥
∥ε∂̄β∂2

3v
∥
∥
∥

2

0

)

≲ M0 + δ sup
t∈[0,T ]

E(t) +
√
TP

(

sup
t∈[0,T ]

E(t)

)

.

(3.38)

Next, for any |β| ≤ m − 1 − ℓ, ℓ ∈ N, applying ∂̄β∂ℓ
3 to (3.28), using the same argument as in

the proof of (3.38), we can successively obtain the following estimate for ℓ = 1, 2, · · · ,m− 1,

∥
√
ε∂̄β∂ℓ+2

3 η∥20 +
ˆ t

0

(∥
∥
∥∂̄β∂ℓ+2

3 η
∥
∥
∥

2

0
+
∥
∥
∥ε∂̄β∂ℓ+2

3 v
∥
∥
∥

2

0

)

≲ M0 + δ sup
t∈[0,T ]

E(t) +
√
TP

(

sup
t∈[0,T ]

E(t)

)

.

Therefore, we complete the proof of Lemma 3.5. 2

3.5. Proof of Proposition 3.1 for the Navier-slip boundary condition. We now combine
the estimates achieved above and verify the a priori assumption (3.3). In fact, we can deduce
from Lemmas 3.2, 3.4, and 3.5 that

sup
t∈[0,Tε]

Eε(t) ≤ M0 + δ sup
t∈[0,Tε]

Eε(t) +
√

TεP

(

sup
t∈[0,Tε]

Eε(t)

)

.

As a consequence, the following inequality holds for any t ∈ [0, Tε],

|Jε(t)− Jε
0 | ≤

∣
∣
∣
∣

ˆ t

0
Jε
t

∣
∣
∣
∣
≤ Tε

1

2 ∥Jε
t ∥L2

T
(L∞) ≲

√

Tε sup
t∈[0,Tε]

Eε(t).

Similarly, we also have

|∂jηεi (t)− ∂jη
ε
0i| ≲

√

Tε sup
t∈[0,Tε]

Eε(t).

Thus, by choosing δ sufficiently small, there exists a constant T which is independent of ε, such
that (3.3) is satisfied and

sup
t∈[0,T ]

Eε(t) ≤ 2M0.

3.6. Proof of Proposition 3.1 for the no-slip boundary condition. For no-slip boundary
condition (1.17), the only difference occurs in the estimates of the boundary integral in basic
energy estimates and tangential derivative energy estimates. In fact, we find that all of the
boundary integral Rb in (3.6) and Rb1, Rb2 in (3.6) become zero under the no-slip boundary
condition. Thus, Lemmas 3.2 and 3.4 are valid for the no-slip boundary condition. Meanwhile
the pressure and normal derivative estimates are just the same since the boundary conditions
are not used in the proof of Lemma 3.5. Combining these three Lemmas, the Proposition 3.1 is
also valid for the no-slip boundary condition.

4. Proof of Theorems

4.1. Proof of Theorem 1.1. From the uniform estimates of (ηε, qε, vε) achieved in Proposition
3.1, we find that there exists a T0 > 0 which is independent of ε, such that (ηε, qε, vε) satisfy
sup

t∈[0,T0]
Eε(t) ≤ C1, which complete the proof of Theorem 1.1.
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4.2. Proof of Theorem 1.2. The uniform estimates in the Proposition 3.1 imply that ηε is
uniformly bounded in L∞(0, T0;H

m), ∇ηε is uniformly bounded in L2(0, T0;H
m), and ∂tη

ε

is uniformly bounded in L∞(0, T0;H
m−1) ∩ L2(0, T0;H

m−1). One hence obtains that ηε is
compact in C([0, T0];H

m−1) as a consequence of the Aubin-Lions compactness theorem (c.f.
[42]). Precisely, there exist a subsequence εn → 0+ and a function η, such that ηεn → η

in C([0, T0];H
m−1) as εn → 0+. Similarly, we can also have vεn → v in C([0, T0];H

m−2) as
εn → 0+. Such convergence properties allow us to take the limit in (1.15) and prove that
(η, v) is a solution to the elastodynamic equations (1.16). Thanks to the uniqueness of classical
solutions to (1.16), we conclude that the whole family (ηε, vε) converge to (η, v).
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