WEAK SOLUTIONS TO THE EQUATIONS OF STATIONARY
COMPRESSIBLE FLOWS IN ACTIVE LIQUID CRYSTALS

ZHILEI LIANG, APALA MAJUMDAR, DEHUA WANG, AND YIXUAN WANG

ABSTRACT. The equations of stationary compressible flows of active liquid crystals are con-
sidered in a bounded three-dimensional domain. The system consists of the stationary Navier-
Stokes equations coupled with the equation of Q-tensors and the equation of the active par-
ticles. The existence of weak solutions to the stationary problem is established through a
two-level approximation scheme, compactness estimates and weak convergence arguments.
Novel techniques are developed to overcome the difficulties due to the lower regularity of
stationary solutions, a Moser-type iteration is used to deal with the strong coupling of active
particles and fluids, and some weighted estimates on the energy functions are achieved so
that the weak solutions can be constructed for all values of the adiabatic exponent v > 1.

1. INTRODUCTION

Active hydrodynamics refer to dynamical systems that are continuously driven out of equi-
librium state by injected energy effects on small scales and exhibit collective phenomenon on
a large scale, for example, bacterial colonies, motor proteins, and living cells [2,24,25]. Active
systems have natural analogies with nematic liquid crystals because the particles exhibit a
orientational ordering at a high concentration due to the collective motion. In comparison
with the passive nematic liquid crystals, the system of active hydrodynamics is usually unsta-
ble and has novel characteristics such as low Reynolds numbers and very different spatial and
temporal patterns [15,34]. We refer the readers to [5,15,18,25,27,33,34] and their references
for the physical background, applications and modeling of active hydrodynamics. Theoreti-
cal studies on active liquid crystals are relatively new and have attracted a lot of attention
in recent years. For example, the evolutionary incompressible flows of active liquid crystals
were studied in [6,19] and the evolutionary compressible flows were investigated in [7,28]. In
this paper we are concerned with the stationary compressible flows of active liquid crystals,
described by the following equations in a bounded domain @ C R3 :

div(pu) = 0,

u-Ve— Ac =g,

div(pu @) + Vo7 — div (Sus(Vtt) + 81(Q) + Sa(c, Q) = poa. (1.1)
u-VQ + Q0 — QQ + ¢c.Qtr(Q?) + (C_2C*>Q —b <Q2 - ;tr(QQ)]I> — AQ = gs,

where p, ¢, u denote the total density, the concentration of active particles, and the velocity
field, respectively; the nematic tensor order parameter @ is a traceless and symmetric 3 x 3
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matrix, p?7 is the pressure with adiabatic exponent v > 1, and the functions g; (i = 1,2, 3) are
given external force terms. We denote the Navier-Stokes stress tensor by

Sns(VU) = 41 (vu + (vu)T) + Adivul, (1.2)

where (Vu)T denotes the transpose of Vu, I is the identity matrix, and the constants u, A
are viscous coeflicients satisfying the following physical requirement:

(>0, pu+3)x>0. (1.3)

In (1.1), @ = 1(Vu— (Vu) "), and the additional stress tensors are:

51(Q) = -VQ o VQ + %\VQ!Q]I + % (1+5(@)) @)L (1.4)
and

S2(c, Q) = QAQ — AQQ + 0.7, (1.5)

where ¢, > 0 and o, € R are given constants. The corresponding evolutionary equations
of compressible active liquid crystal flows can be found in [7]. The equations (1.1) can be
regarded as the stationary version of the evolutionary equations in [7] through the time-
discretization and play an important role in the long-time behavior of active hydrodynamics.
However, the mathematical analysis of the stationary equations (1.1) remains open. The aim
of this paper is to construct the weak solutions to the stationary equations (1.1) subject to
the following structural conditions:

dc oQ
u = 0, % = 0, % = 0, on 80, (16)
and
/ p(x)de =mq >0 and / c(x)dx = mg > 0, (1.7)
(@] (@)

where n denotes the outward unit normal vector of the boundary 00, m; and msy are given
constants. We remark that the two conditions on the total mass and the total active particles
in (1.7) guarantee that the density function p and the particle concentration ¢ are uniquely
determined. For the modeling and analysis of the )-tensor systems of nematic liquid crystals
we refer the readers to [3,4,13,16,22,36] and references therein.

We now introduce some notation that will be frequently used throughout this article.
For given symmetric matrices A = (ai;)3x3 and B = (b;j)3x3, denote tr(AB) = A : B =
zg’,j:l aijbz-j, tI‘(AQ) = ‘A|2, and Sg = {A = (aij)gxg LA = Gy, tI‘(A) = O}. For two
vectors a, b € R?, denote a - b = Z?Zl a;b; and a ® b = (a;bj)3x3. Denote the Sobolev spaces
(cf. [1]) by

wke = wkr(©), P =W HF=WF? pe[l,o0, keN,.

Additionally, we use W*P(0O, R?) and WkP(O, S3) for the Sobolev spaces valued in R? and
Sg, respectively. We denote by |O| the measure of the domain O, and write [, f(z)dz as [ f
for simplicity of notation.

We shall establish the existence of weak solutions to the problem (1.1)-(1.7) defined as
follows.
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Definition 1.1. The function (p,c,u,Q) is called a weak solution to the boundary-value
problem (1.1)-(1.7) if there is some exponent p > 3 such that

p>0, ¢>0 ae inO,
pE€LP(0), ceH*0), ueH;(O,R®), QeH0,5),
satisfying the following properties:
(i). The equations (1.1) are satisfied in the sense of distributions, (1.6) holds true in the
trace sense, (1.7) holds true for given my > 0 and mgy > 0;

(ii). (1.1), is satisfied in the sense of renormalized solutions, i.e., if (p,u) is extended by
zero outside O, then

div(b(p)u) + (V'(p)p — b(p)) divu = 0, D'(R?),

where b € C1([0, 00)) with V/(z) = 0 if z is large,
(iii). (1.1), and (1.1), are satisfied almost everywhere in O.

We are ready to state our main result.

Theorem 1.1. Let O C R3 be a bounded domain with smooth boundary. Assume that the
adiabatic exponent v > 1, the constants my > 0 and mo > 0, and the functions

g1 € L®(0), g2 € L¥(O,R?), ¢3¢ L>(0,5S) (1.8)

are given. Then there exists a small constant my that depends on my, ¢y, Ox, f, A, ¥, |91 oo,
llg2llze<, llgsllze and |O|, such that if

mg € (07m2]7 (19)
the problem (1.1)-(1.7) admits a solution (p,c,u, Q) in the sense of Definition 1.1.

Remark 1.1. The smallness assumption (1.9) is a technical condition that is mainly used to
overcome the strong nonlinearity caused by the concentration ¢ of active particles.

Remark 1.2. In fact, Theorem 1.1 still holds true in the case when c is any positive constant
(hence ma = ¢|O)).

We shall prove Theorem 1.1 by constructing approximate solutions and a two-level limiting
procedure. The approximate solutions are constructed in light of time-discretization technique
from the evolutionary equations in [7,31], and the limits are based on standard compactness
theories developed in [7,10,23,29]. However, new difficulties arise due to the lower regularity
of stationary solutions, strong nonlinearity and complex coupling of active particles and fluids.
In order to make our ideas clear we comment on our approach and novelty below.

We begin in Section 2 with suitable linear equations to construct the approximations of
system (1.1). For a given function v in the set {v € W1>°(O,R3), v =0 on O}, we impose
the transport equation (1.1); with the extra diffusion €2Ap and obtain p = p[v, €| in Lemma
2.1. With the force term g; given in (1.1), we can solve ¢ = c[v,€]. Having p = p[v, €]) and
¢ = c[v, €] in hand, for a given v and a given function Q in the set {Q € W2>(0O,R?), g—g =
0 on 0O} we are able to construct the solution to a linear system of @ in terms of v and
Q. In the same manner, we consider the approximate momentum equations (2.8) and solve
u = ufv, Q, €]. We should point out that the appearance of highest derivative of @ due to
(1.5) requires W3P regularity for Q. Moreover, since Vv and g3 are only in L*, we adopt
the ideas in [8] and use a global mollification technique such that the above approximation is
smooth.
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The approximate equations (3.1) come from the linear equations in Section 2 and will
be solved using the Schaefer Fixed Point Theorem (cf. [9]). The approximate solutions are
constructed by a two-level approximation scheme involving the artificial viscosity and artificial
pressure. However, the strong nonlinearity in the quantities

/CQQZVH and /cu-Vc

causes new difficulties in closing the basic a priori estimates. To this end, we explore a
Moser-type iteration such that ||c||z= can be bounded by ||c||;1 = mq, and hence we are able
to control the above mentioned nonlinear terms provided that some small assumption on ms is
made. In this connection, we are allowed to close the energy estimates to obtain the existence
of approximate solutions, and further improve the regularity of the solutions by a bootstrap
argument.

Next we shall take the limit in the approximate solutions as first ¢ — 0 and then § — 0
through the weak convergence arguments. We remark that the nonlinear coupling of ¢ and @
in the momentum equation makes the limiting process much more subtle. For example, for
the integral quantity

[ (@2qi - 2QiQi) 0,008 00,

the e-limit is not obvious because both AQ’;J and 0;A™1(p.) are only weakly convergent.
Fortunately, we can overcome the difficulty using the integration by parts as well as the
symmetry of Q; see (4.36) for a detailed explanation.

One disadvantage for the stationary problem is that it has no useful information on the
density other than ||p|/;1, which is very different from the evolutionary equations for which
the higher regularity ||p||z+ with v > 1 is available. As a consequence we have extra difficulties
in taking 6-limit procedure (especially if v > 1 is close to 1). Taking account of the ideas
in [12,17,20,21], we use the refined weighted estimates on both pressure and kinetic energy
functions. However, the involvement of ¢ and ) makes the proof much more complex and
delicate. We utilize different weighted functions in dealing with the boundary case and interior
case, and finally succeed in obtaining the uniform estimates for all adiabatic exponent v > 1
under the smallness assumption (1.9). This is different from our previous papers [20, 21]
for Cahn-Hilliard/Navier-Stokes equations where the restriction v > % seems to be critical
because the pressure depends both on the density and the concentration. Once the Proposition
5.1 is obtained, we are able to use the standard compactness theories in [10,23] to take d-limit
and complete the proof of Theorem 1.1.

The rest of paper is organized as follows. In Section 2, we introduce some linear equations
and their preliminary existence results that will be used in the construction of approximate
solutions. In Section 3, we construct the approximate solutions by a two-level approximation
scheme involving the artificial viscosity coefficient ¢ > 0 and the parameter § > 0 in the
artificial pressure, and prove the existence using the fixed point argument. In Section 4, we
take the limit as € — 0 of the approximate solutions for any fixed § > 0, and finally in Section
5 we take the limit as § — 0 for the vanishing of the artificial pressure and conclude the
existence of weak solutions.
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2. PRELIMINARY RESULTS ON LINEAR EQUATIONS

In this section we present some linear equations, in preparation for constructing the ap-
proximate solutions to the problem (1.1)-(1.7) in (3.1) next section.
Define the following function spaces:

Wol’oo(OaRg) = {v e WH*(O,R?), v =0 on 00},

W22(0,88) :=4{Q € W»>(0, S3), 9@ _ () on 00 ,
0 0 an

W = W™ (O,R3) x W2=(0, 53).

Now let € € (0,1) and p € (1,00) be fixed. Recall m; and my defined in (1.7). The first
lemma is for the solvability of a relaxed transport equation with dissipation from [29].

Lemma 2.1. [29, Proposition 4.29] For any given v € Wol’oo(O,R?’), there exists a unique
solution p = p[v] € W2P(O) to the following problem

ep + div(pv) = EAp + e%, gz =0 on 00, (2.1)

such that
GQ/VP-Vn—/pv-VnJrﬁ/(p—po)n:O, n € C*(0). (2.2)

Moreover,
pz0aeinO, |pllpr=m1, |pllwze <Cle,p,m, O, flvflwre). (2.3)

Lemma 2.2. For any given g1 € L*°(0) and v € WOI’OO(O,R?’), the following problem

0
v-Ve= Ac+ g1, /c:mg, 8—020 on 00, (2.4)
n
has a unique nonnegative solution ¢ = c[v] € W*P(O).
Proof. Consider the approximate equation
ac+v-Vc:Ac+g1+a@ a € (0,1). (2.5)

or

Following the proof of [29, Proposition 4.29], we see that (2.5) has a solution ¢, = ¢4 (v) €
W2P(0) (1 < p < o), satisfying

o >0 ae, O, lcallpr =ma, |callwzr < C(p,ma, O, ||v]ie).
Then, taking the limit o — 0T, we complete the proof. O

The following two lemmas can be obtained from the elliptic theory (see [14]).

Lemma 2.3. For any given (v,Q) € W, the following problem
80~ Q=F'(0.Q) =0 V@ + Lt eGui@t) -0 (@ - (@)
F Q) — ()0~ (o), (26

aQ

o =0 on 90,
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has a unique solution Q = Q[v, Q| satisfying
1Qllws» < CIIF |lwrp < o0, (2.7)

where ¢ = c[v] is solved in Lemma 2.2, and (Q) = (Vo) — (Vo))" with (f) being a smooth
approximation of function f globally in O.

Remark 2.1. We use the smooth approximations (£2) and (g3) to guarantee that F'! belongs
to WP, Such approximations can be obtained through the global mollification (f) = n. * f
with 7. the Friedrichs mollifier (see e.g., [9]). Due to the Neumann boundary condition, we
impose €@ to guarantee that the values of function @ is uniquely determined.

Lemma 2.4. For any given (v,Q) € W, the following problem
divS,s(Vu) = F2(v,Q) := epv + div(pv ® v) + V(6p* + p?) + €Vp - Vo

—div(-VQ®VQ + %\VQF]I + %tr(@z)ﬂ + Z‘(tr(Qz))QO

(2.8)
—div (QAQ - £QQ + 0.°Q) — pga
u=0, on 00,
has a unique solution u = u|v, Q] satisfying
ullyze < C||F?||1» < 0. (2.9)

where both € € (0,1) and 6 € (0,1) are fized constants; p = p[v], ¢ = c[v] and Q = Q[v, Q] are
determined in Lemmas 2.1-Lemma 2.3.

Remark 2.2. The artificial pressure 6p* is used to improve the integrability of density, which
will be used in subsequent analysis.

3. APPROXIMATE SOLUTIONS

In this section we construct the approximate solutions to the problem (1.1)-(1.7). Have
the existence results for the linearized problems in Lemmas 2.1-2.4, we consider the following
nonlinear approximate system:

epe + div(peue) = €2Ape + €po,
u. - Vee = Aee + g1,
divSps(Vue) = F2(ue, Qe),

AQE = EQG + Fl(u€7 Q6)7 (3.1)
Ope B dce 0Qe
on 0, u.=0, on 0 on 0 on 90,

/Pe:mh /ngmg,

where py = ‘%', the functions F'' and F? are taken from (2.6) and (2.8) respectively.
The theorem below states the existence of solutions to problem (3.1).
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Theorem 3.1. Assume that (1.8) holds true and € is sufficiently small. Then there is a small
constant my depending on mi, ¢, 1, N, v, € 0, |0, g1l l|g2ll, llgallLec, such that if
mao < my, the problem (3.1) admits a solution (pe, ce,ue, Qe) satisfying, for any p € (1,00),

0<pee W27p(0)7 HpEHLl((’)) = my, (32)
0<cc€ WP(0), |cdllpio) = ma, (3.3)
u. € W2P(O,R?), Q. W3P(0,Sp). (3.4)

Proof. The proof is based on the Schaefer Fixed Point Theorem (see, e.g., Chapter 9, Theorem
4 in [9]). Thanks to Lemmas 2.1-2.4, for any given (v, Q) € W, we have

(U, Qe) = Alv, Q] := (ufv, Q], Q[v, Q)). (3.5)

By (2.7) and (2.9), it is clear that the operator A : W — W is compact. A straightforward
computation shows that A is continuous; see, e.g., [7]. In order to apply the Schaefer Fixed
Point Theorem, we need to prove the following proposition:

Proposition 3.1. Assume that (u, Q¢) is a solution to the equations (2.6) and (2.8). Then
the set

3.6
for some t € [0,1], and p. = pluc], ce = clu] (36)

{(ue, Q) EW

(ueaQe) = tA[ueer] }

15 bounded.

From Proposition 3.1, we may use the Schaefer Fixed Point Theorem to conclude that
(ue, Q) = Alue, Q] with p. = plu] and ¢. = c[u.]. This together with Lemma 2.1 and
Lemma 2.2 guarantee the existence of the solution (pe, ¢, uc, Q) to the problem (3.1) for any
fixed € > 0. Consequently, the estimates (3.2)-(3.3) follow directly from (2.3) and Lemma 2.2.

We now prove Proposition 3.1 as well as (3.4), leading to the complete proof of Theorem
3.1. We will drop the subscript € and use (p, ¢, u, @) to denote (pe, ¢, ue, Q) for the sake of
simplicity. Observe that (p,c,u, Q) solves

~

ep + div(pu) = €Ap + epo,
u-Ve=A~Ac+ g1,

AQ = €Q +tF'(u,Q),

divSps(Vu) = tF?(u,Q), (3.7)
op B Oc = 0Q _
%—O, u—O,%—O, 8n70’ on 00,

/p:ml, /C:mg.

To prove Proposition 3.1, it suffices to show that there is a constant M < oo independent of
t such that

(w, Q)llw < M. (3.8)
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3.1. Basic inequalities. Multiplying (3.7); by £|u/? and (3.7), by u respectively, we get

S [+ mlf e [Vt + ) +a 1908+ 0+ ) [ Idivap
:t/pgg-ut/AQ (u-V)Q + %divutr(QZ) (1+ %*tr(QQ)) (3.9)
+t/diV(QAQ — AQQ)u — to, /0262 : Vu,

where we have used (1.4) and the following computation

/div <—VQ ®VQ + ;|VQ|2> u

— - [o@Q a0+ ; [wapal - [4Q: @ v)Q

By (3.7),, one deduces

40 .
/u-V(5p4+pV):/pu~V s SR SR

3 v—1
— 495 7 2/ 40 3 Y41
—e/<3p +,Y_1p (p=po)+e [ V{5 +7_1p Vp

> 9 AT 4 v 2 SV 212 4+ 2 2)
_e/<3p +7_1p> €/<3P0+7_1P0>+€/<|VP’ +,Y!Vp2\
Then substituting the above estimate into (3.9) gives

et 1) 1 4
2/(ﬂ+ﬁo)|H!2 +6t/ <3p4 + _1p”> +62t/ (5!%2\2 + \Vpg\z)
v v

+M/Wu|2+()\—|—u)/\divu]2

< t/ 54+ L +t/ u
6 — — .
< 3P0 T S PG

. (3.10)
~t [ 2Q: (w- V)@ + pdivutn(@?) (1+ G (@)

+t/div(QAQ — AQQ)u—w*/c?Q :Vu

5 1 1
=: €t —pe+ ——p I;.
€ /(3P0+7_1P0>+Z§1: i



WEAK SOLUTIONS FOR STATIONARY ACTIVE LIQUID CRYSTAL FLOWS 9
Next, following [7] we multiply (3.7); by —AQ + Q + ¢.Qtr(Q?) to obtain

/\AQ\2+(1+6)/!VQ\2+6/(\Q!2+0*|Q!4) +tc*/(yc2\4+c*\@rﬁ)

(c—c)

T2QH(AQ - Q — e.Qir(QY)

:2tc*/AQ : Qtr(Q2)+t/

i [0 <Q2 - ;Htr@?)) (-5Q+Q+ Q@) +t [(@@) - @)

3.11
- t/(Q(Q> —(Q) : (Q + . Qtr(Q%) +t/u VQ: (AQ - Q - c.Qtr(Q%)) .

1 / (g3 : (—0Q + Q + .Qtr(Q?)

7
=: ZJj.
j=1

3.2. Uniform in € and ¢ estimates. Now we estimate the terms on the right-hand side in
(3.10) and (3.11). In this subsection, the generic constant C' may rely on A, u, my, 6, v, |O|,
¢or @us llgillz, lg2llzee, llgsllzoe, but not on ¢ and e.

Direct calculations show

J = —2tc*/|VQ2tr(Q2) —tc*/|Vtr(Q2)|2 <0, (3.12)
Jo=t [w-VQ: (8Q - Q- e.Qir(Q?)
1 . (3.13)
:t/u-VQ : AQ—t/u-V (2(trQ2) +4*((trQ2))2) = I,
and by the fact that @ is symmetric and € is skew-symmetric, one has
Js =t / Q92— 90) : (Q + . QIr(Q?)) = 0. (3.14)
Moreover, we have the following computation:
B =t [ dvQAQ - 2Q@u+t [ QW) - (©)Q): 2Q
= t/div(QAQ — AQQ)u +t/(QQ -QQ) : AQ
+t [ @) - (9@ - @) - Q) 50 (315

—t [ @) - @) - @) - ©Q)): 4Q
< 1C)(V) — Vul 2 | QL= |AQ] 12
< C1(V) — Vull e ([QIE + 1AQIES)

where the last equality is from [6, Lemma A1], and the last inequality is from the interpolation
inequality.
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As a result of (3.12)-(3.15), inequalities (3.10) and (3.11) provide us

et 04 1, 2/ 22, 4o 10
3 (p + po)uf? +6t/<3p +7_1p)+6t 6|V +7|V02|
+u/]Vu\2+/\AQ!2+/!VQ\2+tc*/(Q\4+c*\Q!6) (3.16)

< Ct+ Ctl[(Vu) = Vul g2 (1Q1I74 + |1AQNZ2) + I+ Ta+ T2 + J3 + J7.
By (1.8), we have
|| + | J5] + | 7]
< Ctllgallze=llpll s llullzs + Co(1+ llgslz2) (1AQN L2 + Q76 + 1)

(3.17)
< Ct+ Ol +@/\Q|ﬁ+“/yw\2+1/m@!2,
- L5 4 4 4
and
|I4| + | J2]
< Ctlle)| i@l 2l Vul 2 + Ct(L + el ) (|QI 2 |AQ|I 12 + [|Q)|7s + 1) (3.18)

6 tes 6, H 2 1 2
< Ct+Ctlelzee + 7 [ QP+ [ [Vul+ 2 [[AQ[.
Substituting (3.17) and (3.18) into (3.16) leads to

6 0
[+ it [ <3p4+,yi1/ﬂ) e <5|Vp2|2+j|wﬂ)
+ / Vul? + / AQI + / vQP + / Q1 +1QI°) (3.19)

<C+Clpl s + Cllelze + Cl(V) = Vull 2 (1QILs + [ AQIT2) -

Observe that the constant C' in (3.19) is independent of €, then we may choose € sufficiently
small and use the standard properties of mollification such that C|[(Vu) — Vul|;2 < 3 to
obtain

1) q
6/(p+po)\u!2 +6/ <3p4+ ,yilp”> +62/ (5!%2!2 + jlvfﬂ?)
4 / Vul? + / AQP + / vQP + / Q1 +1QI°) (3:20)

<C+Cllpll g + Cllelze-

3.3. e-dependent regularity. Thanks to ||p|/;1 = m; and the interpolation inequalities, it
follows from (3.20) that

0 o
[wroml e [ (G4 Ly ) v [ (98 + 2wop)
+ [1vap+ [1aaP+ / vQr+ [ Qi +1Qr) 52

<C(1+||cf8~),

where and in the rest of this subsection, the constant C' may rely on e.
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In order to bound ||¢||ze in (3.21), we need the following lemma:
Lemma 3.1. There ezist constants C' and Cy depending only on |O| such that
lellze < C(1+ [ufl o) (1 + [|g1 || poe )mo- (3.22)

We will continue the proof of Theorem 3.1 and postpone the proof of Lemma 3.1 to the
end of this section. With the help of (3.22) and (1.8), we estimate (3.21) as

5 ;
6/(p+po)\ul2 +6/ (3p4+ ilp”> +62/ <5|Vp2!2 + j!Vp”)
vl + [160P + [ 1ver+ [ (el +1er)
v f1our+ flaars fivers [ .

<C(1+ellf)
<C (1 + m§|[vul5")
<2C,

where the last inequality is valid if

%1

me < (20)77. (3.24)

We remark that, by (3.24), the choice of mg depends only on my, c., os, u, A, 7, €, 6, |0,

191[zoe, [lg2lLoe, llgallLoe-
Having (3.23) obtained, we multiply (3.7), by ¢ and utilize (1.8) to deduce

/W&g/@d+/mvmd

lellzee (lgallzee + Vel 2[[Vull2) (3.25)

IN

A

1
SIvel. +c.
If we multiply (3.7), by —Ac, we obtain

/]Ac[Q < / g1 ] + |u - Vel
< OlAcll (T + [ Vel s Vull2)

s s (3.26)
< OlAcll2 (1 + [ Vel Zl[AcllZ [Vl 2)
< SllAcls + CVel 2
The last two estimates (3.25) and (3.26) guarantee that, for small ma,
[VelF2 + || Acll7. < C. (3.27)
We next consider the Neumann boundary problem:
Ap=divh with 22| —o. (3.28)

onloo
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Lemma 3.2. [29, Lemma 4.27] Letp € (1,00) and b € LP(O,R3). Then the problem (3.28)
admits a solution p € WHP(O), satisfying

/Vp-qu:/b-VqS, vV e C™(0),
and the estimates
IVolle < Clp, [OD|blle - and  [[Vpl[yre < Clp, [O)([Ibllze + [|divh] zr).
Lemma 3.3. [29, Lemma 3.17] There is a linear operator B = (B, B2, B3) which satisfies
(i) Let LP .= {f € L? | [ f =0} with p € (1,00). Then,
_ 3 _
B(f): TP v (W[}’p> . divB(f) = f ae.in O, ¥ feIp.
(ii) For any g € LP(O,R3) with g - n|po = 0,
IVB(f)llze < Cllfllze, [1B(divg)llzr < Cllgl zr,
where the constant C' depends only on p and |O|.

Rewrite (3.7), as
2 Ap = div(pu+ eB(p — po)). (3.29)
Applying Lemma 3.2 to (3.29), and using (3.23), Lemma 3.3, we find
IVplls < Cllpa+ B(p — po)l za
< Cllpullzs + ClIVB(p = po)| 14
1
< Clullgsll?is + Clip = polls < C,
then using LP estimate on (3.29) yields
[0l 2 < Clldiv(pa + eB(p — po))| 12

3.30
< Cllu-Vp+ pdivull 2 + ClldivB(p - po)l 12 < C. (3.30)

By virtue of (3.23) and (3.27), one has |[[u-VQ +tF'(u, Q)HWL% < C, and hence
IQll, 03 <C (331)

from (3.7);. By (3.30) and (3.31), we deduce [tF?(u, Q)||L% < C, which together with L”
regularity and (3.7), imply

Jull 0y <C. (3.32)
Finally, using (3.27), (3.31), (3.32), and L” regularity, we obtain from (3.7), that
lellw2r <€ (p <6). (3.33)

As a result of (3.30)-(3.33), using bootstrap procedure generates, for p € (1, 00),
[, )lwze < C, [ Qllwsw < C.

We have completed the proof of Proposition 3.1 and (3.4), except that we still need to prove
Lemma 3.1. g

The last part of this section is to give a proof of Lemma 3.1.
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Proof of Lemma 3.1. The proof of Lemma 3.1 is based on a Moser-type iteration technique.
Fix g € O. Let Bg = Bgr(xo) C O be a ball centered in xg with radius R < 1, and let n(z)
be a smooth cut-off such that, for all % <r<r <R,

nz)=1if € B,, nx)=0if =z ¢ By, |Vnl <

2
=)

In the sequel, we assume g1z < 1. Otherwise, we will multiply (3.7), by (2[|g1[/re) " and

consider z—5%—.
2[lg1 (Lo

A simple computation shows
—[pene= L [t 2 [t vgve
wehe = ?7\02|+Jr1 ne's VnVe's da

2p / 2 / 2 p+1
> Vetr Vn|“cPT,

and

p 2 4 1/ 21,12 p+1
< — ch ul?cm.
_(p+1)2/ ’ I+ D vl

With the above two 1nequahtles and the fact that p?|| gl|| ~ is uniformly bounded for any
p > 1, we multiply (3.7), by n?c? (p > 1) to obtain

2
/772 ’VCPT-H

dz < C’/ (IVnl* + n*[ul?) et + Cp2/772cp91

/

2
3
3(p+1)
< Cllul, </ o > Rl R TS

T

2
< Clul3s (/B S >> +c/|v77| AR o)

where the constant C' may rely on R and |O| but not on p.
Owing to the Sobolev embeddings (cf. [1]), for f € HE(Bgr) one has ||f|zs < CIV |12

Thus,
() < (fl)

<c [[vine®|

< c</n V2 /cp“!Vn\2>,




14 Z. LIANG, A. MAJUMDAR, D. WANG, AND Y. WANG

which together with (3.34) give us the following estimate:

2

1 3
</ c3(P+1)>3 < Clul2 (/ c3(p2+1)) +0/|vny2cp+1 +C
B, Br/

3 (3.35)
1 s+ |
C(‘“H%ﬁ‘i‘M) (/ c 2 ) + C.
Choosing
1
=ryp_1 and 7= g <1+ 2k> , k=1,2,...,
we obtain from (3.35) that
1
? k 3(p+1)
/ AP <O+ [Ju)36)23¢k+D / el e (3.36)
Br, Bry 4

(r+1) . . . .
If [c %+ is bounded uniformly in p, then (3.22) follows directly by taking p — oo,
3(p+1) . . .
subject to a subsequence. Otherwise, f B oo as p goes to infinity. Hence, without loss

3(p+1)
of generality we may assume that [ ¢ i > C for all p > 1 and rewrite (3.36) as

1
2
(/ c?’“’“)) C (14 ufge) 2%+ (/ ”) (3.37)
B Br,_4

Selecting 3(p+1) = 2#=1in (3.37), one has

1
2
2k 3(k+1) 1/ 2k—1
c <C (14 ||u 2 c ,
( / ) (1+ [ulide) (m ) )

which yields by the deduction argument

1
2k
(/ 02k> gc(1+uuui6)“2b/ ? §0(1+Huuie)“/ A, (3.38)
By, Bgr Br

Tk

Tk

where
o0 o0
1 3(k+1)
a= E oF <oo, b= E ok < 00
k=1 k=1

Sending k — oo in (3.38) yields
*
sup 2 = lim / & <C(1+ HuH%ﬁ)a/ . (3.39)
IEBg k—o0 Br Br
2
Then (3.22) follows from (3.39) together with the fact ¢ > 0 and ||¢||;1 = ma
We remark that for the case of boundary points, we can apply local flattening technique

since the domain has smooth boundary 9Q; while in the case when xy € O is near the
boundary, we follow similarly the ideas in [20, Section 4]. Therefore, we complete the proof
of Proposition 3.1 as well as (3.4) and hence the proof of Theorem 3.1.
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4. e-LIMIT FOR THE APPROXIMATE SOLUTIONS

In this section, we shall take the e-limit of the approximate solutions obtained in Theorem
3.1 as e — 0 for fixed § € (0,1), and prove the existence of solutions to the following problem:

Theorem 4.1. Under the same assumptions as in Theorem 3.1, the system
div(pu) = 0,

u-Ve— Ac=g,

div(pu @ u) + V (6p* + p?) — div (Sps + S1(Q) + Sa(c, Q)) = pgo,

e 1 (4.1)
u»VQ+QQ—QQ+@Qw«f»+“2C>Q—be—3wmfﬂ)—AQ=g&
de  ~ 0Q
u=0, %—O, %—O, on 00,
admits a solution (p,c,u, Q) in the sense of distributions for any 6 € (0,1), satisfying
/p:ml, 0<pe L’(0), /c:mg, 0<ce H*0O), (4.2)
uc H}(O,R?), Q€ H*(0,S)). (4.3)

In particular, (4.1)y and (4.1), are satisfied almost everywhere in O, and (4.1); holds in the
sense of renormalized solutions, namely,

div(b(p)u) + (b'(p)p — b(p))diva =0 in D'(R?),
where b(z) = z, or b € C1([0,00)) with b'(z) = 0 for large z.

Proof. We shall establish the uniform in e estimates on the solutions (pe, ¢, ue, Q) obtained
in Theorem 3.1 and then take the limit as ¢ — 0. We remark that the idea of the proof is in
the spirit of the arguments for the steady Navier-Stokes equations; see, e.g., [20,29,30]. In
this section, the constants C' and C' are generic and independent of e.

Firstly, it follows directly from (3.20) that, if 1 < v < 2,

1Qell 74 + Vucl72 + IVQel72 + 1AQeN72 + €[ Vel 72

< 4 V|2 YO, |2 AO.|I2 2 (11w 312 V22

<|Qell7a + IVuellz2 + [[VQell72 + [[AQe 72 + € ([[Vpe 172 + [ VoZl 72 (4.4)
<C+Cllpel 5 + Cleclzee;

while in the case of v > 2, we replace the artificial pressure Jp? in (3.1) with §p? + §p?, and
repeat the deduction of (3.20) to conclude that

X
1QelEe + IVucllZs + IVQel2: + 1AQCE + € (Vo232 + 1V62 I3z + Vel 32 )

) . (4.5)
<4 Cllpl?y + Cllec
From (4.4) and (4.5) we conclude that, for all y > 1,
1Qellzs + IVuellZz + [VQl T2 + 1AQcN T2 + €[ Vacl7: w6

<C(1+lpel?g + lleclfr ) -
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It follows from (1.8), (4.6), and (3.22) that

C
[ellzoe < C (1 +[lul[re)™" (1 + [lgrl[zee)me

3 \9
<O (1+locl, g +lieeliF) " mo

<+ Cmallpd % + Ol 12 o
<20+ szHPeHglg,
where the last inequality is valid as long as mo is chosen sufficiently small.
Lemma 4.1. Let (pe, ce, ue, Qc) be a solution in Theorem 3.1. Then
P2+ p2 I < €, (4.8)

provided that mo is sufficiently small.

Proof. Let B be the Bogovskii operator (see Lemma 3.3). Multiply (3.1); by B(pe — po) to
obtain

/(5/)? +p7) pe
= / (6p2 +p2) po — /pegn - B(pe — po)
+ €/peue - B(pe — po) + ez/Vpe -VueB(pe — po) — /peue ® ue : VB(pe — po)
- / w(Vue + (Vue) ") : VB(pe — po) + MdivucdivB(pe — po)
(4.9)

+ / (;WQEF]I - VQ:® VQ6> : VB(pe — po)

4y [ (@) (1+ (@2 divB(. — po)

K;.

23

1

[ @20~ 200 : I8~ ) + [ 0.2Q. 5 VB~ )
10

Using ||p||1 = m1 and interpolation, one has
1
Ko+ Ko < O g [ (8024 0271) + Clodl g IVB(pe — o)l
1
<Cot 35 [ @+ ™) +Cliod g o = mlos
1
§C+8/®£+d“)
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Thanks to (4.6) and (4.7),

K5 = _/psue XU : VB(pe - PD)
< llpell 22 el 36l 9 B(pe = po) s
< Clloell oz (1+ llpcl ¢ ) 1IVB(pe = po)ll s

0
< gHPEHiO +C.
In a similar way, one deduces
9
K3+ Ki+ > Ki < (ellpellzz + 1 Voel ) [luell g |1 B(pe — po)l oo
i=6
+C (IVuell 2 + [VQel74) IVB(pe — po)ll 2
+C (14 1Qcllzs + 1AQel L2l Qell o) IV B(pe — po) s
< Cllpell? 12 1B(pe = po)llw.a
0
< Sl +C.
Finally, using (4.6) and (4.7), one deduces
Ko = /U*Cer : VB(pe — po)
< lleellZo IQell LIV B(pe — po)l g
< Omy(1 + ol )%
< C'+ Cmallpe| 73
Substituting the last three inequalities into (4.9) and taking mgo small, we get
[ @t o) < o Cmallpd 3 < 26
The proof of Lemma 4.1 is completed.
With (4.8) obtained, we deduce from (4.6) and (4.7) that
leellzee + 1Qell7a + [Vuel[Z2 + [VQel72 + AQc]72 + €[ Voel[72 < C.

Then multiply (3.7), firstly by c. and then by —Ac, to deduce
IVeellpz + [ Acell 2 < C.

17

(4.10)

(4.11)

(4.12)

As a result of (4.8), (4.11), and (4.12) we can take e-limit of (pe, ce, ue, Q) subject to some

subsequence so that, as € — 0,
pe — pin L° N LT
(Vue, V2Q.,Ve) = (Vu, V2Q, Ve) in L2
u —u, (Qc)— (Q,c) in W (1<p<6),
(Vue) — Vu, (g3) = g3 in L
epe — 0, epcue — 0, 62V,06Vu5 — 0, 62V,0E —0 in L'
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and moreover, it follows from (4.13) and (4.15) that
LH

pt—=pt in Lg, pl —p7in L', pu.— pu in L? (4.18)

where and hereafter the weak limit of a function f is denoted by f. Therefore, with (4.13)-
(4.18) in hand, we are able to pass the limit as ¢ — 0 and obtain the following equations in
the weak sense:

div(pu) = 0,

u-Ve— Ac =g,

div(pu®u) +V (5? + ﬁ) — div (Sps + S1 4+ S2) = pgo, (4.19)
W VQ+ QR - 0+ Q@)+ C5Q -1 (@ - (@) - 50 = ga

In addition, (4.2) and (4.3) follow from (3.2), (3.3), (4.15), and (4.29) below. The next lemma
shows that (p,u) is a renormalized solution to (4.19),.

Lemma 4.2. Assume that (p,u) is a weak solution to (4.1),, p € L*(O) and u € H}(O,R3).
If we extend (p,u) by zero outside O, we have

div(b(p)u) + (V' (p)p — b(p))divu =0 in D'(R?), (4.20)
where b(z) = z, or b € C(]0,00)) with ¥ (z) = 0 for large z.
Proof. The detailed proof is available in [30, Lemma 2.1]. O

In order to complete the proof of Theorem 4.1, we need to verify

pl=pt pT=)p. (4.21)

To this end, let us define

pln(p + 1), p<m
C'([0,00)) 3 ba(p) = "

1
(mn+1)In(n+1+—-), p>n—+1.
n

We see that b,(p) — plnp a.e. because of the fact: p € L'. Select b, in (4.20) and send
n — oo to obtain

div(upln p) + pdivu =0 in D'(R?).
This implies
/pdivu =0. (4.22)

On the other hand, multiplying (3.1); by b},(pe) gives

J@oop = batpdive = [ puti(o) = [ 08000 — ¢t [ Hito0IVo.P

< e/pob;(pe) —6/peb%(pg)'

(4.23)
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Recalling (4.8) and the definition of b, one deduces that

lim pob% (pe)

n—oo
= lim / poby, (pe) + / pobi, (pe)
n—roo {pe<n} {pe>n}
< i m(p, + 1) 4+ P C 1 {a; pe > )]
< fy o (0t 50 S5 | € fg menal >0
1
< lim poln(pe + —) + lim pO'OEl
n—o00 {1/2§pe§n} n n—o0 Pe —+ o
<C.

Similarly,

lim [ peby,(pe) < C.

n—o0

Therefore, taking sequentially n — oo and € — 0 in (4.23), using (4.22),

/pdivu = lim/pﬁdivue <0= /pdivu. (4.24)
e—0
Now define the following effective viscous flux:
Fe=6p+ p? — (2u+ Ndivu, and F = dp* + p7 — (2u + N)divu. (4.25)

Lemma 4.3. Under the assumptions in Theorem 4.1, the following property holds:
iy [ opF. = [ oo, ¥ 6 CRO) (4.26)
e—

Let us continue to prove (4.21) with the aid of (4.26). The proof of Lemma 4.3 is postponed
to the end of this section.
Sending ¢ — 1 in (4.26), using (4.24) and (4.25), we get

. 5 +1 vl
lg%/ (02 + pI™) < /p <5p4 +/ﬂ)- (4.27)

According to (4.27), we have

/<5P5+P”+1) —li;%/(%i’wZ“) S/p(6p4+/ﬂ),
[s(om=7) = [ (777 =) 20 (4.29

where the last inequality is due to the convexity. Next, for given constant § > 0 and n €
¢=(0),

which implies

0< / (pe = (p+ B0)") (pe = (p + Bn))

N / (07 = pép = piBn — (p+ Bn)'pe + (p + Bn)°)
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By (4.28), sending € — 0 yields
0< / (ﬁ —ppt = P8+ (p + 677)4677) < / (—F +(p+ ﬁn)“) B.
Replacing —( with £ in the argument above, and then sending 5 — 0, we get

/(p4—p“)n=0,

which implies p* = p*, and thus p. — p a.e. in O due to the arbitrariness of 7, and hence for
all s € [1,5), from (4.13),

pe — p in L% (4.29)
As a result of (4.29) and (4.13), we obtain (4.21) and thus complete the proof of Theorem
4.1. U

It remains to prove Lemma 4.3.

Proof of Lemma 4.3. Let A7'(h) = K x h be the convolution of h with the fundamental
solution K of Laplacian in R3. For convenience, we write (3.1)5 equivalently as

epﬁui +0; (peugui) + 0;F. + 62Vp6 . Vui
= pegh + plul
1 1 c
—8; (8;Qc0:Qc) + 59| VQc|* + 28; (tr(QY) (1 + =tr(Q?))
2 2 2
+0; (QFAQY - 2QFQY +0.c2QY) . i=1,2.3,

(4.30)

where the Einstein summation is used on k, j, and F, is taken from (4.25).
Making zero extension of p. to the whole space R3, multiplying (4.30) by ¢9;A~!(pc) with
¢ € C3*(0), we deduce

/preFe
= —/&Al(pe)amﬁ (0p2 + pl — (1 + N)divu) — /psgéwiﬁl(pe)
b [ @uais (9050 — w0087 (p)0j0 + peu. - Vo)
- [ it (o)~ [ penduionas o)
1 9, 1 2 C, 2 -1 (4.31)
+ (5 [19Q + 5@+ Gor(@2) ) (@000 + 00
- / 0;Qe0iQc (9;60:07 (pe) + 60;0:07 (p0))
+ / (Q’f&@fj — AQ*QN 4 G*CSQ?) (83‘(255@'&_1(06) + ¢8jaiA_1(pe))

e / P8 (pe) + €2 / Vpe - Vui g0 (po),
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where the second line on the right-hand side is due to

/ Oyt (57 (0036 + 0,007 () )

= / (@-ui@iA*l(pe)ajé - uiajaiAfl(pe)(?j(ﬁ + peUc - V(Zﬁ) + /pedivu6¢.

Making use of

e(pe — po) + div(peue) = div(1pVp:) in R3,
we write the third line on the right-hand side of (4.31) as

- [ pewiniogo0ns 7 (p) ~ [ pendulonan e

= —/peuiuiajéaiﬁl(pe) +/u’;¢ [pe0i0; A7 (peul) — peul 0,0, (pe)]
- [ paiv0.0,7 (poui)

—— [ puti0,00.87 (o) + [ wi6 [p0.087 (pewd) ~ peud0,0is” ()]

— ¢ /peuiqﬁ&-Al(div(l@Vpe)) + e/peui¢8iA1(p6 = po)-
Substituting (4.32) into (4.31) gives us

/cbpng
=~ [ 07 (006 (Bt + 2 G+ Noivs) — [ peghotis )
b [ (@008 (90350 -~ w0087 (016 + peuc - Vo)
- [ peduioge0n (o) + [ w6 (000,87 (ped) ~ pel®,0:87 0]
# [ (5[ 1V + Jr@) + Gr(@)) @607 00 + 00
- [ 300G (00087 (p) + 60,07 (0)
+ [ (@004 - 201QH) (260,87 (o) + 90,0.87(p0)
+/a*c?Q? (05905 (pe) + $9;0,07 (po)
— ¢ [ palod 2 (dv(10Vp) - Ve Tulois ()

e / Pl 60, A (2, — po)

11
. €
=Y Ty,
n=1

21

(4.32)

(4.33)
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where T¢ denotes the n'? integral on the right hand side of (4.33).
On the other hand, if we multiply (4.19), by ¢9;A~1(p), we obtain

/cpr = —/@-A‘l(p)&qﬁ (5?+?’Y —(u+ A)diVUl> - /pgésb@iﬁ‘l(p)
[ Qo (0050 - w0087 ()06 + pu- Vo)
- /pujuiajd)&-A_l(p) + /uigb [pazﬁjA_l(puj) — pujﬁjaiﬁ_l(p)]

+ [ (5 [ 1vQr+ jr@)+ Giri@)) @608 ) + o)

(4.34)
- / 0,Q0:Q (8;60:5-1(p) + 600, (p))

+ [ (@%6@4 - 20" QM) (2,60.87(p) + 60,0,07(p)

+/0'*02Qij (0;00:57H(p) + $0;0:.07H(p))

9
=: Z T,.
n=1
In terms of (4.33) and (4.34), to prove (4.26) it suffices to check

IimTr =T, (n=1,2,---,9) and li_r}(l)T;:O (n =10,11).

e—0

In fact, by the Mikhlin multiplier theory (cf. [35]), and the Rellich-Kondrachov compactness
theorem (cf. [9]), one has

;0N (he) = 0;0,A71(h) in L2, 9;ATH(he) = O;ATH(R) in LY, (4.35)

where ¢ < (1/p —1/3)71if p < 3 and ¢ < co if p > 3. By (4.35), as well as (4.13) and (4.15),
we have

75— [ (QFAQH - 2Q1QH) (260,87 (p0) + 90,0:87(p)
= / (VQIEVQE —VQIVQI) (0,607 (pc) + 60,057 (o)
+ [ (@19QY - VQIQ) (06087 00 +00,0:87(5.)
— [ (VQva - vQivQl) (26087 ) + o) (4.36)
=+ [ (VQVQY - VQIVQY ) (200 (o) + )

_ / (QAQ — AQQ) (9:60: 57 (p) + ¢p)
=13,
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where the third equality is valid after summing up 4, 7 = 1, 2, 3, due to the fact that the matrix
Q@ is symmetric and the following computation:

[ (@9Qk - vQIQi) (0,608 ) + 000:871(5.)
+ [ (@FVaQ — vaiQE) ¥ (000,87 (00 +00:0,57(5.)
= / (QFVQY — VQIQE) V (9,060:87 () + 60,0:87 (o))

+ / (QIVQE — VQEQH ) V (9,00;47 (p) + 60:0;7 (o))
=0.
Next, utilizing (4.8), (4.13)-(4.18), and (4.35) again, we deduce that
im 7, =1,, fori=1,2,3,4,6,7,9,
e—0
and
imT¢ = T, for i = 10,11.
e—0

In order to justify
lim 75 = T5, (4.37)

e—0
we present the following Lemma (cf. [11]):

Lemma 4.4 (div-curl). Let % + % = % and 1 < r,ri,ro < 0o. Suppose that
ve—=vin L™ and w— win L.
Then,
0:0;0; A (we) — w0 AT (ve) — V0O AT (w) — wd AT () in LT, (i,5 =1,2,3).
Taking v, = peuz and we = p,, we obtain (4.37) by Lemma 4.4. The proof of Lemma 4.3 is
thus completed.

5. VANISHING ARTIFICIAL PRESSURE

In this section, we will complete the proof of Theorem 1.1 by taking the limit as § — 0 in
the solutions (ps, c5, us, Qs) obtained in Theorem 4.1.

5.1. Refined estimates on energy function. We first derive the refined estimates on
(ps, ¢s,us, Qs) uniform in §, which helps us relax the restriction on ~.

Proposition 5.1. Let (ps, cs,ug,Qs) be the solution obtained in Theorem 4.1. Then, under
the assumptions in Theorem 1.1, the following inequality holds for all s € (1, %),

1805 + p3lles + Qs s + [lusll gz + IV Qs gt + lles|ze < C, (5.1)
where, and in what follows, the constant C' is independent of d.

The proof of Proposition 5.1 borrows some ideas developed in [12,20,26,32]. We present
the details below through several lemmas.
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Lemma 5.1. Let (ps,cs,us,Qs) be the solution obtained in Theorem 4.1. Then there are
constants C' and C7 independent of § such that,

Hﬂ%o+/ﬂvwﬁ%IAQMQ%VQA2+@M%
(5.2)

< C (14 ool + mallosus 357 )
provided that ms is sufficiently small.

Proof. Using the same computation as that in (3.12)-(3.15), we multiply (4.1); by us and
(4.1), by —AQs + Qs + ¢ Qstr(Q%) to deduce

M/\Vu5]2+()\+u)/|divu5|2+/|AQ5|2+/!VQ6\2+C*/(|Q6\4+C*’Q6‘6)
s/mm«u+/bﬁx—;W@®Q:&AQwH%+@Qm«x»
- / 931 (~0Qs + Qs + . Qstr(Q3))
— 0, /C%Qg . Vug +/(%_2C*)st L (AQs — Qs — cxQstr(Q3)).
From (1.8) it follows that
‘/$<Q%—QMQ@O:(—AQ5+Q5+QQ¢MQ@ﬂ
+ ’/93 ((—AQs5 + Qs+ c*Qstr(Qﬁ))‘

< C(L+ [1Qsll7s + llgsllz2) (1AQs 22 + 1Qsll7s + 1)

<ot /Qw 1 1204,

—o*/c§Q5 : Vus + / (C(S;C*)Qa H(AQs — Qs — C*Qaﬁ“(Qg))'

< Olles|7 Qs 2 Vsl 2 + C(1 + [lesl o) (1Qsl 22 1AQs I 2 + Qs s +1)
<o+ Clest+ G [1aut+ 1 [vu+ ] 10057,

The last three inequalities provide us

[ivusk+ [18ai+ [1vQs + [1Qo* <+ Clleslie + lpsuslr. (53
With the aid of (5.3) and (3.22), we choose mq sufficiently small such that
les ]l o < (L [[usllo) (1 + llgallzoe )m

and

1
< O+ [leslFoe + llpsusl|20)“ mey
5]

< 2C + Cma||psus]| 2 ,
which together with (5.3) lead to the desired estimate (5.2). O
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Lemma 5.2. Let (ps,cs,us,Qs) be the solution obtained in Theorem 4.1. Then, for any
s € (1, %), the following inequality holds true

1605 + p3lls < C (1 + [l psus ?|| s + m2||PaU5||i?1) , (5.4)
provided that mo is sufficiently small.

Proof. As in Lemma 3.3, we introduce the Bogovskii operator
B:=B(h— (h)p) with (h)o = |O|1/h.

Then, for any h € L+1 with s € (1, %), Lemma 3.3 implies
1Bl zos + VB2 + IVB|, =y < CllAll, = (5.5)

Ls—T1 —

Multiplying (4.1)5 by B gives
/ (605 +p3) I
— (0o [ @b+ 93) ~ [ oo B~ (ho) + [ 80.: 78

—/p5U5®u:VB+/Sl:VB+/SQ:VB

< Cllhl o2 1805 + p3llzs + ClIBllzee + Cl[Vus]|2[| VB 2

+C (Hp&!ua\Q +2Qs + |Qs” + Qs + [VQs[* + QéAQJHLS)”VBHLS%I)
< Ol = (1411605 + o3[l + llpslus s + | Vusll2)

s

+C[lAll, = (1€°Qs +1Qs” + 1Qs|* + [V Qs> + Qs 2Qs] )

where, for the last inequalities, we have used (1.4), (1.5), (1.8), (5.5) and ||ps||,1 = mi. Due
to the arbitrariness of h € L5-1, it yields from (5.6) that

1605 + pdllLs < C (141165 + pdllI s + llpslus|®| £e + | Vs z2)
+ C*Qs + |Qs]* + 1Qs[* + [VQs|* + Qs AQs || s

1
< §||5P§ + plllzs + (L+[lpslus|®|l s + | Vus]|2)
+ C|*Qs + Qs> + 1Qs|* + [VQs|* + Qs AQs | 1+

(5.7)

Since s € (1, 3), one has
1c3Qs + Q51 + 1Qs* + IV Qs|* + Qs AQs]| s
< C(1+ flesllzoe + 1Qsl70 + IVQs 172 + 14Qs1172)
< O (1+ lleslli + 11Qsllzs + [VQs]72 + 18Qs1172) -
Therefore, substituting it into (5.7) and utilizing (5.2) we obtain (5.4). O

Next, we shall deduce a weighted estimate on both the pressure and kinetic energy.
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Lemma 5.3. Let (ps,cs,us,Qs) be the solution obtained in Theorem 4.1. Then, for any
a € (0,1) and s € (1, %), the following inequality holds true

sup / (905 + p3 Pi|a6\ )(x)da:
2+€0 |z — ] (5.8)

<C (1 + [lpslus || s + mzHPaHaH?ﬁl) :

provided that mo is sufficiently small.
Proof. We adopt some ideas in [12,20,26], and divide the process into two cases.

Case 1: The boundary point case x* € 90. B
As in [37, Exercise 1.15] we introduce a function ¢(z) € C2?(O) that behaviors like the
distance when x € O is near the boundary and is extended smoothly to the whole domain O,
and moreover,
¢(x) >0 in O and ¢(x) =0 on 90,
|p(x)| > k1 if x € O and dist(z, 00) > ko,

. N (5.9)
Vo = TP T 2 ecO and dist(z, 00) = |z — z| < ko,
¢(x) | -7
where the positive constants k; and kg are given. Following [12], we define
&(x) = qﬁ(:v)qu(x)i 5 with =z, 2% € 0. (5.10)
(#(@) + | — a*|7°%)
It follows from (5.9) that, for all points z satisfying dist(z, 00) < ks,
6 < b+ |r—2*|7s < Clz — 2], (5.11)
owing to % > 1. By (5.10), a careful computation gives
; $0;0i¢ 9;90i¢
ajf = 2 N\« 2 N\«
(0+le—a7=)"  (6+lo—av7)
w2 (5.12)
$0;90;¢ $0;p0;|x — x*|2== _——
-« -« , 1,7=1,23.
2 \oatl 2 o+l
(¢+z—a77=) (¢+z—a77%)
Thus, |[V&| € L for all ¢ € [2,2). In view of (5.10)-(5.12), one has
1— 2
C‘*—’x_c’x*‘aZdlvgz—C—i‘( 204) ’v¢‘ 2 N\«
<¢ tlo—z ’2_a> (5.13)
el O
|x — z*|@
In addition, by (5.9),
Oi(x — ) 0;90;
0,00 = 2E =2V _ 9906 (5.14)

¢ ¢
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Hence, if we multiply (4.1); by &, we find

/(5p§+pg) div§+/p5u5®u5:V§

_ / (Sna(V115) + 51(Qs) + Salcs. Qs)) : VE — / psga - €.

Making use of (1.2), (1.4), (1.5), (1.8), (5.13), and the fact £ € Wol’g, one deduces

(Sns(Vus) + 51(Qs) + Sales, @) : V&~ [ e 5‘

< C(a) (1+ [ Vusllze + I1VQs[ + 1Qs1* + 1Qs112Qs| + 3Qsl 3 )

< C(a) (1+ [ Vusllzz + [AQs132 + 1VQs132 + [1QsllEe + llesllE<)
and

/(5p§ +pf) divé > —C’/ (6p5 + p}) +C S m.
By (5.14),

/ Ppsus ® usd;0ip / ps|us|? B / pslus - Vol?

2 a T 2 o 2 a
(¢+1o—av7=) (¢+1e—a2v7=) (¢+1e—a2v7=)
which along with (5.9), (5.11), (5.14) and the Schwarz inequality imply

/péud ®@ug: VE

_ ps|us|® _ dps(us - Vo)?

A i e
_a/¢p5(u5-V!x—x*!22¢v)(u5-V¢)

a+1
(6+ o — o1 %)

B pilusl2 [ éps(us- Viz - a*|e) (us - V)
- a)/(¢+|xx*|22a)a -/ (64 Iz —av25)™"

2a

) pslus|? o ¢*ps|ug|?x — x*[2=e

=9 2 \a _2 \at2
(6+1a—a27) (6+1a—av2%)

ps|us|?

2C “la
ONBy, (z+) [T — =]

— C|ps|as|?|| 1

27

(5.15)

(5.16)

(5.17)

(5.18)
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Therefore, the inequalities (5.15)-(5.18) yield that, for some C' independent of x*,

/ (63 + p] + ps|us|?) (w)dx
ONBy, (*) |z — z*|*

< C (1605 + p3 Il + llpslus|||r) (5.19)
+C ([IVusllzz + 1AQs[172 + IVQsZ2 + Qs 26 + llesllF)

< C (1+ llpslus Pl oe +mallpsus 35 |
where the last inequality follows from (5.4) and (5.2).

Case 2: The interior point case z* € O.
We set dist(z*, 00) = 3r > 0. Define the smooth cut-off function

x(z)=11if x € By(z"), x(x)=0if z ¢ Bo.(z¥), [|Vx(x)| < 2r~ 1, (5.20)

Multiplying (4.1)5 by %f yields
/(5p4+p7) sz‘i‘/péué@ué.v L‘T*XQ
0 5 |.%'—1'*|O‘ ’ ’x_x*’oz

*

-/ <sm<Vu5>+sl<c25>+SQ<C5,Q5>>:v<Hx2) -/ p(ng-f_i}x? (5.21)

|x — z*|@ x—z
Vx:(x—z*
—2/(5p§+pg) X¥-

|z — x|

A simple calculation shows

J _ (p*)]
o, (@)
|z — x*|@
81-(3;1' — (x*)j) ) (xj _ (:C*)])(.Z‘l _ (x*)z) ) i (.’IJ*>J (5.22)
|z — x| |z — a*|ot |z — 2|

thus, for some constant C' independent of z* and r,

T —x*
/p5u5®u5 -V 7?(2
|x — z*|«

2 V . ek
> (1-a) pé"”‘X2+2/XP5(U6 x)(us - (x —a*))
|z — z*|* |z — x*|«
21_04 pslus|? 2_0/ LH(;P’
2 o — @] Bar(a*)\B(a%) € — 2|

where we have used

|IVx||lz — 2| <4, V x € By (z")\Br(z"). (5.23)
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Observe from (5.20) and (5.22) that V (\x - \aXQ) € L9 for all ¢ € [1,3). By the similar
argument to (5.16), one has, for some constant C' independent of r

| / (S0e(Tus) + 81(Q4) + S2(es, Q) ¥ (22 ?)

| — x|«
—z*
Psg2 - ’a

1+ Hvu6||L2 +1AQsI72 + IVQsl1Z2 + 1Qsl| 76 + llesllze)

29

and

Vy - (x—z*
’_2/(5p§+pg)xx<xx>

4 Y
’.CI? — :L'*’a <cC (5p6 - ’05)

Bor(@*)\By(x®) [T —x*[*

due to (5.23). Therefore, taking the above inequalities into accounts, utilizing (5.2), we deduce
from (5.21) that

/ (005 + p3 + pslus|?) (x)
By (z*)

| — a*|™

dx

< C (14 [|Vusllrz + 12Qs0172 + IVQsl72 + 1Qsl1 16 + llesllFec)
Spk + pf + pslus|?) (z)
+C ( b ) dx (5.24)
Boy (2*)\ By (z*) |z — 2*|
< C (1+ lpsluslllzs +mallosusS*)

L C (005 + p§ + pslusl?) (x)
Bor(2*)\Br (%) |z — 2|«

dx.

It remains to estimate the last term appeared in (5.24). To this end, we adopt the ideas in [20]
and discuss two cases: (1) z* is far away from the boundary; (2) z* is close to the boundary
(1) Assume dist(z*, 00) = 3r > %2 with ko given in (5.9). Then

/ (005 + p3 + pslus|?) (x)
Bar(2*)\ By ()

| — |«

dx

< ky® / (605 + P + pslusl?) (5.25)
Bar (z*)\Br(z*)

< C (1+ lpsluslPlzs + mallosus|5*) .

where the last inequality follows from (5.4).
(2) Assume that z* € O is close to the boundary. By (5.9), we have
k
z* — #¥| = dist(z*, 00) = 3r < 52 with #* € 90,
and hence,

Az —zx*| > |z -2, V x¢ B.(z"). (5.26)
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Making use of (5.26) and (5.19), we get

(005 + p§ + pslus|?) (x)

C e dr
Boy (2*)\ Br (%) |z — a¥|
4 Y 2
<c U =05 + pslsl’) @) ) (5.27)
ONBy, (i) |z — |«

< C (14 IpshusPllze + mallosus |35 )
In summary, substituting (5.25) and (5.27) back into (5.24) yields
/ (905 + p3 + pslusl?) (@)
(a%) |z — 2| (5.28)
< O (1+ llpslus - +mallosusliS)

where the constant C is independent of 2*. The combination of (5.19) with (5.28) yoelds the
desired estimate (5.8). O

Lemma 5.4. Assume that u € H}(O,R3) and f(z) > 0 a.e. in O. Then there is a constant
C' depending only on |O| such that

/O\u|2fdx<0||Vuy§Ié(o)/ @) (5.29)

o v — z*|

as long as the right-hand side quantity is finite.

Proof. The proof is based on the Green representation and integration by parts; see, e.g., [32,
Lemma 4]. O

Lemma 5.5. Let 0 = 72—;1 € (0, 3). Then,

/ pslus 229 < ¢ (5.30)
A:/pJ‘U5’2(2_6).
3—26

losuslizs < [lpslus >~ HL1 T losll 27 < caTE, (5.31)

Proof. Denote by

Noting ||ps||z1 = m1, we have

and
-0 L

loslus®ll g < llpslas*® HngHpéH T S CATL (5.32)
Thanks to (5.31), it follows from (5.2) that
Jeslfe + [ (Vusl +18Qsf7 + 1V Qs +1Qs 1)

) sy (5.33)
< C <1 + A20@-9) m2A2(20)> .
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A direct calculation shows

) (y=1)0
_ 1-0 Z v
polus < St ) ( g ) : (5.34)
|z — x*| |z — x| | — x*| ’x_x*‘a-i-%
Noting that # = =, we have a + '(YS:SQ) €(0,3)ifa e (27751, 1), thus
1
/ e dr < C.
|z — x*|a+m
Therefore, by (5.8), (5.31), (5.32), we integrate (5.34) to obtain
2(1-6)
/Pé\utsl : @) e < 04 Pé\U5| d +/ Pa
v — x*| |z — |z —
(6 —|— + ps|a
<cuo [ T;ifji}f' X >dx (535

1 301
<C (1 + A0 4 m2A2<29>> .
From the definition of A, (5.33) and Lemma 5.4, we obtain

2(1-6)
A < || Vul)2, sup/péhm(x)d:r

z*eO |$ - 1’*’
3C 2(1-6)
=10 ‘3? — X ‘
which together with (5.35) implies
30,

A<1+C’A2(2 ) + moA -0,

Since 6 € (0, 1), we choose my < 1 sufficiently small to conclude (5.30). The proof of Lemma
5.7 is completed. O

Finally, Proposition 5.1 is a direct consequence of Lemmas 5.1-5.5.

5.2. Vanishing artificial pressure. Now we take the limit as § — 0 in the spirit of [7,29,30].
Thanks to (5.1), the following estimate follows similarly to (3.27):

Vsl + ([ Acsll 2 < C. (5.36)

With (5.1) and (5.36) in hand, we are allowed to take the following limits as § — 0, subject
to a subsequence,

(Vug, Vies, V2Qs) — (Vu, Ve, V2Q) in L2, (5.37)
us > win L, (e, Qs) = (¢, Q) in WP (1 <py <6), (5.38)
op; — 0 in D, ps—pin L%, for all se€(1,3). (5.39)

As v > 1, we can choose s € (1, 3) such that vs > 3. Then, from (5.38)-(5.39) one has

psus — pu, in LP? for some py > (5.40)

57
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and from (5.38)-(5.40), for some p3 > 1,

ottt — puin,

QFAQY — Q™ AQM, (5.41)
Q¥ (Ol — 0uf) — QF (9w — 9;ub),

in LP3. Using (5.37)-(5.41), we take d-limit in (4.1) and obtain the equations in the sense of
distributions:

( div(pu) =0,
u-Ve— Ac =g,
div(pu @ u) + Vp7 — div (Sps(Vu) +51(Q) + S2(c, Q) = pg2,

9y, (c—c) 2 1 2 (5-42)
u-VQ + Q0 - QQ + c.Qtr(Q%) + > Q—b<Q —3tT(Q)H>—AQ=g3,
B dc 0Q
u—O, %—0, %—0, on 80

Additionally, (1.7) follows from (3.2)-(3.3), (5.38), (5.39) and (5.50) below.
Next, we define an increasing and concave function Ti(z2) € C3(]0, 00)), satisfying
Ti(z) =z if 2<k, Tp(z)=k+1if z2>k+1. (5.43)
Clearly, for any 1 < p < o0,

Tylps) = Th(p) i L. (5.44)

Lemma 5.6. Let (ps,us,cs,Qs) be the solution obtained in Theorem 4.1. Then,

tim [ Tuls) (0F — (204 Nelivas) = [ Tilo) (57 — (20 + Niva). (5.45)
where Ty, is defined in (5.43).

Proof. With the help of (5.37)-(5.41), we may slightly modify the argument of Lemma 4.3 to
complete the proof of Lemma 5.6. The detail is omitted here. O

Since T}, is concave, one has

(p3 = p7) (Tr(ps) — Ti(p)) = (Tic(ps) — Tu(p))" ™+
Then, from (5.45), (5.39), p7 > p?, and Tx(p) < Tk(p), we obtain

(2u+N) gig%/ (Tk(p(s)divug — T(p)divu)

= (1513(1)/ (Tk(pa)p} —Ti(p) /7”)

= lim [ (o3 = ") (Tu(ps) — Tu(p)) + / (o7 = ") (Tulp) = Th(p)) (5.46)
> lim [ (o] = ") (Ti(ps) = Ti(p))

>ty [ (o)~ Tilo) .
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Noticing that divus € L? is bounded uniformly in §, and

tiy [ (@) = [ (7))

2C lim || Ty (ps) — Ti(p)]| 2
6—0

> C lim (| T(ps) = Tulp)llz2 + 1 Te(p) = T2 )

one has

> (2p+ ) lim / (Tk(pa) = Tis(p) + Tk(p) — Tk(P)) divus (5.47)
= 2+ N lim [ (Ti(os) - TG0 divey

= (2 + A) lim / (Tk(pg)divug - Tk(p)divu> .
6—0
In terms of (5.46) and (5.47), it holds that
lim | Ti(ps) — Te(p) o1 < C, (5.48)
6—0

where the constant C is independent of k£ and 9.
We remark that (5.48) measures oscillation of the density, which helps us prove that (5.42),
holds in the sense of renormalized solutions as in [29].

Lemma 5.7. [29] For the solution (p,u),
div(b(p)u) + (V' (p)p — b(p))divu =0 in D'(R?), (5.49)
where b(z) = z, or b € C([0,00)) with ¥ (z) = 0 for large z.

Proof. Thanks to Lemma 4.2, we see that (ps,us) is a renormalized solution. If we multiply
the equation (4.20) satisfied by (ps,us) by Tk(ps), and use (5.43), (5.37)-(5.41), (5.48), we
conclude (5.49) by taking § — 0 and then & — co. The detailed proof may be found in [29]. O

In order to complete the proof of Theorem 1.1 we only need to verify
P =p7. (5.50)

To this end, it suffices to prove the strong convergence of ps in L! by (5.39). The idea is
to compare the limit of the renormalized solution (ps,us) with (p,u). In more detail, we
introduce

z1n z, z < k;
Ly = 2T
k zlnk—l—z/ k(;)ds, z>k.
k S

A direct computation shows that

k+1
C([0,00)) N CL((0,00)) > by (2) = Ly(z) — <lnk+/k ' T’“S(j) +1> 2,

and moreover, b'(z) = 0if z > k+ 1 and b} (2)z — bi(2) = Tj(2). In view of Lemma 4.2 and
Lemma 5.7, one has

0 = div(bk(p)u) + Tx(p)divu
= div(Lg(p)u) + Ti(p)diva, in D(R?),
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and
0 = div(Lk(ps)us) + Tr(ps)divus, in D(R?).

Integration of the difference of above two equations leads to
[ @ilpydiva =~ TiGps)aivus) =0,

which along with (5.46) and the fact divu € L? implies
CITp) - Tiplle = 2+ A) [ (Tulp) - Tilp)) divu
= (2u+ ) / (Tk(p5)divu5 - Tk(p)divu) (5.51)

> [ @ton) - Tl
Recalling Proposition 5.1, we have ||ps||z+ < C. Thus, the limit
Jm ([ Ti(ps) = psllor = [1Tk(ps) = pslLr(os 2k
<2 lim {lpslo (gps=rp) (5.52)
. 1— .
< O lim K05 2o gy 2ay) = ©
is uniform in §. In a similar way,
A [Ty (p) = pll 1 = 0. (5.53)
—00
Making use of (5.54)-(5.53), and
1Tk(p) = Th(ps)llr < CllTk(p) = p+ ps — Ti(p)| 12

' (5.54)
< (1) = ol + iy I7io0) = il ).

we conclude
Li —
lim [|p5 — pl| 1
< Ml (lps = Ti(ps)l| 2 + 1 Tk(ps) = Te(p)llo + 1 Tk(p) = pllzr)
—000—0
=0.
The proof of Theorem 1.1 is completed.
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