2024 |EEE 40th International Conference on Data Engineering (ICDE) | 979-8-3503-1715-2/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICDE60146.2024.00238

2024 IEEE 40th International Conference on Data Engineering (ICDE)

Graphix: “One User’s JSON 1s
Another User’s Graph”

Glenn Galvizo
University of California, Irvine
Email: ggalvizo@uci.edu

Abstract—The increasing prevalence of large graph data has
produced a variety of research and applications tailored toward
graph data management. Users aiming to perform graph an-
alytics will typically start by importing existing data into a
separate graph-purposed storage engine. The cost of maintaining
a separate system (e.g., the data copy, the associated queries,
etc...) just for graph analytics may be prohibitive for users with
Big Data.

In this paper, we introduce Graphix and show how it enables
property graph views of existing document data in AsterixDB,
a Big Data management system boasting a partitioned-parallel
query execution engine. We explain a) the graph view user
model of Graphix, b) gSQL ', a novel query language extension
for synergistic document-based navigational pattern matching,
and c) how edge hops are evaluated in a parallel fashion. We
then compare queries authored in gSQL™ " against versions in
other leading query languages. Finally, we evaluate our approach
against a leading native graph database, Neo4j, and show that
Graphix is appropriate for operational and analytical workloads,
especially at scale.

Index Terms—Big Data, JSON, graph analytics, graph query
languages, navigational pattern matching, AsterixDB

I. INTRODUCTION

Research in the field of graph data management has seen an
explosion over the past decade. Teams developing applications
with a graph-only workload in mind from the start have a large
selection of graph databases to chose from. These types of
users however, are not the norm — the typical user of a graph
database also has non-graph-workloads that they must design
around [1]. This design effort is further complicated when
dealing with Big Data and out-of-core workloads. A common
architecture that these types of users employ involves the
stitching of multiple, more narrow-purpose systems together.
For example, consider a two-DBMS architecture composed
of a document database DBD and a graph database GDB to
analyze the relationships found in DBD. This architecture
has several consequences: a) some form of ETL (extract-
transform-load) pipeline must be developed to duplicate the
data from database DBD to GDB and then maintained to ensure
consistency, b) separate resources need to be allocated for both
DBD and GDB (increasing the cost to own the data), c) queries
are written in two query languages for two different APIs, and
d) heterogeneous workloads (e.g. mixing graph and document
analytics) require ad-hoc, specialized solutions. Furthermore,
graph databases like Neo4j are limited by their inability to
gracefully scale outward, leaving users of such databases with

Michael J. Carey
University of California, Irvine
Email: mjcarey @ics.uci.edu

few options when their queries run slower than desired (or not

at all) due to excessive data volume.

In this paper, we challenge the two-DBMS architecture
previously described. We describe the following desiderata
for a new architecture that enables both graph and non-graph
workloads:

In-Situ (Zero Copy) Query Processing
To avoid the complexities that come with creating and
maintaining multiple copies of data, both users and sys-
tems should not duplicate data for the sole purpose of
managing different user models.

Synergistic Graph and Traditional Analytics
Users familiar with one data model should not have
additional barriers to work with other models of the same
data. The “accidental complexity” involved in integrating
multiple user models should be minimized.

Partitioned-Parallel, Scalable Execution
Users should be able to work with data volumes larger
than memory. Users should not have to modify their
graph queries when scaling horizontally. Users should
not have to sacrifice performance to realize all of the
aforementioned points.

We find that most existing solutions satisfy at most 1/3 of
the points above. Graphix is our solution to satisfy these
desiderata: it takes a view-based approach to answering graph
queries on JSON data in-situ and at scale. The contributions
of this work include: 1) a graph view user model and DDL
that naturally extends an underlying document model, 2) a
query extension for expressing graph and traditional (multi-
model) analytics in synergy, 3) a description of how to
translate navigational pattern matching queries into efficient,
partitioned-parallel executions, and 4) a code-complexity study
and an initial performance comparison with a native graph
database.

The rest of this paper is structured as follows: Section II
describes related work around querying graph data. Section III
reviews Apache AsterixDB, the Big Data management system
used for this research, and two query languages: SQL™T and
Cypher. Section IV introduces the graph model of Graphix,
demonstrating how users can map existing document data to
a non-materialized graph view. Section V details our query
model and query language: gSQL*T. Section VI explains
the implementation and architecture of Graphix. Section VII
details a preliminary evaluation of Graphix’s query model and

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00238
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

3070

Graphix’s performance against Neo4j.

II. RELATED WORK

The database community has had no shortage of work
trying to tackle the management of large graphs. While many
graph problems can (and have) been solved using non-graph-
purposed systems, in this section we consider systems whose
user model deals with graph-specific abstractions. Related
work can be grouped into three areas: (i) graph processing
systems, (ii) (native) graph databases, and (iii) database graph
extensions for non-graph-purposed databases.

A. Graph Processing Systems

Big Graph processing systems such as Pregel [2] and Gi-
raph [3] were designed to provide a vertex-oriented message-
passing-based abstraction for distributed graph algorithms to
run on shared-nothing clusters in a bulk-synchronous-parallel
(BSP) fashion. Another system designed for graph processing
is GraphX [4], which uses a simpler API (Resident Distributed
Graphs, or RDGs) and adopts Spark as its runtime. In an
effort to provide similar vertex-centric abstractions without the
need for bulk synchronization, systems like GraphLab [5] and
GiraphUC [6] were designed to process large graphs in an
asynchronous manner. A graph processing system that used
the same runtime engine as Graphix is Pregelix [7], designed
to gracefully scale distributed graph algorithms for out-of-core
workloads. While Big Graph processing systems have been
shown to be performant and scaleable [8], their “think like a
vertex” paradigm still requires users to develop a program to
interact with their APIs. We contrast graph processing systems
with more traditional database systems, where a declarative
query language like SQL is used to build ad-hoc queries
with less developer effort. Our work is largely orthogonal to
graph processing systems, as we target the specific problem of
navigational pattern matching and not all graph algorithms.
Keeping with the informal motto of AsterixDB, “one size fits
a bunch”, Graphix aims to target “a bunch” of use cases really
well as opposed to targeting all use cases with a user-model
impedance mismatch.

B. Native Graph Databases

Native graph databases like Neo4j [9] and TigerGraph [10]
were designed to challenge traditional database systems by
building a new database from the ground-up (storage, execu-
tion, and user model) with graph primitives in mind. Amazon
Neptune [11], while not a native graph database (since it
is built on top of AWS’s existing data platforms), presents
users with only a graph data model. The two leading graph
user models are the property graph model and the resource
description framework (RDF) graph model. In the property
graph model, users reason about their data as a directed
multi-graph of labeled vertices and edges, where each vertex
and edge can possess a set of key-value pairs (known as
properties). In the RDF model, users reason about their data
as a directed graph of labeled edges captured in the form of
subject-predicate-object triples. Property graphs are supported

3071

by all three of the aforementioned systems [12]. With respect
to the query model of graph databases, there are two leading
query languages for the property graph model — Cypher [13]
and Gremlin [14] — and one standardized language for the
RDF model — namely SPARQL [15].

Use of graph databases requires users of existing non-graph-
databases to build ETL pipelines to copy their data over to
the chosen graph database. In addition to the increased cost to
own the data, native graph databases like Neo4j are unable
to gracefully' scale horizontally. TigerGraph and Amazon
Neptune are offerings that have the ability to scale horizontally,
but they still suffer from the problem of requiring duplicate
copies of data. In contrast, Graphix operates on existing data
in-situ without a need to stitch separate systems together.

C. Database Graph Extensions

Work on extending existing, non-graph-purposed systems
with graph extensions can be split into two areas: (i) re-
purposing an existing system to handle a graph data model,
and (ii) translating queries for a graph data model into the
query model understood by an existing system. While the
former (Item 1) has seen a lot of interest ([16], [17]), these
systems possess the same flaw as graph databases from the
previous section: they require maintaining duplicate copies
of existing data, We will focus on the latter work (Item ii)
which most closely relates to Graphix. We give a high-
level comparison between graph processing systems, graph (+
non-graph) database systems, and database graph extensions
in Figure 1.

Unipop Graph [18] and Cytosm [13] are middleware sys-
tems that translate graph queries into queries for another
system. Cytosm translates Cypher queries into queries on a
relational store, but it does not support unbounded recursion.
Unipop Graph translates Gremlin and SPARQL queries into
one or more queries on a NoSQL or relational store, but it
performs its joins outside of the underlying database. Neither
project has had any updates in over 5 years. OBDA (ontology-
based data access) is a related problem that pertains to convert-
ing SPARQL queries into queries against various existing data
sources [19], [20], [21]. Graphix is not middleware and is more
tightly coupled with AsterixDB, allowing it to a) perform joins
closer to the data, and b) extend the optimizer and runtime to
leverage information about the original graph query.

Prominent non-open-source offerings include Oracle Spatial
and Graph [22], DataStax Enterprise Graph [23], and IBM Db2
Graph [24]. Oracle Spatial and Graph gives users the option to
load their existing data into memory as a graph and issue their
queries in-core, or to translate a limited subset of graph queries
into equivalent SQL queries on existing data (allowing for out-
of-core execution). DataStax Enterprise Graph allows users to
query their underlying Cassandra (column family) store with
Gremlin. While Cassandra has an excellent ability to scale
outward, DataStax Enterprise Graph inherits its significant

'Neodj has the ability issue queries across a federation of multiple graphs,
but the Cypher queries that Neo4j users must write are not shard-agnostic like
TigerGraph and Amazon Neptune.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

Graph Processing System

Database Graph Extension

)

Program

Graph Processing

Graph DBMS + Non-Graph DBMS

Results

Graph Extension

Y

Graph Database

Non-Graph Database Non-Graph Database

Storage

Storage Storage

\

Fig. 1: Comparison between graph processing systems, graph + non-graph database systems, and database graph extensions.

limitations for analytics (i.e. queries require careful physical
tuning via index creation before being able to execute). IBM
Db2 Graph, in contrast to the two aforementioned systems,
was designed with a similar goal as Graphix: to allow users
to execute both graph and relational analytics on existing
data, in-situ. What Graphix does differently than IBM Db2
Graph is two-fold: (1) Graphix users operate on a flexible
underlying data model (i.e., a document model vs. a traditional
relational model), simplifying the user model when reasoning
over graphs and the source data. (2) Graphix presents a unified
query model, allowing users to integrate navigational pattern
matching with the underlying query language. The query
model behind IBM Db2 Graph clearly separates its graph
analytics component (written in Gremlin) and its relational
analytics component (written in SQL), resulting in a less-than-
synergistic user model.

III. BACKGROUND

In this section we give overviews of AsterixDB, of the query
language of AsterixDB (SQLTT), and of the leading graph
query language (Cypher).

A. Apache AsterixDB

AsterixDB is a Big Data management system (BDMS) de-
signed to be a highly scalable platform for document storage,
search, and analytics [25]. AsterixDB possesses a flexible,
semi-structured data model that accommodates a range of
use cases —from “schema-first” to “schema-never”. To scale
horizontally it follows a shared-nothing architecture, where
each node independently accesses storage and memory. All
nodes are managed by a central cluster controller that serves as
an entry point for user requests and coordinates work amongst
the individual AsterixDB nodes. After a query arrives at the
cluster controller, the query is translated into a logical plan and
subsequently rewritten in a rule-based and cost-based manner

3072

1 FROM Users u

2 WHERE wu.name IS NOT NULL

3 SELECT wu.id AS uid,

4 (FROM Messages m

5 WHERE m.user id = u.id

6 SELECT m.id AS id) AS mids;

Listing 1: SQLTT query that correlates two datasets in the
SELECT clause.

to produce an optimized physical plan [26]. This optimized
physical plan is then translated into a job that can run across
all nodes in the cluster [27]. Datasets in AsterixDB are hash-
partitioned across the cluster on their primary key into primary
B+ tree indexes, where the data records reside, with secondary
indexes being local to the primary data on each node.

B. SQL++ Query Language

SQL™ is a query language purposed for JSON, semi-
structured data, while being backwards-compatible with
SQL [28], [29]. This backwards compatibility enables easy
adoption by existing SQL users. In SQL™', FROM clause
variables are allowed to be bound to any JSON element. In
contrast, SQL only binds FROM clause variables to regular-
ized and structured tuples. Subqueries in SQL*T are first-
class citizens, allowing for greater composability than SQL
subqueries (which are restricted to returning scalar or NULL
values). To demonstrate these features, suppose we want to
find users with non-NULL names and all messages they have
written. A legal way to express this query in SQL™™ is given
in Listing 1. This query in Listing 1 illustrates two features
of SQLTT that are not present in SQL: 1) In SQLTT, we
can either place the SELECT clause at the start of the query
(conforming to standard SQL) or at the end of the query to
more closely reflect how queries are processed. We choose
the latter style for the SQL** queries in this paper. 2) In

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

SQL™, subqueries can be used to build nested documents.
In Listing 1, we use a subquery to create records containing
arrays of related message IDs. The result of executing the
query might yield the four results below.

1 {uid: 11, mids: [{id: 9992} ,{id: 9997}1}
2 {uid: 14, mids: []}

3 {uid: 27, mids: [{id: 10010}1}

4 {uid: 70, mids: [{id: 10524}]1}

Another noteworthy aspect of SQLT is its GROUP AS clause,
allowing users to query over groups that they create through
the SQL GROUP BY clause. Contrast this with a SQL GROUP BY
clause, which only allows reasoning over aggregate values of
groups. Suppose we want to group all Users by their first
name and return the groups of user IDs for groups that have
less than 4 elements. We can use the SQL* query in Listing 2
to realize this grouping. Executing Listing 2 might yield the
two results below.

uids:
uids:

1 {name:
2 {name:

"Gura",
"Ame",

[{id: 6}1}

[{id: 3},{id: 10}1}

Given that SQL ™ is the query language used by AsterixDB,
SQL* also serves as the foundation for the query language
of Graphix, gSQL* ™.

C. Cypher Query Language

Cypher is arguably the current leader for querying property
graphs [13], though there is a growing effort to standard-
ize [30], [31] and bridge the gap between other similar query
languages [32], [33]. A defining characteristic of Cypher is
its MATCH clause, allowing users to specify navigational graph
patterns via a user-friendly ASCII-art syntax. Recursion in
Cypher is enabled through the use of regular expressions
between vertices in graph patterns. While not as computation-
ally powerful as the Pregel model — or the recursive SQL-99
standard [34] — graph computations such as reachability and
shortest path can be written in a much more succinct and
natural manner in Cypher.

To illustrate the simplicity of Cypher, let us start by describ-
ing a recursive SQL query to find if three users are transitively
connected to each other. Beginning on Line 2 in Listing 3, we
start by anchoring the navigation at $id1 and 1) grabbing the
IDs for the next user to visit (1uk), 2) initializing an array for
cycle detection (vu) and 3) and an output array (v). Subsequent
iterations will execute the recursive member on Line 8, which
will “traverse” to another user u2 using the user IDs 1uk from
the previous iteration. To avoid traversing over cycles, we
check if the ID of our current user is in our visited array
vu. If our current user has one of the IDs we are interested
in, we update our output array accordingly by performing a
bitwise OR operation with our current output array. The results
that our recursive member yields to the next iteration includes
the next set of user ids, an updated visited array to include u2,
and the status of our output array. If we find any results from
our recursive CTE such that our output array has a length of 3,
then we know that we have visited all three users of interest at

3073

1 FROM Users u
2 GROUP BY u.name.first GROUP AS g

3 HAVING COUNT (%) < 4
4 SELECT u.name.first AS name,
5 (FROM g SELECT g.u.id) AS uids;

Listing 2: SQLT™T GROUP AS query to return groups formed by
a GROUP BY clause.

1 WITH RECURSIVE Visited AS

2 (SELECT ul.knows AS 1luk

3 ARRAY [ul.id] AS vu,

4 ARRAY[1,0,0] AS v

5 FROM Users ul

6 WHERE ul.id = $id1l

7 UNION ALL

8 SELECT u2.knows AS 1luk,
9 rv.vu || u2.id AS vu,

10 CASE

11 WHEN u2.id = $id2

12 THEN ARRAY[rv.v[0],1,rv.v[2]]
13 WHEN u2.id = $id3

14 THEN ARRAY[rv.v[0],rv.v[1],1]
15 ELSE rv.v

16 END AS v

17 FROM Visited rv,

18 Users u2

19 WHERE u2.id = ANY(rv.luk) AND
20 NOT u2.id = ANY(rv.vu))
21 SELECT COUNT(*) > O AS connected

22 FROM Visited rv
23 WHERE (SELECT SUM(v) = 3
24 FROM UNNEST (rv.v) v);

Listing 3: Recursive SQL query (in PostgreSQL’s dialect) to
find if three users are transitively connected to each other.

some point. Otherwise, we conclude that there exists no path
that connects $id1, $id2, and $id3.

To get around the short-term memory restriction inherent
to recursive CTEs, Listing 3 accumulates state from previous
iterations in the vu and v arrays. Ultimately, we are only inter-
ested in the existence of a single row (one where v contains all
“1” values). The outer WHERE clause and outer COUNT(x) > 0
aggregate predicate in the SELECT clause tells us that we can
stop as soon as find such a row, but recognizing such a pattern
is non-trivial. A query optimizer would have to, at a minimum,
1) recognize that v is a bit vector, 2) recognize that SUM(v) = 3
is concerned with a specific bit vector, and 3) recognize that
our recursive member is performing a bitwise OR. Recursive
SQL, while very powerful and Turing complete, requires SQL
users to define hard-to-optimize constructs for graph queries
(e.g. cycle prevention, edge traversal) themselves.

We contrast the query in Listing 3 with the much easier-to-
read equivalent Cypher query in Listing 4. We highlight two
main differences between these queries:

1) In the recursive SQL query, a user has to explicitly handle
(and prevent) cycles. In Cypher, cycles are implicitly
pruned by forbidding traversal over duplicate edges.

2) In the recursive SQL query, a user has to specify how the
navigation is performed. Listing 3 starts the navigation
at $ul. In the Cypher query, a user does not specify

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 MATCH (ul:User)-[:KNOWS*]-(u2:User),
2 (u2)-[:KNOWS*]-(u3:User),

3 (u1l)-[:KNOWS*] -(u3)

4 WHERE ul.id = $ul AND

5 u2.id = $u2 AND

6 u3.id = $u3

7 RETURN COUNT (*) > O AS connected;

Listing 4: Cypher query to find if three users are transitively
connected to each other.

a starting point, allowing the query optimizer to (more

easily) choose an appropriate starting point.
The MATCH clause from Cypher clearly appeals to both users
and query engine developers for the common task of reacha-
bility, but as discussed in our desiredata, adopting Cypher as
a second language for Graphix would require users to write
queries in two different query languages. Furthermore, SQL
is the defacto standard query language. Extending SQL™*T
(which extends SQL) allows the query language of Graphix to
build on the decades of work that has gone into SQL. As an
example, consider the SQL 2003 standard, which includes a
collection of rich OLAP operations (window functions, win-
dow clauses, grouping sets, etc...). We believe that navigational
graph pattern matching can and should compliment existing
(and future) operations like these.”

IV. GRAPH MODEL OF GRAPHIX

We now introduce Graphix, which was designed to work
in tandem with existing user models. To illustrate the user-
facing graph model behind Graphix, we start by modeling a
social network using the document model of AsterixDB as
an application might do. We then describe the social network
with the graph model of Graphix, and show how to establish
a mapping between Graphix and AsterixDB.

A. Social Network Example

We start by designing our social network database as a
collection of documents. Two major entities are captured in
this example: (i) Users and (ii) Messages. Three relationships
are captured in our social network: (I) a User may post one
or more Message(s), (II) a Message may reply to exactly
one Message, and (III) a User may know one or more other
User (s). Examples of these entities and relationships are given
in Figure 2. We highlight two parts of our social network
schema that differ from a similar schema in the traditional
relational model: 1) data can be nested, as shown by the
name field of the two Users documents, and 2) many-to-many
relationships can be folded into a single entity, as shown by
the knows arrays of two Users documents.

2The recently released SQL/PGQ standard closely aligns with our idea of
merging SQL with graph queries, but a SQL query fundamentally revolves
around a structured table. SQL/PGQ draws a clear “line in the sand” between
the relational world and the graph world. Section V will show how Graphix
moves beyond this model limitation.

User

{ id 15
name : { first: "Sora", $
last : "Tokino" }, HRDTEE{ i i740001, T
join_date : "2017-09-07", \ user_id : 2,
knows : [1,3,4,9,11] } % L e
{ content : "Has anyone been
here before?"
is_draft : FALSE }
KNOWS KNOWS
e *. . I Tissr REPLY_OF
name : { first: "Haato", ; I
last : "Akai" }, i qan : 10002, Message
join_date : "2018-08-01", HRDTE; user_id e -
languages : ["en", "jp"l, \ posted_on : "2023-06-20",
knows : [2,6,7,8,9,10] } i content : "I have! They..."

is_draft
reply_id

: FALSE,
: 10001 }

Fig. 2: Example documents of two Users, two Messages, and
their relationships.

B. Mapping to Graphix

Having defined these two datasets, we will now define a
mapping of these datasets to a virtual property graph that we
can formulate graph queries over. In Graphix, both vertices and
edges correspond to documents in AsterixDB. An instance of
a vertex contains two sets of fields: (a) a set of fields that
are denoted (but not enforced) as its primary key, and (b) an
optional set of fields that correspond to the other properties
of the vertex. An instance of an edge in Graphix is always
directed, which allows us to define an edge in three distinct
parts: (i) a set of fields that form a reference to a source vertex,
known as the edge source key, (i1) a set of fields that form a
reference to a destination vertex, known as the edge destination
key, and (iii) an optional set of fields that correspond to the
properties of an edge.

Listing 5 describes our mapping of the Users and Messages
datasets to the property graph SocialNetworkGraph, which is
composed of two types of vertices and three types of edges:

1) Starting on Line 2, we define the collection of all vertices
labeled User to be the dataset Users. The primary key of
the User vertex collection is the primary key of the Users
dataset: id. The properties of an individual User vertex
are all the fields of the mapped Users document.

2) Starting on Line 5, we define the collection of all vertices
labeled Message to be the result of the query specified
after AS: all Message records that are not drafts. Again,
the primary key and properties are taken directly from
the underlying dataset: Message. This vertex mapping
demonstrates a unique feature of Graphix when compared
to other view-based graph systems: the ability to define
any query as a vertex (or edge), not just existing stored
datasets. To realize more complex vertex mappings,
SQL*™ clauses like UNION ALL, JOIN, and GROUP BY
could be used to construct the appropriate query.

3) Starting on Line 10, we define the collection of all KNOWS
edges to be a query that uses the Users dataset to return
two fields: source id and dest id. source id is de-

3074

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 CREATE GRAPH SocialNetworkGraph
2 AS VERTEX (:User)

3 PRIMARY KEY (id)

4 AS Users,

5 VERTEX (:Message)

6 PRIMARY KEY (id)

7 As (FROM Messages m

8 WHERE NOT m.is draft

9 SELECT m.x*),

10 EDGE (:User)-[:KNOWS]->(:User)

11 SOURCE KEY (source_id)

12 DESTINATION KEY (dest id)

13 AS (FROM Users u

14 UNNEST u.knows k

15 SELECT u.id AS source_id,

16 k AS dest_id),

17 EDGE (:User)-[:WROTE]l->(:Message)
18 SOURCE KEY (user_id)

19 DESTINATION KEY (message_id)

20 AS (FROM Messages m

21 SELECT m.user id,

22 m.id AS message id,
23 m.posted on),

24 EDGE (:Message)-[:REPLY OF]->(:Message)
25 SOURCE KEY (source_id)

26 DESTINATION KEY (dest_id)

27 As (FROM Messages m

28 SELECT m.id AS source id,

29 m.reply id AS dest_id,
30 m.posted on);

Listing 5: CREATE GRAPH DDL to create a property graph view.

fined to be the edge’s source key, and dest _id is defined
to be its destination key. No additional properties (outside
of the key fields) are defined here for KNOWS edges. This
edge mapping demonstrates a natural approach to handle
relationships that are captured by arrays: we can utilize
the existing query language (SQL™T) that is purposed to
handle nested data to return a normalized collection of
(source key, destination key) pairs.

Starting on Line 17, we define the collection of all WROTE
edges to be a query that uses the Messages dataset to re-
turn three fields: user id, message id, and posted on.
The source key is defined to be user id, the destination
key is defined to be message id, and posted on is
defined to be an additional property of the WROTE edge.
Starting on Line 24, we define the collection of all
REPLY OF edges to be a query that uses the Messages
dataset to return three fields: source id, dest id, and
posted on. The source and destination keys are defined
respectively as source id, dest_id, and posted on is
again defined as an additional property.

We note that while Listing 5 may seem verbose, the users
that author CREATE GRAPH statements are intended to be a subset
of the users that actually query the graphs. Once Listing 5 is
executed, other data analysts can simply “put on their graph
glasses” and then query the existing data in-situ accordingly,
i.e., as a graph.

4)

5)

V. QUERY MODEL OF GSQL++

When designing the query language for Graphix, special
care and attention was given towards deciding how users

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

3075

o =

(a) SQLTT grammar for the FromClause production.

(c) gSQL™T GraphTerm grammar extension.

I PathPattern .

Il EdgePattern .'
VertexPattern

(d) gSQLT MatchExpr grammar extension.

Fig. 3: Simplified gSQL'™" grammar extension for the
production. The full grammar (describing
UnnestStep, JoinStep, and MatchStep) is available at:
https://graphix.ics.uci.edu/docs/language-reference/

FromTerm

should be able to specify graph queries. On one end of the so-
lution spectrum, we could have simply used an existing graph
query language. On the other end of the solution spectrum,
we could have used the existing recursive features of the SQL
standard to extend SQL T for use in Graphix. Our desiderata
for issuing graph queries on existing AsterixDB data searches
for a solution somewhere in the middle: a) brevity (balancing
“Turing-complete” with ease-of-use), b) maintenance (avoid-
ing the accidental complexity users would incur by working
with two different query languages), and c) synergy (being
able to intuitively integrate existing SQL / SQL™ language
features with graph query constructs).

A. SQL++ Plus Navigational Pattern Matching

We now move to gSQL*TF, a SQL** extension that en-
ables the integration of graph pattern matching (borrowed
from Cypher and SQL/PGQ) with existing SQL and SQL*T
constructs. In contrast to SQL/PGQ, gSQL™' maps from a
document model to a graph model by extending SQL*™. To
start, we recognize that Cypher’s MATCH clause is more-or-
less an analog to the FROM clause in SQL: both the MATCH
clause and FROM clause specify iteration variable bindings that
are used in other clauses downstream. In SQL*™, the FROM
clause is composed of one or more FromTerm productions.
The most fundamental change that gSQL T+ makes to SQL*+

1 FROM GRAPH SocialNetworkGraph

2 (u:User)-[:WROTE]->(m:Message)

3 WHERE m.content LIKE "), "+u.name.first+"%"
4 GROUP BY u

5 HAVING COUNT (u) > 10

6 SELECT u;

Listing 6: gSQL™" query to find users that have written more
than 10 messages with their name.

is therefore in the FromTerm. Our intent with Graphix was to
make gSQL T a strict superset of SQLTT. As indicated by the
lower path in Figure 3b, all SQL™" queries are valid gSQL*
queries. Users follow the bottom path to express a standard
SQL™T FromTerm. To express a gSQL ™1 matching FromTerm,
users follow the top path (the grammar surrounded by the red
dashed lines) and specify:

1) the GRAPH keyword;

2) the name of the graph (i.e. QualifiedName); and

3) the graph query patterns (i.e. GraphTerm).
Users that are familiar with Cypher can optionally specify
the MATCH keyword before a GraphTerm expression. Logically,
after the GraphTerm clause is evaluated, users have a multi-
set of documents to reason about. These documents can then
be manipulated using the same SQL and SQL™' clauses
that users are already familiar with: the documents can be
filtered using a WHERE clause, J0INed with another collection
of documents, aggregated through GROUP BY, or operated on
using any other legal SQL™™ expression.

B. ¢gSQL++ Through Example Queries

To illustrate the expressiveness of gSQL'T, let us consider
several queries on our graph from Subsection IV-B. For our
first query, we want to find users that have written more than
10 messages whose content includes their name. We express
this first gSQL*+ query in Listing 6, where our first line
specifies the name of our graph SocialNetworkGraph in the
FROM clause. The next line is our GraphTerm, which specifies
the query pattern “users u that have written messages m”. This
FROM clause and GraphTerm expression is equivalent to the
following FROM and JOIN clauses in SQLT:

FROM Messages m JOIN Users u ON m.user id = u.id

For the rest of the query shown in Listing 6, we can operate
on the bound variables m and u as if they came from the
FROM and JOIN clauses above. Starting on Line 3, we specify
the “message with a user’s name” condition. For all users
and messages, we then GROUP BY users on Line 4 and filter
out groups with 10 or less messages using the HAVING clause
on Line 5.

For our second query, we are interested in finding out which
messages socially isolated users are currently engaging with.
For all week-old (or less) messages m1 written by users u that
do not know any other users, we want to find all top-level
messages m2 that m1 is a reply to. “Top-level” in the context
of this query means that we want to recursively follow the
reply-of chain. To find these top-level messages, we utilize the

3076

{

Vertices:

l

{ iad 10423,
user id 4,
posted on "2023-06-21"
content "Thanks! I’11 check it out!",
is_draft FALSE,
reply of 10420 },

{ id 10420,
user id 8,
posted on "2023-06-20"
content "I’ve been there! They..."
is_draft FALSE,
reply of 10419 },

{ id 10419,
user id 4,
posted on "2023-06-20",
content "Has anyone been to Rail...",
is_draft FALSE } 1,

Edges: [

{ source id 10423,
dest id 10420,
posted on "2023-06-21" },

{ source_ id 10420,
dest _id 10419,

posted on "2023-06-20" } 1]

}

Listing 7: JSON document describing a two-hop path of
REPLY OF edges in the graph SocialNetworkGraph.

1 FROM GRAPH SocialNetworkGraph

2 (u:User)-[w:WROTE]->(m1:Message),

3 (m1)-[r:REPLY_ OF+]->(m2:Message)

4 LET lw = CURRENT_DATE()-DURATION("P7D")
5 WHERE w.posted on > 1lw AND

6 m2.reply id IS UNKNOWN AND

7 NOT EXISTS (

8 FROM GRAPH SocialNetworkGraph
9 (u)-[:KNOWS]->(:User)

10 SELECT =

11)
12 SELECT DISTINCT m2;

Listing 8: gSQL** query to find the top-level messages that
socially isolated users are engaging with.

concept of a path. A path in gSQL'T is a sequence of one or
more edges and is specified using a regular expression of edge
labels. If two messages m1 and m2 are connected using a path
r of one or more REPLY OF edges, we capture this sequence
of edges using the pattern expression below. Note the use of
the positive closure quantifier + after the REPLY OF edge label.

(m1:Message)—[r:REPLY OF+]->(m2:Message)

An instance of a path can logically be thought of as a single
document containing two array-valued fields: Vertices and
Edges. Users are free to manipulate these arrays using SQLT+.
An example of a two-hop path of REPLY OF edges is given
in Listing 7.

Having described the notation for a path, we express our
second query in gSQL*™ in Listing 8. Line 2 again identifies
messages and their authors. Line 3 asks for all messages m2
that m1 is a direct or transitive reply to. If there are multiple
paths between the same m1 and m2 vertex, then all paths are

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1
1

FROM GRAPH SocialNetworkGraph
(ul:User)-[k:KNOWS+]->(u2:User)
ul.id = $ul AND

u2.id IN $D

WHERE

GROUP BY u2 GROUP AS g
u2.id,
(FROM g
SELECT g.k
ORDER BY LEN(g.k.Edges) ASC
LIMIT 1

1
2
3
4
5
6 SELECT
7
8
9
0
1

)[0] AS shortest path;

Listing 9: gSQL™" query to find the shortest paths from one
user to a collection of other users.

PR
=
=8

[

p—

g

w

’ ;
o

P

g

]

&

e
-

Fig. 4: Example graph of Users and KNOWS edges. The dashed
lines represent the shortest paths from u; to us,, us,, and us, .

available for the user to manipulate. We are only interested
in the top-level messages for our query, so we specify that
the reply id field of m2 should be UNKNOWN (i.e. NULL or
absent from m2 entirely) in the WHERE clause. Finally we reach
a correlated anti-JOIN query on Line 7, which expresses the
condition that user u does not know any other user.

The last query that we will ask involves finding a shortest
path from a single user $ul to each user in a set of other
users $D. This third gSQLTT query is expressed in Listing 9.
On Line 2, the path k between two users ul and u2 is
represented using the path expression :KNOWS+. Our navigation
is anchored using the subsequent WHERE clause, which qualifies
the primary keys of both ui and u2. The GROUP BY clause
in Line 5 aggregates all possible paths from ul to each u2
and binds each group of paths to the variable g. To fetch
the shortest path from ul to each u2, we use the subquery
in Line 7. Due to the GROUP BY clause, this subquery is
logically executed for each u2 instance: in ascending order,
we sort each path g.k from ul to a u2 instance by the number
of hops in g.k and choose the shortest path (or one of the
shortest paths, if there are ties). To quantify the hops in a
path, LEN(g.k.Edges) is used to count the number of edges
a given path possesses. Finally, the [0] on the last line is
used to access the sole element returned by the subquery. In
SQL™T / gSQLTT, subqueries will always return a multiset.
ORDER BY subqueries return an array, hence the need for the
array access [29]. By utilizing the existing GROUP BY ...
GROUP AS clauses of SQL*+, gSQL*™ is able to naturally
express a rich set of navigation constraints in a novel manner

KNOWS

1 {ul: wy, u2: wy,, k: ug — ug, }
KNOWS KNOWS
2 {ul: wy, u2: wg,, k: uy — uy, — uz,
KNOWS KNOWS KNOWS
3{ul: wi, u2: uz,, k: up ‘ u2, }
KNOWS KNOWS
4 {ut: wi, u2: ug,, k: up — Uty — U2, }
KNOWS KNOWS KNOWS
5{ul: w1, u2: ug,, k: ul Uty Uty N
KNOWS KNOWS
6 {ul: wy, u2: wa,, k: ug — utg —> uz, }

Listing 10: Example records in scope after the FroM clause but
before the Group BY clause of Listing 9.

1 {ul: wy, u2: wy,, k: ug — ug, }
KNOWS KNOWS
2 {ul: wy, u2: wg,, k: ug — Uy, —— u
KNOWS KNOWS KNOWS
3{ul: wi, u2: wuz,, k: up 1 .
KNOWS KNOWS
I {utl: wi, u2: wup,, k: ug — up; — uz, }
KNOWS KNOWS KNOWS
2 {ul: w1, u2: ug,, k: u Uty uz, }
KNOWS KNOWS
1 {ul: wy, u2: wa,, k: wug — uyy — ug, }

Listing 11: Example groups in scope (for use in the SELECT
clause subquery) after GROUP BY clause of Listing 9.

not found in any other existing graph query language.

To better illustrate the functionality of Line 7’s subquery,
suppose that the query logically matches the paths in List-
ing 10 from user u; to three separate users {us,, us,, us_} €
$D. A visual representation of all possible paths from u; to all
users in $D is given in Figure 4. The GROUP BY in the outer
query generates three collections of documents, illustrated by
the grouping in Listing 11. Finally, the subquery executes
over each group, yielding a single-element array containing
the record with the shortest path for each endpoint user (i.e.
the highlighted records in Listing 11).

VI. IMPLEMENTATION OF GRAPHIX

Graphix was designed as an extension of AsterixDB. In ad-
dition to extending AsterixDB’s query language, Graphix also
extends AsterixDB’s query optimizer [26] and AsterixDB’s
parallel runtime engine [27]. Given a single gSQL™T query
@, the following steps and transformations are taken to execute
(in a partitioned-parallel fashion:

1) The query () is first lexed and parsed into an abstract
syntax tree 7°(Q). Given that gSQL*™ is an extension
of SQLTT, this abstract syntax tree (AST) uses a com-
bination of gSQL™T specific nodes and SQL™ nodes.

2) Using the CREATE GRAPH definition associated with the
graph of T°(Q) (named in the FROM clause after the
GRAPH keyword), unlabeled vertex and edge patterns are
assigned labels that logically adhere to the mapping of
the aforementioned CREATE GRAPH.

3) All of the gSQLT+ AST nodes in 7°(Q) are lowered into
SQL** compatible AST nodes. We denote this resulting
AST as TH(Q).

4) TY(Q) is transformed again through a set of SQL™+ AST
rewrites (e.g. WITH clause inlining, GROUPING SETS, etc...).
For historical reasons, these AST rewrites are separate

3077

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

from our algebraic-level rewrites. We denote the final
AST as T?(Q).

T?(Q) is then translated into an initial Algebricks query
plan P°(Q). P°(Q) then undergoes a set of Graphix and
AsterixDB heuristic-based logical rewrites to produce an
optimized logical plan P!(Q).

The optimized logical plan P'(Q) then undergoes a set
of Graphix and AsterixDB physical rewrites to produce
an optimized physical plan P?(Q). P?(Q) differs from
PL(Q) in that each operator in P?(Q) now has an
associated physical implementation (e.g. a JOIN operator
could be physically realized with a nested-loop algorithm,
a hash-based algorithm, etc...) associated with it.

P?(Q) is then transformed into a Hyracks job J(Q).
J(Q) is then expanded into a more detailed graph of
activities [27] (e.g. a hash JOIN has two activities: one
to build the hash table and one to probe). The activity
graph of J(Q) is logically divided along each blocking
edge (e.g. the build phase of a hash JOIN must execute
before the probe phase) to build another graph of activity
clusters. This activity cluster graph is then used to define
groups of activity clusters that can be run in parallel while
respecting the blocking requirements of J((Q). These
groups are known as stages.

Iterating through each stage, the cluster controller process
then distributes a stage instance to all node controller
processes, which execute the same computation but on
different partitions of the data. Once each stage has been
iterated over and executed, a result is assembled and
handed back to the user.

Steps (1) to (3) are unique to Graphix, where Graphix acts
(somewhat) on top of AsterixDB. Step (4) is shared by both
AsterixDB and Graphix. Steps (5) to (6) are shared by both
Graphix and AsterixDB, but Graphix has an additional set
of rewrite rules to handle looping constructs (e.g., using
index-nested-loop-JOIN to traverse edges, factoring out loop
invariants, etc...). Steps (7) to (8) are largely decoupled from
the data model of Graphix and AsterixDB, hence they are
also shared by both Graphix and AsterixDB. The implemen-
tation effort behind Graphix contributes back to AsterixDB
by offering Hyracks operators that can realize navigational
queries, potentially enabling any future work that also requires
recursion.

5)

0)

7)

8)

A. Execution of Graph Queries

We will now take a look at how edge hops are physically
executed for traversing (non-materialized) Graphix graphs in
a partitioned-parallel manner. More specifically, we will be
looking at how Graphix would execute the query in Listing 12.
Graphix extends Hyracks to leverage the concepts in this
section in order to support recursive gSQLTT queries. These
Hyracks extensions include a) a new in-band message passing
paradigm to characterize the progress of a looping activity
graph instance and b) a novel FIXED POINT Hyracks operator
for coordinating the termination of parallel task clusters. These

3078

[DISTRIBUTE RESULT] [DISTRIBUTE RESULT]

kn => k . kn => k
_un => u2 : _un => u2
L : {
[_ REPLICATE : REPLICATE
kn = _kp A . A kn = _kp
_un => _up . -un => _up
_kn = APPEND PATH : _kn = APPEND PATH
(_kp, _e, _un) . (_kp, _e, _un)
_e = CREATE EDGE . _e = CREATE EDGE A
(_up, _i, _un) . (_up, _i, _un) 1 a
. 132
&| -un = PIDX SEARCH . _un = PIDX SEARCH [§ | | 2
32 (_un.id = _i) . (Lun.id = _i) 2 >/,\
h(_un.id) JWF = : _ _®jh(un.id) 2
Pttt bl 1 &
- - . == -~ i
: 1S
_i = UNNEST . _i = UNNEST |
(_up.knows) . (_up.knows)
: J
oo
h(_up.id) h(_up.id)
ki => _kp ki => _kp
ul => _up ul => _up
L L
ki = k1 =
CREATE PATH (ui) CREATE PATH (ul)
&| wt = pox searce ul = PIDX SEARCH |§
2| (ui.id = $u1) (ui.id = $u1) |&
h(ul.id) h(ul.id)
Worker 1 Worker 2

Fig. 5: Two-worker execution plan to realize the query in List-
ing 12 using index-nested-loop-JOINs to traverse edges.

1 FROM GRAPH SocialNetworkGraph

2 (ul:User)-[k:KNOWS+]->(u2:User)
3 WHERE ul.id = $ul

4 SELECT k, u2;

Listing 12: gSQL™" query to find all paths composed of KNOWS
edges from a single user uil to all other connected users u2.

extensions are described in more detail in Chapter 5 of [35]
and a forthcoming paper [36].

Suppose that we translate and execute the query in List-
ing 12 on a two-worker Graphix cluster, where the dataset
corresponding to the User vertex set, Users, is hash-partitioned
across both workers on the Users primary key: the id field.
Figure 5 describes a potential execution plan where two work-
ers perform the same job on their different partitions of data.
The support for explicitly cyclic plans, the FIXED POINT oper-
ator, and the path functions (i.e., CREATE PATH, CREATE EDGE,
and APPEND PATH) are unique to Graphix.

Similar to how recursive SQL queries are structured,
Graphix-based navigation in Hyracks is composed of two
parts: 1) an anchor data flow, which describes how starting ver-

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

tices are found, and 2) a recursive data flow, which describes
how graph edges are traversed. The bottom two operators
of Figure 5 describe the anchor data flow, while the remaining
operators (up to the REPLICATE operator) describe the recursive
data flow. Starting from the bottom operators, we begin our
execution by finding our starting user ui. We perform a search
on the primary index such that the primary key of Users is
equal the starting ID $ui. A starting path k1 of one vertex
(u1) and zero edges is then created in the next operator. The 2-
tuple (_k1,ul) is then forwarded to the FIXED POINT operator
to anchor the navigation.

The next operator in Figure 5 is the FIXED POINT operator,
which possesses two operator inputs and one operator out-
put. At a high level, the FIXED POINT operator is akin to a
UNION ALL operator (see [35] and [36] for a more in-depth
explanation) and is used to “merge” two data flows (i.e., the
anchor data flow and the recursive data flow) into one. To
ensure that the recursive data flow is a) lively (progress is
being made), b) safe (resources are never over-allocated), and
c) mortal (the data flow eventually terminates), FIXED POINT
operator instances will communicate various events to each
other using an out-of-band channel (as denoted by the purple
dotted line). The output of the FIXED POINT operator is a 2-
tuple (_kp, up), where kp and up represent a path and
a user from a previous iteration respectively.

To get the users known by the user _up, the knows array
is UNNESTed to produce Users foreign keys _i. Because the
Users dataset is hash partitioned across multiple workers,
Hyracks needs to make sure that each (__kp, up) tuple is sent
to the data shard that might contain the user _un whose id
field is equal to the tuple’s _i. Using the same hash function
that was used to partition the Users dataset (denoted as h in
our diagram), each worker will hash the PIDX SEARCH field i
and possibly forward some of the tuples to the other worker
across the network. The UNNEST and PIDX SEARCH operators
define the traversal across a KNOWS edge to a User vertex in
our conceptual SocialNetworkGraph graph. In the absence of
an index on the id field of the Users dataset, a hybrid hash
JOIN approach (not depicted) would be used instead of the
depicted index nested loop JOIN approach.

Using the fields up, i, and _un, an edge e is created
and used to check whether or not adding the edge e to
the previous path _kp induces a cycle. If adding e to _kp
does not induce a cycle, then a new path _kn is constructed.
The 2-tuple (_kn, un) is then duplicated via the REPLICATE
operator and sent to two places: 1) downstream (up in Fig-
ure 5) to the DISTRIBUTE RESULT operator (with kn and
__un being renamed to k and u2 respectively), and 2) back to
the FIXED POINT operator (with kn and un being renamed
to kp and _up respectively) to repeat another KNOWS edge
traversal. Once all simple paths between $uil and every other
user have been enumerated, our execution terminates. Moving
beyond Figure 5, Graphix is able to compile and evaluate
gSQL*+ queries about conceptual graphs over their under-
lying existing data using any AsterixDB cluster configuration
of any size and partitioning.

3079

VII. PRELIMINARY EVALUATION

To illustrate the potential of Graphix, we describe two
sets of preliminary analysis: 1) a code-complexity analysis
of gSQL*T, Cypher, PostgreSQL, SPARQL, and TigerGraph
GSQL queries, and 2) a preliminary performance evaluation
comparing the current version of Graphix with a leading graph
database that presents a similar graph user model: Neo4j. We
reiterate that Graphix is meant to operate on existing JSON
data with latent graph structure. Graphix was not designed
with the sole purpose of executing graph queries in the
smallest amount of time (although we do observe competitive
performance for many queries in this section). Nonetheless,
we report our “proof-of-concept” findings below.

A. Code Complexity Analysis

For our code-complexity evaluation, we quantify the “effort”
of authoring a query. Inspired by work from Vashistha [37]
as well as Goretity and Reguly [38], we are interested in
determining the volume (V), difficulty (D), and effort ()
of a query using the query’s operators (N1 = the total number
of operators, 77; = the distinct number of operators) and the
query’s operands (N2 = the total number of operands, 75
= the distinct number of operands) [39]. Take the following
SQL query snippet: “SELECT a, b, c”’. We would consider
SELECT as an operator and the fields a, b, and c to be the
operands of the “SELECT operator”. By counting the number
of operators and operands in a query, we define volume as
V = (N1+Na) - logy(n1+n2), difficulty as D = 2 - N—j, and
effort as £ = DV. Intuitively, queries with higher V' values
are more verbose than queries with lower V' values. Queries
with higher D values are more “difficult-to-understand” than
queries with lower D values. Queries with higher £ values
require more developer “effort” that queries with lower E
values. High FE-valued queries suggest that a) the query
is verbose, b) the query is difficult to author, or c¢) some
combination of the two.

The workload chosen for our analysis was a subset of the
LDBC interactive workload [40], which describes a set of
operational queries about a social network. For the LDBC
interactive queries IS-1, IS-2, IS-3, IC-1, IC-2, and IC-3,
we compare our gSQLTT implementation against the same
query authored in a) SPARQL, b) Cypher, c¢) SQL (in Post-
greSQL’s dialect), and d) TigerGraph GSQL. All query im-
plementations analyzed (aside from those in gSQLTT) were
taken from the LDBC'’s reference implementation repository.
Our measurements for each authored query can be found
at https://github.com/graphix-asterixdb/benchmark.

Figure 6 illustrates the distribution of 1) normalized volume
V', 2) normalized difficulty D, and 3) normalized effort E for
all studied query implementations. On average, the queries that
required the most effort to author were in GSQL. This result
is not surprising, given that GSQL “queries” are more akin
to procedural “programs”. Queries authored in SPARQL had
the 2nd highest E value on average. We attribute SPARQL’s
high average F value to the target data model of SPARQL:
RDEF. Property graphs, the target model of Graphix and the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

, Volume \% . Difficulty D _ . Effort E
0.75 T 0.75 0.75 I
0.5 ; 0.5 I 0.5
0.25 0.25 0.25
Q?&;;% 8 q;&;zv‘*oycﬁ O @‘%ﬁﬁ‘@ S

Fig. 6: Distribution of normalized Halstead metrics (volume V/, difficulty D, effort F) for several implementations of queries

from the LDBC interactive social network benchmark.

LDBC social network benchmark, define vertices, edges, and
properties. In contrast, the RDF model only defines vertices
and edges. A “property” in RDF is modeled using a vertex and
an edge to the containing entity. Consequently, we observed
high verbosity (high V' values) when compared to queries
authored in gSQL™, Cypher, and SQL.

On average, SQL queries required the least amount of effort
to author — however Figure 6 shows a wide distribution of
FE values. SQL queries for the LDBC interactive workload
were either incredibly easy to author, or incredibly difficult /
verbose to author. Queries that required paths (IC-1 and IC-3)
yielded large V and D values when implemented in SQL.
Queries implemented in Cypher had the tightest distribution of
E values. Given that the LDBC benchmark is tailored towards
graph-based analysis, it should come as no surprise that the
effort required to write graph queries in Cypher is more
“predictable” than writing graph queries in SQL. Figure 6
show that queries authored in gSQL'™ are able to leverage
the simplicity of SQL (or more accurately, SQL™T) and the
graph constructs from Cypher to ensure low and consistent
query-authoring effort.

B. Preliminary Performance Analysis

1) Experimental Setup: For our performance experiments,
we used AWS EC2 i2.2xlarge instances, each with (i) 32 GB
of memory, (ii) 8 vCPUs, and (iii) EBS gp3 SSDs. Our
evaluation compares a Neo4j instance (version 5.4.0) on a
single AWS node against Graphix clusters of various sizes.?
The workloads chosen for the experiments in this section
were a) the LDBC business intelligence social network bench-
mark [41], which is a “graph-based parallel” to the TPC-
H benchmark for relational analytics, and b) the LDBC
interactive workload [40], the operational counterpart to the
business intelligence benchmark. With respect to the structure
of the social network graph, LDBC’s data generator produces
networks that adhere to the Homophily principle (i.e. persons
with similar interests and behavior know each other) and

3TigerGraph, a distributed graph database, was initially also considered for
comparison, but their free “community” edition is limited to 50 GB graphs
on a single node. No other distributed database has implementations for the
LDBC social network interactive and business intelligence benchmarks.

3080

with vertex degrees similar to Facebook. A scale-factor of
SF=100 (raw data size ~100 GB, 312.0 million vertices, 1.1
billion edges) was used to evaluate the archetypal out-of-core
scenario, where a single machine cannot operate on the graph
entirely in memory. All artifacts used for the experiments
in this paper can be found at: https://github.com/graphix-
asterixdb/benchmark.

2) Experimental Results: Figure 7 shows eight plots that
compare Neo4j on one node (green) against Graphix clusters
(blue) of increasing size where appropriate. For brevity, only
eight queries are discussed here: two from the interactive-
short workload, three from the interactive-complex workload,
and three from the business intelligence workload. A more
comprehensive set of results (i.e., nearly all LDBC social
network benchmark queries) can be found in [35].

The first two plots of Figure 7 compare Neo4j and Graphix
on a single node with queries IS-1 and IS-2 from the (short)
interactive workload. Both IS-1 and IS-2 anchor on some
starting vertex to subsequently traverse a small portion of the
graph. IS-1 requires a single edge hop from an anchor vertex,
while IS-2 requires a) traversing all one-hop neighbors from
the anchor vertex, and b) recursively navigating to a source
vertex from the previously traversed-to neighbors. As shown
in Figure 7, Graphix on a single node is able to perform
roughly on-par with Neo4j for IS-1 while outperforming
Neo4j for 1s-2.

The next three plots of Figure 7 compare Neo4j and
Graphix with queries IC-1, IC-2, and IC-8 from the (complex)
interactive workload. These queries anchor on some starting
vertex and traverse a larger portion of the graph to some set of
destination vertices. As shown in Figure 7, Neo4j outperforms
Graphix for Ic-1 atn = 1, n = 2, and n = 4. Neo4j employs a
bidirectional BFS to evaluate I1C-1, whereas Graphix performs
a BFS from the anchor vertex. Neo4j, on average, will traverse
fewer edges than Graphix for IC-1 due to Neo4j’s bidirectional
BFS strategy. If a Graphix user wants comparable performance
to Neo4j for 1¢c-1, they would have to increase their Graphix
cluster size to n = 8 at a minimum. If a Graphix user wants
better performance than Neo4j for IC-1, they would then
increase their Graphix cluster to more than n = 8 nodes. A
Neo4j user might be able to achieve faster execution times

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

Query 1S-1 Query IS-2
—~ 04 0.4
) 0.26
g 02 0.2
= 0.07 '
0 0
Cluster Size (n = 1) Cluster Size (n = 1)
1C-8 BI-3
Query 2,000 201y
@ 0.4 0.33 1,500 J\
2 02 1,000 ***_4“4_%
= 500
0 0 L L | |

Cluster Size (n = 1)
Cluster Size (n)

1 16 32

Query IC-1 Query IC-2
800 T T T T T T T
600 40
200 20
0 et e e e 0 M & N
1 16 32 1 16 32
Query BI-8b Query BI-9
T T T T [T T
gggg 3,000
o
2,000)
0 \L * , 0 L | \
1 16 32 1 16 32

Cluster Size (n) Cluster Size (n)

Fig. 7: Several plots showing a Graphix cluster of varying size (in blue) against a Neo4j instance (in green) for a variety of

queries from the LDBC social network benchmark.

with multiple nodes, but (as discussed earlier) users must also
rewrite their existing queries to accommodate their cluster
scale-out.

With respect to queries IC-2 and IC-8, Graphix at n = 1
either outperforms Neo4j (IC-2) or performs on par with
Neo4j (1¢-8). For query IC-2, Graphix experiences near-linear
speedup with increasing values of n up until n = 32. In
contrast to IC-1, Neo4j and Graphix traverse the same number
of edges for both 1c-2 and 1C-8. Both Graphix and Neo4;j
evaluate edges for queries IC-2 and IC-8 using an index-
nested-loop-JOIN. Graphix, however, places a SORT operator
on the JOIN key before the PIDX SEARCH operator to minimize
the total number of index lookups. Neo4j does not perform
such a sort, resulting in more random I/O for high degree
vertices (like those in IC-2).

The last three queries in Figure 7 compare Neo4j and
Graphix clusters of varying size with queries BI-3, BI-8b, and
BI-9 from the business intelligence workload. In contrast to
queries from the interactive workload, the business intelligence
queries do not anchor on a starting vertex. Queries BI-3,
BI-8b, and BI-9 require the traversal of several edges from
a set of starting vertices plus some form of aggregation. As
a general trend across all business intelligence queries here,
Graphix is able to execute such queries faster with larger
values of n. Neo4j outperforms Graphix at n = 1 and n = 2
for query BI-3 and at n = 1 for query BI-8b. Graphix for
all other values of n, however, outperforms Neo4j. Neo4j
traverses edges with an index-nested-loop JOIN approach,
which is not as performant for high out-degree vertices (i.e.,
JOINs that are not selective [42]). Graphix, on the other hand,
is able to traverse edges with JOIN algorithms that are better
equipped to handle high out-degree vertices (e.g., hybrid hash
JOINS). Furthermore, the JOIN algorithms used by Graphix
operate in parallel on different partitions of data. Graphix has
the capability to utilize more compute and disk I/O to further
accelerate the traversal of multiple edges.

3081

VIII. CONCLUSION

In this paper we have introduced Graphix, an Apache
AsterixDB extension that takes a view-based approach to
perform ad-hoc, (shard agnostic) partitioned-parallel, and syn-
ergistic graph + document analytics on JSON data in-situ. In
contrast, current solutions fall short on either i) the “in-situ”
aspects (e.g. native graph databases), ii) the (shard agnostic)
“partitioned-parallel” (e.g. graph databases like Neo4j), iii) the
“ad-hoc” aspects (e.g. graph processing systems), or iv) the
“synergistic” aspects (e.g. existing database graph extensions).
This paper has detailed the user model of Graphix: a) the
graph view user model, b) the CREATE GRAPH DDL, and c) how
SQL** with a navigational pattern matching extension can
support a rich set of graph queries. Graphix leverages the As-
terixDB stack (Algebricks and Hyracks) to execute these graph
queries on a cluster of workers. As shown by our preliminary
evaluation, Graphix allows users to express queries with low
effort that will ultimately leverage horizontal scaling to handle
both analytical and operational workloads. Note that although
this work was done within the context of AsterixDB, many of
the concepts explored here could be applied to other systems
with data-parallel execution engines. We invite readers to try
Graphix at https://graphix.ics.uci.edu.

ACKNOWLEDGMENT

We would like to acknowledge several individuals from
UCSD: Yannis Papakonstantinou for his review and comments
on early versions of this paper, and Amarnath Gupta and
Subhasis Dasgupta for their input on the query model and
experimental setup sections. We would also like to thank UCI
student Sushrut Borkar for his help writing the queries used
in our evaluation. This research was supported in part by NSF
awards IIS-1838248, 1IS-1954962, and CNS-1925610, by the
HPI Research Center in Machine Learning and Data Science
at UC Irvine, and by the Donald Bren Foundation (via a Bren
Chair).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

3

—

[4]

[51

[6]

[71

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

S. Salihoglu and M. T. Ozsu, “Response to “Scale Up or Scale Out for
Graph Processing”,” IEEE Internet Computing, vol. 22, pp. 18-24, 09
2018.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a System for Large-Scale Graph
Processing,” Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, 2010.

Apache Giraph, “Apache Giraph, an Iterative Graph Processing System
Built for High Scalability,” Available at https://giraph.apache.org.

J. E. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph Processing in a Distributed Dataflow
Framework,” in USENIX Symposium on Operating Systems Design and
Implementation, 2014.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab : A Framework for Machine Learn-
ing and Data Mining in the Cloud,” in Proceedings of the VLDB
Endowment, 2012.

M. Han and K. S. Daudjee, “Giraph Unchained: Barrierless Asyn-
chronous Parallel Execution in Pregel-like Graph Processing Systems,”
Proceedings of the VLDB Endowment, vol. 8, pp. 950-961, 2015.

Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix:
Big(ger) Graph Analytics on a Dataflow Engine,” Proceedings of the
VLDB Endowment, vol. 8, pp. 161-172, 2014.

D. Yan, Y. Bu, Y. Tian, and A. Deshpande, “Big Graph Analytics
Platforms,” Foundations and Trends in Databases, vol. 7, no.
1-2, p. 1-195, jan 2017. [Online]. Available: https://doi.org/10.1561/
1900000056

Neo4j, “Neo4j, the Graph Data Platform,” Available at https://neo4j.com.
TigerGraph, “TigerGraph: The World’s Fastest and Most Scaleable
Graph Platform,” Available at https://www.tigergraph.com.

Amazon, “Amazon Neptune: Serverless Graph Database Designed for
Superior Scalability and Availability,” Available at https://aws.amazon.
com/neptune/.

Y. Tian, “The World of Graph Databases from An Industry Perspective,”
ACM SIGMOD Record, vol. 51, pp. 60 — 67, 2022.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An Evolving Query Language for Property Graphs,” Proceed-
ings of the 2018 International Conference on Management of Data,
2018.

M. A. Rodriguez, “The Gremlin Graph Traversal Machine and Lan-
guage,” Proceedings of the 15th Symposium on Database Programming
Languages, 2015.

E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C, W3C Recommendation, Jan. 2008,
https://www.w3.0rg/TR/2008/REC-rdf-sparql-query-20080115/.

W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie,
“SQLGraph: An efficient relational-based property graph store,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 1887-1901.

H. Jiewen, D. Abadi, and K. Ren, “Scalable SPARQL querying of large
RDF graphs,” PVLDB, vol. 4, pp. 1123-1134, 08 2011.

Unipop, “Unipop Graph: Analyze Data from Multiple Sources Using the
Power of Graphs,” Available at https://github.com/unipop- graph/unipop.
A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini,
and R. Rosati, “Linking data to ontologies,” J. Data Semant., vol. 10,
pp. 133-173, 2008. [Online]. Available: https://api.semanticscholar.org/
CorpusID:1325494

G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,
and M. Zakharyaschev, “Ontology-based data access: a survey,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, ser. IJICAI’18. AAAI Press, 2018, p. 5511-5519.

E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao, “OBDA
beyond relational DBs: A study for MongoDB,” Description Logics,
2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
1418349

Oracle, “Oracle Spatial and Graph: Spatial and Graph Analytic Services
and Data Models that Support Big Data Workloads,” Available at https:
/Iwww.oracle.com/database/technologies/bigdata-spatialandgraph.html.
DataStax, “DataStax Enterprise Graph: A Distributed Cassandra Graph
Database Optimized for Enterprise Applications,” Available at https:/
www.datastax.com/products/datastax- graph.

3082

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

Y. Tian, E. L. Xu, W. Zhao, M. H. Pirahesh, S. J. Tong, W. Sun,
T. Kolanko, M. S. H. Apu, and H. Peng, “IBM Db2 Graph: Supporting
Synergistic and Retrofittable Graph Queries Inside IBM Db2,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 345-359. [Online].
Available: https://doi.org/10.1145/3318464.3386138

S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann,
“AsterixDB: A Scalable, Open Source BDMS,” Proceedings of the
VLDB Endowment, vol. 7, pp. 1905-1916, 2014.

V. Borkar, Y. Bu, E. P. Carman, N. Onose, T. Westmann, P. Pirzadeh,
M. J. Carey, and V. J. Tsotras, “Algebricks: A Data Model-Agnostic
Compiler Backend for Big Data Languages,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing, ser. SoOCC "15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
422-433. [Online]. Available: https://doi.org/10.1145/2806777.2806941
V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica,
“Hyracks: A Flexible and Extensible Foundation for Data-Intensive
Computing,” in Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ser. ICDE ’11. USA: IEEE
Computer Society, 2011, p. 1151-1162. [Online]. Available: https:
//doi.org/10.1109/ICDE.2011.5767921

K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++
Semi-structured Data Model and Query Language: A Capabilities
Survey of SQL-on-Hadoop, NoSQL and NewSQL Databases,” A
Computing Research Repository, vol. abs/1405.3631, 2014. [Online].
Available: http://arxiv.org/abs/1405.3631

D. Chamberlin, SQL++ for SQL Users: A Tutorial.
Incorporated, 2018.

ISO/EC, “Graph Query Language GQL Standard,” Available at https:
/Iwww.gqlstandards.org.

N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault,
W. Martens, F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoc,
“A Researcher’s Digest of GQL,” in 26th International Conference on
Database Theory (ICDT 2023), ser. Leibniz International Proceedings
in Informatics (LIPIcs), F. Geerts and B. Vandevoort, Eds., vol.
255. Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2023, pp. 1:1-1:22. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2023/17743

O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “PGQL: a
Property Graph Query Language,” in International Workshop on Graph
Data Management Experiences and Systems, 2016.

R. Angles, M. Arenas, P. Barceld, P. A. Boncz, G. Fletcher, C. Gutiérrez,
T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and
H. Voigt, “G-CORE: A Core for Future Graph Query Languages,”
Proceedings of the 2018 International Conference on Management of
Data, 2017.

ISO Central Secretary, “Information Technology — Database Languages
— SQL — Part 2: Foundation (SQL / Foundation),” International
Organization for Standardization, Geneva, CH, Standard ISO/IEC
9075-2:1999, 1999. [Online]. Available: https://www.iso.org/standard/
62711.html

G. Galvizo, “Graphix: View the (JSON) World Through Graph-Tinted
Glasses,” PhD Thesis, University of California, Irvine, Irvine, CA,
December 2023.

G. Galvizo and M. J. Carey, “Hyracks Unchained: Realizing Semi-
Synchronous Recursion in Apache AsterixDB,” In preparation.

A. Vashistha, “Measuring query complexity in SQLShare workload,”
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
53451506

A. Goretity and I Reguly, “Query complexity in modern database
DSLs,” ACM Transactions on Information Systems, vol. 1, no. 1, 2021.
M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz, “The LDBC Social Network Benchmark:
Interactive Workload,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
619-630. [Online]. Available: https://doi.org/10.1145/2723372.2742786

Couchbase

[41] G. Szarnyas, J. Waudby, B. A. Steer, D. Szakdllas, A. Birler, M. Wu,
Y. Zhang, and P. Boncz, “The LDBC Social Network Benchmark:
Business Intelligence Workload,” Proceedings of the VLDB Endowment,
vol. 16, no. 4, pp. 877-890, 2022.

[42] G. Graefe, “Modern B-Tree Techniques,” Foundations and Trends in
Databases, vol. 3, no. 4, p. 203—402, Apr. 2011. [Online]. Available:
https://doi.org/10.1561/1900000028

3083

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

