
Graphix: “One User’s JSON is
Another User’s Graph”

Glenn Galvizo
University of California, Irvine

Email: ggalvizo@uci.edu

Michael J. Carey
University of California, Irvine

Email: mjcarey@ics.uci.edu

Abstract—The increasing prevalence of large graph data has
produced a variety of research and applications tailored toward
graph data management. Users aiming to perform graph an-
alytics will typically start by importing existing data into a
separate graph-purposed storage engine. The cost of maintaining
a separate system (e.g., the data copy, the associated queries,
etc. . .) just for graph analytics may be prohibitive for users with
Big Data.

In this paper, we introduce Graphix and show how it enables
property graph views of existing document data in AsterixDB,
a Big Data management system boasting a partitioned-parallel
query execution engine. We explain a) the graph view user
model of Graphix, b) gSQL++, a novel query language extension
for synergistic document-based navigational pattern matching,
and c) how edge hops are evaluated in a parallel fashion. We
then compare queries authored in gSQL++ against versions in
other leading query languages. Finally, we evaluate our approach
against a leading native graph database, Neo4j, and show that
Graphix is appropriate for operational and analytical workloads,
especially at scale.

Index Terms—Big Data, JSON, graph analytics, graph query
languages, navigational pattern matching, AsterixDB

I. INTRODUCTION

Research in the field of graph data management has seen an

explosion over the past decade. Teams developing applications

with a graph-only workload in mind from the start have a large

selection of graph databases to chose from. These types of

users however, are not the norm — the typical user of a graph

database also has non-graph-workloads that they must design

around [1]. This design effort is further complicated when

dealing with Big Data and out-of-core workloads. A common

architecture that these types of users employ involves the

stitching of multiple, more narrow-purpose systems together.

For example, consider a two-DBMS architecture composed

of a document database DBD and a graph database GDB to

analyze the relationships found in DBD. This architecture

has several consequences: a) some form of ETL (extract-

transform-load) pipeline must be developed to duplicate the

data from database DBD to GDB and then maintained to ensure

consistency, b) separate resources need to be allocated for both

DBD and GDB (increasing the cost to own the data), c) queries

are written in two query languages for two different APIs, and

d) heterogeneous workloads (e.g. mixing graph and document

analytics) require ad-hoc, specialized solutions. Furthermore,

graph databases like Neo4j are limited by their inability to

gracefully scale outward, leaving users of such databases with

few options when their queries run slower than desired (or not

at all) due to excessive data volume.

In this paper, we challenge the two-DBMS architecture

previously described. We describe the following desiderata

for a new architecture that enables both graph and non-graph

workloads:

In-Situ (Zero Copy) Query Processing

To avoid the complexities that come with creating and

maintaining multiple copies of data, both users and sys-

tems should not duplicate data for the sole purpose of

managing different user models.

Synergistic Graph and Traditional Analytics

Users familiar with one data model should not have

additional barriers to work with other models of the same

data. The “accidental complexity” involved in integrating

multiple user models should be minimized.

Partitioned-Parallel, Scalable Execution

Users should be able to work with data volumes larger

than memory. Users should not have to modify their

graph queries when scaling horizontally. Users should
not have to sacrifice performance to realize all of the

aforementioned points.

We find that most existing solutions satisfy at most 1/3 of

the points above. Graphix is our solution to satisfy these

desiderata: it takes a view-based approach to answering graph

queries on JSON data in-situ and at scale. The contributions

of this work include: 1) a graph view user model and DDL

that naturally extends an underlying document model, 2) a

query extension for expressing graph and traditional (multi-

model) analytics in synergy, 3) a description of how to

translate navigational pattern matching queries into efficient,

partitioned-parallel executions, and 4) a code-complexity study

and an initial performance comparison with a native graph

database.

The rest of this paper is structured as follows: Section II

describes related work around querying graph data. Section III

reviews Apache AsterixDB, the Big Data management system

used for this research, and two query languages: SQL++ and

Cypher. Section IV introduces the graph model of Graphix,

demonstrating how users can map existing document data to

a non-materialized graph view. Section V details our query

model and query language: gSQL++. Section VI explains

the implementation and architecture of Graphix. Section VII

details a preliminary evaluation of Graphix’s query model and

3070

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00238

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
02

38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

Graphix’s performance against Neo4j.

II. RELATED WORK

The database community has had no shortage of work

trying to tackle the management of large graphs. While many

graph problems can (and have) been solved using non-graph-

purposed systems, in this section we consider systems whose

user model deals with graph-specific abstractions. Related

work can be grouped into three areas: (i) graph processing

systems, (ii) (native) graph databases, and (iii) database graph

extensions for non-graph-purposed databases.

A. Graph Processing Systems

Big Graph processing systems such as Pregel [2] and Gi-

raph [3] were designed to provide a vertex-oriented message-

passing-based abstraction for distributed graph algorithms to

run on shared-nothing clusters in a bulk-synchronous-parallel

(BSP) fashion. Another system designed for graph processing

is GraphX [4], which uses a simpler API (Resident Distributed

Graphs, or RDGs) and adopts Spark as its runtime. In an

effort to provide similar vertex-centric abstractions without the

need for bulk synchronization, systems like GraphLab [5] and

GiraphUC [6] were designed to process large graphs in an

asynchronous manner. A graph processing system that used

the same runtime engine as Graphix is Pregelix [7], designed

to gracefully scale distributed graph algorithms for out-of-core

workloads. While Big Graph processing systems have been

shown to be performant and scaleable [8], their “think like a

vertex” paradigm still requires users to develop a program to

interact with their APIs. We contrast graph processing systems

with more traditional database systems, where a declarative

query language like SQL is used to build ad-hoc queries

with less developer effort. Our work is largely orthogonal to

graph processing systems, as we target the specific problem of

navigational pattern matching and not all graph algorithms.

Keeping with the informal motto of AsterixDB, “one size fits

a bunch”, Graphix aims to target “a bunch” of use cases really

well as opposed to targeting all use cases with a user-model

impedance mismatch.

B. Native Graph Databases

Native graph databases like Neo4j [9] and TigerGraph [10]

were designed to challenge traditional database systems by

building a new database from the ground-up (storage, execu-

tion, and user model) with graph primitives in mind. Amazon

Neptune [11], while not a native graph database (since it

is built on top of AWS’s existing data platforms), presents

users with only a graph data model. The two leading graph

user models are the property graph model and the resource

description framework (RDF) graph model. In the property

graph model, users reason about their data as a directed

multi-graph of labeled vertices and edges, where each vertex

and edge can possess a set of key-value pairs (known as

properties). In the RDF model, users reason about their data

as a directed graph of labeled edges captured in the form of

subject-predicate-object triples. Property graphs are supported

by all three of the aforementioned systems [12]. With respect

to the query model of graph databases, there are two leading

query languages for the property graph model – Cypher [13]

and Gremlin [14] – and one standardized language for the

RDF model – namely SPARQL [15].

Use of graph databases requires users of existing non-graph-

databases to build ETL pipelines to copy their data over to

the chosen graph database. In addition to the increased cost to

own the data, native graph databases like Neo4j are unable

to gracefully1 scale horizontally. TigerGraph and Amazon

Neptune are offerings that have the ability to scale horizontally,

but they still suffer from the problem of requiring duplicate

copies of data. In contrast, Graphix operates on existing data

in-situ without a need to stitch separate systems together.

C. Database Graph Extensions

Work on extending existing, non-graph-purposed systems

with graph extensions can be split into two areas: (i) re-

purposing an existing system to handle a graph data model,

and (ii) translating queries for a graph data model into the

query model understood by an existing system. While the

former (Item i) has seen a lot of interest ([16], [17]), these

systems possess the same flaw as graph databases from the

previous section: they require maintaining duplicate copies

of existing data, We will focus on the latter work (Item ii)

which most closely relates to Graphix. We give a high-

level comparison between graph processing systems, graph (+

non-graph) database systems, and database graph extensions

in Figure 1.

Unipop Graph [18] and Cytosm [13] are middleware sys-

tems that translate graph queries into queries for another

system. Cytosm translates Cypher queries into queries on a

relational store, but it does not support unbounded recursion.

Unipop Graph translates Gremlin and SPARQL queries into

one or more queries on a NoSQL or relational store, but it

performs its joins outside of the underlying database. Neither

project has had any updates in over 5 years. OBDA (ontology-

based data access) is a related problem that pertains to convert-

ing SPARQL queries into queries against various existing data

sources [19], [20], [21]. Graphix is not middleware and is more

tightly coupled with AsterixDB, allowing it to a) perform joins

closer to the data, and b) extend the optimizer and runtime to

leverage information about the original graph query.

Prominent non-open-source offerings include Oracle Spatial

and Graph [22], DataStax Enterprise Graph [23], and IBM Db2

Graph [24]. Oracle Spatial and Graph gives users the option to

load their existing data into memory as a graph and issue their

queries in-core, or to translate a limited subset of graph queries

into equivalent SQL queries on existing data (allowing for out-

of-core execution). DataStax Enterprise Graph allows users to

query their underlying Cassandra (column family) store with

Gremlin. While Cassandra has an excellent ability to scale

outward, DataStax Enterprise Graph inherits its significant

1Neo4j has the ability issue queries across a federation of multiple graphs,
but the Cypher queries that Neo4j users must write are not shard-agnostic like
TigerGraph and Amazon Neptune.

3071

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Comparison between graph processing systems, graph + non-graph database systems, and database graph extensions.

limitations for analytics (i.e. queries require careful physical

tuning via index creation before being able to execute). IBM

Db2 Graph, in contrast to the two aforementioned systems,

was designed with a similar goal as Graphix: to allow users

to execute both graph and relational analytics on existing

data, in-situ. What Graphix does differently than IBM Db2

Graph is two-fold: (1) Graphix users operate on a flexible

underlying data model (i.e., a document model vs. a traditional

relational model), simplifying the user model when reasoning

over graphs and the source data. (2) Graphix presents a unified

query model, allowing users to integrate navigational pattern

matching with the underlying query language. The query

model behind IBM Db2 Graph clearly separates its graph

analytics component (written in Gremlin) and its relational

analytics component (written in SQL), resulting in a less-than-

synergistic user model.

III. BACKGROUND

In this section we give overviews of AsterixDB, of the query

language of AsterixDB (SQL++), and of the leading graph

query language (Cypher).

A. Apache AsterixDB

AsterixDB is a Big Data management system (BDMS) de-

signed to be a highly scalable platform for document storage,

search, and analytics [25]. AsterixDB possesses a flexible,

semi-structured data model that accommodates a range of

use cases —from “schema-first” to “schema-never”. To scale

horizontally it follows a shared-nothing architecture, where

each node independently accesses storage and memory. All

nodes are managed by a central cluster controller that serves as

an entry point for user requests and coordinates work amongst

the individual AsterixDB nodes. After a query arrives at the

cluster controller, the query is translated into a logical plan and

subsequently rewritten in a rule-based and cost-based manner

1 FROM Users u
2 WHERE u.name IS NOT NULL
3 SELECT u.id AS uid ,
4 (FROM Messages m
5 WHERE m.user id = u.id
6 SELECT m.id AS id) AS mids;

Listing 1: SQL++ query that correlates two datasets in the

SELECT clause.

to produce an optimized physical plan [26]. This optimized

physical plan is then translated into a job that can run across

all nodes in the cluster [27]. Datasets in AsterixDB are hash-

partitioned across the cluster on their primary key into primary

B+ tree indexes, where the data records reside, with secondary

indexes being local to the primary data on each node.

B. SQL++ Query Language

SQL++ is a query language purposed for JSON, semi-

structured data, while being backwards-compatible with

SQL [28], [29]. This backwards compatibility enables easy

adoption by existing SQL users. In SQL++, FROM clause

variables are allowed to be bound to any JSON element. In

contrast, SQL only binds FROM clause variables to regular-

ized and structured tuples. Subqueries in SQL++ are first-

class citizens, allowing for greater composability than SQL

subqueries (which are restricted to returning scalar or NULL
values). To demonstrate these features, suppose we want to

find users with non-NULL names and all messages they have

written. A legal way to express this query in SQL++ is given

in Listing 1. This query in Listing 1 illustrates two features

of SQL++ that are not present in SQL: 1) In SQL++, we

can either place the SELECT clause at the start of the query

(conforming to standard SQL) or at the end of the query to

more closely reflect how queries are processed. We choose

the latter style for the SQL++ queries in this paper. 2) In

3072

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

SQL++, subqueries can be used to build nested documents.

In Listing 1, we use a subquery to create records containing

arrays of related message IDs. The result of executing the

query might yield the four results below.

1 {uid: 11, mids : [{id: 9992} ,{ id: 9997}]}
2 {uid: 14, mids : []}
3 {uid: 27, mids : [{id: 10010}]}
4 {uid: 70, mids : [{id: 10524}]}

Another noteworthy aspect of SQL++ is its GROUP AS clause,

allowing users to query over groups that they create through

the SQL GROUP BY clause. Contrast this with a SQL GROUP BY
clause, which only allows reasoning over aggregate values of

groups. Suppose we want to group all Users by their first

name and return the groups of user IDs for groups that have

less than 4 elements. We can use the SQL++ query in Listing 2

to realize this grouping. Executing Listing 2 might yield the

two results below.

1 {name : "Gura", uids : [{id: 6}]}
2 {name : "Ame", uids : [{id: 3},{id: 10}]}

Given that SQL++ is the query language used by AsterixDB,

SQL++ also serves as the foundation for the query language

of Graphix, gSQL++.

C. Cypher Query Language

Cypher is arguably the current leader for querying property

graphs [13], though there is a growing effort to standard-

ize [30], [31] and bridge the gap between other similar query

languages [32], [33]. A defining characteristic of Cypher is

its MATCH clause, allowing users to specify navigational graph

patterns via a user-friendly ASCII-art syntax. Recursion in

Cypher is enabled through the use of regular expressions

between vertices in graph patterns. While not as computation-

ally powerful as the Pregel model – or the recursive SQL-99

standard [34] – graph computations such as reachability and

shortest path can be written in a much more succinct and

natural manner in Cypher.

To illustrate the simplicity of Cypher, let us start by describ-

ing a recursive SQL query to find if three users are transitively

connected to each other. Beginning on Line 2 in Listing 3, we

start by anchoring the navigation at $id1 and 1) grabbing the

IDs for the next user to visit (luk), 2) initializing an array for

cycle detection (vu) and 3) and an output array (v). Subsequent

iterations will execute the recursive member on Line 8, which

will “traverse” to another user u2 using the user IDs luk from

the previous iteration. To avoid traversing over cycles, we

check if the ID of our current user is in our visited array

vu. If our current user has one of the IDs we are interested

in, we update our output array accordingly by performing a

bitwise OR operation with our current output array. The results

that our recursive member yields to the next iteration includes

the next set of user ids, an updated visited array to include u2,

and the status of our output array. If we find any results from

our recursive CTE such that our output array has a length of 3,

then we know that we have visited all three users of interest at

1 FROM Users u
2 GROUP BY u.name.first GROUP AS g
3 HAVING COUNT (∗) < 4
4 SELECT u.name.first AS name ,
5 (FROM g SELECT g.u.id) AS uids;

Listing 2: SQL++ GROUP AS query to return groups formed by

a GROUP BY clause.

1 WITH RECURSIVE Visited AS
2 (SELECT u1.knows AS luk
3 ARRAY [u1.id] AS vu ,
4 ARRAY [1 ,0 ,0] AS v
5 FROM Users u1
6 WHERE u1.id = $id1
7 UNION ALL
8 SELECT u2.knows AS luk ,
9 rv.vu | | u2.id AS vu ,

10 CASE
11 WHEN u2.id = $id2
12 THEN ARRAY [rv.v [0] ,1 , rv.v [2]]
13 WHEN u2.id = $id3
14 THEN ARRAY [rv.v [0] , rv.v [1] ,1]
15 ELSE rv.v
16 END AS v
17 FROM Visited rv ,
18 Users u2
19 WHERE u2.id = ANY(rv.luk) AND
20 NOT u2.id = ANY(rv.vu))
21 SELECT COUNT (∗) > 0 AS connected
22 FROM Visited rv
23 WHERE (SELECT SUM(v) = 3
24 FROM UNNEST (rv.v) v);

Listing 3: Recursive SQL query (in PostgreSQL’s dialect) to

find if three users are transitively connected to each other.

some point. Otherwise, we conclude that there exists no path

that connects $id1, $id2, and $id3.

To get around the short-term memory restriction inherent

to recursive CTEs, Listing 3 accumulates state from previous

iterations in the vu and v arrays. Ultimately, we are only inter-

ested in the existence of a single row (one where v contains all

“1” values). The outer WHERE clause and outer COUNT(∗) > 0
aggregate predicate in the SELECT clause tells us that we can

stop as soon as find such a row, but recognizing such a pattern

is non-trivial. A query optimizer would have to, at a minimum,

1) recognize that v is a bit vector, 2) recognize that SUM(v) = 3
is concerned with a specific bit vector, and 3) recognize that

our recursive member is performing a bitwise OR. Recursive

SQL, while very powerful and Turing complete, requires SQL

users to define hard-to-optimize constructs for graph queries

(e.g. cycle prevention, edge traversal) themselves.

We contrast the query in Listing 3 with the much easier-to-

read equivalent Cypher query in Listing 4. We highlight two

main differences between these queries:

1) In the recursive SQL query, a user has to explicitly handle

(and prevent) cycles. In Cypher, cycles are implicitly

pruned by forbidding traversal over duplicate edges.

2) In the recursive SQL query, a user has to specify how the

navigation is performed. Listing 3 starts the navigation

at $u1. In the Cypher query, a user does not specify

3073

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 MATCH (u1:User) −[: KNOWS ∗] −(u2:User),
2 (u2) −[: KNOWS ∗] −(u3:User),
3 (u1) −[: KNOWS ∗] −(u3)
4 WHERE u1.id = $u1 AND
5 u2.id = $u2 AND
6 u3.id = $u3
7 RETURN COUNT (∗) > 0 AS connected ;

Listing 4: Cypher query to find if three users are transitively

connected to each other.

a starting point, allowing the query optimizer to (more

easily) choose an appropriate starting point.

The MATCH clause from Cypher clearly appeals to both users

and query engine developers for the common task of reacha-

bility, but as discussed in our desiredata, adopting Cypher as

a second language for Graphix would require users to write

queries in two different query languages. Furthermore, SQL

is the defacto standard query language. Extending SQL++

(which extends SQL) allows the query language of Graphix to

build on the decades of work that has gone into SQL. As an

example, consider the SQL 2003 standard, which includes a

collection of rich OLAP operations (window functions, win-

dow clauses, grouping sets, etc...). We believe that navigational

graph pattern matching can and should compliment existing

(and future) operations like these.2

IV. GRAPH MODEL OF GRAPHIX

We now introduce Graphix, which was designed to work

in tandem with existing user models. To illustrate the user-

facing graph model behind Graphix, we start by modeling a

social network using the document model of AsterixDB as

an application might do. We then describe the social network

with the graph model of Graphix, and show how to establish

a mapping between Graphix and AsterixDB.

A. Social Network Example

We start by designing our social network database as a

collection of documents. Two major entities are captured in

this example: (i) Users and (ii) Messages. Three relationships

are captured in our social network: (I) a User may post one

or more Message(s), (II) a Message may reply to exactly

one Message, and (III) a User may know one or more other

User(s). Examples of these entities and relationships are given

in Figure 2. We highlight two parts of our social network

schema that differ from a similar schema in the traditional

relational model: 1) data can be nested, as shown by the

name field of the two Users documents, and 2) many-to-many

relationships can be folded into a single entity, as shown by

the knows arrays of two Users documents.

2The recently released SQL/PGQ standard closely aligns with our idea of
merging SQL with graph queries, but a SQL query fundamentally revolves
around a structured table. SQL/PGQ draws a clear “line in the sand” between
the relational world and the graph world. Section V will show how Graphix
moves beyond this model limitation.

Fig. 2: Example documents of two Users, two Messages, and

their relationships.

B. Mapping to Graphix

Having defined these two datasets, we will now define a

mapping of these datasets to a virtual property graph that we

can formulate graph queries over. In Graphix, both vertices and

edges correspond to documents in AsterixDB. An instance of

a vertex contains two sets of fields: (a) a set of fields that

are denoted (but not enforced) as its primary key, and (b) an

optional set of fields that correspond to the other properties

of the vertex. An instance of an edge in Graphix is always

directed, which allows us to define an edge in three distinct

parts: (i) a set of fields that form a reference to a source vertex,

known as the edge source key, (ii) a set of fields that form a

reference to a destination vertex, known as the edge destination
key, and (iii) an optional set of fields that correspond to the

properties of an edge.

Listing 5 describes our mapping of the Users and Messages
datasets to the property graph SocialNetworkGraph, which is

composed of two types of vertices and three types of edges:

1) Starting on Line 2, we define the collection of all vertices

labeled User to be the dataset Users. The primary key of

the User vertex collection is the primary key of the Users
dataset: id. The properties of an individual User vertex

are all the fields of the mapped Users document.

2) Starting on Line 5, we define the collection of all vertices

labeled Message to be the result of the query specified

after AS: all Message records that are not drafts. Again,

the primary key and properties are taken directly from

the underlying dataset: Message. This vertex mapping

demonstrates a unique feature of Graphix when compared

to other view-based graph systems: the ability to define

any query as a vertex (or edge), not just existing stored

datasets. To realize more complex vertex mappings,

SQL++ clauses like UNION ALL, JOIN, and GROUP BY
could be used to construct the appropriate query.

3) Starting on Line 10, we define the collection of all KNOWS
edges to be a query that uses the Users dataset to return

two fields: source id and dest id. source id is de-

3074

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 CREATE GRAPH SocialNetworkGraph
2 AS VERTEX (: User)
3 PRIMARY KEY (id)
4 AS Users ,
5 VERTEX (: Message)
6 PRIMARY KEY (id)
7 AS (FROM Messages m
8 WHERE NOT m.is draft
9 SELECT m.∗),

10 EDGE (: User) −[: KNOWS]−>(:User)
11 SOURCE KEY (source id)
12 DESTINATION KEY (dest id)
13 AS (FROM Users u
14 UNNEST u.knows k
15 SELECT u.id AS source id ,
16 k AS dest id),
17 EDGE (: User) −[: WROTE]−>(:Message)
18 SOURCE KEY (user id)
19 DESTINATION KEY (message id)
20 AS (FROM Messages m
21 SELECT m.user id ,
22 m.id AS message id ,
23 m.posted on),
24 EDGE (: Message) −[:REPLY OF]−>(:Message)
25 SOURCE KEY (source id)
26 DESTINATION KEY (dest id)
27 AS (FROM Messages m
28 SELECT m.id AS source id ,
29 m.reply id AS dest id ,
30 m.posted on);

Listing 5: CREATE GRAPH DDL to create a property graph view.

fined to be the edge’s source key, and dest id is defined

to be its destination key. No additional properties (outside

of the key fields) are defined here for KNOWS edges. This

edge mapping demonstrates a natural approach to handle

relationships that are captured by arrays: we can utilize

the existing query language (SQL++) that is purposed to

handle nested data to return a normalized collection of

(source key, destination key) pairs.

4) Starting on Line 17, we define the collection of all WROTE
edges to be a query that uses the Messages dataset to re-

turn three fields: user id, message id, and posted on.

The source key is defined to be user id, the destination

key is defined to be message id, and posted on is

defined to be an additional property of the WROTE edge.

5) Starting on Line 24, we define the collection of all

REPLY OF edges to be a query that uses the Messages
dataset to return three fields: source id, dest id, and

posted on. The source and destination keys are defined

respectively as source id, dest id, and posted on is

again defined as an additional property.

We note that while Listing 5 may seem verbose, the users

that author CREATE GRAPH statements are intended to be a subset

of the users that actually query the graphs. Once Listing 5 is

executed, other data analysts can simply “put on their graph

glasses” and then query the existing data in-situ accordingly,

i.e., as a graph.

V. QUERY MODEL OF GSQL++

When designing the query language for Graphix, special

care and attention was given towards deciding how users

FROM FromTerm

,

(a) SQL++ grammar for the FromClause production.

GRAPH QualifiedName GraphTerm

NamedExpr

JoinStep

UnnestStep

(b) gSQL++ grammar for the extended FromTerm production.

MATCH

MatchExpr

MatchStep

(c) gSQL++ GraphTerm grammar extension.

VertexPattern

EdgePattern

PathPattern

,

(d) gSQL++ MatchExpr grammar extension.

Fig. 3: Simplified gSQL++ grammar extension for the

FromTerm production. The full grammar (describing

UnnestStep, JoinStep, and MatchStep) is available at:

https://graphix.ics.uci.edu/docs/language-reference/

should be able to specify graph queries. On one end of the so-

lution spectrum, we could have simply used an existing graph

query language. On the other end of the solution spectrum,

we could have used the existing recursive features of the SQL

standard to extend SQL++ for use in Graphix. Our desiderata

for issuing graph queries on existing AsterixDB data searches

for a solution somewhere in the middle: a) brevity (balancing

“Turing-complete” with ease-of-use), b) maintenance (avoid-

ing the accidental complexity users would incur by working

with two different query languages), and c) synergy (being

able to intuitively integrate existing SQL / SQL++ language

features with graph query constructs).

A. SQL++ Plus Navigational Pattern Matching

We now move to gSQL++, a SQL++ extension that en-

ables the integration of graph pattern matching (borrowed

from Cypher and SQL/PGQ) with existing SQL and SQL++

constructs. In contrast to SQL/PGQ, gSQL++ maps from a

document model to a graph model by extending SQL++. To

start, we recognize that Cypher’s MATCH clause is more-or-

less an analog to the FROM clause in SQL: both the MATCH
clause and FROM clause specify iteration variable bindings that

are used in other clauses downstream. In SQL++, the FROM
clause is composed of one or more FromTerm productions.

The most fundamental change that gSQL++ makes to SQL++

3075

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 FROM GRAPH SocialNetworkGraph
2 (u:User) −[: WROTE]−>(m: Message)
3 WHERE m.content LIKE "%"+ u.name.first +"%"
4 GROUP BY u
5 HAVING COUNT (u) > 10
6 SELECT u;

Listing 6: gSQL++ query to find users that have written more

than 10 messages with their name.

is therefore in the FromTerm. Our intent with Graphix was to

make gSQL++ a strict superset of SQL++. As indicated by the

lower path in Figure 3b, all SQL++ queries are valid gSQL++

queries. Users follow the bottom path to express a standard

SQL++ FromTerm. To express a gSQL++ matching FromTerm,

users follow the top path (the grammar surrounded by the red

dashed lines) and specify:

1) the GRAPH keyword;

2) the name of the graph (i.e. QualifiedName); and

3) the graph query patterns (i.e. GraphTerm).

Users that are familiar with Cypher can optionally specify

the MATCH keyword before a GraphTerm expression. Logically,

after the GraphTerm clause is evaluated, users have a multi-

set of documents to reason about. These documents can then

be manipulated using the same SQL and SQL++ clauses

that users are already familiar with: the documents can be

filtered using a WHERE clause, JOINed with another collection

of documents, aggregated through GROUP BY, or operated on

using any other legal SQL++ expression.

B. gSQL++ Through Example Queries

To illustrate the expressiveness of gSQL++, let us consider

several queries on our graph from Subsection IV-B. For our

first query, we want to find users that have written more than

10 messages whose content includes their name. We express

this first gSQL++ query in Listing 6, where our first line

specifies the name of our graph SocialNetworkGraph in the

FROM clause. The next line is our GraphTerm, which specifies

the query pattern “users u that have written messages m”. This

FROM clause and GraphTerm expression is equivalent to the

following FROM and JOIN clauses in SQL++:

FROM Messages m JOIN Users u ON m.user id = u.id

For the rest of the query shown in Listing 6, we can operate

on the bound variables m and u as if they came from the

FROM and JOIN clauses above. Starting on Line 3, we specify

the “message with a user’s name” condition. For all users

and messages, we then GROUP BY users on Line 4 and filter

out groups with 10 or less messages using the HAVING clause

on Line 5.

For our second query, we are interested in finding out which

messages socially isolated users are currently engaging with.

For all week-old (or less) messages m1 written by users u that

do not know any other users, we want to find all top-level
messages m2 that m1 is a reply to. “Top-level” in the context

of this query means that we want to recursively follow the

reply-of chain. To find these top-level messages, we utilize the

{
Vertices : [

{ id : 10423 ,
user id : 4,
posted on : "2023 −06 −21"
content : " Thanks ! I’ll check it out!",
is draft : FALSE ,
reply of : 10420 },

{ id : 10420 ,
user id : 8,
posted on : "2023 −06 −20"
content : "I’ve been there ! They... "
is draft : FALSE ,
reply of : 10419 },

{ id : 10419 ,
user id : 4,
posted on : "2023 −06 −20",
content : "Has anyone been to Rail... ",
is draft : FALSE }],

Edges : [
{ source id : 10423 ,

dest id : 10420 ,
posted on : "2023 −06 −21" },

{ source id : 10420 ,
dest id : 10419 ,
posted on : "2023 −06 −20" }]

}
Listing 7: JSON document describing a two-hop path of

REPLY OF edges in the graph SocialNetworkGraph.

1 FROM GRAPH SocialNetworkGraph
2 (u:User)−[w: WROTE]−>(m1: Message),
3 (m1)−[r:REPLY OF+]−>(m2: Message)
4 LET lw = CURRENT DATE ()− DURATION ("P7D")
5 WHERE w.posted on > lw AND
6 m2.reply id IS UNKNOWN AND
7 NOT EXISTS (
8 FROM GRAPH SocialNetworkGraph
9 (u) −[: KNOWS]−>(:User)

10 SELECT ∗
11)
12 SELECT DISTINCT m2;

Listing 8: gSQL++ query to find the top-level messages that

socially isolated users are engaging with.

concept of a path. A path in gSQL++ is a sequence of one or

more edges and is specified using a regular expression of edge

labels. If two messages m1 and m2 are connected using a path

r of one or more REPLY OF edges, we capture this sequence

of edges using the pattern expression below. Note the use of

the positive closure quantifier + after the REPLY OF edge label.

(m1:Message)−[r:REPLY OF+]−>(m2:Message)

An instance of a path can logically be thought of as a single

document containing two array-valued fields: Vertices and

Edges. Users are free to manipulate these arrays using SQL++.

An example of a two-hop path of REPLY OF edges is given

in Listing 7.

Having described the notation for a path, we express our

second query in gSQL++ in Listing 8. Line 2 again identifies

messages and their authors. Line 3 asks for all messages m2
that m1 is a direct or transitive reply to. If there are multiple

paths between the same m1 and m2 vertex, then all paths are

3076

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

1 FROM GRAPH SocialNetworkGraph
2 (u1:User)−[k: KNOWS+]−>(u2:User)
3 WHERE u1.id = $u1 AND
4 u2.id IN $D
5 GROUP BY u2 GROUP AS g
6 SELECT u2.id ,
7 (FROM g
8 SELECT g.k
9 ORDER BY LEN(g.k.Edges) ASC

10 LIMIT 1
11)[0] AS shortest path;

Listing 9: gSQL++ query to find the shortest paths from one

user to a collection of other users.

Fig. 4: Example graph of Users and KNOWS edges. The dashed

lines represent the shortest paths from u1 to u2a , u2b , and u2c .

available for the user to manipulate. We are only interested

in the top-level messages for our query, so we specify that

the reply id field of m2 should be UNKNOWN (i.e. NULL or

absent from m2 entirely) in the WHERE clause. Finally we reach

a correlated anti-JOIN query on Line 7, which expresses the

condition that user u does not know any other user.

The last query that we will ask involves finding a shortest

path from a single user $u1 to each user in a set of other

users $D. This third gSQL++ query is expressed in Listing 9.

On Line 2, the path k between two users u1 and u2 is

represented using the path expression :KNOWS+. Our navigation

is anchored using the subsequent WHERE clause, which qualifies

the primary keys of both u1 and u2. The GROUP BY clause

in Line 5 aggregates all possible paths from u1 to each u2
and binds each group of paths to the variable g. To fetch

the shortest path from u1 to each u2, we use the subquery

in Line 7. Due to the GROUP BY clause, this subquery is

logically executed for each u2 instance: in ascending order,

we sort each path g.k from u1 to a u2 instance by the number

of hops in g.k and choose the shortest path (or one of the

shortest paths, if there are ties). To quantify the hops in a

path, LEN(g.k.Edges) is used to count the number of edges

a given path possesses. Finally, the [0] on the last line is

used to access the sole element returned by the subquery. In

SQL++ / gSQL++, subqueries will always return a multiset.

ORDER BY subqueries return an array, hence the need for the

array access [29]. By utilizing the existing GROUP BY . . .
GROUP AS clauses of SQL++, gSQL++ is able to naturally

express a rich set of navigation constraints in a novel manner

1 {u1: u1, u2: u2a , k: u1
KNOWS−−−→ u2a }

2 {u1: u1, u2: u2a , k: u1
KNOWS−−−→ ut1

KNOWS−−−→ u2a }
3 {u1: u1, u2: u2a , k: u1

KNOWS−−−→ ut1
KNOWS−−−→ ut2

KNOWS−−−→ u2a }
4 {u1: u1, u2: u2b , k: u1

KNOWS−−−→ ut3
KNOWS−−−→ u2b }

5 {u1: u1, u2: u2b , k: u1
KNOWS−−−→ ut3

KNOWS−−−→ ut4
KNOWS−−−→ u2b }

6 {u1: u1, u2: u2c , k: u1
KNOWS−−−→ ut5

KNOWS−−−→ u2c }

Listing 10: Example records in scope after the FROM clause but

before the GROUP BY clause of Listing 9.

1 {u1: u1, u2: u2a , k: u1
KNOWS−−−→ u2a }

2 {u1: u1, u2: u2a , k: u1
KNOWS−−−→ ut1

KNOWS−−−→ u2a }
3 {u1: u1, u2: u2a , k: u1

KNOWS−−−→ ut1
KNOWS−−−→ ut2

KNOWS−−−→ u2a }

1 {u1: u1, u2: u2b , k: u1
KNOWS−−−→ ut3

KNOWS−−−→ u2b }
2 {u1: u1, u2: u2b , k: u1

KNOWS−−−→ ut3
KNOWS−−−→ ut4

KNOWS−−−→ u2b }

1 {u1: u1, u2: u2c , k: u1
KNOWS−−−→ ut4

KNOWS−−−→ u2c }

Listing 11: Example groups in scope (for use in the SELECT
clause subquery) after GROUP BY clause of Listing 9.

not found in any other existing graph query language.

To better illustrate the functionality of Line 7’s subquery,

suppose that the query logically matches the paths in List-

ing 10 from user u1 to three separate users {u2a , u2b , u2c} ∈
$D. A visual representation of all possible paths from u1 to all

users in $D is given in Figure 4. The GROUP BY in the outer

query generates three collections of documents, illustrated by

the grouping in Listing 11. Finally, the subquery executes

over each group, yielding a single-element array containing

the record with the shortest path for each endpoint user (i.e.

the highlighted records in Listing 11).

VI. IMPLEMENTATION OF GRAPHIX

Graphix was designed as an extension of AsterixDB. In ad-

dition to extending AsterixDB’s query language, Graphix also

extends AsterixDB’s query optimizer [26] and AsterixDB’s

parallel runtime engine [27]. Given a single gSQL++ query

Q, the following steps and transformations are taken to execute

Q in a partitioned-parallel fashion:

1) The query Q is first lexed and parsed into an abstract

syntax tree T 0(Q). Given that gSQL++ is an extension

of SQL++, this abstract syntax tree (AST) uses a com-

bination of gSQL++ specific nodes and SQL++ nodes.

2) Using the CREATE GRAPH definition associated with the

graph of T 0(Q) (named in the FROM clause after the

GRAPH keyword), unlabeled vertex and edge patterns are

assigned labels that logically adhere to the mapping of

the aforementioned CREATE GRAPH.

3) All of the gSQL++ AST nodes in T 0(Q) are lowered into

SQL++ compatible AST nodes. We denote this resulting

AST as T 1(Q).
4) T 1(Q) is transformed again through a set of SQL++ AST

rewrites (e.g. WITH clause inlining, GROUPING SETS, etc...).

For historical reasons, these AST rewrites are separate

3077

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

from our algebraic-level rewrites. We denote the final

AST as T 2(Q).
5) T 2(Q) is then translated into an initial Algebricks query

plan P 0(Q). P 0(Q) then undergoes a set of Graphix and

AsterixDB heuristic-based logical rewrites to produce an

optimized logical plan P 1(Q).
6) The optimized logical plan P 1(Q) then undergoes a set

of Graphix and AsterixDB physical rewrites to produce

an optimized physical plan P 2(Q). P 2(Q) differs from

P 1(Q) in that each operator in P 2(Q) now has an

associated physical implementation (e.g. a JOIN operator

could be physically realized with a nested-loop algorithm,

a hash-based algorithm, etc...) associated with it.

7) P 2(Q) is then transformed into a Hyracks job J(Q).
J(Q) is then expanded into a more detailed graph of

activities [27] (e.g. a hash JOIN has two activities: one

to build the hash table and one to probe). The activity

graph of J(Q) is logically divided along each blocking

edge (e.g. the build phase of a hash JOIN must execute

before the probe phase) to build another graph of activity
clusters. This activity cluster graph is then used to define

groups of activity clusters that can be run in parallel while

respecting the blocking requirements of J(Q). These

groups are known as stages.

8) Iterating through each stage, the cluster controller process

then distributes a stage instance to all node controller

processes, which execute the same computation but on

different partitions of the data. Once each stage has been

iterated over and executed, a result is assembled and

handed back to the user.

Steps (1) to (3) are unique to Graphix, where Graphix acts

(somewhat) on top of AsterixDB. Step (4) is shared by both

AsterixDB and Graphix. Steps (5) to (6) are shared by both

Graphix and AsterixDB, but Graphix has an additional set

of rewrite rules to handle looping constructs (e.g., using

index-nested-loop-JOIN to traverse edges, factoring out loop

invariants, etc...). Steps (7) to (8) are largely decoupled from

the data model of Graphix and AsterixDB, hence they are

also shared by both Graphix and AsterixDB. The implemen-

tation effort behind Graphix contributes back to AsterixDB

by offering Hyracks operators that can realize navigational

queries, potentially enabling any future work that also requires

recursion.

A. Execution of Graph Queries

We will now take a look at how edge hops are physically

executed for traversing (non-materialized) Graphix graphs in

a partitioned-parallel manner. More specifically, we will be

looking at how Graphix would execute the query in Listing 12.

Graphix extends Hyracks to leverage the concepts in this

section in order to support recursive gSQL++ queries. These

Hyracks extensions include a) a new in-band message passing

paradigm to characterize the progress of a looping activity

graph instance and b) a novel FIXED POINT Hyracks operator

for coordinating the termination of parallel task clusters. These

Fig. 5: Two-worker execution plan to realize the query in List-

ing 12 using index-nested-loop-JOINs to traverse edges.

1 FROM GRAPH SocialNetworkGraph
2 (u1:User)−[k: KNOWS+]−>(u2:User)
3 WHERE u1.id = $u1
4 SELECT k, u2;

Listing 12: gSQL++ query to find all paths composed of KNOWS
edges from a single user u1 to all other connected users u2.

extensions are described in more detail in Chapter 5 of [35]

and a forthcoming paper [36].

Suppose that we translate and execute the query in List-

ing 12 on a two-worker Graphix cluster, where the dataset

corresponding to the User vertex set, Users, is hash-partitioned

across both workers on the Users primary key: the id field.

Figure 5 describes a potential execution plan where two work-

ers perform the same job on their different partitions of data.

The support for explicitly cyclic plans, the FIXED POINT oper-

ator, and the path functions (i.e., CREATE PATH, CREATE EDGE,

and APPEND PATH) are unique to Graphix.

Similar to how recursive SQL queries are structured,

Graphix-based navigation in Hyracks is composed of two

parts: 1) an anchor data flow, which describes how starting ver-

3078

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

tices are found, and 2) a recursive data flow, which describes

how graph edges are traversed. The bottom two operators

of Figure 5 describe the anchor data flow, while the remaining

operators (up to the REPLICATE operator) describe the recursive

data flow. Starting from the bottom operators, we begin our

execution by finding our starting user u1. We perform a search

on the primary index such that the primary key of Users is

equal the starting ID $u1. A starting path k1 of one vertex

(u1) and zero edges is then created in the next operator. The 2-

tuple 〈 k1, u1〉 is then forwarded to the FIXED POINT operator

to anchor the navigation.

The next operator in Figure 5 is the FIXED POINT operator,

which possesses two operator inputs and one operator out-

put. At a high level, the FIXED POINT operator is akin to a

UNION ALL operator (see [35] and [36] for a more in-depth

explanation) and is used to “merge” two data flows (i.e., the

anchor data flow and the recursive data flow) into one. To

ensure that the recursive data flow is a) lively (progress is

being made), b) safe (resources are never over-allocated), and

c) mortal (the data flow eventually terminates), FIXED POINT
operator instances will communicate various events to each

other using an out-of-band channel (as denoted by the purple

dotted line). The output of the FIXED POINT operator is a 2-

tuple 〈 kp, up〉, where kp and up represent a path and

a user from a previous iteration respectively.

To get the users known by the user up, the knows array

is UNNESTed to produce Users foreign keys i. Because the

Users dataset is hash partitioned across multiple workers,

Hyracks needs to make sure that each 〈 kp, up〉 tuple is sent

to the data shard that might contain the user un whose id
field is equal to the tuple’s i. Using the same hash function

that was used to partition the Users dataset (denoted as h in

our diagram), each worker will hash the PIDX SEARCH field i
and possibly forward some of the tuples to the other worker

across the network. The UNNEST and PIDX SEARCH operators

define the traversal across a KNOWS edge to a User vertex in

our conceptual SocialNetworkGraph graph. In the absence of

an index on the id field of the Users dataset, a hybrid hash

JOIN approach (not depicted) would be used instead of the

depicted index nested loop JOIN approach.

Using the fields up, i, and un, an edge e is created

and used to check whether or not adding the edge e to

the previous path kp induces a cycle. If adding e to kp
does not induce a cycle, then a new path kn is constructed.

The 2-tuple 〈 kn, un〉 is then duplicated via the REPLICATE
operator and sent to two places: 1) downstream (up in Fig-

ure 5) to the DISTRIBUTE RESULT operator (with kn and

un being renamed to k and u2 respectively), and 2) back to

the FIXED POINT operator (with kn and un being renamed

to kp and up respectively) to repeat another KNOWS edge

traversal. Once all simple paths between $u1 and every other

user have been enumerated, our execution terminates. Moving

beyond Figure 5, Graphix is able to compile and evaluate

gSQL++ queries about conceptual graphs over their under-

lying existing data using any AsterixDB cluster configuration

of any size and partitioning.

VII. PRELIMINARY EVALUATION

To illustrate the potential of Graphix, we describe two

sets of preliminary analysis: 1) a code-complexity analysis

of gSQL++, Cypher, PostgreSQL, SPARQL, and TigerGraph

GSQL queries, and 2) a preliminary performance evaluation

comparing the current version of Graphix with a leading graph

database that presents a similar graph user model: Neo4j. We

reiterate that Graphix is meant to operate on existing JSON

data with latent graph structure. Graphix was not designed

with the sole purpose of executing graph queries in the

smallest amount of time (although we do observe competitive

performance for many queries in this section). Nonetheless,

we report our “proof-of-concept” findings below.

A. Code Complexity Analysis

For our code-complexity evaluation, we quantify the “effort”

of authoring a query. Inspired by work from Vashistha [37]

as well as Goretity and Reguly [38], we are interested in

determining the volume (V), difficulty (D), and effort (E)

of a query using the query’s operators (N1 = the total number

of operators, η1 = the distinct number of operators) and the

query’s operands (N2 = the total number of operands, η2
= the distinct number of operands) [39]. Take the following

SQL query snippet: “SELECT a, b, c”. We would consider

SELECT as an operator and the fields a, b, and c to be the

operands of the “SELECT operator”. By counting the number

of operators and operands in a query, we define volume as

V = (N1+N2) · log2(η1+η2), difficulty as D = η1

2 · N2

η2
, and

effort as E = DV . Intuitively, queries with higher V values

are more verbose than queries with lower V values. Queries

with higher D values are more “difficult-to-understand” than

queries with lower D values. Queries with higher E values

require more developer “effort” that queries with lower E
values. High E-valued queries suggest that a) the query

is verbose, b) the query is difficult to author, or c) some

combination of the two.

The workload chosen for our analysis was a subset of the

LDBC interactive workload [40], which describes a set of

operational queries about a social network. For the LDBC

interactive queries IS−1, IS−2, IS−3, IC−1, IC−2, and IC−3,

we compare our gSQL++ implementation against the same

query authored in a) SPARQL, b) Cypher, c) SQL (in Post-

greSQL’s dialect), and d) TigerGraph GSQL. All query im-

plementations analyzed (aside from those in gSQL++) were

taken from the LDBC’s reference implementation repository.

Our measurements for each authored query can be found

at https://github.com/graphix-asterixdb/benchmark.

Figure 6 illustrates the distribution of 1) normalized volume

V , 2) normalized difficulty D, and 3) normalized effort E for

all studied query implementations. On average, the queries that

required the most effort to author were in GSQL. This result

is not surprising, given that GSQL “queries” are more akin

to procedural “programs”. Queries authored in SPARQL had

the 2nd highest E value on average. We attribute SPARQL’s

high average E value to the target data model of SPARQL:

RDF. Property graphs, the target model of Graphix and the

3079

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

gS
Q

L
+
+

SPA
R
Q

L

C
yp

he
r

SQ
L

G
SQ

L

0

0.25

0.5

0.75

1
Volume V

gS
Q

L
+
+

SPA
R
Q

L

C
yp

he
r

SQ
L

G
SQ

L

0

0.25

0.5

0.75

1
Difficulty D

gS
Q

L
+
+

SPA
R
Q

L

C
yp

he
r

SQ
L

G
SQ

L

0

0.25

0.5

0.75

1
Effort E

Fig. 6: Distribution of normalized Halstead metrics (volume V , difficulty D, effort E) for several implementations of queries

from the LDBC interactive social network benchmark.

LDBC social network benchmark, define vertices, edges, and
properties. In contrast, the RDF model only defines vertices

and edges. A “property” in RDF is modeled using a vertex and

an edge to the containing entity. Consequently, we observed

high verbosity (high V values) when compared to queries

authored in gSQL++, Cypher, and SQL.

On average, SQL queries required the least amount of effort

to author – however Figure 6 shows a wide distribution of

E values. SQL queries for the LDBC interactive workload

were either incredibly easy to author, or incredibly difficult /

verbose to author. Queries that required paths (IC−1 and IC−3)

yielded large V and D values when implemented in SQL.

Queries implemented in Cypher had the tightest distribution of

E values. Given that the LDBC benchmark is tailored towards

graph-based analysis, it should come as no surprise that the

effort required to write graph queries in Cypher is more

“predictable” than writing graph queries in SQL. Figure 6

show that queries authored in gSQL++ are able to leverage

the simplicity of SQL (or more accurately, SQL++) and the

graph constructs from Cypher to ensure low and consistent

query-authoring effort.

B. Preliminary Performance Analysis

1) Experimental Setup: For our performance experiments,

we used AWS EC2 i2.2xlarge instances, each with (i) 32GB
of memory, (ii) 8 vCPUs, and (iii) EBS gp3 SSDs. Our

evaluation compares a Neo4j instance (version 5.4.0) on a

single AWS node against Graphix clusters of various sizes.3

The workloads chosen for the experiments in this section

were a) the LDBC business intelligence social network bench-

mark [41], which is a “graph-based parallel” to the TPC-

H benchmark for relational analytics, and b) the LDBC

interactive workload [40], the operational counterpart to the

business intelligence benchmark. With respect to the structure

of the social network graph, LDBC’s data generator produces

networks that adhere to the Homophily principle (i.e. persons

with similar interests and behavior know each other) and

3TigerGraph, a distributed graph database, was initially also considered for
comparison, but their free “community” edition is limited to 50GB graphs
on a single node. No other distributed database has implementations for the
LDBC social network interactive and business intelligence benchmarks.

with vertex degrees similar to Facebook. A scale-factor of

SF=100 (raw data size �100GB, 312.0 million vertices, 1.1
billion edges) was used to evaluate the archetypal out-of-core

scenario, where a single machine cannot operate on the graph

entirely in memory. All artifacts used for the experiments

in this paper can be found at: https://github.com/graphix-

asterixdb/benchmark.

2) Experimental Results: Figure 7 shows eight plots that

compare Neo4j on one node (green) against Graphix clusters

(blue) of increasing size where appropriate. For brevity, only

eight queries are discussed here: two from the interactive-

short workload, three from the interactive-complex workload,

and three from the business intelligence workload. A more

comprehensive set of results (i.e., nearly all LDBC social

network benchmark queries) can be found in [35].

The first two plots of Figure 7 compare Neo4j and Graphix

on a single node with queries IS−1 and IS−2 from the (short)

interactive workload. Both IS−1 and IS−2 anchor on some

starting vertex to subsequently traverse a small portion of the

graph. IS−1 requires a single edge hop from an anchor vertex,

while IS−2 requires a) traversing all one-hop neighbors from

the anchor vertex, and b) recursively navigating to a source

vertex from the previously traversed-to neighbors. As shown

in Figure 7, Graphix on a single node is able to perform

roughly on-par with Neo4j for IS−1 while outperforming

Neo4j for IS−2.

The next three plots of Figure 7 compare Neo4j and

Graphix with queries IC−1, IC−2, and IC−8 from the (complex)

interactive workload. These queries anchor on some starting

vertex and traverse a larger portion of the graph to some set of

destination vertices. As shown in Figure 7, Neo4j outperforms

Graphix for IC−1 at n = 1, n = 2, and n = 4. Neo4j employs a

bidirectional BFS to evaluate IC−1, whereas Graphix performs

a BFS from the anchor vertex. Neo4j, on average, will traverse

fewer edges than Graphix for IC−1 due to Neo4j’s bidirectional

BFS strategy. If a Graphix user wants comparable performance

to Neo4j for IC−1, they would have to increase their Graphix

cluster size to n = 8 at a minimum. If a Graphix user wants

better performance than Neo4j for IC−1, they would then

increase their Graphix cluster to more than n = 8 nodes. A

Neo4j user might be able to achieve faster execution times

3080

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

Cluster Size (n = 1)
0

0.2

0.4

0.07 0.04T
im

e
(s

)
Query IS-1

Cluster Size (n = 1)
0

0.2

0.4
0.26

0.39

Query IS-2

1 16 32
0

200

400

600

800
Query IC-1

1 16 32
0

20

40

Query IC-2

Cluster Size (n = 1)
0

0.2

0.4 0.33 0.34

T
im

e
(s

)

Query IC-8

1 16 32
0

500

1,000

1,500

2,000

Cluster Size (n)

Query BI-3

1 16 32
0

2,000
4,000
6,000
8,000

Cluster Size (n)

Query BI-8b

1 16 32
0

1,000

2,000

3,000

Cluster Size (n)

Query BI−9

Fig. 7: Several plots showing a Graphix cluster of varying size (in blue) against a Neo4j instance (in green) for a variety of

queries from the LDBC social network benchmark.

with multiple nodes, but (as discussed earlier) users must also

rewrite their existing queries to accommodate their cluster

scale-out.

With respect to queries IC−2 and IC−8, Graphix at n = 1
either outperforms Neo4j (IC−2) or performs on par with

Neo4j (IC−8). For query IC−2, Graphix experiences near-linear

speedup with increasing values of n up until n = 32. In

contrast to IC−1, Neo4j and Graphix traverse the same number

of edges for both IC−2 and IC−8. Both Graphix and Neo4j

evaluate edges for queries IC−2 and IC−8 using an index-

nested-loop-JOIN. Graphix, however, places a SORT operator

on the JOIN key before the PIDX SEARCH operator to minimize

the total number of index lookups. Neo4j does not perform

such a sort, resulting in more random I/O for high degree

vertices (like those in IC−2).

The last three queries in Figure 7 compare Neo4j and

Graphix clusters of varying size with queries BI−3, BI−8b, and

BI−9 from the business intelligence workload. In contrast to

queries from the interactive workload, the business intelligence

queries do not anchor on a starting vertex. Queries BI−3,

BI−8b, and BI−9 require the traversal of several edges from

a set of starting vertices plus some form of aggregation. As

a general trend across all business intelligence queries here,

Graphix is able to execute such queries faster with larger

values of n. Neo4j outperforms Graphix at n = 1 and n = 2
for query BI−3 and at n = 1 for query BI−8b. Graphix for

all other values of n, however, outperforms Neo4j. Neo4j

traverses edges with an index-nested-loop JOIN approach,

which is not as performant for high out-degree vertices (i.e.,

JOINs that are not selective [42]). Graphix, on the other hand,

is able to traverse edges with JOIN algorithms that are better

equipped to handle high out-degree vertices (e.g., hybrid hash

JOINs). Furthermore, the JOIN algorithms used by Graphix

operate in parallel on different partitions of data. Graphix has

the capability to utilize more compute and disk I/O to further

accelerate the traversal of multiple edges.

VIII. CONCLUSION

In this paper we have introduced Graphix, an Apache

AsterixDB extension that takes a view-based approach to

perform ad-hoc, (shard agnostic) partitioned-parallel, and syn-

ergistic graph + document analytics on JSON data in-situ. In

contrast, current solutions fall short on either i) the “in-situ”

aspects (e.g. native graph databases), ii) the (shard agnostic)

“partitioned-parallel” (e.g. graph databases like Neo4j), iii) the

“ad-hoc” aspects (e.g. graph processing systems), or iv) the

“synergistic” aspects (e.g. existing database graph extensions).

This paper has detailed the user model of Graphix: a) the

graph view user model, b) the CREATE GRAPH DDL, and c) how

SQL++ with a navigational pattern matching extension can

support a rich set of graph queries. Graphix leverages the As-

terixDB stack (Algebricks and Hyracks) to execute these graph

queries on a cluster of workers. As shown by our preliminary

evaluation, Graphix allows users to express queries with low

effort that will ultimately leverage horizontal scaling to handle

both analytical and operational workloads. Note that although

this work was done within the context of AsterixDB, many of

the concepts explored here could be applied to other systems

with data-parallel execution engines. We invite readers to try

Graphix at https://graphix.ics.uci.edu.

ACKNOWLEDGMENT

We would like to acknowledge several individuals from

UCSD: Yannis Papakonstantinou for his review and comments

on early versions of this paper, and Amarnath Gupta and

Subhasis Dasgupta for their input on the query model and

experimental setup sections. We would also like to thank UCI

student Sushrut Borkar for his help writing the queries used

in our evaluation. This research was supported in part by NSF

awards IIS-1838248, IIS-1954962, and CNS-1925610, by the

HPI Research Center in Machine Learning and Data Science

at UC Irvine, and by the Donald Bren Foundation (via a Bren

Chair).

3081

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Salihoglu and M. T. Özsu, “Response to “Scale Up or Scale Out for
Graph Processing”,” IEEE Internet Computing, vol. 22, pp. 18–24, 09
2018.

[2] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a System for Large-Scale Graph
Processing,” Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, 2010.

[3] Apache Giraph, “Apache Giraph, an Iterative Graph Processing System
Built for High Scalability,” Available at https://giraph.apache.org.

[4] J. E. Gonzalez, R. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph Processing in a Distributed Dataflow
Framework,” in USENIX Symposium on Operating Systems Design and
Implementation, 2014.

[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab : A Framework for Machine Learn-
ing and Data Mining in the Cloud,” in Proceedings of the VLDB
Endowment, 2012.

[6] M. Han and K. S. Daudjee, “Giraph Unchained: Barrierless Asyn-
chronous Parallel Execution in Pregel-like Graph Processing Systems,”
Proceedings of the VLDB Endowment, vol. 8, pp. 950–961, 2015.

[7] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix:
Big(ger) Graph Analytics on a Dataflow Engine,” Proceedings of the
VLDB Endowment, vol. 8, pp. 161–172, 2014.

[8] D. Yan, Y. Bu, Y. Tian, and A. Deshpande, “Big Graph Analytics
Platforms,” Foundations and Trends in Databases, vol. 7, no.
1–2, p. 1–195, jan 2017. [Online]. Available: https://doi.org/10.1561/
1900000056

[9] Neo4j, “Neo4j, the Graph Data Platform,” Available at https://neo4j.com.
[10] TigerGraph, “TigerGraph: The World’s Fastest and Most Scaleable

Graph Platform,” Available at https://www.tigergraph.com.
[11] Amazon, “Amazon Neptune: Serverless Graph Database Designed for

Superior Scalability and Availability,” Available at https://aws.amazon.
com/neptune/.

[12] Y. Tian, “The World of Graph Databases from An Industry Perspective,”
ACM SIGMOD Record, vol. 51, pp. 60 – 67, 2022.

[13] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor,
“Cypher: An Evolving Query Language for Property Graphs,” Proceed-
ings of the 2018 International Conference on Management of Data,
2018.

[14] M. A. Rodriguez, “The Gremlin Graph Traversal Machine and Lan-
guage,” Proceedings of the 15th Symposium on Database Programming
Languages, 2015.

[15] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C, W3C Recommendation, Jan. 2008,
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[16] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie,
“SQLGraph: An efficient relational-based property graph store,” in
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 1887–1901.

[17] H. Jiewen, D. Abadi, and K. Ren, “Scalable SPARQL querying of large
RDF graphs,” PVLDB, vol. 4, pp. 1123–1134, 08 2011.

[18] Unipop, “Unipop Graph: Analyze Data from Multiple Sources Using the
Power of Graphs,” Available at https://github.com/unipop-graph/unipop.

[19] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini,
and R. Rosati, “Linking data to ontologies,” J. Data Semant., vol. 10,
pp. 133–173, 2008. [Online]. Available: https://api.semanticscholar.org/
CorpusID:1325494

[20] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati,
and M. Zakharyaschev, “Ontology-based data access: a survey,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, ser. IJCAI’18. AAAI Press, 2018, p. 5511–5519.

[21] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao, “OBDA
beyond relational DBs: A study for MongoDB,” Description Logics,
2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
1418349

[22] Oracle, “Oracle Spatial and Graph: Spatial and Graph Analytic Services
and Data Models that Support Big Data Workloads,” Available at https:
//www.oracle.com/database/technologies/bigdata-spatialandgraph.html.

[23] DataStax, “DataStax Enterprise Graph: A Distributed Cassandra Graph
Database Optimized for Enterprise Applications,” Available at https://
www.datastax.com/products/datastax-graph.

[24] Y. Tian, E. L. Xu, W. Zhao, M. H. Pirahesh, S. J. Tong, W. Sun,
T. Kolanko, M. S. H. Apu, and H. Peng, “IBM Db2 Graph: Supporting
Synergistic and Retrofittable Graph Queries Inside IBM Db2,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 345–359. [Online].
Available: https://doi.org/10.1145/3318464.3386138

[25] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann,
“AsterixDB: A Scalable, Open Source BDMS,” Proceedings of the
VLDB Endowment, vol. 7, pp. 1905–1916, 2014.

[26] V. Borkar, Y. Bu, E. P. Carman, N. Onose, T. Westmann, P. Pirzadeh,
M. J. Carey, and V. J. Tsotras, “Algebricks: A Data Model-Agnostic
Compiler Backend for Big Data Languages,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15. New
York, NY, USA: Association for Computing Machinery, 2015, p.
422–433. [Online]. Available: https://doi.org/10.1145/2806777.2806941

[27] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica,
“Hyracks: A Flexible and Extensible Foundation for Data-Intensive
Computing,” in Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ser. ICDE ’11. USA: IEEE
Computer Society, 2011, p. 1151–1162. [Online]. Available: https:
//doi.org/10.1109/ICDE.2011.5767921

[28] K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++
Semi-structured Data Model and Query Language: A Capabilities
Survey of SQL-on-Hadoop, NoSQL and NewSQL Databases,” A
Computing Research Repository, vol. abs/1405.3631, 2014. [Online].
Available: http://arxiv.org/abs/1405.3631

[29] D. Chamberlin, SQL++ for SQL Users: A Tutorial. Couchbase
Incorporated, 2018.

[30] ISO/IEC, “Graph Query Language GQL Standard,” Available at https:
//www.gqlstandards.org.

[31] N. Francis, A. Gheerbrant, P. Guagliardo, L. Libkin, V. Marsault,
W. Martens, F. Murlak, L. Peterfreund, A. Rogova, and D. Vrgoč,
“A Researcher’s Digest of GQL,” in 26th International Conference on
Database Theory (ICDT 2023), ser. Leibniz International Proceedings
in Informatics (LIPIcs), F. Geerts and B. Vandevoort, Eds., vol.
255. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023, pp. 1:1–1:22. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2023/17743

[32] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi, “PGQL: a
Property Graph Query Language,” in International Workshop on Graph
Data Management Experiences and Systems, 2016.

[33] R. Angles, M. Arenas, P. Barceló, P. A. Boncz, G. Fletcher, C. Gutiérrez,
T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and
H. Voigt, “G-CORE: A Core for Future Graph Query Languages,”
Proceedings of the 2018 International Conference on Management of
Data, 2017.

[34] ISO Central Secretary, “Information Technology — Database Languages
— SQL — Part 2: Foundation (SQL / Foundation),” International
Organization for Standardization, Geneva, CH, Standard ISO/IEC
9075-2:1999, 1999. [Online]. Available: https://www.iso.org/standard/
62711.html

[35] G. Galvizo, “Graphix: View the (JSON) World Through Graph-Tinted
Glasses,” PhD Thesis, University of California, Irvine, Irvine, CA,
December 2023.

[36] G. Galvizo and M. J. Carey, “Hyracks Unchained: Realizing Semi-
Synchronous Recursion in Apache AsterixDB,” In preparation.

[37] A. Vashistha, “Measuring query complexity in SQLShare workload,”
2015. [Online]. Available: https://api.semanticscholar.org/CorpusID:
53451506

[38] Á. Goretity and I. Reguly, “Query complexity in modern database
DSLs,” ACM Transactions on Information Systems, vol. 1, no. 1, 2021.

[39] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). Elsevier Science Inc., 1977.

[40] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz, “The LDBC Social Network Benchmark:
Interactive Workload,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
619–630. [Online]. Available: https://doi.org/10.1145/2723372.2742786

3082

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

[41] G. Szárnyas, J. Waudby, B. A. Steer, D. Szakállas, A. Birler, M. Wu,
Y. Zhang, and P. Boncz, “The LDBC Social Network Benchmark:
Business Intelligence Workload,” Proceedings of the VLDB Endowment,
vol. 16, no. 4, pp. 877–890, 2022.

[42] G. Graefe, “Modern B-Tree Techniques,” Foundations and Trends in
Databases, vol. 3, no. 4, p. 203–402, Apr. 2011. [Online]. Available:
https://doi.org/10.1561/1900000028

3083

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:26:12 UTC from IEEE Xplore. Restrictions apply.

