
SQL++: We Can Finally Relax!

Michael Carey

University of California, Irvine

Irvine, CA, USA

mjcarey@ics.uci.edu

Don Chamberlin

IBM Research (Retired)

San Jose, CA, USA

chamberlin.don@gmail.com

Almann Goo

Amazon Web Services

Seattle, WA, USA

almann@amazon.com

Kian Win Ong

Meta

Menlo Park, CA, USA

kianwin@meta.com

Yannis Papakonstantinou§

Google Cloud

San Diego, CA, USA

yannispap@google.com

Chris Suver

Amazon.com

Seattle, WA, USA

csuver@amazon.com

Sitaram Vemulapalli

Couchbase, Inc.

Santa Clara, CA, USA

sitaram.vemulapalli@couchbase.com

Till Westmann

Couchbase, Inc.

Santa Clara, CA, USA

till@couchbase.com

Abstract—SQL is five decades old and has outlasted many
programming and query languages that have come and gone
during its lifetime. It was born shortly after the introduction
of the relational model, and was designed for querying a flat
and typed tabular world. Support for modern, flexible data in
the SQL standard and in relational database systems has largely
been approached via the addition of new column types (e.g. XML
or JSON) together with functions to operate on them. It is time
for a cleaner solution that retains the benefits that have allowed
SQL to be so successful for so long.

We describe SQL++, a SQL extension that relaxes SQL’s
strictness in terms of both object structure (flat → nested) and
schema (mandatory → optional), along with a multi-party effort
to agree on a core definition and syntax supportable by multiple
vendors. SQL++ sees relational data as a subset of a more flexible
object model and it sees collections of document data (e.g., JSON)
as a natural and supportable relaxation as opposed to a “bolt on”
addition via a SQL column type. We describe the core features of
SQL++ and explain how its definition can accommodate flexible
data, while staying true to SQL in situations where the target
data is tabular and strongly typed.

Index Terms—semistructured data, query, JSON, SQL, NoSQL

I. INTRODUCTION

Since the start of the cloud era, the database world has

seen the emergence of multiple database systems that are

designed to serve specific purposes. These database systems,

often referred to as “NoSQL” systems, generally support semi-

structured data models, and have adopted a wide variety of

languages and/or APIs. The variations among these languages

are often due to the fact that they were designed to serve

specific access patterns very efficiently. For example, key-

value stores focus on one specific access pattern.

Specialized query languages are often lacking in expressive

power, and they are sometimes tightly-coupled to a specific

data storage format. As these multiple database systems have

grown and evolved, they have not been converging in either

syntax or semantics. This lack of syntactic/semantic coherence

may be diluting our field’s resources and impeding the creation

and adoption of new database applications.

§Work was substantially done at UCSD and AWS.

If a widely-recognized query language like SQL could be

extended to handle semi-structured and other modern data

formats well, then the skills, experience, and tools of the

SQL community could be brought to bear on developing more

modern applications. Broadening the scope of SQL itself in

this way is the goal of the SQL++ language. SQL++ is a

backward-compatible extension of SQL that is designed to

handle semi-structured, nested, and schema-optional data. We

believe that the time is ripe for the appearance of such a

language.

SQL++ builds on initial research that was done at UC

San Diego [1], [2]. The initial UCSD work showed how the

query capabilities of eleven different NoSQL and NewSQL

languages could be captured under a minor expansion of the

SQL syntax, utilizing a handful of configuration modifiers

to capture their occasional semantic differences. A user-

friendly combination of those configuration modifiers became

the SQL++ dialect used by the Apache AsterixDB system

(which originated at UC Irvine and UC Riverside) [3] and

later by Couchbase Server originally under the name N1QL

(for non-1NF query language) [4]–[6]. Concurrently, AWS

adopted and further elaborated on a SQL-compatible version

of UCSD SQL++ under the name PartiQL, and released a

PartiQL open source reference implementation [7]. Amazon

Redshift [8], Amazon QLDB [9], Amazon DynamoDB [10],

Amazon S3/Glacier Select [11], AWS IoT TwinMaker [12]

and various Amazon internal systems consequently adopted

PartiQL. Inspired by a recent SIGMOD keynote talk [13], an

effort was formed to bring the aforementioned dialects together

under a single SQL++ definition, and we present this effort’s

results herein.

The effort to define a unified SQL++ definition has been

based on the following tenets:

• SQL compatibility: SQL++ should facilitate adoption

by maintaining compatibility with SQL. Existing SQL

queries should continue to work, with identical syntax and

semantics, in SQL query processors that are extended to

provide SQL++. This avoids any need to rewrite existing

SQL queries, and it makes it easy for developers and

business intelligence tools to leverage SQL++.

5501

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00438

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
DE

60
14

6.
20

24
.0

04
38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

• First-class nested data: The data model for SQL++ treats

nested data as a fundamental part of the data abstraction.

Consequently, the SQL++ query language provides syn-

tax and semantics that comprehensively and accurately

access, query, and construct nested data, while naturally

composing with the standard features of SQL.

• Optional schema and query stability: SQL++ does not

require a predefined schema over a query’s target input.

However, SQL compatibilities that pertain to schemas

should also be respected. Technically, the result of a

working query should not change if a schema is imposed

on existing data, so long as the underlying data itself

remains the same.

• Composability: SQL++ should have a minimum number

of extensions over SQL. The extensions should be easy to

understand, lend themselves to efficient implementation,

and compose well with one another and with SQL itself,

much as functions in functional programming languages

do. This enables intuitive filtering, joining, aggregation,

and windowing on a combination of structured, semi-

structured, and nested data.

• Format independence: SQL++’s syntax and semantics

should not be not tied to a particular data format. A

query should be written identically across underlying

data in any of today’s many nested and/or semistruc-

tured formats: JSON [14], Parquet, Avro, ORC, CSV,

CBOR [15], Ion [16], and others. Queries should operate

on a comprehensive logical type system that maps to

diverse underlying formats.

While these tenets are generally orthogonal to each other,

SQL compatibility and composability are occasionally in

conflict. Fundamentally, this is due to the fact that in ANSI

SQL, we cannot fully model each of the FROM, WHERE, GROUP BY,

SELECT and other clauses as being fully composable operators

that simply feed inputs and outputs to each other. Aggregate

functions and handling of nested query results are SQL’s two

most prominent violations of functional composability. For

the purpose of reconciling compatibility and composability

SQL++ takes two measures: First, we define a SQL++ Core,

consisting of fully composable operators. Then SQL itself is

defined as “syntactic sugar” rewritings over the SQL++ Core.

Moving the needle between compatibility and composability

turns into choosing whether to incorporate or not these rewrit-

ings. We include a SQL compatibility flag in SQL++ whose

setting can be toggled between prioritizing composability or

prioritizing SQL compatibility. Another advantage of relying

on a functional SQL++ Core is that the semantics of SQL++

and of SQL become shorter and more concise, despite adding

more functionality to SQL.

The composability of SQL++ can also be perceived as a

relaxation of SQL restrictions, which leads to achieving more

functionality (i.e., querying semistructured data) mostly by

removing constraints rather than by adding features.

SQL++ relaxes a number of aspects of SQL:

1) While SQL collections (a.k.a. relations or tables) consist

of homogeneous tuples [17], SQL++ allows collections

to be anything composed by arrays, multisets, structs,

and scalars, without requiring homogeneity. Schema is

optional in SQL++.

2) Typing rules are dynamically checked in SQL++, with

the possibility of static type checking when the optional

schema is present. In the interest of processing flexi-

bly semistructured data, SQL++ allows processing to

continue even when dynamic type errors happen (see

Section IV) so that the processing of “healthy” data can

proceed, while a convenient signal, which most often

leads to data exclusion, happens for the data that led to

typing errors. To support applications that want to catch

type errors early and stop processing when they happen,

SQL++ also offers a stop-on-error mode.

3) Unlike SQL’s FROM clause variables, which can only bind

to tuples, the FROM clause variables in SQL++ can bind

to any type of SQL++ data. For example, FROM variables

can bind to tuples, or to arrays, or to scalars, or to any

combination thereof.

4) SQL++ is fully composable in the sense that subqueries

can appear anywhere, potentially creating nested results

when they appear in the SELECT clause.

5) The groups created by the SQL++ GROUP BY clause are

directly usable in nested queries – as opposed to SQL’s

approach where they may only participate in aggregate

functions in very limited and particular ways. Indeed,

the SQL++ approach ends up explaining SQL’s grouping

and aggregation in a simpler, direct way.

In the interest of inspiring further community collaboration

on SQL++, in 2019 AWS released its PartiQL open source

reference implementation [7], while Apache AsterixDB has

offered open source SQL++ support since 2017 [18].

The remainder of this paper discusses the key aspects of

SQL++, which can be mostly conceived as relaxations of

SQL. Section II describes the data model underlying SQL++.

Section III talks about SQL++’s support for querying nested

data. Section IV describes how SQL++ deals with the world

without schemas. Section V discusses how SQL++ enables the

creation of nested data and how doing so relates to aggregation

both in SQL and SQL++. Section VI discusses how SQL++

can turn attribute names into data and vice versa, by unpivoting

and pivoting. Section VII briefly touches on prior related

language work. Finally, Section VIII provides a recap of the

paper and a call to arms for our community and industry.

II. DATA MODEL

SQL++ generalizes, mostly by relaxation, the SQL data

model. A SQL++ database contains one or more SQL++

named values. A name is an identifier, such as a collection

name, that is associated with a SQL++ value. It may also be

a dotted/namespaced identifier, such as hr.emp nest tuples,

that could reflect the database/table hierarchy of a MySQL

database or the schema/table hierarchy of a Postgres database.

For the examples in this paper, we will be using an

object notation using SQL literals that is similar to a data

5502

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

format such as JSON, CBOR, or Ion. This object notation is

meant to represent data that is self-describing and thus to be

interpreted without a schema. We have adapted examples from

the PartiQL tutorial [7] here to aid in explaining SQL++.

1 {{
2 {
3 ’id’: 3,

4 ’name’: ’Bob Smith’,

5 ’title’: null,

6 ’projects’: [

7 {’name’: ’Serverless Query’},
8 {’name’: ’OLAP Security’},
9 {’name’: ’OLTP Security’}

10]

11 },
12 {
13 ’id’: 4,

14 ’name’: ’Susan Smith’,

15 ’title’: ’Manager’,

16 ’projects’: []

17 },
18 {
19 ’id’: 6,

20 ’name’: ’Jane Smith’,

21 ’title’: ’Engineer’,

22 ’projects’: [

23 {’name’: ’OLTP Security’}
24]

25 }
26 }}

Listing 1. An example SQL++ collection named hr.emp nest tuples.

A value can be absent, scalar, tuple, collection, or any

composition thereof. Further subtyping applies to these types.

Collections may be arrays, denoted by [...], or bags (i.e.,

multisets), denoted by {{ ... }} (or << ... >>). The scalars

are the SQL scalar types. The full extent of the SQL type

system coverage is left up to SQL++ implementations. SQL

relies on schema to dictate what the data types in its values

are, but SQL++ relaxes this reliance to allow data to be self-

describing.

A tuple is a set of attribute name/value pairs, where each

name is a string (as in SQL). A tuple in the SQL++ data

model is unordered. Notice the contrast with schemaful SQL:

a conventional SQL tuple is an ordered tuple since the schema

dictates the order of the attributes and certain SQL operations

may use this order. Also, unlike SQL, the SQL++ data model

allows for the possibility of duplicate attribute names. This is

in the interest of compatibility with non-strict data in formats

such as JSON, Ion, and CBOR. However, SQL++ does not

encourage duplicate attribute names. In particular, navigation

into tuples via the conventional dot notation (Section III) can

lead to nonreproducable results in the presence of duplicate

attribute names.

SQL++ offers two kinds of absent values: NULL and MISSING

are both available for representing missing information. The

motivation is as follows: Unlike SQL, where a query that

refers to a non-existent attribute name is expected to fail during

compilation, in semi-structured data one expects a query to be

permissive and keep operating in many situations where SQL

would fail. One such situation is when some of the tuples do

not define an attribute that a query’s path mentions. Another

situation is when functions input wrongly-typed arguments.

Addressing both cases, SQL++ contains the special value

MISSING, which is the path result in cases where navigation

fails to bind to any information or where a function fails due

to missing or wrongly typed inputs. The distinction between

MISSING and NULL enables retention of the original distinction

between a missing attribute and a present but null-valued

attribute. The utility of MISSING (as opposed to just having

NULL) will become further apparent when navigation into semi-

structured data and construction of semi-structured results is

discussed below, where we will see that the value MISSING may

not itself appear as an attribute’s value.

III. ACCESSING NESTED DATA

The data model of SQL-92 only has tables with tuples

that contain scalar values (the “normal form” of [17]). A

key feature of many modern formats is nested data. That is,

modern data can have attributes whose values may themselves

be tables (i.e., collections of homogenous tuples of scalars), or

may be arrays of scalars, or arrays of arrays and many other

combinations.

In Listing 1, the value of the projects attribute is an array,

which happens to be an array of tuples. The following SQL++

query finds the names of employees who work on projects that

contain the string ’security’ and outputs them along with the

name of the security project.

1 SELECT e.name AS emp name,

2 p.name AS proj name

3 FROM hr.emp nest tuples AS e,

4 e.projects AS p

5 WHERE p.name LIKE ’%Security%’

Listing 2. A SQL++ query accessing nested tuples.

This query effectively joins each employee tuple with the

project tuples that are nested inside it. This feature requires no

syntactic extensions to SQL. It simply allows expressions in

the FROM clause to refer to variables that are defined earlier in

the FROM clause (in this case, the expression e.projects refers

to the variable e defined earlier). This feature, which relaxes

a constraint of SQL, is called “left-correlation.”

Once we allow left-correlation, the query’s semantics are

similar to SQL. The alias e (also called a variable in SQL++)

gets bound to each employee, in turn. For each employee, the

variable p gets bound to each project of the employee, in turn.

Thus the query’s meaning, much as for cross products or joins

in SQL, is illustrated by Pseudocode 1.

Notice that the query involves a variable that is ranging over

a nested collection (p in the example), along with a variable

(e in the example) that is ranging over a “table”, as standard

SQL aliases do. All variables, no matter what they range over,

can be used as needed in the FROM, WHERE, and SELECT clauses,

as we will see in the examples that follow.

5503

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

Pseudocode 1 SQL++ query with nested tuples.

1: for each employee TUPLE e ∈ hr.emp nest tuples do

2: for each project TUPLE p ∈ e.projects do

3: if p.name LIKE ’%Security%’ then

4: output TUPLE

5: ’emp name’ �→ e.name

6: ’proj name’ �→ p.name

The explicit denotation of variables is essential to SQL++

Core – unlike SQL, wherein one might simply write name to

imply e.name. In SQL, the presence of schema allows this

form of static disambiguation, but since schema is optional in

SQL++ a query has to explicitly call out the variables. Nev-

ertheless, if schema is available, then SQL++ also allows ex-

pressions that are disambiguated using the schema. Formally,

disambiguation results in the rewriting of the user-provided

SQL++ query into a SQL++ Core query that explicitly denotes

the variables that were omitted.

A. Aliases may bind to any value – not just tuples

The previous example has illustrated nested attributes that

were arrays of tuples and variables (aliases) that were ranging

over the nested tuples. It need not be the case, however,

that the nested attributes are collections of tuples. They may

just as well be arrays of scalars, arrays of arrays, or any

combination of data that one can create by composing scalars,

tuples and arrays. The user need not learn a different set of

query language features for each case. The unnesting feature,

which we have already seen, is sufficient since variables may

bind to any type of value. For example, we could modify the

data from Listing 1 so that projects are arrays of scalars, as

illustrated below in Listing 3.

1 {{
2 {
3 ’id’: 3,

4 ’name’: ’Bob Smith’,

5 ’title’: null,

6 ’projects’: [

7 ’Serverless Querying’,

8 ’OLAP Security’,

9 ’OLTP Security’

10]

11 },
12 ...

13 }}

Listing 3. Collection hr.emp nest scalars: The arrays of tuples of hr.
emp nest tuples in Listing 1 are replaced with arrays of scalars.

1 SELECT e.name AS emp name,

2 p AS proj name

3 FROM hr.emp nest scalars AS e,

4 e.projects AS p

5 WHERE p LIKE ’%Security%’

Listing 4. A SQL++ query with nested scalars.

The query in Listing 4, again, finds the names of employees

who work on projects that contain the string ’security’ and

outputs them along with the name of the security project.

Notice that the variable p ranges (again) over the content of e.

projects. In this case, though, since e.projects contains strings

(as opposed to tuples), the variable p binds each time to a

project name string.

Pseudocode 2 demonstrates that this query is semantically

very similar to the earlier query.

Pseudocode 2 SQL++ query with nested scalars.

1: for each employee TUPLE e ∈ hr.emp nest scalars do

2: � Notice that p is not a tuple. �

3: for each project STRING p ∈ e.projects do

4: if p LIKE ’%Security%’ then

5: output TUPLE

6: ’emp name’ �→ e.name

7: ’proj name’ �→ p

To wrap up, the above example exhibits a key relaxation

(and, thus, a generalization) of the SQL++ semantics as

compared to SQL semantics. The tuple calculus-based the-

oretical underpinnings of SQL define the semantics of its

FROM clause as delivering bindings of the aliases into tuples.

In contrast, SQL++ treats the FROM clause as a function that

delivers bindings of the variables to arbitrarily typed values.

In our example, the FROM clause produced bindings of the form

〈e : . . . ,p : . . .〉 and, as we saw, the p bindings were to strings.

IV. ABSENCE OF SCHEMA AND SEMI-STRUCTURED DATA

Many data formats do not require a schema that describes

the data - that is, they involve schemaless data. In such cases

it is possible to have various “heterogeneities” in the data:

• One tuple may have an attribute x while another tuple

may not have this attribute.

• In one tuple of a collection of tuples an attribute x may

be of one type, e.g., string, while in another tuple of the

same collection the same attribute x may be of a different

type – e.g, array.

• The elements of a collection (be it a bag or an array) can

be heterogeneous (not have the same type). For example,

the first element may be a string, the second one may

be an integer, and the third one may be an array. While

we do not recommend such data modeling practices, they

can arise as a result of requirements evolution or due to

legacy. For example, it turns out that converters of XML

into JSON sometimes create such heterogeneities.

• Generally, any composition is possible, as we can bundle

heterogeneous elements together in arrays and bags.

Heterogeneity is not particular to schemaless data. NewSQL

schemas may allow for heterogeneity in the types of the data.

For example, one of the Hive data types is the union type [19],

which allows a value to belong to any one of a list of types, as

in the Hive schema of Listing 5 example where the projects

attribute may be either a string or an array of strings.

5504

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

1 CREATE TABLE emp mixed (

2 id INT,

3 name STRING,

4 title STRING,

5 projects UNIONTYPE<STRING, ARRAY<STRING>>

6);

Listing 5. A Hive data definition for a SQL++ table with a mixed attribute.

Thus, we see that data may have heterogeneities, regardless

of whether it is described by a schema or not. SQL++ tackles

heterogeneous data in ways that we will see in the next few

use cases and feature descriptions.

A. Missing Attributes

Consider the collection of tuples named emp null of List-

ing 6. Bob Smith has no title and, as is typical in SQL, his

lack of title is modeled with the null value.

1 {{
2 {’id’: 3,
3 ’name’: ’Bob Smith’,

4 ’title’: null },
5 {’id’: 4,
6 ’name’: ’Susan Smith’

7 ’title’: ’Manager’ },
8 {’id’: 6,
9 ’name’: ’Jane Smith’,

10 ’title’: ’Engineer’}
11 }}

Listing 6. Example hr.empl null “table” with NULL values.

Nowadays, many semi-structured formats allow their users

to represent “missing” information in two ways: The first way

is by use of a NULL datum. The second kind is the plain absence

of the attribute from the tuple. That is, we could represent the

fact that Bob Smith has no title by simply having no title

attribute in the ’Bob Smith’ tuple:

1 {{
2 {’id’: 3,
3 ’name’: ’Bob Smith’}, −− no title
4 {’id’: 4,
5 ’name’: ’Susan Smith’

6 ’title’: ’Manager’ },
7 {’id’: 6,
8 ’name’: ’Jane Smith’,

9 ’title’: ’Engineer’}
10 }}

Listing 7. Example hr.emp missing of a “table” omitting an attribute value.

SQL++ does not adopt a position about when to use NULL

versus when to use “missing”. Myriads of existing data

already use one of the two or both. However, SQL++ enables

queries to distinguish between NULL and missing values, and it

also enables query results that have nulls and missing values.

Indeed, SQL++ makes it very easy to propagate source data

nulls through as query result nulls and source data missing

attributes through as query result missing attributes using the

special value MISSING.

B. MISSING as a Value

Consider the SQL++ query of Listing 8, which happens to

also be a valid SQL query:

1 SELECT e.id,

2 e.name AS emp name,

3 e.title AS title

4 FROM hr.emp missing AS e

5 WHERE e.title = ’Manager’

Listing 8. A SQL++ query referring to a potentially missing attribute.

What will happen when this query processes the Bob Smith

tuple, which has no title? The first step to answering this

question is understanding the result of the path e.title when

the alias (variable) e binds to the tuple {’id’: 3, ’name’: ’

Bob Smith’}. Or in more basic terms, what is the result of the

expression {’id’: 3, ’name’: ’Bob Smith’}.title? The SQL++

answer is that it is the special value MISSING.

Generally, MISSING values are produced in three cases:

1) Navigation into a missing attribute. For example, {’id’

: 3, ’name’: ’Bob Smith’}.title returns MISSING.

2) A function or operator is evaluated over arguments of the

wrong types. Essentially, the flexible mode of SQL++

prefers to return MISSING instead of a dynamic type error

when evaluating expressions such as 2 � ’some string’.

3) Whenever a function or operator has a MISSING input,

it returns a MISSING result. This ensures that MISSING

values created by Cases 1 and 2 can be easily propagated

through a series of transformations. However, in SQL-

compatibility mode, this rule has one exception: if an

SQL expression, given a null input, would return a non-

null result, the same expression in SQL++ returns the

same result when given a MISSING input. For example, the

expression COALESCE(MISSING, 2) will return 2 because

this is what SQL’s COALESCE(NULL, 2) will do.

The next question is how to utilize MISSING values in result

construction. For starters, in SQL++’s SQL compatibility

mode, the user can treat them as identical to NULL if he or she

doesn’t care about the distinction between null and missing

values. More precisely, in SQL compatibility mode, SQL++

delivers the following guarantee: Given a working SQL query

q over a collection d that has null values and a collection d′

where some nulls have been replaced with missing attributes,

the SQL++ query q will deliver the same result q(d′) as the

SQL result q(d), except that some attributes that would have

null values in q(d) will be simply missing in q(d′). From a

SQL compatibility point of view, this difference is immaterial

to the SQL user who doesn’t care about the difference between

the two. However, the null-missing distinction enables SQL++

to expand into (a) flexibly executing queries that would not

work in SQL and (b) easily propagating MISSING from inputs

to outputs. In the earlier example, when the query outputs

the Bob Smith tuple, the expression e.title will evaluate to

MISSING and the output tuple will not have a title attribute.

5505

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

1 SELECT e.id,

2 e.name AS emp name,

3 CASE WHEN e.title LIKE ’Chief %’

4 THEN "Executive"

5 ELSE "Worker"

6 END AS category

7 FROM hr.emp missing AS e

Listing 9. SQL++ query operating on MISSING.

Thanks to the easy propagation of MISSING, the same treat-

ment of MISSING would happen if, say, we had a query that

sorts employees into categories based on their titles, as shown

in Listing 9.

Again, for Bob Smith, the CASE WHEN e.title ... END will

evaluate to CASE WHEN MISSING ... END, which will in turn eval-

uate to MISSING. (Note that in JDBC/ODBC communication,

with a schemaful result, the MISSING will be communicated as

NULL for communication compatibility purposes.)

V. RESULT CONSTRUCTION, NESTING, AND GROUPING

SQL++ allows for queries that create nested results as well

as for queries that create any type of result collection – not

just collections of tuples of scalars. At the SQL++ Core level,

its power comes from relaxing the SQL SELECT clause into the

SQL++ SELECT VALUE clause and exposing the groups created

by SQL’s GROUP BY clause.

A. Creating Collections of Any Value

The SQL++ Core grounds its ability to construct results in

its SELECT VALUE clause, which provides the power to construct

collections of any type of data. Consequently, the SELECT clause

of SQL can be explained as being syntactic sugar over SELECT

VALUE. For example, the query shown in Listing 10 outputs each

tuple of hr.emp nest scalars (Listing 3), except that instead

of keeping all of their projects, each tuple has only the security

projects of each employee. Notice how SELECT VALUE p is being

used in the query. The result of this query is shown in Listing

11.

A SELECT VALUE <expression> query (or subquery, as in this

example) returns a collection of whatever the <expression>

evaluates to. Thus SQL’s SELECT can be rewritten into the

SQL++ Core SELECT VALUE as follows:

SELECT e1 AS a1, . . . , en AS an FROM . . .

is equivalent to

SELECT VALUE { a1:e1, . . . , an:en } FROM . . .

1 SELECT e.id AS id,

2 e.name AS emp name,

3 e.title AS emp title,

4 (SELECT VALUE p

5 FROM e.projects AS p

6 WHERE p LIKE ’%Security%’

7) AS security proj

8 FROM hr.emp nest scalars AS e

Listing 10. SQL++ query projecting a nested value.

1 {{
2 {
3 ’id’: 3,

4 ’name’: ’Bob Smith’,

5 ’title’: null,

6 ’security proj’: {{
7 ’OLAP Security’,

8 ’OLTP Security’

9 }}
10 },
11 {
12 ’id’: 4,

13 ’name’: ’Susan Smith’,

14 ’title’: ’Manager’,

15 ’security proj’: {{}}
16 },
17 {
18 ’id’: 6,

19 ’name’: ’Jane Smith’,

20 ’title’: ’Engineer’,

21 ’security proj’: {{
22 ’OLAP Security’

23 }}
24 }
25 }}

Listing 11. Example result from nested SELECT VALUE.

However, when a SQL SELECT appears as a subquery, SQL

compatibility requires that it not be treated simply as being a

shorthand of SELECT VALUE. Rather, the context of the subquery

designates whether the subquery’s result should be coerced

into a scalar value (e.g., when 5 = <subquery>), coerced into

a collection of scalars (e.g., when 5 IN <subquery>), etc. None

of this implicit “magic” applies to SELECT VALUE, which always

produces a collection that will not be coerced. Indeed, SQL++,

when not operating in SQL compatibility mode, always treats

SELECT as a shorthand for SELECT VALUE, thus delivering the

composability and simplicity of functional programming lan-

guages and enabling a proper treatment of nested data and

nested results.

B. GROUP BY and GROUP AS

Another pattern for creating nested results in SQL++ is via

the GROUP AS extension to SQL’s GROUP BY clause. This pattern

is more efficient and more intuitive than nested SELECT VALUE

queries when the required nesting is not based on the nesting

of the input. (To clarify, the example in Section V-A is one

where the nesting in the output follows the nesting of the input,

so the intuitive solution does not require GROUP BY.)

The SQL++ GROUP AS extension generalizes the SQL GROUP

BY clause by making the formulated groups (and their content)

available in their entirety to a SQL++ query’s SELECT and HAVING

clauses. This is in contrast to SQL’s GROUP BY, where the SELECT

and HAVING clauses can have aggregate functions over grouped

columns but they cannot access the individual values contained

in the grouped columns (due to the fact that nested data is not

available in the data model that underlies SQL).

To better understand the workings of GROUP BY ... GROUP AS,

it is best to think of a SQL++ query as being a pipeline of

clauses, starting with the FROM, continuing with the optional

5506

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

WHERE, proceeding to the optional GROUP BY, and then the op-

tional HAVING, and finishing with the SELECT clause. Each clause

is a function that inputs data and outputs data. In that sense, in

the upcoming example, the GROUP BY ... GROUP AS clause is a

function that inputs the result of the FROM and outputs its result

to the SELECT. (SQL++ also supports the post-SELECT clauses of

SQL, e.g., ORDER BY, LIMIT, and OFFSET.)

In keeping with this model of a query-block as a pipeline

of functional clauses, SQL++ allows the SELECT clause to be

written either at the beginning of the query-block (as in SQL)

or at the end of the block (which is both more consistent

with the execution model and much clearer regarding where

variables mentioned in the SELECT clause are coming from).

This flexibility can be considered as another example of where

SQL++ relaxes a constraint of SQL.

The query in Listing 12 inverts the hierarchy of employees

with nested projects. It produces a list of the security projects

(after conversion to lower case) and it includes nested lists

of the names of employees that work on each project. Notice

that in this query, as an aside, the SELECT clauses appear at the

ends of their respective query-blocks rather than at the start.

(Either placement is fine in SQL++.) The nested result created

by this query follows in Listing 13.

1 FROM hr.emp nest scalars AS e, e.projects AS p

2 WHERE p LIKE ’%Security%’

3 GROUP BY LOWER(p) AS p GROUP AS g

4 SELECT p AS proj name,

5 (FROM g AS v

6 SELECT VALUE v.e.name) AS employees

Listing 12. SQL++ query with grouping.

1 {{
2 {
3 ’proj name’: ’OLTP Security’,

4 ’employees’: {{
5 ’Bob Smith’

6 }}
7 },
8 {
9 ’proj name’: ’OLAP Security’,

10 ’employees’: {{
11 ’Bob Smith’,

12 ’Jane Smith’

13 }}
14 }
15 }}

Listing 13. Example result from query using GROUP AS.

Let’s examine what’s going on with GROUP AS here. In this

query, the FROM clause delivers a collection of bindings for e

and p. The GROUP BY ... GROUP AS ... then produces a multiset

of objects that has one field for each value of the group-by

expression (i.e., for each security project LOWER(p) AS p) and

a second field g whose value (in each row) is the collection

of employee/project e/p tuples that belong to that group. Thus

the GROUP BY ... GROUP AS ... output is the collection of p/g

bindings illustrated in Listing 14.

1 −− first binding

2 p: ’olap security’

3 g: {{
4 { e: { ’id’: 3, ’name’: ’Bob Smith’, ... },
5 p: ’OLAP Security’

6 },
7 { e: { ’id’: 6, ’name’: ’Jane Smith’, ... },
8 p: ’OLAP Security’

9 }
10 }}
11 −− second binding

12 p: ’oltp security’

13 g: {{
14 { e: { ’id’: 3, ’name’: ’Bob Smith’, ...},
15 p: ’OLTP Security’

16 }
17 }}

Listing 14. Output of the GROUP BY ... GROUP AS ... clause.

Finally the SELECT clause takes the output produced by the

GROUP BY ... GROUP AS ... clause as its input and outputs the

final query result.

Before leaving this section it is important to note that SQL

has additional analytical features such as CUBE, ROLLUP, and

GROUPING SETS for grouped aggregation as well as window func-

tions (i.e., OVER) for more advanced analytics. These features

are wholly compatible with SQL++ and then become able to

operate on and produce nested and heterogeneous data (e.g.,

see [20]). Their compatibility stems from SQL++’s defining

equality identically to SQL in the exclusive presence of scalars

and NULL. (And for each SQL feature that does not error on

NULL, the feature will also work with MISSING.)

C. Aggregate Functions

As noted earlier, aggregate functions like AVG are among

the SQL features that lack composability. For each of the

traditional aggregate functions of SQL, SQL++ Core provides

a fully composable function that takes a collection as input and

returns the aggregated value of that collection. The compos-

able version of AVG is named COLL AVG. This naming convention

applies to the other SQL aggregate functions as well: MAX has

a composable version named COLL MAX, etc.

In this section we will illustrate, by example, how SQL

queries containing aggregate functions are transformed into

SQL++ Core queries using composable functions. The exam-

ples are based on a flat collection named hr.emp with (at least)

four columns: name, deptno, title, and salary. The theme of

the transformation process is that the data or group of data

that is being aggregated is first (conceptually) materialized and

then passed (conceptually again) to the composable function

which aggregates it. (It is important to point out that this

materialization is conceptual; under the hood a SQL++ engine

is free to optimize, e.g., by using pipelineable aggregation

operations when evaluating a query.)

The first SQL query, shown in Listing 15, finds the average

salary of engineers in the hr.emp collection. Its SQL++ Core

equivalent is shown in Listing 16.

5507

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

1 SELECT AVG(e.salary) AS avgsal

2 FROM hr.emp AS e

3 WHERE e.title = ’Engineer’

Listing 15. First aggregation query, SQL version

1 {{
2 {’avgsal’:
3 COLL AVG(

4 SELECT VALUE e.salary

5 FROM hr.emp AS e

6 WHERE e.title = ’Engineer’

7)

8 }
9 }}

Listing 16. First aggregation query, SQL++ core version

The second SQL query, shown in Listing 17, lists all of the

departments in the hr.emp collection and the average salaries

of their engineer employees. Its SQL++ core equivalent in

shown in Listing 18. This SQL++ Core query is written using

the permitted SELECT-clause-last style.

1 SELECT e.deptno, AVG(e.salary) AS avgsal

2 FROM hr.emp AS e

3 WHERE e.title = ’Engineer’

4 GROUP BY e.deptno

Listing 17. Second aggregation query, SQL version

1 FROM hr.emp AS e

2 WHERE e.title = ’Engineer’

3 GROUP BY e.deptno AS d GROUP AS g

4 SELECT VALUE

5 {deptno: d,
6 avgsal: COLL AVG(

7 FROM g AS gi

8 SELECT gi.e.salary

9)

10 }

Listing 18. Second aggregation query, SQL++ Core version

VI. PIVOTING AND UNPIVOTING

In use cases that require the structuring and/or reorganizing

of semistructured data it is important to have the ability to

flexibly turn data into attributes and vice versa. This is what the

pivoting and unpivoting features described next accomplish.

A. Unpivoting Tuples

Let us begin by examining the use case for unpivoting. The

collection of Listing 19 is an interesting example, as it uses as

attribute names data that would typically be attribute values

in the SQL world. The query given in Listing 20 unpivots the

stock ticker/price pairs in this data set and returns the result

shown in Listing 21.

1 {{
2 {’date’: ’4/1/2019’,
3 ’amzn’: 1900, ’goog’: 1120, ’fb’: 180},
4 {’date’: ’4/2/2019’,
5 ’amzn’: 1902, ’goog’: 1119, ’fb’: 183}
6 }}

Listing 19. The closing prices collection

1 SELECT c."date" AS "date",

2 sym AS symbol,

3 price AS price

4 FROM closing prices AS c,

5 UNPIVOT c AS price AT sym

6 WHERE NOT sym = ’date’

Listing 20. A query that unpivots ticker/price pairs

1 {{
2 {
3 ’date’: ’4/1/2019’,

4 ’symbol’: ’amzn’,

5 ’price’: 1900

6 },
7 {
8 ’date’: ’4/1/2019’,

9 ’symbol’: ’goog’,

10 ’price’: 1120

11 },
12 {
13 ’date’: ’4/1/2019’,

14 ’symbol’: ’fb’,

15 ’price’: 180

16 },
17 {
18 ’date’: ’4/2/2019’,

19 ’symbol’: ’amzn’,

20 ’price’: 1902

21 },
22 {
23 ’date’: ’4/2/2019’,

24 ’symbol’: ’goog’,

25 ’price’: 1119

26 },
27 {
28 ’date’: ’4/2/2019’,

29 ’symbol’: ’fb’,

30 ’price’: 183

31 }
32 }}

Listing 21. The result of unpivoting ticker/price pairs

1 SELECT sym AS symbol,

2 AVG(price) AS avg price

3 FROM closing prices c,

4 UNPIVOT c AS price AT sym

5 WHERE NOT sym = ’date’

6 GROUP BY sym

Listing 22. A SQL++ query that computes average stock prices

Unpivoting tuples enables the use of attribute names as if

they were data. For example, it becomes easy to compute the

average price for each symbol as in the query of Listing 22.

5508

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

1 {{
2 {’symbol’: ’amzn’, ’price’: 1900},
3 {’symbol’: ’goog’, ’price’: 1120},
4 {’symbol’: ’fb’, ’price’: 180}
5 }}

Listing 23. The today stock prices collection

1 PIVOT sp.price AT sp.symbol

2 FROM today stock prices sp

Listing 24. A PIVOT query

1 {
2 ’amzn’: 1900,

3 ’goog’: 1120,

4 ’fb’: 180

5 }

Listing 25. The result of pivoting

B. Pivoting Tuples

Pivoting, conversely, serves to turn a collection into a

tuple. For example, consider the collection today stock prices

shown in Listing 23. Using this collection as input, the PIVOT

query of Listing 24 produces the tuple shown in Listing 25.

The query of Listing 26 uses the grouping features of

SQL++ together with pivoting in order to create a single tuple

for all of the stock prices of each date when it inputs the

collection of Listing 27. Listing 28 shows this query’s result.

1 SELECT sp."date" AS "date",

2 (PIVOT dp.sp.price AT dp.sp.symbol

3 FROM dates prices AS dp) AS prices

4 FROM stock prices AS sp

5 GROUP BY sp."date" GROUP AS dates prices

Listing 26. Combination of grouping and pivoting

1 {{
2 {’date’: ’4/1/2019’,
3 ’symbol’: ’amzn’, ’price’: 1900},
4 {’date’: ’4/1/2019’,
5 ’symbol’: ’goog’, ’price’: 1120},
6 {’date’: ’4/1/2019’,
7 ’symbol’: ’fb’, ’price’: 180 },
8 {’date’: ’4/2/2019’,
9 ’symbol’: ’amzn’, ’price’: 1902},

10 {’date’: ’4/2/2019’, ’symbol’:
11 ’goog’, ’price’: 1119},
12 {’date’: ’4/2/2019’,
13 ’symbol’: ’fb’, ’price’: 183 }
14 }}

Listing 27. The stock prices input

1 {{
2 {
3 ’date’: ’4/1/2019’,

4 ’prices’:

5 {’amzn’: 1900, ’goog’: 1120, ’fb’: 180}
6 },
7 {
8 ’date’: ’4/2/2019’,

9 ’prices’:

10 {’amzn’: 1902, ’goog’: 1119, ’fb’: 183}
11 }
12 }}

Listing 28. The output of pivoting stock prices by date

VII. PRIOR WORK

The history of the SQL language goes back five decades

[21]. As commercial relational database offerings began to

take hold in the business data world, the database community

began expanding its reach to incorporate newer and richer

forms of data. One target was engineering data, which led

to a decade or so of work on object-oriented database systems

with data models inspired by concepts from object-oriented

programming languages [22], [23]. Languages like OQL [24]

borrowed ideas from SQL but extended their reach to typed

nested data. More or less in parallel, traditional relational

database enthusiasts sought to extend the reach of relational

systems to incorporate object-oriented ideas, leading to so-

called object-relational systems such as Postgres, Starburst

and others [23]. These systems also had SQL-like languages

that could operate over richer but typed table structures with

extensible column types.

Fast forwarding to 25 years ago, the database community

became interested in exploring support for semistructured data.

The Lore project at Stanford with its OQL-inspired query

language Lorel [25] was arguably the seminal work in this di-

rection. The XML data format was also becoming prevalent in

roughly the same time frame, and was a practical, commercial

example of self-describing, schema-less data. Query languages

capable of querying XML data garnered much interest in both

research and industry, and the W3C XQuery language standard

[26] was the result of a community effort to meet that need.

XQuery faced many of the challenges that SQL++ faced, but

it focused on XML and departed significantly from SQL in

many of its details.

Fast forwarding to the recent past, to the so-called “big

data” and/or “NoSQL” eras, leads to the problem of querying

and manipulating massive quantities of semistructured data (as

well as applying parallelism to scale). On the NoSQL side,

Cassandra and its CQL query language [27] emerged; CQL

can be characterized as a SQL-like language, minus joins,

for operating on nested but schema-ful tables. MongoDB also

appeared; its approach to querying involves a mix of a basic

“CRUD” API [28] and an “aggregation pipeline” API [29].

Microsoft’s document database offering, Cosmos DB [30], has

a SQL-based query language for querying single collections

of documents that is roughly like a single-collection subset of

SQL++; only intra-document joins are possible, for example.

5509

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

Big data analytics engines, such as Hive [19] and later

Spark [31], also appeared in this time frame. Both initially

targeted very large volumes of mostly flat, schema-ful data,

intending to supplant traditional data warehouse systems, so

they each based their query languages (HiveQL and Spark-

SQL, respectively) on SQL. As time has progressed, their

query languages have moved closer to SQL compliance; they

also include features such as generic “explode” or “unnest”

table functions to address the need to query non-flat data (e.g.,

Parquet files or schema-ful JSON). Most recently, Rockset has

arrived on the scene as a data integration and indexing offering

fronted with a heavily SQL-inspired query language [32] that

relaxes SQL’s restrictions in ways not unlike SQL++.

VIII. CONCLUSION

In this paper we have described the SQL++ query language.

SQL++ is a SQL extension that relaxes SQL’s strictness in

terms of both object structure (moving from flat → nested)

and schema (moving from mandatory → optional). SQL++

sees relational data as a subset of a more flexible object model

and it sees collections of document data as a natural and

supportable relaxation as opposed to a “bolt on” addition such

as a new SQL column type [33]. We toured the core features

of SQL++ and explained how its definition can accommodate

flexible data while also remaining true to SQL in situations

where a query’s target data is tabular and strongly typed.

As we have described, a multi-party effort is well underway

to converge on a Core SQL++ definition and syntax that is

supportable by multiple vendors. Work is also underway to

incrementally close the syntactic and semantic gaps between

their existing SQL++ based offerings and the core. Future joint

work is expected to include developing a shared “compatibility

kit” for use in checking for compliance with Core SQL++ in

both its composability mode and its SQL compatibility mode.

In closing, we would like to invite other systems’ developers

and tool providers to “relax” with us and join the effort.

REFERENCES

[1] K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The SQL++
semi-structured data model and query language: A capabilities survey
of SQL-on-Hadoop, NoSQL and NewSQL databases,” CoRR, vol.
abs/1405.3631, 2014. [Online]. Available: http://arxiv.org/abs/1405.3631

[2] ——, “The SQL++ unifying semi-structured query language and an
expressiveness benchmark of SQL-on-Hadoop, NoSQL and NewSQL
databases,” CoRR, vol. abs/1405.3631, 2014. [Online]. Available:
https://arxiv.org/pdf/1405.3631v6.pdf

[3] (2024) Apache AsterixDB. Apache Software Foundation. [Online].
Available: https://asterixdb.apache.org/

[4] (2024) SQL++: Couchbase database query language. Couchbase, Inc.
[Online]. Available: https://www.couchbase.com/products/n1ql/

[5] (2024) What’s SQL++ for Analytics? Couchbase, Inc. [Online]. Avail-
able: https://docs.couchbase.com/server/current/analytics/1 intro.html

[6] D. Chamberlin, SQL++ For SQL Users: A Tutorial, 2018. [Online].
Available: https://a.co/d/eWFxyBC

[7] (2024) PartiQL tutorial. PartiQL. [Online]. Available: https://partiql.
org/tutorial.html

[8] (2024) Querying semistructured data. Amazon Web Services. [Online].
Available: https://docs.aws.amazon.com/redshift/latest/dg/query-super.
html

[9] (2024) Amazon QLDB PartiQL reference. Amazon Web
Services. [Online]. Available: https://docs.aws.amazon.com/qldb/latest/
developerguide/ql-reference.html

[10] (2024) PartiQL - a SQL-compatible query language for Amazon Dy-
namoDB. Amazon Web Services. [Online]. Available: https://docs.aws.
amazon.com/amazondynamodb/latest/developerguide/ql-reference.html

[11] (2024) Amazon S3 SELECT command. Amazon Web Services.
[Online]. Available: https://docs.aws.amazon.com/AmazonS3/latest/
userguide/s3-select-sql-reference-select.html

[12] (2024) AWS IoT TwinMaker knowledge graph. Amazon Web Services.
[Online]. Available: https://docs.aws.amazon.com/iot-twinmaker/latest/
guide/tm-knowledge-graph-resources.html

[13] D. Chamberlin, “49 years of queries (keynote video),” in Companion

of the 2023 International Conference on Management of Data, ser.
SIGMOD ’23. New York, NY, USA: Association for Computing
Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3555041.
3589336

[14] (2024) Introducing JSON. json.org. [Online]. Available: https://www.
json.org/json-en.html

[15] (2024) CBOR: RFC 8949 Concise binary object representation. IETF.
[Online]. Available: https://cbor.io/

[16] (2024) Amazon Ion. Amazon Web Services. [Online]. Available:
https://amazon-ion.github.io/ion-docs/

[17] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970. [Online]. Available:
https://doi.org/10.1145/362384.362685

[18] M. Carey, “AsterixDB mid-flight: A case study in building systems
in academia,” in 2019 IEEE 35th International Conference on Data

Engineering (ICDE). Los Alamitos, CA, USA: IEEE Computer Society,
apr 2019, pp. 1–12. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/ICDE.2019.00008

[19] (2024) Apache Hive language manual. Apache Software Foundation.
[Online]. Available: https://cwiki.apache.org/confluence/display/Hive/
LanguageManual

[20] M. Carey, I. Maxon, T. Westmann, D. Lychagin, P. Sinthong, and
G. Galviso, “JSON analytics with Apache AsterixDB,” Big Data Open

Source Systems Workshop (BOSS), 2020, Tutorial. [Online]. Available:
https://boss-workshop.github.io/boss-2020/

[21] D. Chamberlin, “50 years of queries,” Commun. ACM, 2024 (to appear).
[22] S. B. Zdonik and D. Maier, Eds., Readings in object-oriented

database systems. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1989. [Online]. Available: https://www.amazon.
com/Readings-Object-Oriented-Database-Kaufmann-Management/dp/
1558600000

[23] Commun. ACM, vol. 34, no. 10, 1991, (Special issue on next-generation
database systems.). [Online]. Available: https://dl.acm.org/toc/cacm/
1991/34/10

[24] S. Cluet, “Designing OQL: Allowing objects to be queried,” Information

Systems, vol. 23, no. 5, pp. 279–305, 1998. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306437998000131

[25] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener,
“The Lorel query language for semistructured data,” Int. J. Digit.

Libr., vol. 1, no. 1, pp. 68–88, 1997. [Online]. Available: https:
//doi.org/10.1007/s007990050005

[26] H. Katz, D. Chamberlin, M. Kay, P. Wadler, and D. Draper,
XQuery from the Experts: A Guide to the W3C XML Query

Language. USA: Addison-Wesley Longman Publishing Co., Inc.,
2003. [Online]. Available: https://www.amazon.com/exec/obidos/ASIN/
0321180607/acmorg-20

[27] (2024) The Cassandra query language (CQL). Apache Software
Foundation. [Online]. Available: https://cassandra.apache.org/doc/stable/
cassandra/cql/

[28] (2024) MongoDB CRUD operations. MongoDB, Inc. [Online].
Available: https://www.mongodb.com/docs/manual/crud/

[29] (2024) Aggregation operations. MongoDB, Inc. [Online]. Available:
https://www.mongodb.com/docs/manual/aggregation/

[30] (2024) Queries in Azure Cosmos DB for NoSQL. Microsoft, Inc.
[Online]. Available: https://learn.microsoft.com/en-us/azure/cosmos-db/
nosql/query/

[31] (2024) Spark SQL reference. Apache Software Foundation. [Online].
Available: https://spark.apache.org/docs/latest/sql-ref.html

[32] (2024) Rockset SQL Guide. Rockset.com. [Online]. Available:
https://docs.rockset.com/documentation/docs/sql-guide

[33] D. Chamberlin, “Comparing two SQL-based approaches for querying
JSON: SQL++ and SQL:2016,” 2019, Whitepaper, Couchbase, Inc.
[Online]. Available: https://info.couchbase.com/rs/302-GJY-034/images/
Comparing Two SQL Based Approaches WP.pdf

5510

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:27:18 UTC from IEEE Xplore. Restrictions apply.

