2023 IEEE International Conference on Big Data (BigData) | 979-8-3503-2445-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/BigData59044.2023.10386098

2023 IEEE International Conference on Big Data (BigData)

Towards a Memory-Adaptive Hybrid Hash Join
Design

Giulliano Silva Zanotti Siviero
Department of Computer Science and Engineering
Santa Clara University
Santa Clara, United States
gsilvazanottisiviero@scu.edu

Abstract—In database management systems (DBMSs) that
handle multiple concurrent queries, adapting to fluctuating
workloads is crucial. This flexibility allows the DBMS to revise
decisions based on current workload and available resources. As
memory availability changes with the arrival or completion of
queries, having memory-intensive operators like the Hybrid Hash
Join that dynamically adapt is vital. This paper introduces a new
memory-adaptive Hash-Based join algorithm design implemented
in Apache AsterixDB and evaluates its responsiveness to memory
variability.

Index Terms—Hybrid Hash Join, Memory Adaptiveness, Re-
source Management

INTRODUCTION

Despite years of research, managing memory for concurrent
queries remains a complex issue for most DBMSs. Due
to limited memory capacity, allocating memory judiciously
among memory-intensive operators of concurrent queries is
essential. Many DBMSs use fixed memory allocations for
these operators, but this static approach limits flexibility with
unpredictable workloads, often leading to resource underuti-
lization and suboptimal system performance.

The Hybrid Hash Join (HHJ), a commonly used and
memory-intensive join operator, can greatly influence system
performance. While studies in the 1990s focused on memory-
adaptive HHJ designs using HDD simulators [6, 13], many
current DBMSs still employ memory-static (non-adaptive)
operators, retaining allocated memory throughout the query
execution [1, 2, 3, 4]. We argue that static memory allocation
remains problematic even with modern databases using rapid
SSDs or disaggregated storage. Such static memory allocation
can lead to unnecessary delays for queries, resource underuti-
lization, and unnecessary scaling in cloud environments.

In this work, we design and implement a memory-adaptive
HHJ (MA-HH)J) algorithm for big data management systems
and evaluate its responsiveness to the memory change requests
of resource manager. We use Apache AsterixDB [2, 5], an
open-source big data management system, for implementation
and evaluation of our approach on a real system.

The remainder of the paper is organized as follows: Section
| discusses previous work related to this study. Section 1l
describes the design of our MA-HHJ algorithm and provides
details of its implementations. Section Il describes the exper-

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 6283

Shiva Jahangiri
Department of Computer Science and Engineering
Santa Clara University
Santa Clara, United States
sjahangiri@scu.edu

iments conducted and their preliminary results, while Section
IV concludes the paper.

I. RELATED WORK

Hybrid Hash Join was proposed initially in the 1990s,
and several studies were conducted analyzing its performance
theoretically and empirically [8, 9, 14]. The initial design of
HHJ relied heavily on precise data statistics to determine the
optimal number of partitions and to choose the in-memory
resident partition accurately. This approach aimed to maximize
memory utilization and minimize disk spilling. Nevertheless,
maintaining these statistics is not always practical.

To overcome this challenge, the authors of [11] developed
a dynamic destaging approach for HHJ, enabling all partitions
to expand within the available memory limits. When memory
becomes limited, the algorithm dynamically selects partitions
to spill during runtime. This approach termed Dynamic Hybrid
Hash Join (DHHJ), has been incorporated into several contem-
porary DBMSs, including Apache AsterixDB [10], which is
utilized in this study. While DHHJ enhances the flexibility of
the original HHJ design, it still manages memory statically and
cannot adjust to memory changes. To address this issue, the
authors of [15] introduced a Hash-Based algorithm capable
of adapting to memory fluctuations during the Build Phase
through a bucket tuning method. Subsequently, two additional
memory-adaptive algorithms, Partially Preemptible Hash Join
[12] and Memory-Contention Responsive Hash Join [7], were
proposed. These algorithms adjust to new memory allocations
during the Probe Phase. Notably, the Memory-Contention
Responsive Hash Join is straightforward to implement and,
as indicated in [7], offers superior performance compared
to Partially Preemptible Hash Join. Both algorithms were
assessed and contrasted in Davison [7] using a simulator due
to the limited computing resources available at that time.

To the best of our knowledge, these foundational papers set
the stage for memory-adaptive database operations. In con-
temporary DBMSs, however, there is a noticeable preference
for simpler, memory-static operators despite the efficiency
gains offered by memory-adaptive alternatives [1, 2, 3, 4]. For
instance, in Amazon Redshift, the memory of queued queries
can be modified; however, the already-executing queries will
retain their initial memory allocations [1].

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:53:23 UTC from IEEE Xplore. Restrictions apply.

Il. MEMORY-ADPATIVE HYBRID HASH JOIN: DESIGN

In this section, we outline the structure and implementa-
tion specifics of MA-HHJ. This variant, which is an adap-
tation of AsterixDB’s standard HHJ algorithm [10] to be
memory-adaptive, interacts frequently with the resource man-
ager for memory budget adjustments through two mechanisms:
1) Event-based: When extra memory is needed, such as to
avoid disk spilling, the HHJ operator will request it from the
resource manager. 2) Frame-Interval: The algorithm initiates
a check with the resource manager at intervals of every X
frames processed by the HHJ. It is important to note that
the resource manager is responsible for deciding memory
allocation for operators to optimize performance. Our focus is
solely on crafting an MA-HHJ responsive to memory changes.
Our resource manager is a simulated component described
in Section Ill. Each interaction with the resource manager
results in one of the following three responses: 1) an increase,
2) decrease, or 3) no change in memory allocation.

A. Build Phase.

MA-HHJ can respond to memory decrease responses by
releasing unused memory and spilling partitions, if necessary.
Such partition spillings are simple since records are not
inserted in the hash table yet.

In case of a memory increase response, MA-HHJ will accept
the extra memory offered only if it can use it immediately.
Before building the hash table, the MA-HH)J tries to reload
spilled partitions into memory if enough memory is available.
Listing 1 illustrates how our algorithm handles memory budget
changes during the Build Phase.

to probe such “missed” tuples by probing them against the
reloaded partitions. It is important to note that restoring disk-
resident partitions during the Probe Phase may avoid unnec-
essary rounds of Joins. Listing 2 delves into this possibility.

In case of memory decrement, partition spellings trigger a
hash table rebuilt to avoid the complexity of maintaining this
data structure.

Frame-Interval Memory Update:
for every frame interval:

update = check with the resource manager
if (update == decrease): spill partitions
else if (update == increase):

while (memory is available):
try to reload a partition from the disk
if (partition reloaded)
rebuild hash table

Event-Based Memory Update:
update = check with the resource manager;
if (update == increase):
try to reload one or more partitions;
if (any partition reloaded):
rebuild hash table;

else: do not accept memory;
else if (update == decrease): spill partitions;
else: continue;

After Processing All Records:
reload tuples belonging to inconsistent partitions
that were spilled to the disk & probe them

Frame-Interval Memory Update:
for every frame interval:

update = check with the resource manager
if (update == decrease): spill partitions
else: continue

Event-Based Memory Update:

update = check with the resource manager
if (update == decrease): spill partitions
else if (update == increase):

accept and avoid spilling
else: continue;

After Processing All Records:

update = check with the resource manager
if (update == decrease): spill partitions
else if (update == increase): reload partitions
else: continue;

build hash table

Listing 1. Pseudocode for Build Phase

B. Probe Phase.

In case of memory increment, spilled partitions may be
reloaded into memory during the Probe Phase if enough
memory is available; however, their state is different from
memory-resident partitions since there might have been some
tuples from the Build input that probed the hash table while
such partitions were disk-resident; thus they were written to
disk as well to be processed later. To handle this situation,
an additional step is necessary by the end of the Probe Phase

6284

Listing 2. Pseudocode for Probe Phase.
I1l. EXPERIMENTS AND RESULTS

We used a single join query to study the responsiveness of
our MA-HHJ algorithm in a single Apache AsterixDB node
configuration running in an 8-core 11th Gen Intel® Core™ i7
with 64GB of RAM and a 2TB NVME storage. The build and
probe relations each have 1 GB of data, and each entry in the
build relation matches exactly one entry in the probe relation.

To account for different memory contention scenarios, the
resource manager assigns the memory budget for the operator
according to the following distribution: During 80% of the
time, the memory was chosen randomly from 80% to 100%
of the maximum memory for join and the rest of the time
between the minimum possible (20 frames based on [10]) to
100% of the maximum required memory for join.

As Figure 1 shows, more frequent check-ins with the
resource manager improve the responsiveness of MA-HHJ to
memory changes with the expense of a higher amount of 1/0,
which can lead to higher execution time for the operator.

® 2000 Frames 4 1500 Frames = 1000 Frames
+ 500 Frames * 300 Frames

:’25 12500

§ 10000 pus o ——* 98346
S 7500 _x

g 5000

; 2500

g 0

= 200 400 600 800 1000

Join Memory (MB)
Fig. 1. Impact of Frame Interval on I/O Volume in MA-HHJ

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:53:23 UTC from IEEE Xplore. Restrictions apply.

Due to space limitations, we only present the results of
Frame-based experiments. The increase in 1/O operations and
volume directly impacts the operator’s execution time, Figure
2 presents the impact of memory adaptivity over the operator’s
execution time.

© 2000 Frames + 1500 Frames = 1000 Frames
+ 500 Frames * 300 Frames x OHHJ

20000 *
i _x
E 15000 y/x
E 10000 T 412793
5 ey a1
= 5000 et Iy S A
é X— =X — ¢ — % —-x 1785
] 0
200 400 600 800 1000
Join Memory (MB)
Fig. 2. Impact of Frame Interval on Execution Time in MA-HHJ

IV. CONCLUSION AND FURTHER STUDIES

The central contribution of this study lies in understanding
how memory variance and the frequency of memory budget
updates impact the I/O volume and, consequently, the execu-
tion time of an operator. We showed that the responsiveness of
MA-HHJ is directly impacted by the frequency of operator
check-ins with the resource manager. The future work of this
study involves studying and designing dynamic memory as-
signment logic for the resource manager in order to maximize
its performance goals as well as designing memory-adaptive
versions of other memory-intensive operators such as sort.

REFERENCES

[1] 2023. Amazon Redshift: WLM dynamic memory allo-
cation. https://docs.aws.amazon.com/redshift/latest/
dg/cm - ¢ - wim - dynamic - memory - allocation . html.
Accessed: 2023-11-22.

[2] 2023. Apache AsterixDB. https://asterixdb.apache.org/.
Accessed: 2023-11-22.

[3] 2023. Microsoft SQL Server: Memory management ar-
chitecture guide. https://learn . microsoft.com /en -
us /sql /relational - databases / memory - management -
architecture- guide ? view =sql - server-ver16. Accessed:
2023-11-22.

[4] 2023. Resource Consumption in Postgresql. https://
www . postgresql . org /docs / current /runtime - config -
resource.html. Accessed: 2023-11-22.

[5] Sattam Alsubaiee et al. “AsterixDB: A Scalable, Open
Source BDMS”. In: Proc. VLDB Endow. 7.14 (2014),
pp. 1905-1916. poI: 10.14778/2733085.2733096. URL:
http://www.vldb.org/pvidb/vol7/p1905-alsubaiee.pdf.

[6] Diane L. Davison and Goetz Graefe. “Memory-
Contention Responsive Hash Joins”. In: VLDB’94, Pro-
ceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de
Chile, Chile. Ed. by Jorge B. Bocca, Matthias Jarke, and
Carlo Zaniolo. Morgan Kaufmann, 1994, pp. 379-390.
URL: http://www.vidb.org/conf/1994/P379.PDF.

6285

(7]

(8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

Diane L. Davison and Goetz Graefe. “Memory-
Contention Responsive Hash Joins”. In: Very Large
Data Bases Conference. 1994.

David J. DeWitt et al. “Implementation Techniques for
Main Memory Database Systems”. In: SIGMOD’84,
Proceedings of Annual Meeting, Boston, Massachusetts,
USA, June 18-21, 1984. Ed. by Beatrice Yormark. ACM
Press, 1984, pp. 1-8. pol: 10.1145/602259.602261.
URL: https://doi.org/10.1145/602259.602261.

Laura M. Haas et al. “Seeking the Truth About ad hoc
Join Costs”. In: VLDB J. 6.3 (1997), pp. 241-256. DOI:
10.1007/S007780050043. URL: https://doi.org/10.1007/
s007780050043.

Shiva Jahangiri, Michael J. Carey, and Johann-
Christoph Freytag. “Design Trade-offs for a Robust
Dynamic Hybrid Hash Join”. In: Proc. VLDB Endow.
15.10 (2022), pp. 2257-2269. URL: https://www.vldb.
org/pvldb/vol15/p2257-jahangiri.pdf.

Masaya Nakayama, Masaru Kitsuregawa, and Mikio
Takagi. “Hash-Partitioned Join Method Using Dynamic
Destaging Strategy”. In: Proceedings of the 14th Inter-
national Conference on Very Large Data Bases. VLDB
’88. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1988, pp. 468—-478. 1SBN: 0934613753.
Hwee Hwa Pang, Michael J. Carey, and Miron Livny.
“Partially Preemptible Hash Joins”. In: SIGMOD Rec.
22.2 (1993), pp. 59-68. I1SsN: 0163-5808. pol: 10.1145/
170036.170051. URL: https://doi.org/10.1145/170036.
170051.

HweeHwa Pang, Michael J. Carey, and Miron Livny.
“Partially Preemptive Hash Joins”. In: Proceedings of
the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, DC, USA, May 26-
28, 1993. Ed. by Peter Buneman and Sushil Jajodia.
ACM Press, 1993, pp. 59-68. poI: 10.1145/170035.
170051. URL: https://doi.org/10.1145/170035.170051.

Leonard D. Shapiro. “Join Processing in Database Sys-
tems with Large Main Memories”. In: ACM Trans.
Database Syst. 11.3 (1986), pp. 239-264. poI: 10.1145/
6314.6315. URL: https://doi.org/10.1145/6314.6315.
Hansjorg Zeller and Jim Gray. “An Adaptive Hash
Join Algorithm for Multiuser Environments”. In: 16th
International Conference on Very Large Data Bases,
August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings. Ed. by Dennis MclLeod, Ron Sacks-
Davis, and Hans-J6rg Schek. Morgan Kaufmann, 1990,
pp. 186—-197. URL: http://www.vldb.org/conf/1990/
P186.PDF.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2024 at 22:53:23 UTC from IEEE Xplore. Restrictions apply.

