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Simple Delegated Choice
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Abstract

This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed
principal must consult an informed agent to make a decision. Both the agent and principal have
preferences over the decided-upon action which vary based on the state of the world, and which may
not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions.
When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent
simply chooses upon observing the state. In this case, the principal is said to have delegated the choice
of action to the agent.

We consider a setting where the decision being delegated is a choice of a utility-maximizing action
from a set of several options. We assume the shared portion of the agent’s and principal’s utilities is
drawn from a distribution known to the principal, and that utility misalignment takes the form of a
known bias for or against each action. We provide tight approximation analyses for simple threshold
policies under three increasingly general sets of assumptions. With independently-distributed utilities,
we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the
constant-approximation fails, but we prove a log p/ log log p-approximation, where p is the ratio of the
maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated
values, and complement our upper bounds with hardness results. One special case of our model is
utility-based assortment optimization, for which our results are new.

1 Introduction

This paper considers a model of delegated stochastic probing. A decisionmaker (the principal) must pick
one of n actions, each of which yields randomly distributed reward. Rather than observe rewards directly,
the decisionmaker chooses a subset of the actions to allow an agent to consider. The agent observes the
realized rewards exactly, but may be biased towards certain actions and away from others. The principal’s
goal is to select a set of actions that will maximize their expected reward from the agent’s biased choice.
This template captures a range of economic and managerial dilemmas. As examples, a firm might seek to
replace a piece of expensive equipment, or a national health service must choose which treatment to provide
to a patient who might display a range of symptoms. The equipment operators know their needs better than
managers, and the health service relies on doctors to observe patients. In such arrangements, the agent and
principal tend not to have preferences which are perfectly aligned: the firm must pay for new equipment
(while the operator does not), and specialist doctors might peddle lucrative optional procedures.

The algorithmic problem above can be couched as mechanism design. In a revelation mechanism, the
agent would observe the actions’ rewards and report these to the mechanism, which would choose a possibly
randomized action. The tazation principle states that every deterministic mechanism is equivalent to a
menu: the principal selects the set of allowable actions, and the agent simply chooses their preferred action
upon observing the rewards. Such mechanisms eliminate the need for communication between the agent and
principal, and are therefore so common in practice that they are often taken for granted as a managerial
tool. In economics, delegation refers exactly to this problem of menu design for a better-informed agent,
coined by Holmstrom (1978)).

In the examples above, the alignment of the agent and principals’ preferences is well-structured. The
principal’s main uncertainty in the choice problem is payoff-relevant for both parties: in replacing equipment,
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both the operator and firm want to purchase the right tool for the job. Meanwhile, misalignment of
preferences is predictable — the firm will pay for the new purchase, and prices are likely known in advance.
Under these conditions, a particularly salient family of mechanisms is threshold mechanisms, which restrict
the agent to actions where the misalignment of preferences is not too great. For our firm and operator, this
would take the form of a budget.

Our Contributions. This work gives a model for delegated choice scenarios like those discussed above.
In our model, the agent and principals’ preferences for a particular action are captured by two quantities.
First, each action ¢ has a shared wvalue v;, which is unknown to the principal (but distributed according to
a known prior) but observable to the agent. Second, each action has a commonly-known and fixed bias b;,
which captures the amount the agents’ utility differs from that of the principal. The agent may also have
outside options which the principal cannot prohibit; we extend our model to capture this issue as well.

We study three increasingly general regimes, distinguished by the correlation or independence of the
value distributions and the absence or presence of an outside option. For each, we give computational
hardness, then take a simple-versus-optimal perspective by completely characterizing the performance of
threshold mechanisms. In more detail:

e With independently distributed values and no outside option, we show that threshold mechanisms are
a 3-approximation to the optimal mechanism We show that this problem is NP-hard.

e With independently distributed values and an outside option, threshold mechanisms cannot obtain any
nontrivial approximation in general. However, we show a parametrized log p/ log log p-approximation,
where p is the ratio of largest possible value to OPT. This problem generalizes the previous problem,
and is thus also NP-hard.

e With correlation, we give a log p;liln approximation, where ppi, is the probability of the least likely
value profile. We show this problem is NP-hard to approximate below a constant factor.

We match all three approximation analyses of thresholds with tight examples. A special case of our model is
utility-based assortment optimization, a canonical model from revenue management (discussed in Section .
All our results are new to that literature.

Roadmap In Section [2, we give our formal model. We then survey existing work on delegation in
Section [3] and make specific comparisons to existing work on delegated search and assortment optimization.
Section [4| contains our hardness result and constant-approximation under independence and lays the
groundwork for our parametrized analysis with an outside option in Section[5] Finally, we analyze delegation
with correlated values in Section [Gl

2 Model

We now give our model of delegated choice. The principal seeks to choose from a discrete set €2 of n actions.
The principal’s utility for action 4 is given by a random wvalue v; > 0, which the principal is unable to observe.
To assist in selecting an action, the principal may consult an agent, who observes all actions’ values, and
may communicate with the principal after observation. We decompose the agent’s utility for action ¢ into
its value, shared with the principal, and an unshared bias term. That is, the agent’s utility is given by
u; = v; + b;. Throughout the paper, we assume each bias b; is constant and known to the principal.

We assume the principal has the power to commit ex ante to a mechanism for communicating with the
agent and selecting an action, and study deterministic mechanisms. By the taxation principle, it suffices to
consider mechanisms described by menus over actions. The agent observes all actions’ values and selects their
utility-maximizing action from the menu — which may differ from the principal’s preferred action. Taking
this perspective, we consider the algorithmic problem of selecting a menu A to maximize the principal’s
expected utility when the agent selects their preferred action according to the observed values. We further
assume the existence of an outside option for the agent, denoted action 0, with value vy and bias by. We
assume that regardless of the principal’s choice of A, the agent may always select this action.

Formally, when presented with action set A C  and after observing the vector of values v, denote the
agent’s preferred choice by g(A,v). That is, g(A,v) = argmax,e 4,10} (vi + bi). The principal is faced with

TOur results also hold with an outside option if that action has a fixed value, which we make precise subsequently.
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a set function optimization problem. We assume the principal has a prior distribution F' over the values v,
and must select a menu A for the agent which maximizes their own expected utilityﬂ That is, the principal
solves:

maidgnéize f(A) = /va(A,V) dF(v).

The model above captures applications such those described in Section Note that we allow the
agent’s utility to be negative, and that the model is invariant to additive shifts in the agent’s bias for every
action. We will study a particularly simple set of mechanisms, namely threshold mechanisms. The threshold
mechanism with bias t is given by A; = {i|b; < t}. Note that since the number of threshold policies is at
most the number of actions, the principal may compute an optimal threshold efficiently. We analyze the
approximation ratio between the best threshold menu and the optimal menu overall.

ExXaMPLE 2.1. The equipment purchase example described in the introduction can be formulated as follows.
The firm (principal) needs to buy a piece of equipment, which will be used by a specialist (agent) with
knowledge of the quality of different brands. Each brand ¢ has quality q;, and price p;. Qualities are unknown
to the principal, and prices are known. We may write values as v; = q; — p; and biases b; = p;. Note that
the values are random, while biases are known, as required. A threshold policy restricts to actions with bias
—and hence price— at most t.

EXAMPLE 2.2. The health services example from the introduction may be heavily stylized as follows. A
national health service (principal) needs to select a treatment for a patient with the help of a doctor (agent)
who has expertise and observes the patient’s condition. Fach potential treatment i has cost ¢; (known to the
doctor and the health service), and given the patient’s condition an efficacy e; (known to the doctor but not
the health service). The health service seeks to maximize the patient’s health less costs, uf =e; —c¢;. The
doctor is paid a portion of the costs, and shares some concern for the patient’s health. For some a, 8 > 0,
we may therefore write u* = ae; + Be;. To cast this in our model, note that scaling agent utilities by 1/a
will not change their decision, so we may normalize « = 1. After normalization, we have v; = e; — ¢; and
bi = (B4 1)¢;. As required, the value v; depends on e; and is hence unknown to the principal, and the bias
b; depends only on c;, and is hence known to the principal. Further note that a threshold set corresponds to
a price cap, restricting the doctor away from the highest-cost procedures.

3 Related Work

Simple Versus Optimal Mechanisms. A primary contribution of computer science to the study of
mechanism design is the use of approximation to explain the prevalence of simple mechanisms. For example,
Hartline and Roughgarden| (2009) prove that the simple auctions often observed in practice can obtain a
constant factor of the sometimes-complicated, rarely-used optimal mechanisms. Hartline| (2013)) surveys
similar results for auctions. Recently, [Diitting et al. (2019]) and (Castiglioni et al.| (2021]) make similar forays
into contract theory, characterizing the power of simple linear contracts. Our work initiates the study of
delegated choice through a similar lens.

Real-Valued Delegation. Delegated decisionmaking is a canonical problem in microeconomic theory
and managerial science. Much of the literature subsequent to Holmstrom| (1978) has focused on the special
case where the state and action space are continuous and real-valued, and where the preferences of both the
agent and principal are single-peaked, but differ by a known bias. Notable examples include [Melumad and
Shibanol (1991)), Martimort and Semenov| (2006)), |Alonso and Matouschek (2008), and | Amador and Bagwell
(2010), who characterize the structure of optimal mechanisms under increasingly general variants of the
single-peaked model. The main conclusions from these papers are necessary and sufficient conditions for the
optimal delegation set to be an interval on the real line. Our work makes a similar known bias assumption,
but in a model more amenable to algorithmic analysis. We obtain similar conclusions: the principal can
secure high utility by restricting the agent away from extreme actions.

Additional work on similar models includes Kovac and Mylovanov (2009), who study the gap in
performance between randomized and deterministic mechanisms, and |[Ambrus and Egorov (2017)), who

2We assume the agent breaks ties in the principal’s favor, then lexicographically.
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study a principal who can add additional nonmonetary costs to incentivize more preferred decisions. [Aghion
and Tirole| (1997) and Szalay| (2005|) consider models in which one or more of the principal and the agent
may expend effort to observe a signal about the state. For multiple decisions, Frankel (2014) considers
maxmin robust delegation and |Kleiner| (2023)) studies Bayesian optimal mechanisms. With the exception
of [Armstrong and Vickers| (2010) and followup works, though, the economics literature has focused on the
real-valued model for decisions. Our work considers the mathematically incomparable but similarly common
setting of discrete choice. In the latter setting, the structure of the problem renders exact characterization
of optimal mechanisms difficult, and motivates the use of a simple-versus-optimal approach.

Delegated Search. The model of delegated project choice from |[Armstrong and Vickers (2010) is
perhaps closest to ours. The authors consider an agent who chooses between n discrete actions. The
principal is able to verify the utilities provided by the selected action, and restrict the agent’s choice based
on this information. Subsequent followups by [Kleinberg and Kleinberg| (2018)), [Bechtel and Dughmi (2021)),
and [Bechtel et al.| (2022)) note a strong connection between the |Armstrong and Vickers (2010) model and
well-studied online stochastic optimization problems. They upperbound the delegation gap: they show that
even when the agent must pay a search cost to discover each action’s utility, the principal can obtain utility
within a constant factor of the first-best solution, where they solve the search problem themselves. More
recently, Braun et al.| (2022) give a version where the agent searches online, and make similar comparisons
to first-best, and |Hajiaghayi et al.| (2023)) study a multi-agent version of the model.

Our model differs from the delegated search literature in two notable ways. First is the absence of search.
Our agent can perfectly observe the values of all actions. More significantly, our principal is unable to verify
the utilities provided by the agent’s selected action; they may only rule actions in or out completely. In
our model, the first-best solution is E[max; v;]. The following example shows that no delegation set may
approximate the first-best to a factor better than n. This contrasts with the constant-approximation results
from the work cited above.

ExaMPLE 3.1. Consider an instance with n independently-distributed actions. Action i has a value v; which
is 1 — € with probability 1/n and 0 otherwise. Each action i has bias b; = i. The first-best expected utility is
constant, while in any delegation set, the agent will always pick the highest-indezed action, yielding expected
utility (1 — ¢€)/n.

Stochastic Probing. There is a by now extensive literature on stochastic probing beyond the
economically-inspired settings of this paper and those discussed above. Rather than survey the literature,
we offer a few key recent papers, and refer the reader to these for deeper references: |Chen et al. (2016));
Goel et al. (2006); [Mehta et al.| (2020)); |Segev and Singla/ (2021) Despite similarity of motivation, we employ
techniques that largely differ from this literature.

Assortment Optimization. Our model captures special cases of the well-studied assortment optimiza-
tion problem. In assortment optimization, a seller must decide which among a set of fixed-price items to
offer. A variety of models are common for the buyer’s purchase choice, including nested logit models (Davis
et al., [2014; |Li et al.| 2015) and Markov chain-based choice (Feldman and Topaloglu, 2017, along with
equivalent models based on random buyer utility (Berbeglia, |2016; |Aouad et al.| [2018] 2023, which includes
the especially prevalent multinomial logit (MNL) model as a special case. Our model subsumes assortment
optimization with utility-based choice. To see this, consider n items, where the buyer utility w; for each item
¢ is random, and the revenue r; for item 4 is known to the seller. Taking v; = r; + ew; and b; = —(1 + €)r;
for sufficiently small € > 0 yields an equivalent delegation problem. Under this transformation, an outside
option with vy = 0 corresponds to the no-buy option, and the option to buy elsewhere with positive utility
can be captured with a randomized outside option.

Threshold mechanisms in our model correspond to revenue-ordered assortments, a well-studied class of
solutions for assortment optimization. A series of papers analyze the approximation ratio of revenue-ordered
assortments under increasingly general models: (Talluri and Van Ryzin (2004) show that revenue-ordered
assortments are optimal for several choice models including MNL; Rusmevichientong et al. (2014]) analyze
revenue-ordered assortments for mixtures of MNL models, and further prove NP-hardness of computing the
optimal assortment; [Berbeglia and Joret (2020]) give parametrized analyses under a general choice model.
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Our approximation analyses for independently-distributed values with an random outside option (Sections [5)
apply to utility-based assortment optimization, and are new to this literature. Our logarithmic approximation
for correlated values (Section @ resembles that of Berbeglia and Joret (2020); it is less finely parametrized,
but extends to more general forms of delegation.

Other work on computational hardness or approximation in assortment optimization includes|Désir et al.
(2020), who hardness of approximation under a knapsack-constrained version of the problem, and Immorlica
et al. (2018]), who study a version where the buyer has combinatorial preferences over bundles.

4 Threshold Delegation with Independent Values

We now consider the simplest case of the model, where the principal’s prior F' over values is a product
distribution, and hence, actions’ values are independent. We further assume that the outside option’s value,
Vg, is deterministic, which subsumes the no-outside-option case, as we could have by = —oo. We present our
approximation result first, and defer hardness to Section

THEOREM 4.1. Under independent values and a deterministic outside option, there always exists a threshold
mechanism with expected utility that is a 3-approrimation to the optimal deterministic mechanism.

Theorem holds regardless of choice of the outside option’s fixed value and bias. Before giving the
details of the proof, we derive two technical results which will facilitate analysis. In Section for any
delegation set, we give a decomposition of the principal’s utility into two quantities, one aligned with the
agent’s utility and one not. Then, in Section we use independence obtain a lower bound on the value
from threshold sets which will prove useful for both this and the next section’s analyses.

4.1 Utility Decomposition The principal’s task is to balance two sources of utility. On the one hand,
when some action has very high value, preferences are aligned: the principal benefits from giving the agent
the flexibility to select this action. On the other hand, when actions have smaller values, the principal
must control misalignment: they may benefit from restricting the agent away from actions with higher bias,
inducing the agent to take actions that provide better value. We now decompose the principal’s utility for
the optimal delegation set into two quantities, SUR and BDIF, which roughly correspond to the value from
each of these two cases.

To make the decomposition precise, note that for the optimal delegation set A*, there are two lower
bounds imposed on the agent utility from any selection: first, the chosen action must be preferred to the
outside option, action 0, which gives utility at least by. Second, the agent’s utility is at least the bias of the
most-biased action in A*. Denote the better of these bounds by u. We can therefore think of the contribution
of any action i € A* as decomposing into a bias difference u — b; and a surplus v; — (w — b;). Intuitively, the
surplus captures the principal’s utility from giving the agent latitude to pick high-valued actions, and the
bias difference captures the misaligned portion of the principal’s utility. Formally, the decomposition is the
following.

LEMMA 4.1. Let A* denote the optimal delegation set, and let u = max{b; |1 € A*U{0}}. Define SUR and
BDIF as follows:

SUR = / Vg(A*,v) — (y — bg(A*,V)) dF(V)
BDiIr = /g — bg(A*,V) dF(V)

Then we can write f(A*) = SUR + BDIF.

To verify the intuition that SUR captures the aligned portion of the principal’s utility, note that choosing
the smallest threshold set containing all of A* U {0} secures SUR for the principal. Formally:

LEMMA 4.2. Let A, = {i|b; < u}. Then f(A,) > SUR.
Proof. We will argue pointwise for each value profile v. The action chosen by the agent under A, is g(Ay, V),

which has by(4, v) < u. Since g(Ay, v) is the agent’s favorite, we have vg(a, v) +0g(a,.v) = Vg(a+v) +Dg(a* v)-
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Hence,

Vg(A,v) = Vg(arv) + bgasv) = bg(a,,v)

> Vg(arv) = (U= bg(arv))-
Taking expectation over v yields the lemma. O

Lemma implies that the main difficulty for obtaining approximately-optimal delegation sets is
managing the misaligned portion of the principal’s utility. Section gives this analysis for the case with
vg fixed, yielding a 3-approximation. Note Lemmas and hold even when the outside option’s value
vg is randomized. We will therefore make further use of them in our analysis of that case in Section

4.2 Lower Bounds via Partial Derandomization To compare the performance of a threshold set A;
to the optimal set A*, we will show that threshold sets can retain sufficient value from A; N A* without
introducing actions in A; \ A* which overly distort the agent’s choices. Independence allows us to summarize
the interference of A;\ A* with a single deterministic action. This will greatly simplify subsequent analyses.
This section focuses on the case of fixed outside options, but we state our lemma for possibly randomized
outside options. We will reuse the result in Section

LEMMA 4.3. Assume values are independently distributed. Then for any threshold set A;, there exists a
single action a(t) with bias byyy =t and deterministic value vq(y) such that f(As) > f(A; N A* U {a(t)}).

Note that a(t) need not be an action from the original delegation instance. The proof will follow from
picking the worst realization of actions in A; \ A* for the principal. Note further that a(t) may differ for
every threshold ¢: hence our lower bounds correspond not to one derandomized delegation instance, but to
one per threshold.

Proof. For brevity, denote A; \ A* by B;. Actions in B; may have randomized values. The principal’s
expected utility f(A;) can be computed by first realizing v; for all i € By, then computing the principal’s
expected utility over the values of actions in Gy = A; N A* U{0}. Hence, there must exist a joint realization
of values ©; for each i € B; for which this latter expectation is at most f(A;). Let Bt denote a new set of
actions consisting of the actions i € B, with v; fixed as 9;. We have f(G;U By) > f(Gy U B,). Any actions
which are not selected in any realization of the values for G; may be removed from Bt without consequence.
However, since values are fixed for each i € Bt, the agent con31stent1y prefers some particular action ¢ € B,
over the others in B;. Hence, we may remove all actions but i from B, without changing the principal’s
utility.

We finally use this remaining action ¢ to construct a(t). Let v; and b; denote the value and bias of i
Define a(t) to have bias ¢ and value v; — (t — b;). Note that v; +b; = v,(s) + bg(r). Hence, the agent will
choose a(t) from Gy U {a(t)} if and only if they would choose 7 from G, U {i}. Moreover, Vq(t) = v;. Hence,

J(Grud{a(®)}) < f(GU{i}) < f(A). =

4.3 Proof of Theorem We now show how to obtain a 3-approximation to the optimal delegation
utility using threshold mechanisms, assuming vg is fixed. Lemma decomposes the optimal utility into
an aligned portion, SUR, and a misaligned portion, BDIF. Furthermore, Lemma states that SUR can
be 1l-approximated using a threshold set. Hence, it will suffice to obtain a 2-approximation to BDIF using
thresholds. To do so, we use the derandomization of Lemma to derive an even stronger lower bound
which holds when vg is fixed. We then select a threshold for which this lower bound is guaranteed to be
large.

LEMMA 4.4. For any threshold set A;:

£z miin (5=, [ (0= byae gl 4",¥) € 4, U {0)]dF ().

To understand our lower bound, note two pitfalls a threshold set could face. First, a too-expansive threshold
could include high-bias actions which attract the agent while providing little value. Second, a too-restrictive
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threshold could leave the agent with too few options. Lemma |4.4]states that these are the only two problems:
if a threshold ¢ is sufficiently low and includes enough of the actions providing BDIF for A*, t will perform
well.

Proof of Lemmal4.4. We argue with respect to the derandomized action a(t). For brevity, write 4, =
A\ A* U {a(t)}. Depending on Va(t) + ba(r), we have two cases, each of which produces a lower bound on

f(At)7

o Case 1: vy + by < u. In this case, any time g(A*,v) € A; U {0}, we have g(A*,v) = g(4;,V).
Since every choice from A* gives the agent utility at least u, we have vy4, v)+0by(a,v) = u, and hence
Vg(A,v) = U —bga, v)- Integrating over all v yields

f(A) = f(4) = /(u— by(a-w)l[g(A”, v) € A, U{0} dF(v).

\4

o Case 2: vg(1) + ba(t)y = u. Then regardless of v, we have vy(4, v) + by(4, v) = u. Since the agent breaks
ties in the principal’s favor, we also have that g(4,,v) # 0, so by(a, v) <t. We may conclude that for
all v, vg(4,v) = u—bya,v) = u—t, and hence

f(At) Zf(ét) Zg—t.

Hence the lemma holds in both cases. O

The lower bound in Lemma is a minimum of two terms. We will now study the threshold
t = u — BDI1r/2, and observe that both terms in the minimum are at least BD1F/2. In particular, we
can lower bound the second term as follows:

LEMMA 4.5. Let t = u — BD1r/2. Then we have:
/ (i~ bya-)Ilg(A*,v) € A; U{0}]dF(v) > BDIr/2.

Proof. Let & denote the event that g(A*,v) € A; U {0}. The following sequence of inequalities, explained
below, implies the lemma:

BDiIr = /g — bg(A*,v) dF(V)

= /(g — bg(A*,v))H[gg] dF(V) + /(g — bg(A*,v))]I[g} dF(V)

v

< / (u— by(ax v)[E] dF (V) + (u— 1)
_ / (1w — by(a ) [Es) dF(v) — BDIF/2,

The first equality is the definition of BDIF. The third equality follows from the fact that under &,
by(a=v) > t, and from the fact that this occurs with probability at most 1. The last equality follows
from the definition of . O

Proof of Theorem[{.1. By combining Lemma with the definition of £ and Lemma we have:
£A) 2 min (w9, [ (= byae ) Ho(A",¥) € AU {0} dF(¥))

= min (3% /v (1~ by Lg(A" V) € A5 U {0} dF(v))

: BDir BDir) _ BDIF
me(Tv 2 )* 5 -

The theorem now follows from noting that f(A*) = SUR 4+ BDIF < f(A4,) + 2f(4;). O
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The proof of Theorem used independence once, in the derandomization step of Lemma
Nevertheless, we show in Section[6] that independence is critical to guaranteeing the performance of threshold
mechanisms by giving a super-constant lower bound in its absence. With independence, the following example
matches the upper bound exactly:

EXAMPLE 4.1. Our example will have five actions, with biases and value distributions given below. The
outside option will have by = —oo, and therefore can be ignored. Take two small numbers, & and €, with §
much smaller than e. Actions will be as follows:

e by =0. vy is 1 4+ 2§ with probability €, and O otherwise.
e br=1—€—9. v9 =40 +e.

e b3=1—¢€. v3=¢€¢+9.

o by=1-0. vy =59.

e by = 1. vs is 1 with probability €, and 0 otherwise.

We may analyze the instance neglecting § terms, which only serve to break ties for the agent. The optimal
delegation set is {1,3,5}, with principal utility (1 — (1 —€)?) + (1 — €)2, where the first term comes from the
event that either actions 1 or b realize their high values (in which case they are chosen), and the second term
comes from the event that 1 and 5 are low-valued, in which case the agent prefers action 3. As € — 0, the
optimal value goes to 0 as ~ 3e. Meanwhile, no threshold obtains expected value better than €. This yields
an approximation ratio of 3 in the limit.

4.4 Computational Hardness We conclude the section by discussing the complexity of the delegation
problem with independent values. For the discrete version of the problem, where every action i is specified
by a bias b; and a list of realizations ((v},p}),..., (v?, pl)), we prove:

THEOREM 4.2. Delegation with independent values is NP-complete, even with no outside option.

The challenge in proving NP-hardness is managing the rigid structure of the joint value distribution
imposed by independence. We adopt a similar strategy to |Chen et al. (2014), who show that pricing to a
unit-demand buyer is hard. We reduce from INTEGER PARTITION: given integers cy,...,cy,, the goal is to
find a subset S C [n] such that >, qc; = 3 > i, ¢;. We associate each integer ¢; with an action i. Each
such action impacts the principal’s utility via two low-probability realizations: a bad realization which harms
the principal’s utility and a good realization which improves the principal’s utility. These low probabilities
are tuned in such a way that only first- and second-order terms in the probability calculation are relevant.
Furthermore, the tuning is such that the bad events scale linearly with the ¢;s, while the good events scale in
a concave way, with the principal’s utility being maximized when actions taken correspond to an even split
of the integers. Full details can be found in Appendix [A"T. Note that Theorem also implies hardness of
the model in the next section, with a random outside option.

5 Randomized Outside Options

In Section |4} we showed that with a fixed (or non-existent) outside option, a simple delegation set secures a
constant fraction of the utility from the optimal delegation set. We now consider the case where the outside
option’s value is randomized. This may be more realistic in scenarios such as assortment optimization,
where the agent’s outside option is taking an action (i.e. buying a good) somewhere else. In this regime, we
again give tight bounds. In Section we show that no nontrivial multiplicative approximation is possible
with threshold sets: there are examples where thresholds give no better than an {(n)-approximation, which
can be matched trivially. However, in Section we show that such lower bound examples are necessarily
unnatural. In particular, we parametrize our analysis by the ratio p = vpax/OPT, where OPT is the
optimal principal utility and vyax the highest value in any action’s support. We prove that the worst-case
approximation is O(log p/loglog p): hence, whenever thresholds perform poorly, it is because the optimal
solution relies on exponentially large, exponentially rare values.

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

576



Downloaded 10/14/24 to 208.66.211.137 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

5.1 Unparametrized Analysis: Impossibility This section gives an unparametrized analysis of
threshold delegation with a randomized outside option. We show that it is not possible to guarantee a
nontrivial approximation factor which holds across all instances.

Our constant-approximation in Section {4 relied on our ability to separate the optimal utility into
two parts, BDIF and SUR. Approximating the bias difference BDIF was the crux of the analysis. The
following example shows that with a random outside option value vg, this analysis — and in particular the
approximation of BDIF — fails. We will choose our distribution over vy to streamline exposition, but the
example that follows could be adjusted so that the distribution over vy satisfies nearly any desired regularity
condition.

ExXaMPLE 5.1. Our example will feature two sets of actions: good actions, which are taken by the optimal
delegation set, and bad actions, which are not. We will index the actions so that the ith good action is g(i),
and the bad action between good actions g(i — 1) and g(i) is b(z). Fori € {1,...,n} g(i) will have:

o bias n™ "t —npni:

e value n" ¢ + ie with probability 1/n, and 0 otherwise
The bad actions will be indexed by b(i) for i € {2,...,n}. Bad action b(i) will have

o bias n" ! —nnTi,

e value N+ (i — 1)e + 6, for 6 < e.

The outside option will have bias ™~ and value vy distributed according to a discrete distribution. We
will set Prlvg = ¢/2] = n= =Y. For i > 1, we will choose probability mass function Prlvy = ie — ¢/2] =
n~ (=) ==+ " Note that we have picked these probabilities so that Prlvy < ie] = n= ("=, The values
of all actions described above are independent.

A solution to the delegation instance we just described is to take only good actions. The probability that
at least one good action takes its high value is 1 — (1 —1/n)™ > 1—1/e. Assume this event has occurred, and
that the agent’s preferred good action is g(i). Then g(i) is preferred to the outside option with probability
n~ ("= Hence, the principal’s expected utility from choosing only good actions is at least:

F{g(), - gm)}) > (1= L/eln™ "D ("~ 4 ei) > 1 1/e,

Now consider a threshold set A,. It is without loss of generality to consider t = n"~' —n™~J for some
j, which implies that the highest-bias actions in Ay are g(j) and b(j). For any good action g(i), with i < j,
the agent’s utility for g(i) on a high-valued realization is n™~! +ie < n"~!' + (j — 1)e +§. Hence, the agent
ignores all actions other than g(j), b(j), and the outside option. If g(j) draws its high value, the principal
gets utility n" =9 + je wtility if and only if g(j) survives the outside option, which happens with probability
n=("=9 _ Otherwise, the agent looks to action b(j), and takes it over the outside option with probability
n~ =3t Ignoring value from the outside option, which goes to 0 as € — 0, we can account for the utility
from A; as follows:

1

f(A) = 1n= =D (T 4 je) + (1 — %)(n"‘j (G —1)e+ 6)n-(n=ith),

n

~14(1-1/n)d,

n

where the latter approzimation holds for € and 0 sufficiently small. This implies that every threshold incurs
a loss which is Q(n).

An upper bound of n for threshold mechanisms is trivial, by the following lemma. Hence, up to a
constant, the lower bound in Example [5.1]is tight.

LEMMA 5.1. For any set A and i € AU{0}, let A* = [ v;I[g(A,v) = i]dv denote the contribution to f(A)
from action i. Then f(Ap,) > A"

3Tt is equivalent for this example to use distribution n™~% + ie with probability 1/n, and n?~% — € otherwise. Under
this distribution, the example becomes an instance of assortment optimization, as described in Section E This makes our
parametrized analysis in Section tight even for that special case.
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Proof. Consider any v where g(A4, v) = 4. The action chosen by the agent under Ay, is g(Ayp,,v), which has
bg(Abi ~v) < b;. Since g(Ay,, v) is the agent’s favorite, we have Vg( Ay, ,v) +bg(Abi7V) > Vg(aw) +bg(av) = Vit b
Hence, vg(a,. v) = vi +b; — by, v) = v;- Taking expectation over v, we obtain:

f(Abb) = / /Ug(Abi,v) dF(V) > /vg(Abi V) H[g(A’V) = 7’] dF(V) > / Vg H[g(A,V) = Z] dF(V)7

v

where the first inequality follows from the nonnegativity of v;. O

An n-approximation then follows from noting that for any set A, f(A4) = >, A"

COROLLARY 5.1. With independent values (and possibly randomized outside option), the best threshold is
an n-approximation to the optimal delegation set.

5.2 Parametrized Approximation In the previous section, we gave an example where no threshold set
was better than an Q(n)-approximation. However, this example was extreme, in the sense that while the
optimal solution obtained O(1) utility, some actions had values which were as large as n"~!. We now show
that this is no coincidence: any example where threshold mechanisms perform poorly must be unnatural in
this way.

THEOREM 5.1. Let p = Umax/OPT, where OPT is the optimal principal utility and vmax the highest value
in any action’s support. Then with independent values (and a possibly randomized outside option), the best
threshold is a O(log p/ loglog p)-approximation to OPT.

Theorem is of particular interest for the application of assortment optimization. For an instance of
the latter problem, each item ¢ yields revenue p; for the seller, and value w; for the buyer. Framed as a
delegation problem, we have v; = p; + ew;, for sufficiently small e. Hence, Theorem implies that the
prices p; must be extreme whenever revenue-ordered assortments perform poorly. Another consequence of
Theorem is a bicriteria approximation when values lie in [0, 1]: either some threshold obtains a small
multiplicative approximation, or it is trivial to obtain an additive approximation.

Proof of Theorem[5.1. We will argue the contrapositive. That is, we will argue with respect to some integer
«a > 4, and assume that no threshold obtains a S-approximation for any 5 < 16a. Under this assumption,
we show that there must be an action with value at least (o —2)*~*OPT/8a with positive probability. The
analysis will roughly proceed in three steps. First, we partition the optimal solution into « subsets with
roughly equal contribution to OPT. We then consider the thresholds based on each of these subsets, and
compare their utility to that from the sets themselves; by assumption, no such threshold will outperform
its respective subset. Finally, we combine the resulting inequalities to show that the only way all can
hold simultaneously is if the bias of one of these thresholds is extreme. This will imply the existence of
a comparably high value. Throughout, we will make use of our decomposition and derandomization from

Lemmas [4.1] and respectively.

Decomposing OPT Before defining our thresholds, we note that when no threshold approximates
OPT well, we may draw several simplifying conclusions about the structure of OPT. Let A* be an optimal
subset of actions, and assume every action in A* is selected with positive probability. Following Lemma [4.1
write OPT = f(A*) = SUR + BD1F, and write u = max{b; |i € A* U {0}}. By Lemma it must be that
SUR < OPT/a, or else the grand threshold A, would be an a-approximation, contradicting the nonexistence
of any 8 < 16ca-approximation. We may therefore focus our analysis on BDIF = fv U—bg(ax vy dF(v). It must
again be that no threshold obtains better than an 8a-approximation to BDIF > (1 —1/a)OPT > OPT/2.

Next, note that no one action can comprise a large fraction of BDIF. More precisely, let

OPT' = / vl[g(A*,v) =i dF(v)

BDIF! = /(y —b)I[g(A*,v) = i]dF(v)
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denote the contribution of action i« to OPT and BDIF, respectively. Since g(A*,v) = i only if
v; > (u—b;), we must have OPT! > BD1F'. Lemma implies that we may obtain OPT! from a
threshold set for any i € A* U {0}. We must therefore have that BDIF’ < BDIF/8a, and therefore
that BDIr — BD1r’ > (1 — 1/8a)BDir > BDiF/2. The remainder of the proof will focus on approxi-
mating BDIF — BDIF?, assuming no approximation better than 4« is possible. Lemma implies that
BDir’ < (BD1r — BD1r?) /4a for all i € A*.

Constructing Thresholds We now obtain a sequence of candidate thresholds by partitioning the
actions in A* based on their contribution to BDIF — BDIr". Let m = |A*|, and relabel the actions in
A* as 1,...,m, with b; < b;yq for all ¢ € {1,...,m — 1}. Actions not in A* will be indexed m +1,...,n
(with 0 keeping its label). We will partition A* greedily to produce « subsets of roughly equal contri-
bution to BDIF — BDIFY. More precisely, define the first breakpoint between subsets as ko = 0, and for
j € {1,...,a}, define subsequent breakpoints k; recursively as the smallest k¥ € {k;_1 + 1,...,m} such
that ZZ 1BDIF > j(BDir — BD1r")/a. Define the partition as A*(j) = {kj_1 + 1,...,k;} for all j.
We can upper- and lowerbound the distortion of each bin: since BD1r* < (BDIF — BDIF )/4a for all 4,
it must be that A*(j) is nonempty for j € {1,...,a}. Further define BDIF(j) = 3, 4., BDIF". We
must also have BDIF(j) > (BDIF — BDIFO)/2a for all j, and hence no threshold can attain better than a

2-approximation to BDIF(j) for any j. We will define candidate thresholds based on each bin: let ¢; = by,
(with to = minsc - b;), and define the threshold sets A; = {i|b; < b, } for all j.

Lower Bounding Threshold Utilities To lower bound the principal utility from A;, we apply
Lemma and consider f(A; N A* U {a(t;)}) for some suitably constructed interfering action a(t;) with
bias t;. We write A; = A; N A* U{a(t;)}. Note that the interfering action a(t;) must give the agent high
utility, or else A; would perform as well as its respective bin A* (7). Formally, let £; be the event that the
agent’s preferred action from A* is in A*(j). (Note that the agent may still ultimately choose action 0 under
either & or £;, and that > Pr[€;] = 1.) I va(;) + bae;) < u, then the threshold performance f(4;) can be
written as

/Ug A v) dF( ) /’Uq(A v [SJ] dF(V) = / Ug(A*7v)H[5j] dF(V) Z /(@— bg(A*7v))H[5j] dF(V)

The righthand expression is the bias difference conditioned on &;, which is at least BDIF(j). This contradicts
our assumption that no threshold approximates BDIF(j) to a factor better than 2.
We will now lowerbound f(A;) by decomposing it into two terms, depending on the event &;:

(51) f(Aj) = / vg(éjvv) dF(V) = / Ug(Aj,v)H[gj] dF(V) + / UQ(AJ,V)H[ j} dF(V)

To lowerbound the first term the right of 1D define the event 5; to be the event that g(Aj7 v) # 0, and
& to be the event that the agent’s favorite action in A* (7) is also their favorite in A;. In £, the agent
may still ultimately take the outside option. We may now write:

/ vgta, ) IE] dF (v) = / vga, 1€ NEF NETAF () = / (1~ by(ae y)TIE; N EF N EF]AF(v),

v

where the inequality comes from the fact that under &£; N 5;' N &5, the agent chooses the same thing from
A* as they would from A;, and hence that action gives the agent utility at least u.

To lowerbound the second term on the right of |i let Ejg be the event that the agent prefers a(t;) to
the outside option, i.e. vo + by < vVy(t;) + ba(t;)- We may then lowerbound the second term as:

[ v, M N EF1AF) 2 [ (0= 1) N EFTAF() 2 (w1 PHEIPHES)

The first inequality follows from the fact that the action chosen in A; yields utility at least v,(¢,) +¢; and has
bias at most ;. The second inequality follows from the facts that 5j§ < 5;“ and EJ-S and &; are independent.
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Taking the two terms together, we have the lower bound

(5.2) f(4;) > / (1 — byae w))I[E; N EF N EF]AF(V) + (u — 15 Pr(E; PrES].

Upper Bounding BDif(j) Next, we upperbound the contribution of A*(j) to BDIr. We will split
BDIF(j) based on the event £~ that the agent’s favorite action is the same between A*(j) and A;. Let £*
denote the event that g(A*,v) # 0. We have:

BDIF(j) = / (1 — by~ w)T[E; N ETAF (V)

v

(5.3) = /(g — by(a- )& NE* NET]AF(v) + /(g — by(a- »)I[E; NE* NE; |dF(v).

v

We can now upperbound each term in (5.3), starting by rewriting the leftmost. In the intersection
event & N &, the favorite non-0 action from A* and A; are the same. Hence conditioned on this event,

g(A;,v) =g(A*,v) and £ = E;r. Therefore:

/ (1 — bya- w))IIE; N E* NET]dF(v) = / (1w — bya- w))I[E; N EF NEF]AF(v).

v v

To upperbound the second term in , note first that in the event £ N E*, the chosen action’s bias is at
least ¢;_1 and hence the bias difference is at most u — ¢;_;. Second, note that conditioned on &; N ¢E; , it
must be that the agent prefers a(t;) to all actions in A*(j). Hence, conditioned on &; N g?, it must be that
any time the agent prefers an action in A*(j) to the outside option, it must be that they also prefer a(t;).
Hence, £ NE*NE; C & NESNE, . Finally, note that & and £ are independent. These facts imply:

/ (1w — byoae ))& N E* NES]AF(V) < (1 — tj_1) / Il€; N € NE; ] dF(v)

v

A

(w—t;_1) / 1€, N ES NE; | dF(v)

IN

(w—tj—1)Pr[&; NEF]
= (u— t;—1)Pr[&]Pr[E5].

Combining the two terms, we have:
(54) BDIF(]) < /(g — bg(A*’v))H[gj N 5;'_ N 5]:] dF(V) + (Q - tj_l)PI‘[gj]PI‘[gf].

Lowerbounding Bias Differences Inequality 1) lowerbounds f (Aj) in terms of ¢;, and inequality
(5.4) upperbounds BDIF(j) in terms of ¢;_;. Since no threshold is better than a 2-approximation to BDIF(j),

e &;: agent’s favorite non-0 action in A* is in A*(j).
o £ g(A,v) £0.

J

e £ the agent’s favorite action in A*(j) is also their favorite in A;.
o &5 vg + by < Va(t;) +ba(t].).

o & g(A*,v) #£0

<

Figure 1: List of events for proof of Theorem [5.1
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it must hold that our upper bound on BDIF(j) exceeds our lower bound on f(A;). That is:
[ = byae ) 17 QTP + (1) PafE el
< /(g —byae ))& NEF N EF]AF(V) + (u— t;1)PrlE; PrES)

We may rearrange this as
u— tj_l 1-— PI‘[EJ']

>
u—t; —  Prlg]
Taking the product over all j < a — 1 and canceling yields:

u—to — ]
u—tal 1;[ '

Note that the righthand side is a convex, symmetric function of the Pr[&;]s. Moreover, we have
Z?;ll Pr[€;] < 375, Pr[§;] = 1. Hence, minimizing the righthand side as a function of the Pr[€;]s yields
a minimum at Pr[&;] = 1/(a — 1) for all j, and hence (u — t9)/(u — ta—1) > (o — 2)*~ 1. Note also that
BDI1F(a) > (BDir — BD1r’)/2a. Since BDIF(a) < (4 — to_1)Pr[€4] < (u—tq_1), we obtain:

-9 a—1
u—to> =D o BDIY).
2c
Since every action in A* is selected with positive probability, and since tg = min;c 4+ b;, it must be that some
action in A* has value at least u — to with positive probability. Since BDIF — BD1r" > BDir/2 > OPT/4,
we obtain the desired lower bound on vpyax/OPT.
O

6 Threshold Delegation with Correlated Values

In the previous sections, we showed that under independently-distributed values, simple threshold rules
obtain a close approximation the optimal principal utility. We now allow arbitrarily correlated values
and show that the situation worsens considerably. Assuming the value distribution is discrete, prove
tight a approximation guarantee for the principal’s best threshold policy, showing that it is a ©(log p;liln)-
approximation, where p,;, denotes the lowest probability mass of any value profile realization. Hence, absent
independence, threshold policies still perform well under low levels of uncertainty, but their performance
gradually degrades as the uncertainty grows more extreme. We state our results formally below, starting
with our upper bound.

THEOREM 6.1. There always exists a threshold policy which is a 4log(p;ﬁn)—appmximation where Pmin 1S
the mass of the least likely value profile.

Proof. Let OPT be the optimal delegation set, and let ¢y be the maximum bias across actions in OPT'. Let
B be the random variable that corresponds to the bias of the action chosen in OPT. Let t; be the bias
threshold such that Pr[B € [t1,t]] < 3 and Pr[B € [0,¢1]] > 2. Let OPT([t1,t0]) be the principal utility
generated conditioned on B € [ty, to]. We claim that the principal utility generated by using a best threshold
out A, or Ay, achieves principal utility at least 2OPT([t1, to]).

First consider the threshold A;,. Consider any realization where OPT picks an action with bias at least
to. Let v,b be the value and bias of the action chosen by OPT and let v’,b’ be the value and bias of the

action chosen by A, respectively. Since the action chosen by OPT is available in A, it must be that

V4V >v+besv—v <V —0b.

Note that from our assumptions b’ < ¢ty and b > ¢;, therefore the pointwise loss of Ay, compared to OPT is
at most tp — ¢; in this event. As a result we can lower bound the principal utility of A, as follows:

f(Ay,) > Pr[B € [t1, to][(OPT ([t1,t0]) — to +t1) > (OPT([tl,to]) —to+t1).
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Second, consider the threshold A;,. Every time OPT chooses an action with bias less than or equal to
t; this action is also available to A;,. Note that if such action is chosen its agent utility must be at least
to otherwise the action with the maximum bias would have been chosen instead. The action chosen in Ay,
therefore must have at least agent utility tyg. Since the bias is at most ¢; this means that the principal utility
from that action is at least t; — t;. We conclude that

f(Atl) > (t() — tl)PI"[B S [Oﬂfl] > (to — tl).

DN =

As a result,

f(Ag) + f(Ag) > %[OPT([tLtO]) —to+ti+to—ti] = %OPT([tl,tOD]'

Hence, the best out of both of these sets provides at least 1OPT([ty,o]) principal utility. Note that
OPT gets at most Pr[B € [t1,t]]OPT([t1,t0]) utility from this event therefore the best of these threshold
provides a 4-approximation to the events’ contribution to OPT’s principal utility.

We have shown that there exists a threshold that approximates the utility of OPT conditioned that
Be [tl,to] that is

PI'[B S [tl,to]]OPT([tl,to]).

Let us focus on the remaining principal utility that is obtained by OPT in the event that B € [0,t5] where
to bias of the most-biased action smaller than ¢;. One key observation is that this event happens with
probability at most 1/2 by our choice of t; since Pr[B € [t1,to]] > 3.

If we consider the conditional distributions on this event we can repeat the same analysis to prove that
there exists bias threshold ¢3 < to such that Prob[B € [t3,t2) | B € [0,t2]] > 1/2 and also

max{ f(As,), f(At;)} > EPT[B € [0, t:]JOPT([ts, t2]) > iPT[B € [ts, t2]]OPT ([t3, t2]),

which corresponds to 4-approximation to the contribution to O PT solution’s principal utility in this interval.
Note that

Pr[B € [0,t3) | B €[0,t5]] < 1/2 = Pr[B € [0,3]] < 1/4.

Repeating this process shrinks the probability of the remaining probability space by half. Let m be the
maximum number of times we can repeat this process. There are two ways this process can stop. Either we
are left with a single action or the probability that B (OPT bias) is strictly below the last used threshold
is 0. Since the minimum probability of any realization is p,,;, and each time we repeat this process the
probability is shrunk by half m cannot be larger than log p;én.

This process generates m disjoint events B € [to;41,t2;] for i =0,...,m — 1 such that
m—1
OPT = Z OPT([tQH,thi])PTOb[B (S [t2i+1,t2i]]
i=0

and in addition

1
max{ f(At,,,,, Aty } > EOPT([L‘%HJ%]) Pr[B € [tait1,t2]]
If we combined these two equations together we get that

OPT

m m
A) > —
ie{o,.i.%ﬁ_l}f( W=7

Since m < log p;ﬁn we get that the best possible threshold is at least a 4log p;n%n approximation.
O
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Matching lower bound. The above analysis is tight. We show in Appendix that our analysis in
Theorem [6.1]is tight up to a constant factor. We do so by providing instances where no threshold policy can
outperform the logarithmic approximation ratio.

THEOREM 6.2. There exists a family of instances where no threshold policy is better than a Q(logp;ﬁn)-
approximation.

In Appendix[A.3, we also prove the following supplementary hardness result for the case with discretely-
distributed, correlated values:

THEOREM 6.3. With correlated, discrete values, there exists a constant ¢ such that it is NP-hard to compute
a mechanism with approzimation factor better than c.

To prove this result, we reduce from bounded-degree vertex cover, which is similarly hard to approximate.
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A Supplementary materials

A.1 Proof of Theorem To see that the problem is in NP, note that given an action set S, we may
compute the principal’s expected utility in polynomial time. Specifically, let S; be the first i elements of
S, let opTi(u) = Elvgs, vy | Vg(siv) + bg(siv) = u] and p;(u) = Prlvgs, v) + bgs,v) = u]. Both can be
computed for all u by a simple dynamic program, considering ¢ = 1,...,n. The utility of S can then be
computed using the law of total expectation.

To show hardness, we will reduce from INTEGER PARTITION. An instance of this problem is integers
c1,...,¢y. The goal is to find a subset S C [n] such that Y, .q¢; = 237" ¢ Let C = 37" | ¢;, and
Cmax = max; ¢;. Consider the following delegation instance, with n + 1 actions.

e Actions 1,...,n have bias M?(1 — C/2M) for some M (large, to be chosen). Let § be a number
small enough to only matter for agent tiebreaking (and which we will omit from all principal utility
computations). The value of action ¢ will be

2

* (high realization) 1 + 20 with probability p; = 175 — m

Ci

* (low realization) 1 with probability ¢; = $+

e Action n+1 has value 0 with probability 1/2 and with probability 1/2 takes value M?(1—C/2M)+1+3.
Action n + 1 will have bias 0.

First observe that any set of actions not containing action n 4 1 is suboptimal. By a union bound,
the utility from such a set is at most > ., (p; + ¢;) < 2C/M. The utility from taking action n + 1 alone,
meanwhile, is M?(1 — C/2M) + 1 > 1, which is at least 2C/M as long as M > 2C. It follows that the
principal’s problem is to pick which of actions 1,...,n to pick alongside n + 1. Now consider the principal
utility from a set T = SU{n+1} for some S C [n]. To compute the principal’s utility, consider the following
two events:

e Let & be the event that at least one action in S has a high realization. In this event, the agent will
choose such an action over n + 1, no matter the value of action n + 1.

We can approximate the probability of this event using only first-order terms. In more detail, this
event has probability
S|

1-JJa=-p)=>"p:=> 0" > [ »

i€S icS =2 5,CS: jESK
|Sk|=k
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Call the second term on the right C;. We can show that C €

|C1| =

| /\

I /\

As long as nemax /M3 < 1/2, we have the

2 2 2 2
_41’L Cmax an Cmax |-
M6 ) 6 .

IS|
>0t > IIw
k=2 SrCS: jeSK
[Sk|=Fk
11
25,C [ ] JESkK
|Sk|

( ) Cmax
(

7 G

<3
-5
() ()

2
i

NCmax )

N Cmax )

(5
S

max (ncmax )

2n2c2

max

M6 1-— —"Jc\;‘;x '

desired upper bound.

e Let & be the event that no action in S has a high realization, and at least one has a low realization.

Then this event has probability:

Pri&] — [[0 - pi - )

€S
=1-> pi+C— [ -pi—a)
€S €S
IS|
=1-> pi+Ci—1+> (pit+a)— Y. Gita)i+a)+> D > ] i +a)
i€S i€S i#£jES k=3 SrCS: jESK
|Sk|=k
|S]
=Ci4+Y a— Y, mi+a)pi+a)+ > (-0 Y [ @ +a)
ies i#£jES k=3 S, CS: jESK
|Sk|=Fk
Call the last term Cy. A similar argument to the one for C; shows that Cy € [— mnMC"‘ax, 16”;;3?““].
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We include it below for completeness.

S|
<> > [ wi+a)

k=3 5,CS: jeS)
|Sk|=k

<y 4 (pj +a5)

k=3
" /2nc
S Z max)
k=3 M
S 1
— 3 2nCmax
M?® 1 — =g

This implies the desired bound as long as M > 4ncyax-

The third term above can also be simplified:

S wita)pita)= Y pipi+2 > pig;+ > 6gs.

i£JES i£JES i£JES i#£JES

Call the first two terms above C3. Since for any i, 0 < p; < emax/M? and 0 < ¢; < cmax, We have
Cs € [0, M] We therefore have Pr[€s] = >, o @i — > 2isje5 645 + C1 + Co — Cs.

Analyzing the Principal’s Utility Given actions S, we can write the principal’s utility as:

((1+ 20)Pr(En] + (M2(1 — C/2M) + 1+ 8)PafEs]) + 3 (Priés] + (1 + 20)Pri]).

DN | =

Taking § — 0, we obtain:

% (Pr[&1] + (M?(1 — C/2M) + 1)P1[&]) + ;(Pr[&] + Pr[&1]).
= ;(MQ(l —C/2M)+1) + %(Pr[é'g] + Pr[&1] — M*(1 — C/2M)Pr[&;])
= ;(MQ(l —C/2M)+1) + %(Pr[é‘g} M?(1 — C/2M)Pr[&1]) + Pr[&1]/2.

The first term does not depend on S, and the last term will turn out to be negligibly small. We next
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analyze the middle term, leaving out C7, C5, and C5 for the moment.

Pr[&,] — M?(1 — C/2M)Pr[&] ~ CM - ?WC; - <1 - 54) (Z T 2M2 ))

ies i#£jeS ies ieS
ORI DI
2M “~ M 4~ M?2 <£=2M?
i€S i#£jES €S
1 CiCj 012
A DRI DIy =D
= j¢s €S i#jeS =
1
T 902 Zci Zci
= jgs

This latter expression takes value C?/8M? if the integers can be exactly partitioned, and value at most
(C?/4 —1)/2M? = C?/8M? — 1/2M? otherwise. Now we can take Cy, Ca, C3, and Pr[€;]/2 into account.
Specifically, we can write:

%(Pr[c‘:g} M?(1 — C/2M)Pr[&1]) + Pr[&1]/2 — —— <Z cz> > e |

€S j¢s
M2

- ]2 (C1+ Cz = C3) + =~(1 = C/2M)C1 + Pr€1] /2‘

1 /4n2c 16n3¢ 3n2c M? 4n2c? ne

max max max 1 _ 2M max max

_2< M6 * M3 M4 ) 5 ¢/ ) M6 2M3

16n3c3 .
SaB

The first inequality follows from applying the triangle inequality, along with our existing bounds on Cf,
Cs, and C3 and the fact that Pr[€;] < 2%ms= by a union bound. As long as M > 128n3cl ., we will
have that 16n3c3, /M3 < 1/8M?. We can therefore solve our INTEGER PARTITION instance by asking
if our constructed instance of delegation has value at least (M?(1 — C/2M) + 1)/2 + C?/8M? — 1/8M?>.
Any solution that exactly partitions the integers will obtain at least this value, and any solution that
fails to do so will have objective value at most (M?(1 — C/2M) +1)/2 + C?/8M? — 1/2M? + 1/8M? <
(M2(1 — C/2M) +1)/2 + C?/8M? — 1/8M?.

A.2 Proof of Theorem In this appendix, we show that the logarithmic approximation upper bond
of Theorem is tight, up to a constant factor. That is, no threshold algorithm can perform better than
log p;ﬁn. To prove the tightness of our analysis in Section |§|, we construct an infinite family of instances.
For any k > 2, consider an instance with n = 2k — 1 actions. The correlated distribution has m = 2F —1
value profile realizations. We construct a value matrix where each row correspond to an action and each
column corresponds to a realization. Therefore, the value at cell V; ; gives the value of action 4 at realization
value profile j. The distribution over value profiles simply selects and value realization uniformly at random.

(A1) V=
_ ok
2F=1 4 9¢

2k—1 2k—1
2F=2 1 3¢ | 2F72 43¢ | 2F2 + 3¢

2k72 2k72 2k72 2k72
2F=3 1 4e [ 2R3 £ 4e [ 2F 3 £ de [ 2F B 4 4e [ 2P 4 4e | 2F 3 4 4e | 2F 70 4 4e

24 O(ke) 24 O(ke) 2+ O(ke) 24 O(ke) 2+ O(ke) 24 O(ke) 2+ O(ke)

ok—1

588

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 10/14/24 to 208.66.211.137 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

Note that all the empty entries in the above matrix are zero, and are removed to make the structure
of the matrix more apparent. Also, every solution corresponds to eliminating a a set of rows. For each
realization (column) the row with maximum agent utility is selected. The optimal solution is to select set
of odd actions (with size k). The colored entries indicate (realization,action) pairs that contribute to the
optimal principal’s utility (OPT). The optimal utility is equally divided between the odd rows, leaving 2¥
for each one: the first row has 2 in the first column, the third row has 2*~1 in columns 2 and 3, the fifth
row has 2572 over the next 4 columns and so on. In the example, the even actions are constructed to lower
the principal’s utility whenever they are included in a threshold solution. In every state (column), we divide
the colored utility by 2 to find the utility of the next row, and keep dividing by 2 to complete the subsequent
even rows. The € terms are added to break the ties and are of little importance.

Next, we define the bias: we set by = 0, and the rest of actions have the following bias:

(A.2) boiv1 = Z2k_j, bai = b2it1 — €, ie{l,..k—1}.
j=1

Now that all the parameters are set, it is easy to verify that given the set of odd actions (rows), the agent
will indeed pick the colored entries. This generates the optimal utility, since it is optimal in every single
realization. Since each value profiled is realized with probability % the optimal expected utility is equal to:

k
opr = F*2"
m

However, the best threshold solution in the constructed instance is to allow the entire set of actions (€2).
To see this, assume that the principal allows actions with bias less than or equal to byy—1 for some ¢ < k.
(Thresholds set at even-indexed actions can be easily shown to be suboptimal.) Note that every even action
is preferred by the agent to any other action with less bias. Therefore, the only actions chosen by the agent
are 20 — 1 or 2¢ — 2 In this case, the principal will get utility of 28=**! 4 O(fe) from the first 2¢ — 1 states,
and zero from the remaining states.

Observe that the overall utility (2° — 1) x 2*=**1 is an increasing function in ¢, meaning that the best
strategy for the principal is to not limit the agent. In this case, the agent will pick the penultimate action in
the first half of columns, and the last action for the second half, generating utility of (almost) 2 for principal
in every state. More precisely, we have:

APX =2+ O(ke).
We get the desired lower bound by dividing the above objectives:

OPT kx2  k_ logn

APX ~ 2n+O(nke) 2 2

EXAMPLE A.1. In order to make sure that the above construction is clear, here we present the full matrices
for the case of k = 3, which translates into n = 5 actions and m = 7 realizations. The value matriz in this
case s

8 0 0 0/{0]|0]|0

4+ 2e 0 0 0(0|0]0

V= 0 4 4 0[0]|0]|0
2+3|24+3¢|2+3|[0]0]0|0

0 0 0 212122

Calculating the bias in (A.2) results in:

b=(0,4—¢4,6—¢,6)

It is clear that the value matriz V is non-negative, and the agent’s utility V + B will be:

8 0 0 0 0 0 0
8+e | 4—€ | 4—€ |4d—€e|d—c|d—€|d—c¢
V+B= 4 8 8 4 4 4 4
8+2 | 8+2 |8+2|6—€|6—€|6—€|6—¢€
6 6 6 8 8 8 8
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Observe that OPT = 24/7 by the set of odd actions {1,3,5}, while APX = (14 4 9¢)/7 from the entire set
of actions Q = {1,2,3,4,5}.

A.3 Proof of Theorem [6.3]

Proof. We give a reduction from the bounded degree vertex cover problem, i.e., the vertex cover problem on
graphs with degree at most B (constant). This problem is known to be APX-hard |Clementi and Trevisan
(1999). Consider an instance of the bounded degree vertex cover problem G = (V,€) with 72 nodes and m
edges (where m < B-7/2 = O(ﬁ))ﬁ

We construct an instance of the delegation problem with 7 + 1 actions with action a; corresponding to
node i and an additional “default” action ag. All actions have 0 bias apart from ag which has bias —1. The
correlated distribution of the actions values is defined as follows: we pick an edge e = {i,j} or some node i
uniformly at random, i.e., each element with probability (m + 7)~!

If we picked some edge e = {i, j} then we assign value 5 to actions a; and a;, 2 to the default action ay,
and 0 for all other actions. If we picked a node i we assign value 2 to a; and ag (default action) and 0 for all
other actions. ~

We claim that the optimal solution of the delegation problem produces a utility of (5m+3n—k)/(m+n)
for the principal, where k is the size of the smallest vertex cover of G. To see this, first note that any solution
S CV can be improved by including ag, since ag has a negative bias. Any time the agent would choose ag,
it is the optimal choice for the principal as well. We therefore only consider solutions containing ay.

Now if S is a vertex cover of G with |S| = k, consider the corresponding delegation set where the principal
allows actions {a; : i € S}U{ap}. If we generate the values by picking an edge, the agent will pick the action
corresponding to one end of that edge (one is guaranteed to be in the cover S) to get a utility of 5 compared
to 2 —1 achievable from the default action. This choice will also generate utility of 5 for the principal, which
makes 5m in total. If the utility is generated by picking node i the agent will pick action a; which generates
the utility of 2 for both principal and agent. This will make 2k in total. Finally, if the utilities are generated
using some node ¢ € V\S the agent picks the default action which generates a utility of 2 — 1 for the agent

but 2 + 1 for the principal. This will give 3(72 — k) in total. As a result the principal utility in expectation
is (bm+3n—k)/(m+ n).

For the converse, consider an optimal solution A to the delegation problem. We show that the nodes
corresponding to the actions in A (excluding the default action) induce a vertex cover; otherwise the solution
can be improved. Assume that there exists an edge e = {4, j} where neither a; nor a; is allowed in A. If we
add action a; to A, the principal gets a utility of 5 if the utilities are generated from pick edge e, compared to
current utility of 3 from the default action. On the other hand, the utility of the principal decreases from 3
to 2 if the values are generated by action i. So the total utility of AU {a;} is more than A which contradicts
the optimality of A. Therefore A should be a vertex cover (plus default action). This in turn implies that
the utility is at most (5m 4 37 — k)/ (1 + 1) where k is the size of the minimum vertex cover.

Since m = O(7) and the minimum vertex cover has size at least m/B = Q(n), a constant factor gap in
the bounded degree vertex cover problem translates into a constant factor gap in the optimal solution of the

delegation problem, which yields the desired hardness result. O
TTo distinguish between the parameters of the vertex cover instance and the delegation instance, we use tilde (~) for the

graph instance.
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