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Abstract

This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed

principal must consult an informed agent to make a decision. Both the agent and principal have

preferences over the decided-upon action which vary based on the state of the world, and which may

not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions.

When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent

simply chooses upon observing the state. In this case, the principal is said to have delegated the choice

of action to the agent.

We consider a setting where the decision being delegated is a choice of a utility-maximizing action

from a set of several options. We assume the shared portion of the agent’s and principal’s utilities is

drawn from a distribution known to the principal, and that utility misalignment takes the form of a

known bias for or against each action. We provide tight approximation analyses for simple threshold

policies under three increasingly general sets of assumptions. With independently-distributed utilities,

we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the

constant-approximation fails, but we prove a log ⇢/ log log ⇢-approximation, where ⇢ is the ratio of the

maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated

values, and complement our upper bounds with hardness results. One special case of our model is

utility-based assortment optimization, for which our results are new.

1 Introduction

This paper considers a model of delegated stochastic probing. A decisionmaker (the principal) must pick
one of n actions, each of which yields randomly distributed reward. Rather than observe rewards directly,
the decisionmaker chooses a subset of the actions to allow an agent to consider. The agent observes the
realized rewards exactly, but may be biased towards certain actions and away from others. The principal’s
goal is to select a set of actions that will maximize their expected reward from the agent’s biased choice.
This template captures a range of economic and managerial dilemmas. As examples, a firm might seek to
replace a piece of expensive equipment, or a national health service must choose which treatment to provide
to a patient who might display a range of symptoms. The equipment operators know their needs better than
managers, and the health service relies on doctors to observe patients. In such arrangements, the agent and
principal tend not to have preferences which are perfectly aligned: the firm must pay for new equipment
(while the operator does not), and specialist doctors might peddle lucrative optional procedures.

The algorithmic problem above can be couched as mechanism design. In a revelation mechanism, the
agent would observe the actions’ rewards and report these to the mechanism, which would choose a possibly
randomized action. The taxation principle states that every deterministic mechanism is equivalent to a
menu: the principal selects the set of allowable actions, and the agent simply chooses their preferred action
upon observing the rewards. Such mechanisms eliminate the need for communication between the agent and
principal, and are therefore so common in practice that they are often taken for granted as a managerial
tool. In economics, delegation refers exactly to this problem of menu design for a better-informed agent,
coined by Holmstrom (1978).

In the examples above, the alignment of the agent and principals’ preferences is well-structured. The
principal’s main uncertainty in the choice problem is payo↵-relevant for both parties: in replacing equipment,
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both the operator and firm want to purchase the right tool for the job. Meanwhile, misalignment of
preferences is predictable – the firm will pay for the new purchase, and prices are likely known in advance.
Under these conditions, a particularly salient family of mechanisms is threshold mechanisms, which restrict
the agent to actions where the misalignment of preferences is not too great. For our firm and operator, this
would take the form of a budget.

Our Contributions. This work gives a model for delegated choice scenarios like those discussed above.
In our model, the agent and principals’ preferences for a particular action are captured by two quantities.
First, each action i has a shared value vi, which is unknown to the principal (but distributed according to
a known prior) but observable to the agent. Second, each action has a commonly-known and fixed bias bi,
which captures the amount the agents’ utility di↵ers from that of the principal. The agent may also have
outside options which the principal cannot prohibit; we extend our model to capture this issue as well.

We study three increasingly general regimes, distinguished by the correlation or independence of the
value distributions and the absence or presence of an outside option. For each, we give computational
hardness, then take a simple-versus-optimal perspective by completely characterizing the performance of
threshold mechanisms. In more detail:

• With independently distributed values and no outside option, we show that threshold mechanisms are
a 3-approximation to the optimal mechanism.1 We show that this problem is NP-hard.

• With independently distributed values and an outside option, threshold mechanisms cannot obtain any
nontrivial approximation in general. However, we show a parametrized log ⇢/ log log ⇢-approximation,
where ⇢ is the ratio of largest possible value to OPT. This problem generalizes the previous problem,
and is thus also NP-hard.

• With correlation, we give a log p�1
min approximation, where pmin is the probability of the least likely

value profile. We show this problem is NP-hard to approximate below a constant factor.

We match all three approximation analyses of thresholds with tight examples. A special case of our model is
utility-based assortment optimization, a canonical model from revenue management (discussed in Section 3).
All our results are new to that literature.

Roadmap In Section 2, we give our formal model. We then survey existing work on delegation in
Section 3, and make specific comparisons to existing work on delegated search and assortment optimization.
Section 4 contains our hardness result and constant-approximation under independence and lays the
groundwork for our parametrized analysis with an outside option in Section 5. Finally, we analyze delegation
with correlated values in Section 6.

2 Model

We now give our model of delegated choice. The principal seeks to choose from a discrete set ⌦ of n actions.
The principal’s utility for action i is given by a random value vi � 0, which the principal is unable to observe.
To assist in selecting an action, the principal may consult an agent, who observes all actions’ values, and
may communicate with the principal after observation. We decompose the agent’s utility for action i into
its value, shared with the principal, and an unshared bias term. That is, the agent’s utility is given by
ui = vi + bi. Throughout the paper, we assume each bias bi is constant and known to the principal.

We assume the principal has the power to commit ex ante to a mechanism for communicating with the
agent and selecting an action, and study deterministic mechanisms. By the taxation principle, it su�ces to
consider mechanisms described by menus over actions. The agent observes all actions’ values and selects their
utility-maximizing action from the menu — which may di↵er from the principal’s preferred action. Taking
this perspective, we consider the algorithmic problem of selecting a menu A to maximize the principal’s
expected utility when the agent selects their preferred action according to the observed values. We further
assume the existence of an outside option for the agent, denoted action 0, with value v0 and bias b0. We
assume that regardless of the principal’s choice of A, the agent may always select this action.

Formally, when presented with action set A ✓ ⌦ and after observing the vector of values v, denote the
agent’s preferred choice by g(A,v). That is, g(A,v) = argmaxa2A[{0}(vi + bi). The principal is faced with

1
Our results also hold with an outside option if that action has a fixed value, which we make precise subsequently.
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a set function optimization problem. We assume the principal has a prior distribution F over the values v,
and must select a menu A for the agent which maximizes their own expected utility.2 That is, the principal
solves:

maximize
A✓⌦

f(A) :=

Z

v
vg(A,v) dF (v).

The model above captures applications such those described in Section 1. Note that we allow the
agent’s utility to be negative, and that the model is invariant to additive shifts in the agent’s bias for every
action. We will study a particularly simple set of mechanisms, namely threshold mechanisms. The threshold
mechanism with bias t is given by At = {i | bi  t}. Note that since the number of threshold policies is at
most the number of actions, the principal may compute an optimal threshold e�ciently. We analyze the
approximation ratio between the best threshold menu and the optimal menu overall.

Example 2.1. The equipment purchase example described in the introduction can be formulated as follows.
The firm (principal) needs to buy a piece of equipment, which will be used by a specialist (agent) with
knowledge of the quality of di↵erent brands. Each brand i has quality qi, and price pi. Qualities are unknown
to the principal, and prices are known. We may write values as vi = qi � pi and biases bi = pi. Note that
the values are random, while biases are known, as required. A threshold policy restricts to actions with bias
—and hence price— at most t.

Example 2.2. The health services example from the introduction may be heavily stylized as follows. A
national health service (principal) needs to select a treatment for a patient with the help of a doctor (agent)
who has expertise and observes the patient’s condition. Each potential treatment i has cost ci (known to the
doctor and the health service), and given the patient’s condition an e�cacy ei (known to the doctor but not
the health service). The health service seeks to maximize the patient’s health less costs, uP

i = ei � ci. The
doctor is paid a portion of the costs, and shares some concern for the patient’s health. For some ↵,� > 0,
we may therefore write u

A
i = ↵ei + �ci. To cast this in our model, note that scaling agent utilities by 1/↵

will not change their decision, so we may normalize ↵ = 1. After normalization, we have vi = ei � ci and
bi = (� + 1)ci. As required, the value vi depends on ei and is hence unknown to the principal, and the bias
bi depends only on ci, and is hence known to the principal. Further note that a threshold set corresponds to
a price cap, restricting the doctor away from the highest-cost procedures.

3 Related Work

Simple Versus Optimal Mechanisms. A primary contribution of computer science to the study of
mechanism design is the use of approximation to explain the prevalence of simple mechanisms. For example,
Hartline and Roughgarden (2009) prove that the simple auctions often observed in practice can obtain a
constant factor of the sometimes-complicated, rarely-used optimal mechanisms. Hartline (2013) surveys
similar results for auctions. Recently, Dütting et al. (2019) and Castiglioni et al. (2021) make similar forays
into contract theory, characterizing the power of simple linear contracts. Our work initiates the study of
delegated choice through a similar lens.

Real-Valued Delegation. Delegated decisionmaking is a canonical problem in microeconomic theory
and managerial science. Much of the literature subsequent to Holmstrom (1978) has focused on the special
case where the state and action space are continuous and real-valued, and where the preferences of both the
agent and principal are single-peaked, but di↵er by a known bias. Notable examples include Melumad and
Shibano (1991), Martimort and Semenov (2006), Alonso and Matouschek (2008), and Amador and Bagwell
(2010), who characterize the structure of optimal mechanisms under increasingly general variants of the
single-peaked model. The main conclusions from these papers are necessary and su�cient conditions for the
optimal delegation set to be an interval on the real line. Our work makes a similar known bias assumption,
but in a model more amenable to algorithmic analysis. We obtain similar conclusions: the principal can
secure high utility by restricting the agent away from extreme actions.

Additional work on similar models includes Kovác and Mylovanov (2009), who study the gap in
performance between randomized and deterministic mechanisms, and Ambrus and Egorov (2017), who

2
We assume the agent breaks ties in the principal’s favor, then lexicographically.
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study a principal who can add additional nonmonetary costs to incentivize more preferred decisions. Aghion
and Tirole (1997) and Szalay (2005) consider models in which one or more of the principal and the agent
may expend e↵ort to observe a signal about the state. For multiple decisions, Frankel (2014) considers
maxmin robust delegation and Kleiner (2023) studies Bayesian optimal mechanisms. With the exception
of Armstrong and Vickers (2010) and followup works, though, the economics literature has focused on the
real-valued model for decisions. Our work considers the mathematically incomparable but similarly common
setting of discrete choice. In the latter setting, the structure of the problem renders exact characterization
of optimal mechanisms di�cult, and motivates the use of a simple-versus-optimal approach.

Delegated Search. The model of delegated project choice from Armstrong and Vickers (2010) is
perhaps closest to ours. The authors consider an agent who chooses between n discrete actions. The
principal is able to verify the utilities provided by the selected action, and restrict the agent’s choice based
on this information. Subsequent followups by Kleinberg and Kleinberg (2018), Bechtel and Dughmi (2021),
and Bechtel et al. (2022) note a strong connection between the Armstrong and Vickers (2010) model and
well-studied online stochastic optimization problems. They upperbound the delegation gap: they show that
even when the agent must pay a search cost to discover each action’s utility, the principal can obtain utility
within a constant factor of the first-best solution, where they solve the search problem themselves. More
recently, Braun et al. (2022) give a version where the agent searches online, and make similar comparisons
to first-best, and Hajiaghayi et al. (2023) study a multi-agent version of the model.

Our model di↵ers from the delegated search literature in two notable ways. First is the absence of search.
Our agent can perfectly observe the values of all actions. More significantly, our principal is unable to verify
the utilities provided by the agent’s selected action; they may only rule actions in or out completely. In
our model, the first-best solution is E[maxi vi]. The following example shows that no delegation set may
approximate the first-best to a factor better than n. This contrasts with the constant-approximation results
from the work cited above.

Example 3.1. Consider an instance with n independently-distributed actions. Action i has a value vi which
is 1� ✏ with probability 1/n and 0 otherwise. Each action i has bias bi = i. The first-best expected utility is
constant, while in any delegation set, the agent will always pick the highest-indexed action, yielding expected
utility (1� ✏)/n.

Stochastic Probing. There is a by now extensive literature on stochastic probing beyond the
economically-inspired settings of this paper and those discussed above. Rather than survey the literature,
we o↵er a few key recent papers, and refer the reader to these for deeper references: Chen et al. (2016);
Goel et al. (2006); Mehta et al. (2020); Segev and Singla (2021) Despite similarity of motivation, we employ
techniques that largely di↵er from this literature.

Assortment Optimization. Our model captures special cases of the well-studied assortment optimiza-
tion problem. In assortment optimization, a seller must decide which among a set of fixed-price items to
o↵er. A variety of models are common for the buyer’s purchase choice, including nested logit models (Davis
et al., 2014; Li et al., 2015) and Markov chain-based choice (Feldman and Topaloglu, 2017), along with
equivalent models based on random buyer utility (Berbeglia, 2016; Aouad et al., 2018, 2023), which includes
the especially prevalent multinomial logit (MNL) model as a special case. Our model subsumes assortment
optimization with utility-based choice. To see this, consider n items, where the buyer utility wi for each item
i is random, and the revenue ri for item i is known to the seller. Taking vi = ri + ✏wi and bi = �(1 + ✏)ri
for su�ciently small ✏ > 0 yields an equivalent delegation problem. Under this transformation, an outside
option with v0 = 0 corresponds to the no-buy option, and the option to buy elsewhere with positive utility
can be captured with a randomized outside option.

Threshold mechanisms in our model correspond to revenue-ordered assortments, a well-studied class of
solutions for assortment optimization. A series of papers analyze the approximation ratio of revenue-ordered
assortments under increasingly general models: Talluri and Van Ryzin (2004) show that revenue-ordered
assortments are optimal for several choice models including MNL; Rusmevichientong et al. (2014) analyze
revenue-ordered assortments for mixtures of MNL models, and further prove NP-hardness of computing the
optimal assortment; Berbeglia and Joret (2020) give parametrized analyses under a general choice model.
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Our approximation analyses for independently-distributed values with an random outside option (Sections 5)
apply to utility-based assortment optimization, and are new to this literature. Our logarithmic approximation
for correlated values (Section 6) resembles that of Berbeglia and Joret (2020); it is less finely parametrized,
but extends to more general forms of delegation.

Other work on computational hardness or approximation in assortment optimization includes Désir et al.
(2020), who hardness of approximation under a knapsack-constrained version of the problem, and Immorlica
et al. (2018), who study a version where the buyer has combinatorial preferences over bundles.

4 Threshold Delegation with Independent Values

We now consider the simplest case of the model, where the principal’s prior F over values is a product
distribution, and hence, actions’ values are independent. We further assume that the outside option’s value,
v0, is deterministic, which subsumes the no-outside-option case, as we could have b0 = �1. We present our
approximation result first, and defer hardness to Section 4.4

Theorem 4.1. Under independent values and a deterministic outside option, there always exists a threshold
mechanism with expected utility that is a 3-approximation to the optimal deterministic mechanism.

Theorem 4.1 holds regardless of choice of the outside option’s fixed value and bias. Before giving the
details of the proof, we derive two technical results which will facilitate analysis. In Section 4.1 for any
delegation set, we give a decomposition of the principal’s utility into two quantities, one aligned with the
agent’s utility and one not. Then, in Section 4.2 we use independence obtain a lower bound on the value
from threshold sets which will prove useful for both this and the next section’s analyses.

4.1 Utility Decomposition The principal’s task is to balance two sources of utility. On the one hand,
when some action has very high value, preferences are aligned: the principal benefits from giving the agent
the flexibility to select this action. On the other hand, when actions have smaller values, the principal
must control misalignment: they may benefit from restricting the agent away from actions with higher bias,
inducing the agent to take actions that provide better value. We now decompose the principal’s utility for
the optimal delegation set into two quantities, Sur and BDif, which roughly correspond to the value from
each of these two cases.

To make the decomposition precise, note that for the optimal delegation set A
⇤, there are two lower

bounds imposed on the agent utility from any selection: first, the chosen action must be preferred to the
outside option, action 0, which gives utility at least b0. Second, the agent’s utility is at least the bias of the
most-biased action in A

⇤. Denote the better of these bounds by u. We can therefore think of the contribution
of any action i 2 A

⇤ as decomposing into a bias di↵erence u� bi and a surplus vi � (u� bi). Intuitively, the
surplus captures the principal’s utility from giving the agent latitude to pick high-valued actions, and the
bias di↵erence captures the misaligned portion of the principal’s utility. Formally, the decomposition is the
following.

Lemma 4.1. Let A⇤ denote the optimal delegation set, and let u = max{bi | i 2 A
⇤ [ {0}}. Define Sur and

BDif as follows:

Sur =

Z

v
vg(A⇤,v) � (u� bg(A⇤,v)) dF (v)

BDif =

Z

v
u� bg(A⇤,v) dF (v).

Then we can write f(A⇤) = Sur+BDif.

To verify the intuition that Sur captures the aligned portion of the principal’s utility, note that choosing
the smallest threshold set containing all of A⇤ [ {0} secures Sur for the principal. Formally:

Lemma 4.2. Let Au = {i | bi  u}. Then f(Au) � Sur.

Proof. We will argue pointwise for each value profile v. The action chosen by the agent under Au is g(Au,v),
which has bg(Au,v)  u. Since g(Au,v) is the agent’s favorite, we have vg(Au,v)+bg(Au,v) � vg(A⇤,v)+bg(A⇤,v).
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Hence,

vg(Au,v) � vg(A⇤,v) + bg(A⇤,v) � bg(Au,v)

� vg(A⇤,v) � (u� bg(A⇤,v)).

Taking expectation over v yields the lemma.

Lemma 4.2 implies that the main di�culty for obtaining approximately-optimal delegation sets is
managing the misaligned portion of the principal’s utility. Section 4.3 gives this analysis for the case with
v0 fixed, yielding a 3-approximation. Note Lemmas 4.1 and 4.2 hold even when the outside option’s value
v0 is randomized. We will therefore make further use of them in our analysis of that case in Section 5.

4.2 Lower Bounds via Partial Derandomization To compare the performance of a threshold set At

to the optimal set A
⇤, we will show that threshold sets can retain su�cient value from At \ A

⇤ without
introducing actions in At \A⇤ which overly distort the agent’s choices. Independence allows us to summarize
the interference of At \A⇤ with a single deterministic action. This will greatly simplify subsequent analyses.
This section focuses on the case of fixed outside options, but we state our lemma for possibly randomized
outside options. We will reuse the result in Section 5.

Lemma 4.3. Assume values are independently distributed. Then for any threshold set At, there exists a
single action a(t) with bias ba(t) = t and deterministic value va(t) such that f(At) � f(At \A

⇤ [ {a(t)}).

Note that a(t) need not be an action from the original delegation instance. The proof will follow from
picking the worst realization of actions in At \ A

⇤ for the principal. Note further that a(t) may di↵er for
every threshold t: hence our lower bounds correspond not to one derandomized delegation instance, but to
one per threshold.

Proof. For brevity, denote At \ A
⇤ by Bt. Actions in Bt may have randomized values. The principal’s

expected utility f(At) can be computed by first realizing vi for all i 2 Bt, then computing the principal’s
expected utility over the values of actions in Gt = At \A

⇤ [ {0}. Hence, there must exist a joint realization
of values v̂i for each i 2 Bt for which this latter expectation is at most f(At). Let B̂t denote a new set of
actions consisting of the actions i 2 Bt with vi fixed as v̂i. We have f(Gt [ Bt) � f(Gt [ B̂t). Any actions
which are not selected in any realization of the values for Gt may be removed from B̂t without consequence.
However, since values are fixed for each i 2 B̂t, the agent consistently prefers some particular action î 2 B̂t

over the others in B̂t. Hence, we may remove all actions but î from B̂t without changing the principal’s
utility.

We finally use this remaining action î to construct a(t). Let vî and bî denote the value and bias of î.
Define a(t) to have bias t and value vî � (t � bî). Note that vî + bî = va(t) + ba(t). Hence, the agent will

choose a(t) from Gt [ {a(t)} if and only if they would choose î from Gt [ {̂i}. Moreover, va(t) = vî. Hence,

f(Gt [ {a(t)})  f(Gt [ {̂i})  f(At).

4.3 Proof of Theorem 4.1 We now show how to obtain a 3-approximation to the optimal delegation
utility using threshold mechanisms, assuming v0 is fixed. Lemma 4.1 decomposes the optimal utility into
an aligned portion, Sur, and a misaligned portion, BDif. Furthermore, Lemma 4.2 states that Sur can
be 1-approximated using a threshold set. Hence, it will su�ce to obtain a 2-approximation to BDif using
thresholds. To do so, we use the derandomization of Lemma 4.3 to derive an even stronger lower bound
which holds when v0 is fixed. We then select a threshold for which this lower bound is guaranteed to be
large.

Lemma 4.4. For any threshold set At:

f(At) � min
⇣
u� t,

Z

v
(u� bg(A⇤,v))I[g(A⇤

,v) 2 At [ {0}] dF (v)
⌘
.

To understand our lower bound, note two pitfalls a threshold set could face. First, a too-expansive threshold
could include high-bias actions which attract the agent while providing little value. Second, a too-restrictive
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threshold could leave the agent with too few options. Lemma 4.4 states that these are the only two problems:
if a threshold t is su�ciently low and includes enough of the actions providing BDif for A⇤, t will perform
well.

Proof of Lemma 4.4. We argue with respect to the derandomized action a(t). For brevity, write At =
At \ A⇤ [ {a(t)}. Depending on va(t) + ba(t), we have two cases, each of which produces a lower bound on
f(At),

• Case 1: va(t) + ba(t) < u. In this case, any time g(A⇤
,v) 2 At [ {0}, we have g(A⇤

,v) = g(At,v).
Since every choice from A

⇤ gives the agent utility at least u, we have vg(At,v)
+ bg(At,v)

� u, and hence
vg(At,v)

� u� bg(At,v)
. Integrating over all v yields

f(At) � f(At) �
Z

v
(u� bg(A⇤,v))I[g(A⇤

,v) 2 At [ {0}] dF (v).

• Case 2: va(t) + ba(t) � u. Then regardless of v, we have vg(At,v)
+ bg(At,v)

� u. Since the agent breaks
ties in the principal’s favor, we also have that g(At,v) 6= 0, so bg(At,v)

 t. We may conclude that for
all v, vg(At,v) � u� bg(At,v) � u� t, and hence

f(At) � f(At) � u� t.

Hence the lemma holds in both cases.

The lower bound in Lemma 4.4 is a minimum of two terms. We will now study the threshold
t̂ = u � BDif/2, and observe that both terms in the minimum are at least BDif/2. In particular, we
can lower bound the second term as follows:

Lemma 4.5. Let t̂ = u�BDif/2. Then we have:
Z

v
(u� bg(A⇤,v))I[g(A⇤

,v) 2 At̂ [ {0}] dF (v) � BDif/2.

Proof. Let E2 denote the event that g(A⇤
,v) 2 At̂ [ {0}. The following sequence of inequalities, explained

below, implies the lemma:

BDif =

Z

v
u� bg(A⇤,v) dF (v)

=

Z

v
(u� bg(A⇤,v))I[E2] dF (v) +

Z

v
(u� bg(A⇤,v))I[E2] dF (v)

<

Z

v
(u� bg(A⇤,v))I[E2] dF (v) + (u� t̂)

=

Z

v
(u� bg(A⇤,v))I[E2] dF (v)�BDif/2.

The first equality is the definition of BDif. The third equality follows from the fact that under E2,
bg(A⇤,v) > t̂, and from the fact that this occurs with probability at most 1. The last equality follows

from the definition of t̂.

Proof of Theorem 4.1. By combining Lemma 4.4, with the definition of t̂ and Lemma 4.5, we have:

f(At̂) � min
⇣
(u� t̂),

Z

v
(u� bg(A⇤,v))I[g(A⇤

,v) 2 At̂ [ {0}] dF (v)
⌘

= min
⇣

BDif

2 ,

Z

v
(u� bg(A⇤,v))I[g(A⇤

,v) 2 At̂ [ {0}] dF (v)
⌘

� min
�
BDif

2 ,
BDif

2

�
= BDif

2 .

The theorem now follows from noting that f(A⇤) = Sur+BDif  f(Au) + 2f(At̂).
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The proof of Theorem 4.1 used independence once, in the derandomization step of Lemma 4.3.
Nevertheless, we show in Section 6 that independence is critical to guaranteeing the performance of threshold
mechanisms by giving a super-constant lower bound in its absence. With independence, the following example
matches the upper bound exactly:

Example 4.1. Our example will have five actions, with biases and value distributions given below. The
outside option will have b0 = �1, and therefore can be ignored. Take two small numbers, � and ✏, with �

much smaller than ✏. Actions will be as follows:

• b1 = 0. v1 is 1 + 2� with probability ✏, and 0 otherwise.

• b2 = 1� ✏� �. v2 = 4� + ✏.

• b3 = 1� ✏. v3 = ✏+ �.

• b4 = 1� �. v4 = 5�.

• b5 = 1. v5 is 1 with probability ✏, and 0 otherwise.

We may analyze the instance neglecting � terms, which only serve to break ties for the agent. The optimal
delegation set is {1, 3, 5}, with principal utility (1� (1� ✏)2)+ ✏(1� ✏)2, where the first term comes from the
event that either actions 1 or 5 realize their high values (in which case they are chosen), and the second term
comes from the event that 1 and 5 are low-valued, in which case the agent prefers action 3. As ✏ ! 0, the
optimal value goes to 0 as ⇡ 3✏. Meanwhile, no threshold obtains expected value better than ✏. This yields
an approximation ratio of 3 in the limit.

4.4 Computational Hardness We conclude the section by discussing the complexity of the delegation
problem with independent values. For the discrete version of the problem, where every action i is specified
by a bias bi and a list of realizations ((v1i , p

1
i ), . . . , (v

n
i , p

n
i )), we prove:

Theorem 4.2. Delegation with independent values is NP-complete, even with no outside option.

The challenge in proving NP-hardness is managing the rigid structure of the joint value distribution
imposed by independence. We adopt a similar strategy to Chen et al. (2014), who show that pricing to a
unit-demand buyer is hard. We reduce from Integer Partition: given integers c1, . . . , cn, the goal is to
find a subset S ✓ [n] such that

P
i2S ci =

1
2

Pn
i=1 ci. We associate each integer ci with an action i. Each

such action impacts the principal’s utility via two low-probability realizations: a bad realization which harms
the principal’s utility and a good realization which improves the principal’s utility. These low probabilities
are tuned in such a way that only first- and second-order terms in the probability calculation are relevant.
Furthermore, the tuning is such that the bad events scale linearly with the cis, while the good events scale in
a concave way, with the principal’s utility being maximized when actions taken correspond to an even split
of the integers. Full details can be found in Appendix A.1. Note that Theorem 4.2 also implies hardness of
the model in the next section, with a random outside option.

5 Randomized Outside Options

In Section 4, we showed that with a fixed (or non-existent) outside option, a simple delegation set secures a
constant fraction of the utility from the optimal delegation set. We now consider the case where the outside
option’s value is randomized. This may be more realistic in scenarios such as assortment optimization,
where the agent’s outside option is taking an action (i.e. buying a good) somewhere else. In this regime, we
again give tight bounds. In Section 5.1, we show that no nontrivial multiplicative approximation is possible
with threshold sets: there are examples where thresholds give no better than an ⌦(n)-approximation, which
can be matched trivially. However, in Section 5.2 we show that such lower bound examples are necessarily
unnatural. In particular, we parametrize our analysis by the ratio ⇢ = vmax/OPT, where OPT is the
optimal principal utility and vmax the highest value in any action’s support. We prove that the worst-case
approximation is ⇥(log ⇢/ log log ⇢): hence, whenever thresholds perform poorly, it is because the optimal
solution relies on exponentially large, exponentially rare values.
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5.1 Unparametrized Analysis: Impossibility This section gives an unparametrized analysis of
threshold delegation with a randomized outside option. We show that it is not possible to guarantee a
nontrivial approximation factor which holds across all instances.

Our constant-approximation in Section 4 relied on our ability to separate the optimal utility into
two parts, BDif and Sur. Approximating the bias di↵erence BDif was the crux of the analysis. The
following example shows that with a random outside option value v0, this analysis — and in particular the
approximation of BDif — fails. We will choose our distribution over v0 to streamline exposition, but the
example that follows could be adjusted so that the distribution over v0 satisfies nearly any desired regularity
condition.

Example 5.1. Our example will feature two sets of actions: good actions, which are taken by the optimal
delegation set, and bad actions, which are not. We will index the actions so that the ith good action is g(i),
and the bad action between good actions g(i� 1) and g(i) is b(i). For i 2 {1, . . . , n} g(i) will have:

• bias n
n�1 � n

n�i:

• value n
n�i + i✏ with probability 1/n, and 0 otherwise.3

The bad actions will be indexed by b(i) for i 2 {2, . . . , n}. Bad action b(i) will have

• bias n
n�1 � n

n�i.

• value n
n�i + (i� 1)✏+ �, for � ⌧ ✏.

The outside option will have bias n
n�1 and value v0 distributed according to a discrete distribution. We

will set Pr[v0 = ✏/2] = n
�(n�1). For i > 1, we will choose probability mass function Pr[v0 = i✏ � ✏/2] =

n
�(n�i) � n

�(n�i+1). Note that we have picked these probabilities so that Pr[v0 < i✏] = n
�(n�i). The values

of all actions described above are independent.
A solution to the delegation instance we just described is to take only good actions. The probability that

at least one good action takes its high value is 1� (1�1/n)n � 1�1/e. Assume this event has occurred, and
that the agent’s preferred good action is g(i). Then g(i) is preferred to the outside option with probability
n
�(n�i). Hence, the principal’s expected utility from choosing only good actions is at least:

f({g(1), . . . , g(n)}) � (1� 1/e)n�(n�i)(nn�i + ✏i) � 1� 1/e.

Now consider a threshold set At. It is without loss of generality to consider t = n
n�1 � n

n�j for some
j, which implies that the highest-bias actions in At are g(j) and b(j). For any good action g(i), with i < j,
the agent’s utility for g(i) on a high-valued realization is n

n�1 + i✏ < n
n�1 + (j � 1)✏+ �. Hence, the agent

ignores all actions other than g(j), b(j), and the outside option. If g(j) draws its high value, the principal
gets utility n

n�j + j✏ utility if and only if g(j) survives the outside option, which happens with probability
n
�(n�j). Otherwise, the agent looks to action b(j), and takes it over the outside option with probability

n
�(n�j+1). Ignoring value from the outside option, which goes to 0 as ✏ ! 0, we can account for the utility

from At as follows:

f(At) =
1
nn

�(n�j)(nn�j + j✏) + (1� 1
n )(n

n�j + (j � 1)✏+ �)n�(n�j+1)
.

⇡ 1
n + (1� 1/n) 1n ,

where the latter approximation holds for ✏ and � su�ciently small. This implies that every threshold incurs
a loss which is ⌦(n).

An upper bound of n for threshold mechanisms is trivial, by the following lemma. Hence, up to a
constant, the lower bound in Example 5.1 is tight.

Lemma 5.1. For any set A and i 2 A [ {0}, let Ai =
R
v vi I[g(A,v) = i] dv denote the contribution to f(A)

from action i. Then f(Abi) � A
i.

3
It is equivalent for this example to use distribution n

n�i
+ i✏ with probability 1/n, and n

n�i � ✏ otherwise. Under

this distribution, the example becomes an instance of assortment optimization, as described in Section 3. This makes our

parametrized analysis in Section 5.2 tight even for that special case.
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Proof. Consider any v where g(A,v) = i. The action chosen by the agent under Abi is g(Abi ,v), which has
bg(Abi

,v)  bi. Since g(Abi ,v) is the agent’s favorite, we have vg(Abi
,v)+bg(Abi

,v) � vg(A,v)+bg(A,v) = vi+bi.
Hence, vg(Abi

,v) � vi + bi � bg(Abi
,v) � vi. Taking expectation over v, we obtain:

f(Abi) =

Z

v
vg(Abi

,v) dF (v) �
Z

v
vg(Abi

,v) I[g(A,v) = i] dF (v) �
Z

v
vi I[g(A,v) = i] dF (v),

where the first inequality follows from the nonnegativity of vi.

An n-approximation then follows from noting that for any set A, f(A) =
P

i A
i.

Corollary 5.1. With independent values (and possibly randomized outside option), the best threshold is
an n-approximation to the optimal delegation set.

5.2 Parametrized Approximation In the previous section, we gave an example where no threshold set
was better than an ⌦(n)-approximation. However, this example was extreme, in the sense that while the
optimal solution obtained O(1) utility, some actions had values which were as large as nn�1. We now show
that this is no coincidence: any example where threshold mechanisms perform poorly must be unnatural in
this way.

Theorem 5.1. Let ⇢ = vmax/OPT, where OPT is the optimal principal utility and vmax the highest value
in any action’s support. Then with independent values (and a possibly randomized outside option), the best
threshold is a O(log ⇢/ log log ⇢)-approximation to OPT.

Theorem 5.1 is of particular interest for the application of assortment optimization. For an instance of
the latter problem, each item i yields revenue pi for the seller, and value wi for the buyer. Framed as a
delegation problem, we have vi = pi + ✏wi, for su�ciently small ✏. Hence, Theorem 5.1 implies that the
prices pi must be extreme whenever revenue-ordered assortments perform poorly. Another consequence of
Theorem 5.1 is a bicriteria approximation when values lie in [0, 1]: either some threshold obtains a small
multiplicative approximation, or it is trivial to obtain an additive approximation.

Proof of Theorem 5.1. We will argue the contrapositive. That is, we will argue with respect to some integer
↵ � 4, and assume that no threshold obtains a �-approximation for any � < 16↵. Under this assumption,
we show that there must be an action with value at least (↵� 2)↵�1

OPT/8↵ with positive probability. The
analysis will roughly proceed in three steps. First, we partition the optimal solution into ↵ subsets with
roughly equal contribution to OPT. We then consider the thresholds based on each of these subsets, and
compare their utility to that from the sets themselves; by assumption, no such threshold will outperform
its respective subset. Finally, we combine the resulting inequalities to show that the only way all can
hold simultaneously is if the bias of one of these thresholds is extreme. This will imply the existence of
a comparably high value. Throughout, we will make use of our decomposition and derandomization from
Lemmas 4.1 and 4.3, respectively.

Decomposing OPT Before defining our thresholds, we note that when no threshold approximates
OPT well, we may draw several simplifying conclusions about the structure of OPT. Let A⇤ be an optimal
subset of actions, and assume every action in A

⇤ is selected with positive probability. Following Lemma 4.1,
write OPT = f(A⇤) = Sur+BDif, and write u = max{bi | i 2 A

⇤ [ {0}}. By Lemma 4.2, it must be that
Sur < OPT/↵, or else the grand threshold Au would be an ↵-approximation, contradicting the nonexistence
of any � < 16↵-approximation. We may therefore focus our analysis on BDif =

R
v u�bg(A⇤,v) dF (v). It must

again be that no threshold obtains better than an 8↵-approximation to BDif > (1� 1/↵)OPT � OPT/2.
Next, note that no one action can comprise a large fraction of BDif. More precisely, let

OPT
i =

Z

v
viI[g(A⇤

,v) = i] dF (v)

BDif
i =

Z

v
(u� bi)I[g(A⇤

,v) = i] dF (v)
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denote the contribution of action i to OPT and BDif, respectively. Since g(A⇤
,v) = i only if

vi � (u � bi), we must have OPT
i � BDif

i. Lemma 5.1 implies that we may obtain OPT
i from a

threshold set for any i 2 A
⇤ [ {0}. We must therefore have that BDif

0  BDif/8↵, and therefore
that BDif � BDif

0 � (1 � 1/8↵)BDif � BDif/2. The remainder of the proof will focus on approxi-
mating BDif � BDif

0, assuming no approximation better than 4↵ is possible. Lemma 5.1 implies that
BDif

i  (BDif�BDif
0)/4↵ for all i 2 A

⇤.

Constructing Thresholds We now obtain a sequence of candidate thresholds by partitioning the
actions in A

⇤ based on their contribution to BDif � BDif
0. Let m = |A⇤|, and relabel the actions in

A
⇤ as 1, . . . ,m, with bi  bi+1 for all i 2 {1, . . . ,m � 1}. Actions not in A

⇤ will be indexed m + 1, . . . , n
(with 0 keeping its label). We will partition A

⇤ greedily to produce ↵ subsets of roughly equal contri-
bution to BDif � BDif

0. More precisely, define the first breakpoint between subsets as k0 = 0, and for
j 2 {1, . . . ,↵}, define subsequent breakpoints kj recursively as the smallest k 2 {kj�1 + 1, . . . ,m} such

that
Pk

i=1 BDif
i � j(BDif � BDif

0)/↵. Define the partition as A
⇤(j) = {kj�1 + 1, . . . , kj} for all j.

We can upper- and lowerbound the distortion of each bin: since BDif
i
< (BDif � BDif

0)/4↵ for all i,
it must be that A

⇤(j) is nonempty for j 2 {1, . . . ,↵}. Further define BDif(j) =
P

i2A⇤(j) BDif
i. We

must also have BDif(j) � (BDif � BDif
0)/2↵ for all j, and hence no threshold can attain better than a

2-approximation to BDif(j) for any j. We will define candidate thresholds based on each bin: let tj = bkj

(with t0 = mini2A⇤ bi), and define the threshold sets Aj = {i | bi  bkj} for all j.

Lower Bounding Threshold Utilities To lower bound the principal utility from Aj , we apply
Lemma 4.3 and consider f(Aj \ A

⇤ [ {a(tj)}) for some suitably constructed interfering action a(tj) with
bias tj . We write Aj = Aj \ A

⇤ [ {a(tj)}. Note that the interfering action a(tj) must give the agent high
utility, or else Aj would perform as well as its respective bin A

⇤(j). Formally, let Ej be the event that the
agent’s preferred action from A

⇤ is in A
⇤(j). (Note that the agent may still ultimately choose action 0 under

either Ej or Ej , and that
P

j Pr[Ej ] = 1.) If va(tj) + ba(tj) < u, then the threshold performance f(Aj) can be
written as

Z

v
vg(Aj ,v)

dF (v) �
Z

v
vg(Aj ,v)

I[Ej ] dF (v) =

Z

v
vg(A⇤,v)I[Ej ] dF (v) �

Z

v
(u� bg(A⇤,v))I[Ej ] dF (v).

The righthand expression is the bias di↵erence conditioned on Ej , which is at least BDif(j). This contradicts
our assumption that no threshold approximates BDif(j) to a factor better than 2.

We will now lowerbound f(Aj) by decomposing it into two terms, depending on the event Ej :

(5.1) f(Aj) =

Z

v
vg(Aj ,v)

dF (v) =

Z

v
vg(Aj ,v)

I[Ej ] dF (v) +

Z

v
vg(Aj ,v)

I[Ej ] dF (v)

To lowerbound the first term the right of (5.1), define the event E+
j to be the event that g(Aj ,v) 6= 0, and

E=
j to be the event that the agent’s favorite action in A

⇤(j) is also their favorite in Aj . In E=
j , the agent

may still ultimately take the outside option. We may now write:

Z

v
vg(Aj ,v)

I[Ej ] dF (v) =

Z

v
vg(Aj ,v)

I[Ej \ E+
j \ E=

j ] dF (v) �
Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v),

where the inequality comes from the fact that under Ej \ E+
j \ E=

j , the agent chooses the same thing from
A

⇤ as they would from Aj , and hence that action gives the agent utility at least u.

To lowerbound the second term on the right of (5.1), let E
j be the event that the agent prefers a(tj) to

the outside option, i.e. v0 + b0  va(tj) + ba(tj). We may then lowerbound the second term as:

Z

v
vg(Aj ,v)

I[Ej \ E+
j ] dF (v) �

Z

v
(u� tj)I[Ej \ E+

j ] dF (v) � (u� tj)Pr[Ej ]Pr[E
j ].

The first inequality follows from the fact that the action chosen in Aj yields utility at least va(tj)+ tj and has

bias at most tj . The second inequality follows from the facts that E
j  E+

j and E
j and Ej are independent.
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Taking the two terms together, we have the lower bound

(5.2) f(Aj) �
Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v) + (u� tj)Pr[Ej ]Pr[E

j ].

Upper Bounding BDif(j) Next, we upperbound the contribution of A⇤(j) to BDif. We will split
BDif(j) based on the event E=

j that the agent’s favorite action is the same between A
⇤(j) and Aj . Let E⇤

denote the event that g(A⇤
,v) 6= 0. We have:

BDif(j) =

Z

v
(u� bg(A⇤,v))I[Ej \ E⇤] dF (v)

=

Z

v
(u� bg(A⇤,v))I[Ej \ E⇤ \ E=

j ] dF (v) +

Z

v
(u� bg(A⇤,v))I[Ej \ E⇤ \ E=

j ] dF (v).(5.3)

We can now upperbound each term in (5.3), starting by rewriting the leftmost. In the intersection
event Ej \ E=

j , the favorite non-0 action from A
⇤ and Aj are the same. Hence conditioned on this event,

g(Aj ,v) = g(A⇤
,v) and E⇤ = E+

j . Therefore:

Z

v
(u� bg(A⇤,v))I[Ej \ E⇤ \ E=

j ] dF (v) =

Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v).

To upperbound the second term in (5.3), note first that in the event Ej \ E⇤, the chosen action’s bias is at
least tj�1 and hence the bias di↵erence is at most u � tj�1. Second, note that conditioned on Ej \ E=

j , it

must be that the agent prefers a(tj) to all actions in A
⇤(j). Hence, conditioned on Ej \ E=

j , it must be that
any time the agent prefers an action in A

⇤(j) to the outside option, it must be that they also prefer a(tj).

Hence, Ej \ E⇤ \ E=
j ✓ Ej \ E

j \ E=
j . Finally, note that Ej and E

j are independent. These facts imply:

Z

v
(u� bg(A⇤,v))I[Ej \ E⇤ \ E=

j ] dF (v)  (u� tj�1)

Z

v
I[Ej \ E⇤ \ E=

j ] dF (v)

 (u� tj�1)

Z

v
I[Ej \ E

j \ E=
j ] dF (v)

 (u� tj�1)Pr[Ej \ E
j ]

= (u� tj�1)Pr[Ej ]Pr[E
j ].

Combining the two terms, we have:

(5.4) BDif(j) 
Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v) + (u� tj�1)Pr[Ej ]Pr[E

j ].

Lowerbounding Bias Di↵erences Inequality (5.2) lowerbounds f(Aj) in terms of tj , and inequality
(5.4) upperbounds BDif(j) in terms of tj�1. Since no threshold is better than a 2-approximation to BDif(j),

• Ej : agent’s favorite non-0 action in A
⇤ is in A

⇤(j).

• E+
j : g(Aj ,v) 6= 0.

• E=
j : the agent’s favorite action in A

⇤(j) is also their favorite in Aj .

• E
j : v0 + b0  va(tj) + ba(tj).

• E⇤: g(A⇤
,v) 6= 0

Figure 1: List of events for proof of Theorem 5.1.
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it must hold that our upper bound on BDif(j) exceeds our lower bound on f(Aj). That is:
Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v) + (u� tj)Pr[Ej ]Pr[E

j ]


Z

v
(u� bg(A⇤,v))I[Ej \ E+

j \ E=
j ] dF (v) + (u� tj�1)Pr[Ej ]Pr[E

j ].

We may rearrange this as
u� tj�1

u� tj
� 1� Pr[Ej ]

Pr[Ej ]
.

Taking the product over all j  ↵� 1 and canceling yields:

u� t0

u� t↵�1
�

↵�1Y

j=1

1� Pr[Ej ]
Pr[Ej ]

.

Note that the righthand side is a convex, symmetric function of the Pr[Ej ]s. Moreover, we haveP↵�1
j=1 Pr[Ej ] 

P↵
j=1 Pr[Ej ] = 1. Hence, minimizing the righthand side as a function of the Pr[Ej ]s yields

a minimum at Pr[Ej ] = 1/(↵ � 1) for all j, and hence (u � t0)/(u � t↵�1) � (↵ � 2)↵�1. Note also that
BDif(↵) � (BDif�BDif

0)/2↵. Since BDif(↵)  (u� t↵�1)Pr[E↵]  (u� t↵�1), we obtain:

u� t0 � (↵� 2)↵�1

2↵
(BDif�BDif

0).

Since every action in A
⇤ is selected with positive probability, and since t0 = mini2A⇤ bi, it must be that some

action in A
⇤ has value at least u� t0 with positive probability. Since BDif�BDif

0 � BDif/2 � OPT/4,
we obtain the desired lower bound on vmax/OPT.

6 Threshold Delegation with Correlated Values

In the previous sections, we showed that under independently-distributed values, simple threshold rules
obtain a close approximation the optimal principal utility. We now allow arbitrarily correlated values
and show that the situation worsens considerably. Assuming the value distribution is discrete, prove
tight a approximation guarantee for the principal’s best threshold policy, showing that it is a ⇥(log p�1

min)-
approximation, where pmin denotes the lowest probability mass of any value profile realization. Hence, absent
independence, threshold policies still perform well under low levels of uncertainty, but their performance
gradually degrades as the uncertainty grows more extreme. We state our results formally below, starting
with our upper bound.

Theorem 6.1. There always exists a threshold policy which is a 4 log(p�1
min)-approximation where pmin is

the mass of the least likely value profile.

Proof. Let OPT be the optimal delegation set, and let t0 be the maximum bias across actions in OPT . Let
B be the random variable that corresponds to the bias of the action chosen in OPT . Let t1 be the bias
threshold such that Pr[B 2 [t1, t0]]  1

2 and Pr[B 2 [0, t1]] � 1
2 . Let OPT ([t1, t0]) be the principal utility

generated conditioned on B 2 [t1, t0]. We claim that the principal utility generated by using a best threshold
out At1 or At0 achieves principal utility at least 1

4OPT ([t1, t0]).
First consider the threshold At0 . Consider any realization where OPT picks an action with bias at least

t0. Let v, b be the value and bias of the action chosen by OPT and let v
0
, b

0 be the value and bias of the
action chosen by At0 respectively. Since the action chosen by OPT is available in At0 it must be that

v
0 + b

0 � v + b , v � v
0  b

0 � b.

Note that from our assumptions b0  t0 and b � t1, therefore the pointwise loss of At0 compared to OPT is
at most t0 � t1 in this event. As a result we can lower bound the principal utility of At0 as follows:

f(At0) � Pr[B 2 [t1, t0]](OPT ([t1, t0])� t0 + t1) �
1

2
(OPT ([t1, t0])� t0 + t1).
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Second, consider the threshold At1 . Every time OPT chooses an action with bias less than or equal to
t1 this action is also available to At1 . Note that if such action is chosen its agent utility must be at least
t0 otherwise the action with the maximum bias would have been chosen instead. The action chosen in At1

therefore must have at least agent utility t0. Since the bias is at most t1 this means that the principal utility
from that action is at least t1 � t0. We conclude that

f(At1) � (t0 � t1) Pr[B 2 [0, t1] �
1

2
(t0 � t1).

As a result,

f(At0) + f(At1) �
1

2
[OPT ([t1, t0])� t0 + t1 + t0 � t1] =

1

2
OPT ([t1, t0])].

Hence, the best out of both of these sets provides at least 1
4OPT ([t1, t0]) principal utility. Note that

OPT gets at most Pr[B 2 [t1, t0]]OPT ([t1, t0]) utility from this event therefore the best of these threshold
provides a 4-approximation to the events’ contribution to OPT ’s principal utility.

We have shown that there exists a threshold that approximates the utility of OPT conditioned that
B 2 [t1, t0] that is

Pr[B 2 [t1, t0]]OPT ([t1, t0]).

Let us focus on the remaining principal utility that is obtained by OPT in the event that B 2 [0, t2] where
t2 bias of the most-biased action smaller than t1. One key observation is that this event happens with
probability at most 1/2 by our choice of t1 since Pr[B 2 [t1, t0]] � 1

2 .
If we consider the conditional distributions on this event we can repeat the same analysis to prove that

there exists bias threshold t3 < t2 such that Prob[B 2 [t3, t2) | B 2 [0, t2]] � 1/2 and also

max{f(At2), f(At3)} � 1

4
Pr[B 2 [0, t2]]OPT ([t3, t2]) �

1

4
Pr[B 2 [t3, t2]]OPT ([t3, t2]),

which corresponds to 4-approximation to the contribution to OPT solution’s principal utility in this interval.
Note that

Pr[B 2 [0, t3) | B 2 [0, t2]]  1/2 ) Pr[B 2 [0, t3]]  1/4.

Repeating this process shrinks the probability of the remaining probability space by half. Let m be the
maximum number of times we can repeat this process. There are two ways this process can stop. Either we
are left with a single action or the probability that B (OPT bias) is strictly below the last used threshold
is 0. Since the minimum probability of any realization is pmin and each time we repeat this process the
probability is shrunk by half m cannot be larger than log p�1

min.
This process generates m disjoint events B 2 [t2i+1, t2i] for i = 0, . . . ,m� 1 such that

OPT =
m�1X

i=0

OPT ([t2i+1, t2i])Prob[B 2 [t2i+1, t2i]]

and in addition

max{f(At2i+1 , At2i} � 1

4
OPT ([t2i+1, t2i]) Pr[B 2 [t2i+1, t2i]]

If we combined these two equations together we get that

max
i2{0,...,2m�1}

f(Ati) �
m

4
OPT

Since m  log p�1
min we get that the best possible threshold is at least a 4 log p�1

min approximation.
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Matching lower bound. The above analysis is tight. We show in Appendix A.2 that our analysis in
Theorem 6.1 is tight up to a constant factor. We do so by providing instances where no threshold policy can
outperform the logarithmic approximation ratio.

Theorem 6.2. There exists a family of instances where no threshold policy is better than a ⌦(log p�1
min)-

approximation.

In Appendix A.3, we also prove the following supplementary hardness result for the case with discretely-
distributed, correlated values:

Theorem 6.3. With correlated, discrete values, there exists a constant c such that it is NP-hard to compute
a mechanism with approximation factor better than c.

To prove this result, we reduce from bounded-degree vertex cover, which is similarly hard to approximate.
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A Supplementary materials

A.1 Proof of Theorem 4.2 To see that the problem is in NP, note that given an action set S, we may
compute the principal’s expected utility in polynomial time. Specifically, let Si be the first i elements of
S, let opti(u) = E[vg(Si,v) | vg(Si,v) + bg(Si,v) = u] and pi(u) = Pr[vg(Si,v) + bg(Si,v) = u]. Both can be
computed for all u by a simple dynamic program, considering i = 1, . . . , n. The utility of S can then be
computed using the law of total expectation.

To show hardness, we will reduce from Integer Partition. An instance of this problem is integers
c1, . . . , cn. The goal is to find a subset S ✓ [n] such that

P
i2S ci = 1

2

Pn
i=1 ci. Let C =

Pn
i=1 ci, and

cmax = maxi ci. Consider the following delegation instance, with n+ 1 actions.

• Actions 1, . . . , n have bias M
2(1 � C/2M) for some M (large, to be chosen). Let � be a number

small enough to only matter for agent tiebreaking (and which we will omit from all principal utility
computations). The value of action i will be

* (high realization) 1 + 2� with probability pi =
ci
M3 � c2i

2M4(1�C/2M)

* (low realization) 1 with probability qi =
ci
M

• Action n+1 has value 0 with probability 1/2 and with probability 1/2 takes valueM2(1�C/2M)+1+�.
Action n+ 1 will have bias 0.

First observe that any set of actions not containing action n + 1 is suboptimal. By a union bound,
the utility from such a set is at most

Pn
i=1(pi + qi)  2C/M . The utility from taking action n + 1 alone,

meanwhile, is M
2(1 � C/2M) + 1 � 1, which is at least 2C/M as long as M � 2C. It follows that the

principal’s problem is to pick which of actions 1, . . . , n to pick alongside n + 1. Now consider the principal
utility from a set T = S[{n+1} for some S ✓ [n]. To compute the principal’s utility, consider the following
two events:

• Let E1 be the event that at least one action in S has a high realization. In this event, the agent will
choose such an action over n+ 1, no matter the value of action n+ 1.

We can approximate the probability of this event using only first-order terms. In more detail, this
event has probability

1�
Y

i2S

(1� pi) =
X

i2S

pi �
|S|X

k=2

(�1)k
X

Sk✓S:
|Sk|=k

Y

j2Sk

pj
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Call the second term on the right C1. We can show that C1 2 [� 4n2c2max
M6 ,

4n2c2max
M6 ]:

|C1| =

�����

|S|X

k=2

(�1)k
X

Sk✓S:
|Sk|=k

Y

j2Sk

pj

�����


nX

k=2

X

Sk✓[n]:
|Sk|=k

Y

j2Sk

pj


nX

k=2

✓
n

k

◆⇣
cmax

M3

⌘k


nX

k=2

⇣
ne

k

⌘k ⇣cmax

M3

⌘k

 2
nX

k=2

⇣
ncmax

M3

⌘k

 2
1X

k=2

⇣
ncmax

M3

⌘k

=
2n2

c
2
max

M4

1X

k=0

⇣
ncmax

M3

⌘k

=
2n2

c
2
max

M6

1

1� ncmax
M3

.

As long as ncmax/M
3  1/2, we have the desired upper bound.

• Let E2 be the event that no action in S has a high realization, and at least one has a low realization.
Then this event has probability:

Pr[E1]�
Y

i2S

(1� pi � qi)

= 1�
X

i2S

pi + C1 �
Y

i2S

(1� pi � qi)

= 1�
X

i2S

pi + C1 � 1 +
X

i2S

(pi + qi)�
X

i 6=j2S

(pi + qi)(pj + qj) +

|S|X

k=3

(�1)k
X

Sk✓S:
|Sk|=k

Y

j2Sk

(pj + qj)

= C1 +
X

i2S

qi �
X

i 6=j2S

(pi + qi)(pj + qj) +

|S|X

k=3

(�1)k
X

Sk✓S:
|Sk|=k

Y

j2Sk

(pj + qj).

Call the last term C2. A similar argument to the one for C1 shows that C2 2 [� 16n3c3max
M3 ,

16n3c3max
M3 ].
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We include it below for completeness.

|C2| =

�����

|S|X

k=3

(�1)k
X

Sk✓S:
|Sk|=k

Y

j2Sk

(pj + qj)

�����


|S|X

k=3

X

Sk✓S:
|Sk|=k

Y

j2Sk

(pj + qj)


nX

k=3

X

Sk✓S:
|Sk|=k

Y

j2Sk

(pj + qj)


nX

k=3

✓
n

k

◆✓
2cmax

M

◆k


nX

k=3

⇣
ne

k

⌘k ✓2cmax

M

◆k


nX

k=3

✓
2ncmax

M

◆k

 8n3
c
3
max

M3

1

1� 2ncmax
M

This implies the desired bound as long as M � 4ncmax.

The third term above can also be simplified:

X

i 6=j2S

(pi + qi)(pj + qj) =
X

i 6=j2S

pipj + 2
X

i 6=j2S

piqj +
X

i 6=j2S

qiqj .

Call the first two terms above C3. Since for any i, 0  pi  cmax/M
3 and 0  qi  cmax, we have

C3 2 [0, 3n2cmax
M4 ]. We therefore have Pr[E2] =

P
i2S qi �

P
i 6=j2S qiqj + C1 + C2 � C3.

Analyzing the Principal’s Utility Given actions S, we can write the principal’s utility as:

1

2

�
(1 + 2�)Pr[E1] + (M2(1� C/2M) + 1 + �)Pr[E1]

�
+

1

2
(Pr[E2] + (1 + 2�)Pr[E1]).

Taking � ! 0, we obtain:

1

2

�
Pr[E1] + (M2(1� C/2M) + 1)Pr[E1]

�
+

1

2
(Pr[E2] + Pr[E1]).

=
1

2
(M2(1� C/2M) + 1) +

1

2
(Pr[E2] + Pr[E1]�M

2(1� C/2M)Pr[E1])

=
1

2
(M2(1� C/2M) + 1) +

1

2
(Pr[E2]�M

2(1� C/2M)Pr[E1]) + Pr[E1]/2.

The first term does not depend on S, and the last term will turn out to be negligibly small. We next
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analyze the middle term, leaving out C1, C2, and C3 for the moment.

Pr[E2]�M
2(1� C/2M)Pr[E1] ⇡

X

i2S

ci

M
�
X

i 6=j2S

cicj

M2
�
✓
1� C

2M

◆ X

i2S

ci

M
�
X

i2S

c
2
i

2M2(1� C
2M )

!

=
C

2M

X

i2S

ci

M
�
X

i 6=j2S

cicj

M2
�
X

i2S

c
2
i

2M2

=
1

2M2

0

@
X

i2S

ci +
X

j /2S

cj

1

A
X

i2S

ci �
X

i 6=j2S

cicj

M2
�
X

i2S

c
2
i

2M2

=
1

2M2

 
X

i2S

ci

!0

@
X

j /2S

ci

1

A .

This latter expression takes value C
2
/8M2 if the integers can be exactly partitioned, and value at most

(C2
/4 � 1)/2M2 = C

2
/8M2 � 1/2M2 otherwise. Now we can take C1, C2, C3, and Pr[E1]/2 into account.

Specifically, we can write:
�����
1

2
(Pr[E2]�M

2(1� C/2M)Pr[E1]) + Pr[E1]/2�
1

2M2

 
X

i2S

ci

!0

@
X

j /2S

ci

1

A
�����

=
���
1

2
(C1 + C2 � C3) +

M
2

2
(1� C/2M)C1 + Pr[E1]/2

���

 1

2

✓
4n2

c
2
max

M6
+

16n3
c
3
max

M3
+

3n2
cmax

M4

◆
+

M
2

2
(1� C/2M)

4n2
c
2
max

M6
+

ncmax

2M3

 16n3
c
3
max

M3
.

The first inequality follows from applying the triangle inequality, along with our existing bounds on C1,
C2, and C3 and the fact that Pr[E1]  ncmax

M3 by a union bound. As long as M � 128n3
c
3
max, we will

have that 16n3
c
3
max/M

3  1/8M2. We can therefore solve our Integer Partition instance by asking
if our constructed instance of delegation has value at least (M2(1 � C/2M) + 1)/2 + C

2
/8M2 � 1/8M2.

Any solution that exactly partitions the integers will obtain at least this value, and any solution that
fails to do so will have objective value at most (M2(1 � C/2M) + 1)/2 + C

2
/8M2 � 1/2M2 + 1/8M2 

(M2(1� C/2M) + 1)/2 + C
2
/8M2 � 1/8M2.

A.2 Proof of Theorem 6.2 In this appendix, we show that the logarithmic approximation upper bond
of Theorem 6.1 is tight, up to a constant factor. That is, no threshold algorithm can perform better than
log p�1

min. To prove the tightness of our analysis in Section 6, we construct an infinite family of instances.
For any k � 2, consider an instance with n = 2k� 1 actions. The correlated distribution has m = 2k � 1

value profile realizations. We construct a value matrix where each row correspond to an action and each
column corresponds to a realization. Therefore, the value at cell Vi,j gives the value of action i at realization
value profile j. The distribution over value profiles simply selects and value realization uniformly at random.

V =(A.1)

2

6666666666666664

2
k

2
k�1

+ 2✏

2
k�1

2
k�1

2
k�2

+ 3✏ 2
k�2

+ 3✏ 2
k�2

+ 3✏

2
k�2

2
k�2

2
k�2

2
k�2

2
k�3

+ 4✏ 2
k�3

+ 4✏ 2
k�3

+ 4✏ 2
k�3

+ 4✏ 2
k�3

+ 4✏ 2
k�3

+ 4✏ 2
k�3

+ 4✏

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

2 +O(k✏) 2 +O(k✏) 2 +O(k✏) 2 +O(k✏) 2 +O(k✏) 2 +O(k✏) 2 +O(k✏) . . .

. . .
| {z }

2k�1

2 . . . 2

3

7777777777777775
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Note that all the empty entries in the above matrix are zero, and are removed to make the structure
of the matrix more apparent. Also, every solution corresponds to eliminating a a set of rows. For each
realization (column) the row with maximum agent utility is selected. The optimal solution is to select set
of odd actions (with size k). The colored entries indicate (realization,action) pairs that contribute to the
optimal principal’s utility (OPT ). The optimal utility is equally divided between the odd rows, leaving 2k

for each one: the first row has 2k in the first column, the third row has 2k�1 in columns 2 and 3, the fifth
row has 2k�2 over the next 4 columns and so on. In the example, the even actions are constructed to lower
the principal’s utility whenever they are included in a threshold solution. In every state (column), we divide
the colored utility by 2 to find the utility of the next row, and keep dividing by 2 to complete the subsequent
even rows. The ✏ terms are added to break the ties and are of little importance.

Next, we define the bias: we set b1 = 0, and the rest of actions have the following bias:

(A.2) b2i+1 =
iX

j=1

2k�j
, b2i = b2i+1 � ✏, i 2 {1, ..., k � 1}.

Now that all the parameters are set, it is easy to verify that given the set of odd actions (rows), the agent
will indeed pick the colored entries. This generates the optimal utility, since it is optimal in every single
realization. Since each value profiled is realized with probability 1

m the optimal expected utility is equal to:

OPT =
k ⇥ 2k

m
.

However, the best threshold solution in the constructed instance is to allow the entire set of actions (⌦).
To see this, assume that the principal allows actions with bias less than or equal to b2`�1 for some `  k.
(Thresholds set at even-indexed actions can be easily shown to be suboptimal.) Note that every even action
is preferred by the agent to any other action with less bias. Therefore, the only actions chosen by the agent
are 2`� 1 or 2`� 2 In this case, the principal will get utility of 2k�`+1 +O(`✏) from the first 2` � 1 states,
and zero from the remaining states.

Observe that the overall utility (2` � 1) ⇥ 2k�`+1 is an increasing function in `, meaning that the best
strategy for the principal is to not limit the agent. In this case, the agent will pick the penultimate action in
the first half of columns, and the last action for the second half, generating utility of (almost) 2 for principal
in every state. More precisely, we have:

APX = 2 +O(k✏).

We get the desired lower bound by dividing the above objectives:

OPT

APX
=

k ⇥ 2k

2n+O(nk✏)
⇠=

k

2
⇠=

log n

2
.

Example A.1. In order to make sure that the above construction is clear, here we present the full matrices
for the case of k = 3, which translates into n = 5 actions and m = 7 realizations. The value matrix in this
case is

V =

2

66664

8 0 0 0 0 0 0
4 + 2✏ 0 0 0 0 0 0

0 4 4 0 0 0 0
2 + 3✏ 2 + 3✏ 2 + 3✏ 0 0 0 0

0 0 0 2 2 2 2

3

77775

Calculating the bias in (A.2) results in:

b = (0, 4� ✏, 4, 6� ✏, 6)

It is clear that the value matrix V is non-negative, and the agent’s utility V +B will be:

V +B =

2

66664

8 0 0 0 0 0 0
8 + ✏ 4� ✏ 4� ✏ 4� ✏ 4� ✏ 4� ✏ 4� ✏

4 8 8 4 4 4 4
8 + 2✏ 8 + 2✏ 8 + 2✏ 6� ✏ 6� ✏ 6� ✏ 6� ✏

6 6 6 8 8 8 8

3

77775
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Observe that OPT = 24/7 by the set of odd actions {1, 3, 5}, while APX = (14 + 9✏)/7 from the entire set
of actions ⌦ = {1, 2, 3, 4, 5}.

A.3 Proof of Theorem 6.3

Proof. We give a reduction from the bounded degree vertex cover problem, i.e., the vertex cover problem on
graphs with degree at most B (constant). This problem is known to be APX-hard Clementi and Trevisan
(1999). Consider an instance of the bounded degree vertex cover problem G = (V, E) with ñ nodes and m̃

edges (where m̃  B · ñ/2 = O(ñ)).4

We construct an instance of the delegation problem with ñ+ 1 actions with action ai corresponding to
node i and an additional “default” action a0. All actions have 0 bias apart from a0 which has bias �1. The
correlated distribution of the actions values is defined as follows: we pick an edge e = {i, j} or some node i

uniformly at random, i.e., each element with probability (m̃+ ñ)�1

If we picked some edge e = {i, j} then we assign value 5 to actions ai and aj , 2 to the default action a0,
and 0 for all other actions. If we picked a node i we assign value 2 to ai and a0 (default action) and 0 for all
other actions.

We claim that the optimal solution of the delegation problem produces a utility of (5m̃+3ñ� k̃)/(m̃+ ñ)
for the principal, where k̃ is the size of the smallest vertex cover of G. To see this, first note that any solution
S ✓ V can be improved by including a0, since a0 has a negative bias. Any time the agent would choose a0,
it is the optimal choice for the principal as well. We therefore only consider solutions containing a0.

Now if S is a vertex cover of G with |S| = k̃, consider the corresponding delegation set where the principal
allows actions {ai : i 2 S}[{a0}. If we generate the values by picking an edge, the agent will pick the action
corresponding to one end of that edge (one is guaranteed to be in the cover S) to get a utility of 5 compared
to 2� 1 achievable from the default action. This choice will also generate utility of 5 for the principal, which
makes 5m̃ in total. If the utility is generated by picking node i the agent will pick action ai which generates
the utility of 2 for both principal and agent. This will make 2k̃ in total. Finally, if the utilities are generated
using some node i 2 V\S the agent picks the default action which generates a utility of 2� 1 for the agent
but 2 + 1 for the principal. This will give 3(ñ � k̃) in total. As a result the principal utility in expectation
is (5m̃+ 3ñ� k̃)/(m̃+ ñ).

For the converse, consider an optimal solution A to the delegation problem. We show that the nodes
corresponding to the actions in A (excluding the default action) induce a vertex cover; otherwise the solution
can be improved. Assume that there exists an edge e = {i, j} where neither ai nor aj is allowed in A. If we
add action ai to A, the principal gets a utility of 5 if the utilities are generated from pick edge e, compared to
current utility of 3 from the default action. On the other hand, the utility of the principal decreases from 3
to 2 if the values are generated by action i. So the total utility of A[ {ai} is more than A which contradicts
the optimality of A. Therefore A should be a vertex cover (plus default action). This in turn implies that
the utility is at most (5m̃+ 3ñ� k̃)/(m̃+ ñ) where k̃ is the size of the minimum vertex cover.

Since m̃ = ⇥(ñ) and the minimum vertex cover has size at least m̃/B = ⌦(ñ), a constant factor gap in
the bounded degree vertex cover problem translates into a constant factor gap in the optimal solution of the
delegation problem, which yields the desired hardness result.

4
To distinguish between the parameters of the vertex cover instance and the delegation instance, we use tilde (⇠) for the

graph instance.
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