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Abstract
Despite the widespread application of machine learning models and feature selection methods to identify important clini-
cal features in electronic health records (EHR) for disease prediction, the use of graph neural networks (GNNs) to uncover
significant clinical features associated with a disease remains largely unexplored. In this investigation, we developed a compu-
tational method utilizing EHR data from Indiana University Medical Hospital to predict stroke in patients with asymptomatic
carotid stenosis. We first constructed a patient clinical feature graph for each patient based on the co-occurrence of features
(medications, diagnoses, and results of laboratory tests) in the EHR data within a predefined timeframe (e.g., 6 months before
the detection of the disease). Then, we applied an unsupervised GNN-based clustering approach and our algorithm to select
notable clinical feature clusters crucial for stroke prediction. These clinical features served as the basis for constructing patient
representation for prediction. Various supervised learning models were evaluated for their prediction capabilities. Unlike con-
ventional feature selection methods, our GNN-based feature selection approach relies solely on positive cases. We compared
our method against baseline models for stroke prediction and achieved robust performance metrics, including an AUC of 0.87
and an F1 score of 0.80, surpassing all baselines. Additionally, we conducted an ablation study on the amount of EHR data,
measured in months, to determine the most effective approach for generating patient clinical feature graphs. By capturing
inherent relationships between clinical features using the graph model, our approach offers a promising avenue for advancing
disease prediction, particularly in scenarios with limited positive cases available. Our code can be found on Github (https://
github.com/xudav001/Identifying-Phenotype-Clusters)
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1 Introduction

Stroke is a significant global cause of both mortality and dis-
ability, greatly affecting quality of life. Every year in the
USA, approximately 610,000 individuals experience their
first stroke, contributing significantly to long-term disability
[1]. Between 11 and 15% of strokes are linked to asymp-
tomatic carotid stenosis (ACS) as the initial neurological
event. Treating asymptomatic carotid stenosis poses notable
risks as well. Although current randomized clinical trials
offer guidance on when to intervene in asymptomatic steno-
sis, they require a high number of potentially unnecessary
procedures [2, 3]. The available literature on the natural
progression of asymptomatic carotid stenosis demonstrates
the value of adopting a management strategy for asymp-
tomatic carotid stenosis. Such an approachwould help reduce
unnecessary interventions and effectively preventing strokes.
Therefore, it is imperative to identify asymptomatic carotid

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Data Science and Analytics

stenosis (ACS) patients who are at a heightened risk of stroke
and administer appropriate invasive treatment accordingly.
In recent decades, extensive research has been conducted to
assess ACS patients, with the aim of identifying high-risk
characteristics that predispose certain individuals to strokes,
such as plaque-related attributes [4] and stroke-relevant geno-
types [5] and clinical features [6]. However, conducting
detailed ultrasound examinations to identify all plaque fea-
tures is challenging in busy clinical settings and rural areas.
With advancements in AI techniques and the availability of
extensive medical data stored in electronic health records
(EHRs), the development of a predictive stroke model using
clinical features collected from EHRs has become feasible.
This research is the first to predict the risk of developing
stroke in patients with ACS based on clinical features stored
in real-world EHRs, including diagnoses, medications, and
laboratory tests.

Feature selection plays a crucial role in analyzing EHR
data for disease prediction by identifying the most relevant
variables that contribute to the predictive model’s accuracy
and efficiency. In the context of EHR data, studies have
shown that using feature selection methods can improve the
performance of machine learning models by focusing on
the most informative clinical variables, such as laboratory
results, medication history, and patient demographics [7–9].
The traditional feature selection methods that are applied to
EHR data include information gain [10], tree-based methods
[11], principal component analysis (PCA) [12], etc. The lim-
itation of these traditional feature selection methods does not
consider the complex relations between features. Graph neu-
ral networks (GNNs) have significantly advanced in recent
years and are increasingly being applied to feature selection
tasks due to their ability to capture complex relationships
and dependencies in data. In the context of feature selection,
GNNs can be used to model the relationships between fea-
tures as a graph, where nodes represent features and edges
represent correlations or interactions between them. Recent
research has illustrated the potential efficacy of GNNs in
feature selection for disease prediction using EHR data [13].
For instance, GNNs can effectively model the interactions
between different clinical variables, such as symptoms, diag-
noses, and treatments, to select the most relevant features
for predicting patient outcomes [13–16]. This research is the
first to utilize GNN in an unsupervised manner to identify
the significant clinical variables that contribute to the stroke
in patients with ACS.

In this research, we aim to develop a computational
method to first identify a set of clinical variables that are sig-
nificantly associated with development of stroke reflected by
themedical historyof individuals. This novel clinical variable
selection approach is based on the unsupervisedGNNmodel.
Then, we utilize these selected clinical variables to predict
the development of stroke in patients with ACS using super-

vised learning models. We compared our framework against
the traditional clinical variable selection to demonstrate the
advance of our approach. Our research has the following
main contributions:

• We pioneered the use of a graph model to represent the
relationships among clinical features in a patient’s med-
ical record.

• We introduced the use ofweightedGNN to detect clusters
of clinical variables in an unsupervised manner, thereby
identifying significant clinical variables associated with
patients who subsequently develop strokes.

• We evaluated various supervised learning models using
the selected variables for stroke prediction and demon-
strated that the performances surpassed the baseline
models.

2 Related works

In this section, we explore related work by addressing the
main aspects most relevant to this research: (1) conventional
approaches used to select important clinical variables from
EHR data for disease prediction, (2) the application of graph
neural networks to medical data for predictive analysis and
relation extraction, and (3) the cutting-edge methodologies
specifically designed for predicting stroke or other diseases.

2.1 Clinical variable selection for disease prediction

Within electronic health records (EHR), clinical variables can
stem from structured fields such asmedication and diagnosis,
or unstructured fields like textual symptoms and exami-
nation findings. Chronic conditions like diabetes, chronic
obstructive pulmonary disease (COPD), and hypertension
can significantly contribute to carotid stenosis, a condition
linked to stroke risk [17]. Traditional computational meth-
ods for assessing the significance of clinical features in
medical histories often rely on vector-based approaches [18–
21] including REF, LASSO, most tree-based approaches,
where clinical variables are treated as independent attributes
forming vectors. However, such approaches fail to capture
relationships between variables in an unsupervised manner
and struggle to quantify the importance of heterogeneous
relationships within the data. For instance, intricate tempo-
ral relationships between chronic diseases, laboratory tests,
medical procedures, and medications cannot be fully inter-
preted when represented as entries in a single vector. While
some research utilizes techniques like SHAP [22] or local
interpretable model agnostic explanations (LIME) [23] for
feature interpretation, these methods often focus on individ-
ual features rather than clusters of related features. Given
that patients with extensive medical histories may develop

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Data Science and Analytics

multiple chronic diseases with varying sequences, a data-
driven quantification approach to identifying crucial clinical
features or feature associations could aid clinicians in identi-
fying groups of key risk factors within EHR that may predict
disease onset. It is crucial to develop an improved approach
for selecting clinical variables that can effectively analyze
the intricate relationships among these variables.

2.2 Graph neural networks for clinical data analysis

Graph neural networks (GNNs) have been increasingly uti-
lized for healthcare outcome prediction and analysis due to
their ability tomodel complex relationships betweenmedical
entities. GNNs effectively capture the intricate dependen-
cies within healthcare data, such as patient records, disease
pathways, andmolecular interactions, facilitatingmore accu-
rate predictions and insights. For example, GNNs have been
applied to predict patient outcomes bymodeling the relation-
ships between clinical variables in electronic health records
(EHRs), such as symptoms, diagnoses, and treatments [15,
16, 24]. Studies have demonstrated that GNNs outperform
traditional machine learning models in predicting disease
progression and patient readmission by leveraging the graph
structure of EHR data [14]. In addition to EHR data, GNNs
have been used to analyze genomic data for predicting dis-
ease susceptibility and drug response. Furthermore, GNNs
have been utilized in pharmacogenomics to predict drug–
target interactions and optimize drug discovery processes by
integrating various biological networks, including protein–
protein interaction networks and molecular graphs [25].
These advancements highlight the potential ofGNNs to revo-
lutionize health care by providing deeper insights into disease
mechanisms and enabling personalizedmedicine approaches
[26]. Unlike previous studies, our research emphasizes the
application of GNNs to identify significant clinical variables
that contribute to disease prediction, utilizing the electronic
health records (EHR) data of individuals.

2.3 Machine learningmodels for disease prediction

While previous studies have explored stroke prediction using
machine learning and neural networks, our research stands as
the first endeavor to forecast stroke in patients with asymp-
tomatic carotid stenosis (ACS), a clinically more challenging
task than predicting stroke in the general population. For
instance, Dev et al. utilized a perceptron neural network to
predict stroke using only four patient attributes: age, heart
disease, average glucose level, and hypertension [27]. Sim-
ilarly, Nwosu et al. [28] employed all patient attributes as
input features for stroke prediction, utilizing machine learn-
ing algorithms such as decision trees, random forests, and
neural networks. Additionally, several deep learning algo-
rithms have been developed for stroke prediction. Hung et

al. [29] explored the efficacy of a deep neural network in
stroke prediction using claims data, comparing its perfor-
mance with traditional machine learning algorithms. While
the results indicated a slight improvement with the deep neu-
ral network compared to traditional methods, the difference
was not significant. Moreover, instead of relying solely on
clinical features in medical records, other studies [30, 31]
have employed electrocardiograms or CT scan (computed
tomography) image datasets for stroke prediction. Our study
is the first to develop a novel computational framework and
applied on the complete EHR data for stroke prediction.

In summary, our study is the first to use a graph model
to represent the relationships between clinical variables and
employ unsupervised graph clusteringwithGNNs to identify
key clinical variables for stroke prediction in patients with
ACS using EHR data. The developed computational frame-
work can be adapted to other disease prediction using EHR
data.

3 Methodology

Figure1 shows the computational frameworkof our approach.
Given a dataset including diagnoses, medication, and labo-
ratory tests of each patient in the EHR. We first began by
applying a data preprocessing step that normalizes clinical
variables using standard coding and normalization methods
commonly applied to diagnoses, medications, and labora-
tory tests. Then, we developed an innovative unsupervised
method to select the important clinical variables based on the
positive cases using aGNN-based approach. In this approach,
a clinical variable graph is constructed for each patient who
experienced a stroke in the training data. Weighted graph
clustering is then employed to identify clusters of clinical
features, which help characterize these patients. Ultimately,
patient representation is crafted using the cluster centroids
and the associated clinical features, upon which diverse
supervised learningmethodologies are applied for stroke pre-
diction.

3.1 Clinical variable preprocessing

The structured data within the EHR, such as diagnosis codes
(International Classification of Diseases (ICD) 10 or 9)), lab-
oratory test results, and medications, were incorporated as
clinical variables in our study. Concerning diagnoses, we ini-
tially convert all ICD version 9 codes to their corresponding
ICDversion 10 codes. Rather than utilizing the complete ICD
code, we opted for the second-level categorization down to
the leaf nodes of the ICD version 10 code hierarchy, which
aggregates diagnoses into broader categories [32]. Specif-
ically, we employed the ICD version 10 codes without the
decimal point and subsequent numbers. For instance, the ICD
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Fig. 1 Illustration of the system framework

version 10 code E78.1 denoting pure hypertriglyceridemia
was converted to E78, representing disorders of lipopro-
teinmetabolism. Regarding laboratory tests, we standardized
the values to descriptors such as “low,” “normal,” “high,”
or “abnormal” based on the reference ranges provided by
the laboratory test references. For medications, instead of
utilizing the original drug names alongside dosages, we cat-
egorized them according to the drug groups specified in
the National Drug Code (NDC) Directory, excluding cate-
gories such as “medical devices and supplies,” “diagnostic
products,” “Nasal Agents-Systemic Topical,” and “dermato-
logicals.” For example, the medication Heparin is mapped to
the medication category of anticoagulants.

3.2 GNN-FS: clinical variable selection using graph
neural network

To identify significant clinical variables associated with
patients who developed stroke, we first constructed a patient
clinical variable graph to capture the relationships among
the variables. We then applied a GNN approach to identify
clusters of clinical variables that are relevant to patients who
experienced a stroke.

3.2.1 Build a patient clinical variable graph

To form a patient clinical variable graph, each node within
the graph corresponds to a clinical variable in the patient’s
medical history, such as a diagnosis, medication, or labo-
ratory test. For laboratory tests, each node represents both
the specific test and its result, categorized as “low,” “high,”
or “abnormal.” Edges connecting the nodes are established

when they occur simultaneously within a predefined time-
frame, e.g., 1month or 6months. The timeframe is calculated
based on the discharge date associated with a diagnosis,
the order date of a medication, and the performance date
of a laboratory test. In a patient’s medical history, labora-
tory tests may be performed and medications ordered more
than once within a timeframe. Thus, the frequencies of co-
occurrences of clinical features determine the weights on the
edges (wL1L2 , wM1L2 , . . . ). For instance, if a patient under-
goes laboratory test L1 and receives medicationM2 on day 1,
and the same procedures are repeated on day 2 a few months
after day 1, the edge weight between L1 and M2 is 2 if the
defined timeframe for co-occurrence calculation is less than 3
months. Figure2 illustrates a patient graph comprising nodes:
Di nodes represent diagnoses, Mi nodes represent medica-
tions, and Li nodes represent laboratory tests. This graphical
depiction of a patient elucidates the correlations and patterns
of co-occurrence among various clinical variables, providing
a structured approach to analyzing the connections between
diagnoses, prescribed medications, and laboratory results for
each individual patient, thereby enhancing our understanding
of patient health and medical relationships.

3.2.2 Generate clinical variable clusters using GNN and
select important variables

To generate clinical variable clusters from the clinical vari-
able graph, we first created node embeddings and then
applied the k-means clustering algorithm, an unsupervised
approach, to identify the clinical variable clusters. In this
research, each node in the graph represents a clinical vari-
able.
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Fig. 2 Weighted clinical feature graph of a patient

Node2Vec [33] is one of the state-of-the-art unsupervised
graph neural networks with an identity feature matrix. Its
training objective is to generate node embeddings that cap-
ture the relationships among nodes in a given graph. In this
research, we utilized a weighted Node2Vec model to pro-
duce clinical variable embeddings derived from the patient
clinical variable graph.

Consider a graph G = (V , E) denotes a set of nodes
V = (v1, . . . , vn), |V | = n, and edges E ⊆ V × V ,
|E | = m. Node2Vec produces multiple random walks of
a specified length for every node v within the set V . The
random walks are created by moving from one node to
another according to predetermined transition probabilities
(πvi ,v j = αpq · wvi ,v j ). The calculation of αpq is shown
as Eq. (1), which are designed to balance between exploring
local neighborhoods and exploring distant parts of the graph.

αpq =

⎧
⎪⎨

⎪⎩

1
p , if dvi ,v j = 0

1, if dvi ,v j = 1
1
q , if dvi ,v j = 2

(1)

where wvi ,v j is the weight of the edge between nodes vi and
v j , and di j is the shortest path distance between nodes vi and
v j . Here, di j represents the shortest path distance between
nodes i and j . The transition probability is controlled by two
parameters: p and q:

• p defines the probability of the random walk to revisit
nodes it has previously visited

• q defines the probability of the random walk to explore
new nodes

In our experiment, we opted for unbiased walks, thus set-
ting both p and q to 1. This choice guarantees that the random
walks offer an equitable exploration of the graph’s topology.
Employing a weighted Node2Vec algorithm, we accounted
for edgeweights during randomwalk generation. Thismeans
that the algorithm is inclined to traverse edges with greater
weights, indicating stronger relationships between nodes. In

our setup, we conducted random walks with a length of 30
and execute 200 random walks for each node.

After generating the random walk paths, Node2Vec uses
the skip-gram model to generate node embeddings. The pri-
mary aim of the learning task is to forecast context nodes,
those neighboring a specific target node, where the target
node is initially transformed into a one-hot encoded vec-
tor within the input layer. The training of the skip-gram
model employs stochastic gradient descent to maximize the
likelihood of correctly predicting context nodes for each
given target node. Through this optimization process, the
embeddings of nodes are iteratively adjusted, resulting in
embeddings that reflect similarity among nodes, thereby cap-
turing key structural aspects of the graph, including node
resemblances and connections. The objective of the embed-
ding generation process is to maximize the logarithmic
probability of observing a network neighborhood V for a
node u based on its feature representation, which is shown
as Eq. (2).

L =
∑

v∈V

∑

u∈Nv

log P(u|v) (2)

here V is the set of all nodes, u represents context nodes, v
is the target node, andNv is the set of context nodes for target
node v. P(u|v) is the probability of context node u given
target node v, and it is defined using the softmax function,
shown in Eq. (3).

P(u|v) = exp(eTu · ev)
∑

w∈V exp(eTw · ev)
(3)

where eu and ev are the nodes embeddings u and v, respec-
tively. For our experiment, the generated embeddings had a
dimension of 64.

After the Node2Vec model is trained, we employ the
k-means clustering algorithm on the node embeddings gen-
erated by the Node2Vec model. By applying the k-means
clustering algorithm to these embeddings, we aim to iden-
tify clinical variable clusters derived from the patient graphs.
This approach helps discover groups of clinical features that
share similar traits and potentially indicate similar disease
predispositions. The k-means algorithm aims to partition the
embeddings into “k” distinct clusters, where each cluster is
represented by a centroid point. These centroids serve as
representatives of the patients within their respective clus-
ters, enabling us to categorize patients based on their clinical
feature similarities. The k-means algorithm minimizes the
proximity of a clinical feature (x) to the centroid of the corre-
sponding cluster, shown asEq. (4), whereμi is the centroid of
cluster Ci and k is the number of clusters. This process orga-
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nized similar attributes into clusters, enabling us to uncover
patterns and relationships within the dataset. The resulting
clusters provided a glimpse into the commonalities among
certain groups of patient attributes related to stroke. Essen-
tially, k-means clustering served a crucial function in our
investigation by pinpointing centroids and organizing clus-
ters among the dataset of attributes associated with stroke
patients. This methodology facilitated the discovery of latent
patterns and correlations, thus enhancing the field of stroke
risk prediction and associated studies. To ascertain the appro-
priate number of clusters, we compute silhouette scores [34]
across different values of k and subsequently employ the
elbow method [35] to pinpoint the optimal number of clus-
ters.

Minimize J =
k∑

i=1

∑

x∈Ci

‖x − μi‖2 (4)

Algorithm1:Clinical feature selection using graph clus-
tering
Data: Clinical Feature Clusters (C0i , . . . ,Cni ) of each patient

(i ∈ P) who developed stroke in the training data
Result: A set of important clinical features (S)

1 S = ∅ ;
2 centroid_occurrences = ∅ ;
3 foreach i ∈ P do
4 foreach cluster ∈ Ci do
5 centroid = calculate_centroid(cluster) ;
6 if centroid ∈ centroid_occurrences then
7 centroid_occurrences[centroid] =

centroid_occurrences[centroid] + 1 ;
8 end
9 else

10 centroid_occurrences[centroid] = 1 ;
11 end
12 end
13 end
14 foreach (centroid, occurrences) ∈ centroid_occurrences do
15 if occurrences ≥ 2 then
16 important_cluster = ∅ ;
17 foreach i ∈ P do
18 foreach cluster ∈ Ci do
19 if centroid = calculate_centroid(cluster) then
20 important_cluster = cluster ;
21 break ;
22 end
23 end
24 end
25 foreach clinical_feature ∈ important_cluster do
26 S = S ∪ {clinical_feature} ;
27 end
28 end
29 end

We formed clinical variable clusters based on patients
who have experienced a stroke, aiming to characterize these

patients in a way that facilitates stroke prediction. Our
hypothesis is that clinical variables with centroids shared by
multiple patients’ clinical feature graphs indicate groups of
patients with similar underlying characteristics. Therefore,
we utilized all clinical variables within these clusters where
shared centroids exist among multiple stroke patients, iden-
tifying them as important clinical variables. This process is
applied exclusively to the training data to ensure that the
resulting patient clinical features are robust and applicable
to new, unseen data. Algorithm 1 details the procedure for
identifying significant clinical variables from stroke patients
in the training dataset.

3.3 Patient representation and stroke prediction

After identifying a set of important clinical variables to
characterize patients who developed stroke, we constructed
patient representations using these selected variables. For
each patient (i), a one-hot vector representation is generated
based on the presence (vi j = 1) or absence (vi j = 0) of clin-
ical variable trait j : Vi = [vi1, vi2, . . . , vi N ] where N is the
total number of clinical variables. Our patient representation
approach differs from traditional methods, which consider
clinical variables from both positive and negative patients. In
the traditional approach, negative patients help identify neg-
ative clinical features. Conversely, our method relies solely
on positive patients to determine important clinical variables
for disease prediction. This strategy is particularly benefi-
cial for identifying significant clinical variables from a small
number of known positive cases, such as in the context of
rare diseases.

To comprehensively evaluate the identified clinical vari-
ables for stroke prediction, we implemented five supervised
learning algorithms on top of patient representations. These
algorithms include random forest (RF), multilayer percep-
tron (MLP), support vector machines (SVM), linear regres-
sion (LR), and k-nearest neighbors (k-NN). In the subsequent
experimental section, we provide a detailed description of the
hyperparameters associated with these prediction models.

4 Experimental results

4.1 Dataset

This study was approved by Indiana University Institutional
Review Board (IRB) and was classified as an exempt study
(IRB number #14845; approved on March 25, 2022). The
target population for this study is patients who have had
CTA examinations to confirm the carotid stenosis status and
who also have concurrent carotid ultrasound and clinical
data stored in the EHR. Patients are categorized as hav-
ing ACS versus symptomatic carotid stenosis (SCS) based
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on the medical chart review. Patients who have not had a
stroke, transient ischemic attack, or amaurosis fugax monoc-
ular which is blindness-temporary or permanent blindness
in one eye are categorized as having ACS [36]. The EHR
data is extracted from an Indiana University Medical Hospi-
tal. We have included 207 patients in this research. Out of
the 207 patients, 92 are considered stroke patients. Table1
shows the basic statistics of our dataset. Our dataset contains
slightly more non-stroke patients than stroke patients. The
mean age of both groups is similar. There are slightly more
male patients in the dataset. The race distribution is imbal-
anced, with a significantly higher number of white patients
and fewer patients from other racial groups. We stratified our
data and divided it into training (70%), validation (10%), and
testing (20%).

4.2 Hyperparameter setting

To construct the patient clinical feature graph, we set the co-
occurrence timeframe to be 6 months at the beginning. That
means the edge between two clinical features is created when
they co-occur within 6 months based on the dates in records.
All the machine learning models are fine-tuned to gain the
optimal performance. Random forest has 100 decision trees
and no maximum depth. k-Nearest neighbors are used with
21 neighbors and a leaf size of 30. The default parameters
are used for support vector machine which include a regular-
ization parameter of 1.0, a radius basis function kernel, and a
degree of 3. The implemented multilayer perceptron has two
hidden layers with a size of 100 and 50, respectively, and
1000 max iterations. The logistic regression is implemented
with a l2 regularization and 100 max iterations.

4.3 Evaluationmetrics

The performance metrics adopted in this study include F1,
precision, recall, and area under the receiver operating char-
acteristic (ROC) curve (AUC). After training and testing,
we calculated these metrics to evaluate the performance for
each technique, as each patient is classified as having had a
stroke or not. These metrics were derived from the confusion
matrices of both the training and test evaluations for each
technique employed in the study.

The F1 score, a conventional metric for assessing model
performance on a given dataset, is derived from precision
and recall, with precision indicating the proportion of rele-
vant true positives and recall indicating the proportion of true
positives out of all true positives in the data. Additionally, the
area under the receiver operating characteristic (ROC) curve
(AUC) assesses a model’s ability to discriminate between
classes by computing the area under the curve of true posi-
tive rates plotted against false positive rates across different

classification thresholds. The formulae for precision, recall,
and F1 are given in the following Eqs. (5)–(7) [37].

P = TP

TP + FP
(5)

R = TP

TP + FN
(6)

F1 = 2PR

P + R
(7)

4.4 Overall performance comparison

Table 2 shows the performance of our approach (GNN-
FS) against the baseline (BS) using a 6-month timeframe.
The results of other timeframe are included in the Sect. 4.5.
The baseline approach includes all clinical variables without
applying the proposed GNN-FS feature selection approach.

The findings reveal notable enhancements in accuracy
across the majority of classification methods. Particularly,
methods like multilayer perceptron (MLP), random forest
(RF), k-nearest neighbors (k-NN), and logistic regression
(LR) demonstrate significant improvements in accuracy
when incorporating our graph-based feature selection. This
suggests that this graph-based feature selection approach
enhances the capture of predictive patterns. Among the
different classification techniques evaluated, random forest
consistently outperforms others in accuracy, regardless of
the clinical feature selection strategy employed. Meanwhile,
support vector machine (SVM) gains the best precision with
or without applying the proposed GNN-FS feature selection
approach.

4.5 Performance evaluation on timeframe and
comparison with traditional feature selection

Our patient clinical feature graph is constructed based on
their co-occurrences within a specified timeframe.While our
initial experiments indicate superior performance compared
to the baseline, conducting an ablation study is crucial to
investigate how varying duration of timeframes influence our
proposed graph-based clinical feature clustering for stroke
prediction. Altering the timeframe impacts the number of
edges and weights between clinical features, consequently
affecting the clustering results and the identification of sig-
nificant clinical features for stroke prediction. Initially, our
approach utilized a 6-monthwindow between nodes to estab-
lish edges and edge weights between clinical features. In
this ablation study, we explore 1-month, 3-month, 1-year,
and 2-year timeframes to assess the significance of tem-
poral granularity and its implications for stroke prediction.
For comparison, we employ traditional feature selection (tra-
ditional FS), specifically Chi-square feature selection [38],
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Table 1 Statistics of the data set Stoke Non-stroke Total

# of patients age 92 (44.4%) 115 (55.5%) 207

Mean (std) 70.1 70.5 70.3

Gender

Male (%) 48 (23.2%) 68 (32.8%) 116 (56.0%)

Female (%) 44 (21.3%) 47 (22.7%) 91 (44.0%)

Race

White (%) 76 (36.7%) 99 (47.8%) 175 (84.5%)

African American (%) 15 (7.2%) 15 (7.2%) 30 (14.5%)

Other (%) 1 (0.5%) 1 (0.5%) 2 (1.0%)

Table 2 Performance
comparison against the baseline
(BS) models without GNN-FS
using AUC, recall (R), precision
(P), and F1

Model type AUC R P F1

BS GNN-FS BS GNN-FS BS GNN-FS BS GNN-FS

RF 0.82 0.85 0.72 0.89 0.72 0.67 0.72 0.76

k-NN 0.63 0.71 0.33 0.39 0.75 0.58 0.46 0.47

SVM 0.81 0.81 0.56 0.61 0.77 0.79 0.65 0.69

MLP 0.71 0.74 0.61 0.67 0.65 0.63 0.63 0.65

LR 0.79 0.80 0.72 0.72 0.72 0.68 0.72 0.70

Bold numbers indicate the best performed model in terms of evaluation metrics

to identify a set of important clinical features based on
training data and compare it with our clinical feature cluster-
ing approach. Chi-square feature selection has been widely
utilized in clinical informatics research [38, 39] and has
demonstrated favorable performance in various studies.

Given that the random forest classifier demonstrates supe-
rior performance compared to other classifiers, we opt to
utilize it for our ablation study. The results are detailed
in Table3. Notably, our approach outperforms the baseline
across all examined timeframes, except the 2-year time-
frame. Analysis of the AUC and F1 scores reveals that
extending the timeframe to 3 months or beyond enhances
performance till 1-year timeframe. In our approach, main-
taining the recall while increasing the timeframe from 3 to 12
months suggests consistent predictive power, while precision
improves with the 12-month timeframe. The performance of
our approach declined when a 2-year timeframe was applied,
whereas the traditional FS maintained similar performance
to the 1-year timeframe in terms of AUC and F1 scores.
These results underscores the importance of temporal gran-
ularity in capturing stroke-related patterns effectively. The
enhanced accuracy observed with a 12-month timeframe
suggests critical relationships between clinical features for
stroke prediction, emphasizing the necessity of incorporat-
ing extended temporal contexts in patient graph creation.
However, when longer timeframe is employed the correla-
tions between the clinical features are not as significant for
stroke prediction. This phenomenon can also be explained
by literature, indicating that high accuracy in stroke predic-
tion may not be reliable for long-term forecasting before the

event occurs [40]. However, it is crucial to acknowledge
that the optimal timeframe may vary across diseases and
datasets. Future research endeavors should explore diverse
temporal resolutions for predicting other medical conditions
to broaden the applicability of our findings.

4.6 Performance on subsets based on gender and
race

Given the study cohort’s higher proportion of male patients
and predominantly white racial composition, we delve into
model performances across sub-cohorts delineated by gender
and race. Figures3 and 4 show the AUC curves illustrating
random forest performance using test data. Figure3 indi-
cates that although male patients slightly outnumber female
patients in the study cohort, the model exhibits superior per-
formance with male patients compared to females. We posit
that this discrepancy may stem from male patients having
more prominent clinical feature clusters than their female
counterparts. Conversely, Fig. 4 reveals that our model per-
forms more effectively with white patients. We attribute this
outcome to the African American patient subset’s smaller
size, which potentially renders their clinical feature clusters
less representative. It is important to note that the inherent
imbalance in the dataset regarding gender and race could
influence the differences in performance as well..
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Table 3 Ablation study on
duration of the timeframes using
RF

Timeframe # of clinical features Method AUC Recall Precision F1

1257 Baseline 0.82 0.83 0.60 0.70

1-month 583 Traditional FS 0.82 0.78 0.61 0.74

GNN-FS 0.83 0.83 0.68 0.75

3-month 645 Traditional FS 0.81 0.78 0.67 0.72

GNN-FS 0.86 0.89 0.70 0.78

6-month 687 Traditional FS 0.84 0.83 0.68 0.75

GNN-FS 0.85 0.89 0.67 0.76

12-month 595 Traditional FS 0.84 0.78 0.61 0.68

GNN-FS 0.87 0.89 0.73 0.80

24-month 540 Traditional FS 0.84 0.61 0.79 0.69

GNN-FS 0.70 0.16 0.75 0.27

Bold numbers indicate the best performed timeframe in terms of AUC and F1

Fig. 3 Performance on different gender

Fig. 4 Performance on different race

4.7 Analysis of the significant clinical features

After we generate clinical feature clusters based on all the
training data, we identify the top frequent diagnosis, medi-
cation, and laboratory tests that are centroids of the clusters
as significant clinical features associated with stroke or non-
stroke patients. Tables 4, 5, and 6 show the top four clinical
features of each category and their significance toward stroke
population. The p values are calculated usingChi-square test.

Based on our literature review, these top clinical features
are highly relevant to stroke. The disorders of lipoprotein
metabolism and other lipidemias include LDL-
hypercholesterolemia, hypertriglyceridemia, mixed hyper-
lipoproteinemia, lipoprotein deficiency, low HDL choles-
terol, etc. Research [41] shows that cholesterol levels are
associated with stroke, and diets high in fat-inducing hyper-
lipidemia are linked to alterations in brain calcium and lipid
metabolism with susceptibility to stroke [42]. Hypertension
is one of the most prevalent risk factors for stroke [43].
The hypertension-related stroke has been a research topic for
many years in various populations [44–46]. These top diag-
noses show a significant association with stroke, as indicated
by the p values shown in Table 4.

From the list of medication groups, the literature shows
that anticoagulant, antihyperlipedemics, and antihyperten-
sives are the groups ofmedication often used to prevent stroke
[47, 48]. Patients who take these medication often have asso-
ciated diseases that increase the risks of developing stroke.
Recent research [49] shows that hematological disorders can
cause stroke which indicates that if a patient is taking med-
ication in the category of hematological agents, he/she has
a higher risk of developing a stroke. These top medications
demonstrate a significant associationwith stroke, as indicated
by the p values in Table5.

The identified top laboratory tests are also relevant to
strokewhich is reflected by the previous literature. For exam-
ple, there is an increased risk of stroke seen in hyperglycemic
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Table 4 Top diagnoses related to stroke

Diagnosis Stroke Non-stroke p value

E78: disorders of lipoprotein metabolism and other lipidemias 71 (71.2%) 68 (59.1%) 0.00046

I10: essential (primary) hypertension 69 (75.0%) 52 (45.2%) 1.15 * 10−6

Z79: long-term (current) drug therapy 66 (71.7%) 53 (46.1%) 0.0011

Z86: personal history of certain other diseases 60 (65.2%) 55 (47.8%) 0.022

Table 5 Top medication related
to stroke

Medication groups Stroke Non-stroke p value

Anticoagulant 71 83 1.27 * 10−6

Hematological agents 68 (73.9%) 63 (54.8%) 1.19 * 10−7

Antihyperlipedemics 70 (76.1%) 61 (53.0%) 9.18 * 10−6

Antihypertensives 58 (63.0%) 50 (43.5%) 6.36 * 10−5

Table 6 Top laboratory test
results related to stroke

Laboratory test results Stroke Non-stroke p value

Glucose (high) 51 (55.4%) 73 (63.5%) 0.27

Low-density lipoprotein (LDL) cholesterol (high) 30 (32.6%) 27 (23.5%) 0.21

Blood urea nitrogen (BUN) (high) 46 (50.0%) 55 (47.9%) 0.91

Calcium total (low) 42 (45.7%) 46 (40.0%) 0.53

patients [50, 51]. Research shows that elevated levels of BUN
are associated with greater risks of total stroke and ischemic
stroke [52]. Excessive blood glucose can result in increased
fatty deposits or clots in blood vessels and trigger stroke [50,
51]. Research shows that dietary calcium intake was found to
be associated with a reduced incidence of stroke among men
[53], and low calcium intake may contribute to increased
risk of ischemic stroke in middle-aged American women
[54]. High LDL (low-density lipoprotein) cholesterol level
can potentially be associated with an increased risk of stroke
[55]. However, the significance of these laboratory tests is
not reflected by the calculated p values. Our hypothesis is
that the characteristics of the patient cohort in this study may
have led to the finding being not significant.

4.8 Case study

Since our approach is rooted in a graph-based model, it pos-
sesses the ability to generate visual representations that aid
in exploring the connections among clinical features through
the patient-level clinical feature graph. To demonstrate the
practical applications, we present two case studies. These
examples illustrate how the clinical feature graph and its
clusters can help healthcare professionals interpret the impli-
cations of predictive outcomes.

The first case study, shown in Fig. 5, is a 76-year-old
female patient who developed a stroke. This patient has four
clinical feature clusters. The centroids of four clusters are
medication group antihypertensives, diagnosis I10 essential
hypertension, diagnosis F32 depressive episode, and med-
ication group cephalosporins. Hypertension increases the
risk of stroke through various physiological mechanisms,
such as accelerating buildup of fats and cholesterol in the
artery walls, as well as increasing intraluminal pressure
and peripheral vascular resistance, all of which can cause
cerebrovascular events [56]. Depression is associated with
a higher risk of stroke as well as higher stroke mortality
due to its neuroendocrine and inflammatory effects [57].
Cephalosporin does not appear to be associated with an
increased risk of stroke. Indeed, the first three centroids (anti-
hypertensives, I10 essential hypertension, diagnosis, and F32
depressive episode) are also seen in other patients who devel-
oped stroke. Hence, the clinical features within these three
clusters are used to build the patient representations for pre-
diction.

The second case study, shown in Fig. 6, is a 60-year-old
male patient who developed a stroke. This patient has two
clinical feature clusters. The centroids of these clusters are
diagnosis E11 Type 2 diabetes mellitus, andmedication anal-
gesic. Type 2 diabetes can significantly increase the risk of
ischemic stroke [58]. The literature shows that nonsteroidal
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Fig. 5 76Year-old female stroke patient

anti-inflammatory drugs, a class of analgesics, can increase
the risks of stroke [59]. The clinical features within these two
clusters are also included in the patient representations for
prediction.

5 Conclusions, limitations, and future work

This study introduces a novel unsupervised GNN-based
approach to identify critical clinical variables using positive
cases, specifically the EHR data of ACS patients who devel-
oped a stroke. We constructed patient graphs that integrate
patient diagnoses, medication history, and laboratory results,
highlighting the intricate interconnections within a patient’s
EHR data. We then applied unsupervised graph clustering
to select important clinical variables reflected in the data
of stroke patients. By applying traditional supervised learn-
ing algorithms to these selected clinical variables, our model
demonstrates promising outcomes in stroke prediction, sur-
passing conventional feature selection methods. This novel
framework, which includes clinical variable selection and
stroke prediction, can be easily adapted for other disease
predictions using EHR data. The interconnections among
clinical variables strongly correlate with the length and com-
plexity of the medical history, impacting clinical variable

selection. Our ablation study underscores the importance of
considering temporal granularity in clinical variable selec-
tion for stroke prediction, specifically the number of months
of a patient’s medical history.

While our researchdemonstrates the effectiveness of using
graph clustering for clinical variable selection in disease
prediction, it is important to acknowledge its limitations.
Firstly, our dataset is imbalanced, primarily consisting of
white patients and more male patients. This imbalance poses
challenges in optimizing performance for patients of other
races or female patients. Although data balancing strategies
can be applied to improve performance for minority groups,
the size of our dataset is small which limits the generaliz-
ability of our findings to a larger population. Additionally,
the absence of specific data types, such as socioeconomic
factors, family history, and genetic information, may impede
a comprehensive understanding of disease risk factors.

Subsequent research endeavors will involve the explo-
rationof cutting-edgegraph clusteringmethodologies, includ-
ing dynamic graph clustering [60, 61], thereby further
increasing the potential for uncovering intricate and dynamic
associations within patient clinical feature graphs and poten-
tially augmenting the precision of our disease prediction
model. Additionally, expanding the graph construction to
include family medical history and individual social history
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Fig. 6 60Year-old male stroke patient

would contribute to a more comprehensive understanding
of disease predisposition, ultimately enabling a more holis-
tic and refined predictive framework. Lastly, advanced deep
learning models [62–66], including transformer-based mod-
els, can be utilized to replace the traditional models used in
this research to further improve the overall performance on
prediction.
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17. Işık, M., Velioğlu, Y.: Contribution of current comorbid conditions
to carotid artery stenosis in patients undergoing coronary artery
bypass and stroke distribution in carotid artery stenosis groups.
Heart Surg. Forum 24, 724–730 (2021)

18. Hirsch, J.S., Tanenbaum, J.S., LipskyGorman, S., Liu, C., Schmitz,
E., Hashorva, D., Ervits, A., Vawdrey, D., Sturm, M., Elhadad, N.:
Harvest, a longitudinal patient record summarizer. J. Am. Med.
Inform. Assoc. 22(2), 263–274 (2015)

19. Stirling, A., Tubb, T., Reiff, E.S., Grotegut, C.A., Gagnon, J., Li,
W., Bradley, G., Poon, E.G., Goldstein, B.A.: Identified themes
of interactive visualizations overlayed onto EHR data: an example
of improving birth center operating room efficiency. J. Am. Med.
Inform. Assoc. 27(5), 783–787 (2020)

20. Anderson, A.E., Kerr, W.T., Thames, A., Li, T., Xiao, J., Cohen,
M.S.: Electronic health record phenotyping improves detection and
screening of type 2 diabetes in the general united states popula-
tion: a cross-sectional, unselected, retrospective study. J. Biomed.
Inform. 60, 162–168 (2016)

21. Li, Q., Yang, X., Xu, J., Guo, Y., He, X., Hu, H., Lyu, T., Marra,
D., Miller, A., Smith, G., et al.: Early prediction of Alzheimer’s
disease and related dementias using real-world electronic health
records. Alzheimer’s Dement. 19(8), 3506–3518 (2023)

22. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting
model predictions. In: Advances in Neural Information Process-
ing Systems, vol. 30 (2017)

23. Ribeiro, M.T., Singh, S., Guestrin, C.: “ why should i trust you?”
explaining thepredictions of any classifier. In: Proceedings of the
22ndACMSIGKDD International Conference onKnowledge Dis-
covery and Data Mining, pp. 1135–1144 (2016)

24. Wang, R.-H., Luo, T., Zhang, H.-L., Du, P.-F.: Pla-gnn: Compu-
tational inference of protein subcellular location alterations under
drug treatments with deep graph neural networks. Computers in
Biology and Medicine 157, 106775 (2023)

25. R’eau, M., Renaud, N., Xue, L.C., Bonvin, A.M.: Deeprank-gnn:
a graph neural network framework to learn patterns in protein–
protein interfaces. Bioinformatics 39(1), 759 (2023)

26. Vilela, J., Asif,M.,Marques,A.R., Santos, J.X., Rasga, C., Vicente,
A., Martiniano, H.: Biomedical knowledge graph embeddings
for personalized medicine: Predicting disease-gene associations.
Expert Systems 40(5), 13181 (2023)

27. Dev, S.,Wang,H., Nwosu, C.S., Jain, N., Veeravalli, B., John, D.: A
predictive analytics approach for stroke prediction using machine
learning and neural networks. Healthc. Anal. 2, 100032 (2022)

28. Nwosu, C.S., Dev, S., Bhardwaj, P., Veeravalli, B., John, D.: Pre-
dicting stroke from electronic health records. In: 2019 41st Annual
International Conference of the IEEE Engineering inMedicine and
Biology Society (EMBC), pp. 5704–5707. IEEE (2019)

29. Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., Lee, C.-C.: Com-
paring deep neural network and other machine learning algorithms
for stroke prediction in a large-scale population-based electronic
medical claims database. In: 2017 39th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 3110–3113. IEEE (2017)

30. Xie, Y., Yang, H., Yuan, X., He, Q., Zhang, R., Zhu, Q., Chu,
Z., Yang, C., Qin, P., Yan, C.: Stroke prediction from electro-
cardiograms by deep neural network. Multimed. Tools Appl. 80,
17291–17297 (2021)

31. Reddy, M.K., Kovuri, K., Avanija, J., Sakthivel, M., Kaleru, S.:
Brain stroke prediction using deep learning: a CNN approach. In:
2022 4th International Conference on Inventive Research in Com-
puting Applications (ICIRCA), pp. 775–780. IEEE (2022)

32. Clapp, Mark A., James, Kaitlyn E., Friedman, AlexanderM.: Iden-
tification of delivery encounters using international classification
of diseases, tenth revision, diagnosis and procedure codes. Obstet.
Gynecol. 136(4), 765–767 (2020)

33. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for
networks. In: Proceedings of the 22ndACMSIGKDDInternational
Conference on Knowledge Discovery and Data Mining, pp. 855–
864 (2016)

34. Shahapure, K.R., Nicholas, C.: Cluster quality analysis using sil-
houette score. In: 2020 IEEE 7th International Conference on Data
Science and Advanced Analytics (DSAA), pp. 747–748 (2020).
IEEE

35. Liu, F., Deng, Y.: Determine the number of unknown targets in
openworld based on elbowmethod. IEEETrans. Fuzzy Syst. 29(5),
986–995 (2020)

36. Howard, D.P., Gaziano, L., Rothwell, P.M.: Risk of stroke in rela-
tion to degree of asymptomatic carotid stenosis: a population-based
cohort study, systematic review, and meta-analysis. Lancet Neurol.
20(3), 193–202 (2021)

37. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of
Machine Learning. The MIT Press, Cambridge (2012)

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



International Journal of Data Science and Analytics

38. Gárate-Escamila, A.K., El Hassani, A.H., Andrès, E.: Classifica-
tion models for heart disease prediction using feature selection and
PCA. Inform. Med. Unlocked 19, 100330 (2020)

39. Spencer, R., Thabtah, F., Abdelhamid, N., Thompson, M.: Explor-
ing feature selection and classificationmethods for predicting heart
disease. Digit. Health 6, 2055207620914777 (2020)

40. Kasabov, N., Feigin, V., Hou, Z.-G., Chen, Y., Liang, L., Krish-
namurthi, R., Othman, M., Parmar, P.: Evolving spiking neural
networks for personalised modelling, classification and prediction
of spatio-temporal patterns with a case study on stroke. Neurocom-
puting 134, 269–279 (2014)

41. Ali, M.T., Martin, S.S.: Disorders of lipid metabolism. In: Aronow,
W.S., Fleg, J.L., Fleg, J.L., Rich, M.W., Rich, M.W. (eds.) Tresch
and Aronow’s Cardiovascular Disease in the Elderly, pp. 111–127.
CRC Press, Florida (2019)

42. Martins, I.J., Creegan, R.: Links between insulin resistance,
lipoprotein metabolism and amyloidosis in Alzheimer’s disease.
Health (2014). https://doi.org/10.4236/health.2014.612190

43. Wajngarten, M., Silva, G.S.: Hypertension and stroke: update on
treatment. Eur. Cardiol. Rev. 14(2), 111 (2019)

44. Gorgui, J., Gorshkov, M., Khan, N., Daskalopoulou, S.S.: Hyper-
tension as a risk factor for ischemic stroke in women. Can. J.
Cardiol. 30(7), 774–782 (2014)

45. Dubow, J., Fink, M.E.: Impact of hypertension on stroke. Curr.
Atheroscler. Rep. 13, 298–305 (2011)

46. Singh, R., Suh, I., Singh, V., Chaithiraphan, S., Laothavorn, P., Sy,
R., Babilonia, N., Rahman, A., Sheikh, S., Tomlinson, B., et al.:
Hypertension and stroke in Asia: prevalence, control and strategies
in developing countries for prevention. J. Hum. Hypertens. 14(10),
749–763 (2000)

47. Diener, H.-C., Aisenberg, J., Ansell, J., Atar, D., Breithardt, G.,
Eikelboom, J., Ezekowitz, M.D., Granger, C.B., Halperin, J.L.,
Hohnloser, S.H., et al.: Choosing a particular oral anticoagulant and
dose for stroke prevention in individual patients with non-valvular
atrial fibrillation: part 2. Eur. Heart J. 38(12), 860–868 (2017)

48. Freedman, B., Potpara, T.S., Lip, G.Y.: Stroke prevention in atrial
fibrillation. Lancet 388(10046), 806–817 (2016)

49. Markus, H.S.: Hematological Disorders and Stroke. SAGE Publi-
cations, London (2023)

50. Wannamethee, S.G., Perry, I.J., Shaper, A.G.: Nonfasting serum
glucose and insulin concentrations and the risk of stroke. Stroke
30(9), 1780–1786 (1999)

51. Sui, X., Lavie, C.J., Hooker, S.P., Lee, D.-C., Colabianchi, N., Lee,
C.-D., Blair, S.N.: A prospective study of fasting plasma glucose
and risk of stroke in asymptomatic men. Mayo Clin. Proc. 86,
1042–1049 (2011)

52. Peng, R., Liu, K., Li, W., Yuan, Y., Niu, R., Zhou, L., Xiao, Y.,
Gao, H., Yang, H., Zhang, C., et al.: Blood urea nitrogen, blood
urea nitrogen to creatinine ratio and incident stroke: the Dongfeng–
Tongji cohort. Atherosclerosis 333, 1–8 (2021)

53. Adebamowo, S.N., Spiegelman, D., Flint, A.J., Willett, W.C.,
Rexrode, K.M.: Intakes of magnesium, potassium, and calcium
and the risk of stroke among men. Int. J. Stroke 10(7), 1093–1100
(2015)

54. Iso, H., Stampfer, M.J., Manson, J.E., Rexrode, K., Hennekens,
C.H., Colditz, G.A., Speizer, F.E., Willett, W.C.: Prospective study
of calcium, potassium, and magnesium intake and risk of stroke in
women. Stroke 30(9), 1772–1779 (1999)

55. DeBaun, M.R., Sarnaik, S.A., Rodeghier, M.J., Minniti, C.P.,
Howard, T.H., Iyer, R.V., Inusa, B., Telfer, P.T., Kirby-Allen, M.,
Quinn,C.T., et al.:Associated risk factors for silent cerebral infarcts
in sickle cell anemia: low baseline hemoglobin, sex, and relative
high systolic blood pressure. Blood J. Am. Soc. Hematol. 119(16),
3684–3690 (2012)

56. Johansson, B.B.: Hypertension mechanisms causing stroke. Clin.
Exp. Pharmacol. Physiol. 26(7), 563–565 (1999)

57. Pan, A., Sun, Q., Okereke, O.I., Rexrode, K.M., Hu, F.B.: Depres-
sion and risk of stroke morbidity and mortality: a meta-analysis
and systematic review. Jama 306(11), 1241–1249 (2011)

58. Janghorbani, M., Hu, F.B., Willett, W.C., Li, T.Y., Manson, J.E.,
Logroscino, G., Rexrode, K.M.: Prospective study of type 1 and
type 2 diabetes and risk of stroke subtypes: theNurses’ health study.
Diabetes Care 30(7), 1730–1735 (2007)

59. Vives, R., Gomez-Lumbreras, A., Fradera, M., Giner-Soriano, M.,
Garcia-Sangenis, A., Marsal, J., Morros, R.: Risk of ischemic
stroke associated to analgesic drugs use: a real world data case-
control study. Osteoarthr. Cartil. 26, 225 (2018)

60. Tsitsulin,A., Palowitch, J., Perozzi,B.,Müller, E.:Graph clustering
with graph neural networks. J. Mach. Learn. Res. 24(127), 1–21
(2023)

61. Tahabi, F.M., Luo, X.: Dynamicg2b: dynamic node classification
with layered graph neural networks and BiLSTM. In: The Interna-
tional FLAIRS Conference Proceedings, vol. 36 (2023)

62. Hu, Z., Wang, Z., Jin, Y., Hou, W.: VGG-TSwinformer:
transformer-based deep learning model for early Alzheimer’s dis-
ease prediction. Comput. Methods Programs Biomed. 229, 107291
(2023)

63. Dileep, P., Rao, K.N., Bodapati, P., Gokuruboyina, S., Peddi, R.,
Grover,A., Sheetal,A.:An automatic heart disease prediction using
cluster-based bi-directional LSTM (C-BiLSTM) algorithm.Neural
Comput. Appl. 35(10), 7253–7266 (2023)

64. Alshehri, A., Owais, M., Gyani, J., Aljarbou, M.H., Alsulamy, S.:
Residual neural networks for origin-destination trip matrix estima-
tion from traffic sensor information. Sustainability 15(13), 9881
(2023)

65. Owais, M.: Deep learning for integrated origin-destination esti-
mation and traffic sensor location problems. IEEE Trans. Intell.
Transp. Syst. (2024). https://doi.org/10.1109/TITS.2023.3344533

66. Owais, M., Alshehri, A., Gyani, J., Aljarbou, M.H., Alsulamy, S.:
Prioritizing rear-end crash explanatory factors for injury severity
level using deep learning and global sensitivity analysis. Expert
Syst. Appl. 245, 123114 (2024)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



1.

2.

3.

4.

5.

6.

Terms and Conditions
 
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). 
Springer Nature supports a reasonable amount of sharing of  research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial. 
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply. 
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy. 
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not: 
 

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.
 
In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository. 
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved. 
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose. 
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties. 
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at 
 

onlineservice@springernature.com
 

mailto:onlineservice@springernature.com

