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A B S T R A C T

Benzene as one type of hazardous air pollutants (HAPs) is produced by industrial production processes and/or
emitted during upset events caused by man-made or natural accidents. Although upset emissions of benzene can
be a significant contributor to the total emission, it is still challenging to quantify. This study first develops a fast
modeling framework using obstacle-resolving computational fluid dynamics modeling to compare the modeled
within-facility-scale passive pollutant dispersion with the observed levels based on self-reported emissions for
fourteen facilities in Texas, United States. Results of numerical simulations demonstrate that neglecting the
obstacle effect can underpredict (overpredict) the near-(far-)field concentrations for a low source. For a source
located above obstacles, underprediction occurs at all distances. The diagnostic framework is applied to 107 self-
reported upset emission events for fourteen petroleum refineries in Texas from year 2019–2022. Considering
different metrics across all events, it can be concluded that the modeled concentrations based on self-reported
emissions likely underpredict the observed concentration increments. Depending on the possible source
height, the median factor of underprediction ranges from 3 to 95 based on the average-plume metric. The
agreement between model and observation is better for events characterized by high emission amounts and rates,
which also correspond to high observed concentration increments. Overall, the research highlights the impor-
tance of considering obstacles and demonstrates the potential application of the current approach as an efficient
diagnostic method for self-reported upset emissions using fenceline observations of HAPs.

1. Introduction

Benzene from the petroleum industry (Brief et al., 1980; Agency for
Toxic Substances and Disease Registry, 2007) represents one type of
hazardous atmospheric pollutants (HAPs). In particular, it is a global
phenomenon that petroleum refineries release large amounts of ben-
zene, contributing to elevated concentrations at facility fencelines
(Jephcote and Mah, 2019; Kunstman et al., 2021), with upset emissions
being a major contributor. According to the definition of upset air
emissions (or upset emissions for brevity) (McCoy et al., 2010), they are
“excess event emissions (duration usually less than 24-h) generated by
unforeseen and/or sudden uncontrollable activities or malfunctions.”

These excess event emissions are in contrast to the “routine” fugitive and
stack emissions that are considered part of normal operations. Although
unintended, upset emissions are not rare. They occur frequently in the
petroleum industry and may include explosions, tank ruptures,
compressor failures, flaring, and weather-triggered equipment failure.

As with many HAPs, benzene is harmful to human health even at low
concentrations (Smith, 2010; Duarte-Davidson et al., 2001; Karakitsios
et al., 2007; Bentayeb et al., 2015). For example, benzene is classified by
the U.S. Environmental Protection Agency (U.S. Environmental Protec-
tion Agency National Center for Environmental Assessment, 2003) as a
“known” human carcinogen for all routes of exposure including inha-
lation. There is no recommended safe level of exposure for benzene
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according to the World Health Organization (World Health Organiza-
tion, 2019).

The occurrence of high benzene concentrations for communities
living close to petroleum refinery facilities (Kunstman et al., 2021;
Jephcote and Mah, 2019) poses challenges to environmental justice
globally. For example, in an analysis across Europe of benzene exposures
from the petrochemical industry, Jephcote et al. (Jephcote and Mah,
2019) found that the most polluting facilities tended to be located within
financially disadvantaged regions and were associated with regional
health disparities. Kunstman et al. (2021) found that more than 53,000
people live within 3 miles of one of the thirteen U.S. refineries that
exceeded the 9 μg/m3 action level for the 12 month period ending on
December 31, 2020. Of these people, an estimated 57% are people of
color and 43% are living below the poverty line. Moreover, in the
context of upset emission events in Texas, U.S., 4590 upset events
releasing a variety of air pollutants, including benzene, have been re-
ported (America, 2024), resulting inmore than 135million pounds of air
pollutants.

However, challenges still persist in terms of quantifying upset
emissions. For example, in the United States, they are more often
calculated by engineering process conversion factors (Environmental
Integrity Project, 2004). In Europe, the majority of petrochemical fa-
cilities calculate benzene emissions indirectly by chemical mass balance
(43%) or other estimation methods (12%) (Jephcote and Mah, 2019).
More importantly, the exposure and health risks of HAPs, such as ben-
zene, are currently assessed by air quality models that implement
emissions estimates without accounting for upset emissions. This
omission is partly due to poor understanding of the contribution of upset
emissions. Previous research applied detailed modeling to estimate
emissions of benzene and other carbon aromatic compounds (Fang et al.,
2016; Hu et al., 2015), but upset emissions were not explicitly accounted
for. Nevertheless, the amount of emissions from upset events (Zir-
ogiannis et al., 2018; Ozymy and Jarrell, 2011) can be substantial, as
pointed out in (McCoy et al., 2010) in a regional study in Port Arthur,
Texas. Their study by looking across 3900 events suggests that upset
emissions from co-located refineries are equivalent to having an addi-
tional refinery within the region. There is existing evidence of benzene’s
significant impact on the regional ozone level (Murphy and Allen, 2005;
Nam et al., 2008) and Hollingsworth (Hollingsworth et al., 2021) has
demonstrated a link between excess emissions, ozone concentrations,
and increased elderly mortality in Texas, U.S. Therefore, quantifying
and characterizing the properties of upset emissions are first necessary
steps to mitigate the negative repercussions of HAPs.

In fact, increasing availability of near-field fenceline monitoring data
(e.g., the benzene fenceline monitoring program of the U.S. Environ-
mental Protection Agency (EPA)) (Agency, 2024) and mobile measure-
ment platforms (Caulton et al., 2018), provide new opportunities to
better quantify facility-specific emissions of benzene and other HAPs
more generally. Even though the EPA fenceline monitoring program
only considered ground-level, persistent fugitive emissions, the passive
samplers are theoretically able to capture signals of both upset (inter-
mittent) and persistent emissions. The increasingly available fenceline
monitoring data can be carefully examined to better understand the
causes and properties of the upset emissions. They can also help to
reconcile possible discrepancies or inconsistencies in the self-reported
upset emissions across different facilities due to different methods of
emission calculation. For example, it has been shown that causes or
characteristics of the upset emissions lead to widely varied performance
in facilities and reporting even for the same size facility (McCoy et al.,
2010; Zirogiannis et al., 2018). A US EPA evaluation of data collected for
a recent proposal to update national emission standards for synthetic
organic chemical manufacturers (Bouchard et al., 2023) compared
measured benzene fenceline concentrations with modeled concentra-
tions based on reported emissions at 8 chemical manufacturing facilities,
finding that average measured benzene concentrations were at least 2.7
and up to 56.6 times greater than average modeled concentrations.

Another recent detailed numerical modeling study for three refineries
was conducted by Gray and Sahu (2023) using the American Meteoro-
logical Society/Environmental Protection Agency Regulatory Model
(AERMOD). Importantly, they concluded that the self-reported emis-
sions could be as much as 28-fold too low given the modeling results.
However, it is well-known that obstacles, such as tanks, buildings, and
stacks, present in the facility can affect the accuracy of AERMOD. For
example, the down-wash module to account for building effect on
dispersion has been included in AERMOD (Petersen et al., 2022). Other
studies using monitoring data to quantify the emissions are based on
regional-scale air quality models (Carmichael et al., 2003; Fang et al.,
2016; Hu et al., 2015), but such approach is not applicable to the
sub-kilometer scale problem involving individual facilities. A diagnostic
framework to be applied broadly to multiple facilities to evaluate the
potential discrepancy between reported upset emissions and those
derived from fenceline monitoring data does not exist yet.

Therefore, this study aims to first develop an approach that can be
applied to examine factors, such as presence of obstacles and upset
emission height relative to obstacles, that influence the spatial distri-
bution of non-reactive HAPs at the sub-kilometer scale relevant to fen-
celine monitoring. Secondly, the approach will be applied to fourteen
sites in Texas to understand the potential discrepancy between the
modeled and measured benzene concentration, using self-reported upset
emission values.

This paper is organized as follows. Sec.2.1 describes the numerical
model, which has been developed in our previous studies. Sec.2.2 in-
troduces the self-reported upset emission dataset and the benzene fen-
celine measurement. Sec.2.3 explains the procedure for model
observation comparison. Results and discussion are presented in Sec.3
and Sec.4.

2. Methodology

2.1. Large-eddy simulation coupled with Lagrangian stochastic particle
models (LES-LSM)

A brief description of the LES-LSM approach is given here. Results
have been published previously elsewhere for the local-scale dispersion
in an urban environment (Wang et al., 2018a, 2018b). The LSM imple-
mented in this paper is modified according to Thomson (1987)
(Thomson, 1987). The original model derives a stochastic evolution
equation for the subgrid-scale (SGS) velocity of a fluid parcel based on
the local ensemble-mean velocity and velocity variances of the flow.
Here, we replace the ensemble-mean velocity with the time-averaged
LES-resolved velocity and calculate the velocity variances derived
from the LES-resolved and SGS-modeled values. Based on those statis-
tics, simulations of particle trajectories are then performed. With the
pre-generated velocity and turbulence statistics, the LES-LSM frame-
work has a low computational overhead that accounts for variations of
the characteristics of emission sources, i.e., source locations and heights
with respect to the obstacles. Evaluations of the code against
wind-tunnel data for dispersion in an environment with building ob-
stacles can be found in Wang et al. (2018b).

Here a database of concentration fields are created using the coupled
framework of LES-LSM. The key assumption in the model is that a steady
state condition is achieved for a constant emission rate. This assumption
can be inappropriate under low mean wind speed and high horizontal
velocity fluctuations (Qian and Venkatram, 2011). However, we
checked that durations of all of upset emission events are longer than the
advection time scale, which is computed as dimension of each facility
divided by the mean wind speed. The steady-state assumption also fa-
cilitates comparison between modeled concentration with the
fourteen-day averaged values registered by the fenceline monitors.
Another assumption we made is that only neutral stability is considered
here, which is a limitation of the current database. Previous studies such
as a wind-tunnel measurement by Marucci and Carpentieri (2020) found
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that concentration within the roughness sublayer can be up to three
times lower in unstable stratification compared to neutral condition.
Thus, assuming neutral condition leads to a higher modeled concen-
tration, which favors the reported emissions (see more details in
Sec.3.2). The roughness structures within the facilities are represented
by arrays of cuboids with varying spacing and heights. These cuboids are
highly idealized representations of the roughness structures in a real
facility (i.e., tanks and stacks with coexisting pipes). According to the
Toxics Release Inventory (TRI) 2020 dataset, majority of the stack
heights are between 8 and 12 m, thus we consider two heights, 8 m and
16 m for the cuboids. The cuboids are spaced apart by 16 or 32 m to
represent two spacing densities. For each value of the height and the
spacing, we set up one simulation to represent the type of geometric
configuration (so there are four configurations). Due to highly idealized
assumption about the geometry, to understand how results are influ-
enced by presence of obstacles, we also perform simulations without
presence of any obstacles. Three different wind directions are simulated
(See Fig. 1a) due to symmetry of the cuboid arrays. The flow simulated
by LES is forced with a constant pressure gradient ∂p

∂zf . The velocity field
obtained is nondimensionalized by the surface friction velocity u* of 1
m/s and it is ensured that ρu2* = ∂p

∂zf , where ρ is the density of air, here
being set as a constant. For each geometric configuration, locations of
the sources are systematically varied (See Fig. 1a). Specifically, three
groups of the source height zs for low (high) cuboid height is considered,
namely, ‘low’, where zs ranges from 2 to 4 m (4–8 m); ‘medium’, where
zs ranges from 4 to 6 m (8–12 m); and ‘high’, where zs ranges from 8 to
10 m (16–20 m) (See Fig. 1b). Such choice is motivated by setting up
cases to understand how emissions located below the mean obstacle
height or above affects the dispersion. Hence, for different types of upset
emissions due to various causes, i.e., flaring, tankmalfunctions, startups,
etc., some insight into their expected detailed dispersion behavior can be
learned. For computational efficiency, location of the emitted particles
in the LSM runs are randomly selected from a neighborhood of 3× 3× 3
grid points, which are equivalent to 3m × 3m × 3m. The final database
contains concentration fields of 120 different scenarios (4 underlying
geometries × 10 different source locations × 3 different wind di-
rections). The full database of results is used for subsequent analysis to
compare with the fenceline monitoring data. Note that as shown in the
top-down view of the source locations in Fig. 1, only three possible lo-
cations for low and medium zs are obtained and four possible locations

for zs are obtained, thus in total 10 different source locations.

2.2. Reported upset emissions and fenceline monitoring data

The reported upset emissions in TCEQ’s (Texas Commission on
Environmental Quality) Air Emission Report Database from individual
oil refineries from year 2019–2022 are analyzed. We selected those re-
fineries where corresponding fenceline monitoring stations were set up.
A total of fourteen refineries are identified. The reported emission
dataset contains information crucial for the analysis described in
Sec.2.3, which includes the emission duration (Du), total emitted
amount (M), the reported start (Ts), and end (Te) times of the incidents.
The Supplementary Material contains information about statistics of
these emission characteristics from the fourteen refineries (See Fig. S5).

The fenceline monitoring data are from the benzene fenceline
monitoring program of the Environmental Protection Agency (2024)
between Jan 01, 2019 to Jun 22, 2022. An overview of the program
purpose and separate analysis of the fenceline monitoring data are
provided in Sec. 2 in the Supplementary Material. Here we describe how
we derive an observed concentration increment associated with upsets
for comparison to the equivalent concentration increment predicted by
the model.

The observed two-week averaged C14,o (μg/m3), with the subscript
‘o’ indicating observation and subscript ‘14’ indicating two-week
period, when a reported upset emission event occurred during that
two-week period is used for further analysis. Note that non-upset
emissions, such as permit allowable fugitive and stack emissions, up-
sets that did not meet the reporting threshold (10 lbs for benzene (T. C.
on Environmental Quality, 2020) and Table 3 in (Archives, 2023)), and
emissions from other near-field sources can also affect C14,o and they are
assumed to lead to a background benzene concentration Cbg,o. Thus, C14,
o is affected by both Cbg,o and the upset emissions that lead to a two
week-averaged concentration increment C1́4,o. We tested the sensitivity
of the concentration increment derived from observation to three
different methods of estimating Cbg,o. The first method takes the mini-
mum monitor concentration among all C14,o values; the second method
takes the average of periods without reported upset emissions and dis-
counting two-weeks after any reported upset emission; the third method
applies a three-month moving average to C14,o. It is noted that these
three methods to quantify Cbg,o are not ideal as one would have
measured the upwind concentrations during every upset emission event.

Fig. 1. (a) Sketch of an overlook of the obstacles, which are cuboids of height h with base of 100 m × 100 m and are spaced d apart. h = 8 m or 16 m and d = 100 m
or 200 m. The orange filled circles and the blue star indicate positions of the emissions relative to the obstacles. The blue star indicates location of the source shown in
Fig. 2. Three wind directions of 0◦, 22.5◦, and 45◦ relative to obstacles were considered. (b) Illustration of the three groups of the source heights, namely, low,
medium, and high, ranging from 0.25 to 0.5 h, 0.5–0.75 h, and 1–1.25 h, for one of the prescribed positions. Note that only when source height is high, an emission
source is located directly above the obstacle. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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Current methods might result in low bias in C1́4,o. This implies that if the
modeled concentration (See Sec.2.2) is lower than such conservative
estimate of C1́4,o, it will further confirm the likelihood of under-reporting
of upset emissions. Furthermore, we showed that the conclusions are not
sensitive to different definitions of Cbg,o (See Tables S4 and S5 in the
Supplementary Material). The second method of calculating the back-
ground concentration is used for subsequent analyses. We compare the
measured C1́4,o with the modeled equivalent, C1́4,m, where the subscript
‘m’ denotes model, as computed by

Cʹ
14,m = Cʹ

m × (Te − Ts)
Du14

, (1)

where Cʹ
m is the average concentration increment during the upset

period defined by Ts and Te, the event start and end times, respectively,
and the constant Du14 is the two-week period matching the observed
sample duration, i.e., 336 h (14 days × 24 h/day). For reported events
with duration that spans across more than one consecutive measurement
period, a similar method can be applied for each two-week period. For
example, Cʹ

14,m1 and Cʹ
14,m2 can be derived in the first and second two-

week periods for comparison to the Cʹ
14,o in respective periods. Note

that Eq. (1) is equivalent to assuming that in the time not impacted by
the emission event, i.e., Du14 − (Te − Ts), there is zero concentration
increment.

Fig. 2. Normalized concentrations CĹES for cases without and with obstacles for horizontal plane at z = 2 m. The wind direction is zero degree, the obstacle geometry
is sparse-low. The obstacles, i.e., the “white-bars” are 100 m × 100 m and the gap between, d, is 200 m in this example. The planar location of the source is indicated
by the blue star in Fig. 1a; the top, middle, to bottom rows show cases with source heights corresponding to low, medium, and high as indicated in Fig. 1b. (a), (c),
(e): CĹES for cases without obstacles with source heights zs low, medium and high. (b), (d), (f): CĹES for case with sparse-low obstacles with source heights zs low,
medium and high. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.3. Comparing modeled concentrations with observations

For each of the upset emission event in a given facility, the exact
location of the emission remains uncertain. However, given the
perimeter-siting of the fenceline monitors, it is a reasonable assumption
to make that there exist some monitors located downwind of the emis-
sion that are likely to capture the plume due to upset emissions.
Therefore, even though the exact location of the emission relative to the
downwind fenceline monitors is unknown, by exploring a large number
of possible relative positions between emission source and monitors in
the simulated concentration dataset, some insight into how a facility’s
local obstacles impact the concentration spatial distributions can be
gained. If we further assume that at least one of the fenceline monitors is
located within the plumes of any emission, then concentrations of the
simulated plumes that arise from the reported emissions can be
compared with the observed fenceline monitoring concentrations (when
adjusted for the background concentrations) across all the facilities for
all reported upset emission events. We emphasize here that our goal here
is not to precisely determine the upset emission strength nor its locations
for each emission event in a given facility. Nevertheless, accuracy of
reported upset emissions can be evaluated by exploring a large range of
possible relative locations between the emission and the monitor loca-
tions. Implications of the assumptions and limitations of the analysis
method are further discussed in Sec.4.4.

Amethod similar to (Caulton et al., 2018) is implemented to scale the
modeled concentration by the reported emission rate and the wind speed
in the nearest station to every facility during the reported upset emission
event. Because all LES-LSM runs are non-dimensionalized, the modeled
output CĹES needs to be scaled to represent the actual field conditions for
a given emission event. The procedure of scaling the modeled concen-
tration is briefly described here. The LES-LSM non-dimensional and
dimensionalized (denoted with a superscript D) outputs can be related
by Eq. (2), which can be inferred from the stationary advec-
tion–diffusion equation or by analogy to the scaling of a Gaussian model:

Cʹ
m = QD

QLES
× ULES

UD × Cʹ
LES, (2)

where Cḿ is the dimensional concentration given the reported emission
rate QD for a single upset emission event; QLES is the emission rate set as
1 g/s in the LES-LSM simulation. The non-dimensional modeled wind
speed in LES, ULES is divided by the dimensional UD, which is the wind
speed from nearest meteorological stations to the facility. Because on-
site measurement of wind speed is not available, the station data are
seen as a background wind speed. ULES is taken to be the free-stream
velocity in the atmospheric surface layer at twice of the obstacle height.

3. Results

Despite the highly idealized setup of the geometric configuration, the
effect of local obstacles on dispersion can be quantified by analyzing the
spatial distributions and vertical profiles of the concentration (Sec.3.1).
Sec.3.2 then compares the concentration obtained from reported upset
emissions with the observed ones.

3.1. Effects of obstacles and source locations to the observed
concentrations

To understand the effect of local obstacles on dispersion, the com-
parison between non-dimensional modeled concentration increment
obtained with an emission rate of 1 g/s, CĹES, is shown in Fig. 2 for
horizontal slices being taken at z = 2m. Three different source heights zs
are considered and location of the source is in between arrays of ob-
stacles as indicated by the cross in Fig. 1a. Pronounced cross-wind
dispersion in the case with obstacles is observed for all three source
heights zs. In addition, the obstacles perturb the atmospheric surface

layer and create stronger vertical spread of the plume and thus the case
with highest zs (Fig. 2f) shows much higher magnitude near surface
compared to the corresponding one without the obstacle (Fig. 2e). The
lateral displacement of CĹES for lower zs is higher closer to the source in
cases with obstacles than cases without. This is consistent with a reduced
streamwise mean advective transport due to drag force exerted by the
obstacles on the ambient flow (Davidson et al., 1996). Similarly, as
shown in Fig. S1 for horizontal slices of concentration at z = 10 m, in
cases of low zs, the cross-wind dispersion and vertical spread of the
plumes are more significant with obstacles. As explained in (Davidson
et al., 1996), when large bluff-body-type obstacles are present, two
mechanisms simultaneously affect the behavior of a plume, namely the
divergence (convergence) of the streamline and the change of the nature
of turbulence induced by the obstacles. The faster spread of the plume in
cases with obstacles are due to the interplay of these two mechanisms.
Note that the obstacles considered are highly idealized and they are not
meant to reflect the details of any particular facility. However, the above
described mechanism can still affect the dispersion in a real facility and
qualitative conclusions can be drawn here by comparing the case with
and without obstacles. This may imply that in a real facilities, the
near-ground monitors (i.e., located from 1.5 m–3 m according to the
standard procedure) that are located closer to the source will likely be
able to capture the plume, as compared to the case without obstacles.

Effects of the obstacle can be analyzed by considering non-
dimensionalized height z/h, where h is the mean obstacle height. Even
though h differs for different facilities and obstacles within facilities
have non-uniform heights, the vertical profiles can be non-
dimensionalized by h, such that some generalizable trends indepen-
dent of h can be analyzed.

Fig. 3 shows the vertical profile of cross-wind plume-width averaged
concentration as a function of height scaled by h for increasing down-
stream distance xL away from the source are at xL = h, 10h, 100h. The
plume-width for different xL is defined as locations where the concen-
tration falls to 1% of the centerline value. The vertical spread of the
plume is consistent with the discussions above as obstacles intensify
mixing and deflect the plumes upwards. This is especially the case for
larger xL (i.e., the bottom row in Fig. 3). In general, if the monitoring
stations are located 1.5 m–3 m from the ground and h in a facility is
likely to be higher than 3 m, then focusing on 〈CĹES〉y (i.e., 〈〉y denoting
plume-width-averaging) for z/h < 1 generates some useful insight into
the measurement strategies and estimation of the emission rate can be
inferred from these vertical profiles. For lower source positions, where
zs = 0.2h and 0.5h, omitting obstacles would underestimate the near-
field concentrations for h < xL < 10h; whereas the effect would be
overestimating the far-field concentrations for xL≈ 100h. Such trend can
be more clearly seen by the percentage difference between 〈CĹES〉y with
and without obstacles at z/h = 0.5, where monitors are most likely to be
below such height (See figure titles in Fig. 3). This implies that if ob-
stacles are not accounted for when inversely modeling emissions, the
emission source strength will be overestimated (underestimated) for

near (far) sources, as QD in Eq. (2) is proportional to C1́4,o
Cmodel, where Cmodel is

the concentration from any model, such as the standard Gaussian plume
model. In addition, if the source is located at zs= 1.2h and the downwind
monitors are close to the source (i.e. xL = h and 10h), then it is unlikely
that the emission will be detected regardless of whether obstacles are
present or not (Fig.s 3b,c) because the plume passes above the monitors.
For such reason, we did not simulate cases of source height that could
represent the stack leakages, e.g., z= 2h, as they are likely not being able
to be picked up by the fenceline monitors located within 100h down-
wind under neutral stability. When the distance xL between emission
location and the monitoring stations is 100 h, which is considered as a
‘far’ source location (i.e., Fig. 3 last row), the enhanced vertical spread
of the plumes in cases with obstacles implies that the near-surface
monitoring stations should be quite likely to detect such a emission
event. It is also interesting to note that in some of the fenceline monitor
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data, a single monitor shows a high anomaly whereas in some other
data, adjacent monitor stations all show high anomalies often accom-
panied by a distinct maximum in one of the monitors. These different
characteristics of the observations are likely caused by two reasons:
firstly, the variation in mean wind direction moves the centroid of the
plume across multiple sampling locations; secondly, different scenarios
that correspond to different xL and zs result in different plume widths.
Due to large variations of the concentration profiles across the scenarios,
it is challenging for fenceline monitors often located all at a single height
to infer the locations of the emission by pinpointing the exact values of
xL and zs.

The effects of different geometries of the obstacles are analyzed in
Fig. 4. If observation is close to the source and exactly located down-
wind, sparsely space obstacles give rise to the highest concentration, as a
result of stronger streamwise advective transport. Location of the con-
centration maxima is consistent with their respective zs values. For
larger xL values (Fig.s 4 d-i), the tall obstacle cases (i.e., purple lines)
show amore diffuse profile than the low obstacle cases (i.e., black lines).
Together with the profiles for cases without obstacles in Fig. 3, this is
consistent with the streamline divergence due to presence of obstacles of
increasing h (Davidson et al., 1996). Apart from the turbulent entrain-
ment, the mean flows dominantly influence the plume growth, as the

Fig. 3. Vertical profile of cross-wind plume-width averaged normalized concentrations 〈CĹES〉y as a function of height scaled by h for increasing downstream distance
xL away from the source. Left column (a), (d), (g): source height zs low (0.2h < zs ≤ 0.5h); middle column (b), (e), (h): zsmedium (0.5h < zs ≤ 0.8h); right column (c),
(f), (i): zs high (0.8 h < zs ≤ 1.2h). Dotted line corresponds to case without obstacles; solid line corresponds to the configuration of sparse, low obstacles. The plume-
width for different xL is defined as locations where the concentration falls to 1% of the centerline value. Top row (a)–(c): distance xL = h from the source location;
middle row (d)–(f): xL = 10 h; bottom row (g)–(i): xL = 100 h ‘diff.’ in the figure title refers to percentage difference of 〈CĹES〉y between cases with and
without obstacles.
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cross-wind spread of the plumes across cases with different geometries
are similar as shown in the cross-wind profiles in the Supplementary
Material (See Fig.s S2 and S3).

3.2. Comparison of reported upset emissions data and fenceline
monitoring data

As explained in Sec.2.3, the comparison between model results and
measurements can be carried out by considering the average distance
between the emission location and the perimeter of the facility with a
monitor located downwind at fenceline position (xf, yf, zf) in a Cartesian
coordinate. Note that this problem has two degrees of freedom, which
are the relative height and the relative planar distance between the
source and the monitor, denoted as zs − zf and xL, respectively. Here we

estimate xL by taking the minimum distance between each monitor and
the centroid of the facility. With a fixed estimate xL, the problem is
reduced to only one degree of freedom. For a particular facility, we
consider C1́4,m(xL) for three different groups of zs ranging from low (0.2h
< zs ≤ 0.5h), medium (0.5h < zs ≤ 0.8h), to high (0.8 h < zs ≤ 1.2h),
where xL corresponds to the respective value in Table S2. The maximum
value in each of the zs groups for all C1́4,m(xL) in a given facility is
denoted as Max[C1́4,m], which is then compared with C1́4,o. Considering
Max[C1́4,m] ensures that we always pick the highest possible concentra-
tion from the modeled dataset, given computed xL for a specific facility,
such that we deliberately avoid selecting low modeled concentrations a
priori when comparing with the observed ones. In addition, in some
cases, multiple monitors could show elevated concentrations due to the

Fig. 4. Profiles of normalized concentrations 〈CĹES〉y for four different types of obstacles. Left column (a), (d), (g): source height zs low (0.2h < zs ≤ 0.5h); middle
column (b), (e), (h): zs medium (0.5h < zs ≤ 0.8h); right column (c), (f), (i): zs high (0.8 h < zs ≤ 1.2h). Top row (a)–(c): distance xL = h from the source location;
middle row (d)–(f): xL = 10 h; bottom row (g)–(i): xL = 100 h. Columns from left to right indicate different source heights zs.
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plume’s crosswind structure, the range of concentration maximum given
multiple monitors in one facility is estimated using the standard boot-
strap method and the lower and upper bounds are Clo,max and Cuo,max,
respectively.

Fig. 5 shows the comparison between Max[C1́4,m] (i.e., the abscissa)
and Cu,́o,max (Cl,́o,max) (i.e., the ordinate) for three groups of zs. Most of the
points lie above the one-to-one line, indicating that if an upset emission
is located xL away from a monitor exactly downwind, most of the
observed concentrations are still larger than the maximum of modeled
concentrations. As zs changes from low to high, Max[C1́4,m] taken at the
monitor height zm = 3 m decreases, which is consistent with results
based on analysis in Sec.3.1 that the near-ground concentration for high
source location is lower than that for lower source locations. However,
the variations with zs are not substantial compared to the inherent
variability of Max[C1́4,m] across all the emission events. Another notable
difference between Max[C1́4,m] and Cl,́o,max (Cu,́o,max) is that the observed
values span across approximately two orders of magnitude. However,
the variability of the modeled values span across about five orders of
magnitude. Due to the large spread of Max[C1́4,m], we show the 75th

percentile and median values of C ,́l
o,max

Max[C1́4,m ]
and C ,́u

o,max
Max[C1́4,m ]

in Table 1. The

75th percentile and median values differ by about a factor of 10, indi-
cating individual events with substantial variation ofM,Q, and Dumight
affect C1́4,m, which will be analyzed subsequently.

To quantify the variations across all upset emission events among the
fourteen facilities, the ratio between Max[C1́4,m] and C

,́l
o,max is shown in

Fig. 6. The values ofMax[C1́4,m]/C
,́l
o,max are colored by log(M) (See Fig. 6)

and log(Q) (See Fig. S7 in the Supplementary Material). The results for

low zs are shown here and similar to the variation across increasing zs
shown in Fig. 5, Max[C1́4,m]/C

,́l
o,max decreases with increasing zs (results

not shown). Upset emission events with larger magnitudes ofM and Q as
indicated by the color scale generally correspond to higher values of
Max[C1́4,m]/C

,́l
o,max, especially for larger log(M), evidenced by most fa-

cilities, especially in ‘ExBay’, ‘VaE’, ‘ExBae’, and ‘Tot’. There are two
reasons why the model and measurements may agree better for events
with larger emission magnitudes and rates. One reason could be due to
the nature of the fenceline measurements: a 14-day passive sampler will
smooth over upset emission events with short duration and small
magnitude due to its low sampling rate, making their signal more
difficult to distinguish from background routine emissions, which are
known to be present. Another reason could be due to larger events that
preferentially occur at higher release points beyond high zs, such as tall
stacks, which lead to a low concentration registered by fenceline mon-
itors due to higher elevations of the plume.

Despite the estimate of xL favoring higher modeled concentration,
uncertainty in our knowledge of xL and zs relative to location of the
monitors can be addressed by defining two metrics pertaining to the
entire plume. The first metric η is defined as the fraction of modeled
plume concentration C1́4,m that is below C ĺ

o,max. The second metric is
<Có,max>
<C1́4,m>

, which is defined as the ratio between the average modeled

plume concentration and mean of the upper and lower bounds of the
estimated maximum of observed concentrations, i.e., 1/2(C ĺ

o,max +
C ú
o,max) =< Có,max >. For both metrics, the plume is defined as the upper

quartile of a horizontal slice of C1́4,m at each modeling height from the
surface to 8 m (i.e., within the mean obstacle height) extending to the

Fig. 5. Comparison between modeled concentration located xL distance downwind of the source for and the observed maximum concentrations. (a)–(c): The upper
bound of observed concentration for each emission event at a given facility, Cu,́o,max versus the maximum value among all C14,m(xL) for a given facility,Max[C1́4,m]; (d)–
(e): same as (a)–(c) except the ordinate being the lower bound Cl,́o,max.
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downwind distance of 1.92 km (i.e., the total domain length). Sensitivity
analysis of the definition of plume is performed by varying the percentile
values and vertical height, which do not change conclusion of the re-
sults. These two metrics defined with respect to the plume can be seen as
encompassing a wide range of possible upset emission locations, which
would have included scenarios with actual relative distance even
smaller than the estimate of xL above.

The mean and median values of η and <Có,max>
<C1́4,m>

for all upset emission

events are shown in Table 1. For half of events, η is close to 100%, as
shown by the large median values. Similar trend with respect to zs can

also be seen from mean and median values of <Có,max>
<C1́4,m>

. Despite uncer-

tainty in the upset emission locations relative to monitors, these results
suggest that, applying the reported emission rate, there is high proba-
bility that the corresponding model prediction, C1́4,m, underestimates
the observed value at any receptor distance and source height.

Examining the variation in η and <Có,max>
<C1́4,m>

across different upset

emission characteristics in Table 2 shows that both are negatively
correlated with the emission rate Q. A similar negative correlation with
M can also be found (results not shown). However, there is not a clear

negative correlation between η (<Có,max>
<C1́4,m>

) and duration Du. Such trend

indicates that for events with high M and moderately long Du, which
correspond to events with high Q, the modeled and observed concen-

trations tend to agree more closely with each other. The values of <Có,max>
<C1́4,m>

averaged for the two upper quartiles of Q(M) is 85 (171) times of that

averaged for the two lower quartiles, indicating a even more prominent
under-reporting for events with small Q and M. Nevertheless, even for
high-impact events of larger Q and M, large uncertainty in reporting M
still can exist. More research needs to be done across the facilities
regarding their general practice of reporting the upset events in terms of
estimating M and Du.

4. Discussion

4.1. The effects of including obstacles on modeling concentrations and
estimating emissions

Compared to the control case without obstacles, presence of obsta-
cles leads to concentration enhancement closer to the source due to
decreased mean transport in the downwind direction. This is especially

Table 1

Statistics of
C ,́l
o,max

Max[C1́4,m]
,

C ,́u
o,max

Max[C1́4,m]
, η, and

< Có,max >
< C1́4,m >

across all upset emission events (107 in total) for three groups of different values of zs.

zs C ,́l
o,max

Max[C1́4,m]
C ,́u
o,max

Max[C1́4,m]
η (%) < Có,max >

< C1́4,m >

75th percentile median 75th percentile median mean median mean median

Low 26.4 2.48 51.6 4.87 84.1 98.1 156 3.02
Mid. 28.1 3.20 83.0 7.50 87.8 99.74 415 8.05
High 128 15.2 283 37.4 94.6 100 4900 95.0

Fig. 6. Ratio between modeled concentration located xL distance downwind of the source and the observed maximum concentrations for fourteen facilities. The
points are colored by the quantity of upset emissions and the color is in log scale. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 2

Statistics of η, and
< Có,max >
< C1́4,m >

averaged over events grouped according to

quartiles of Q for three groups of different values of zs.

zs η (%) < Có,max >
< C1́4,m >

Q Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Low 99.9 92.9 85.4 69.6 895 73 9.0 2.4
Mid. 99.9 94.8 89.7 75.5 2386 197 23.9 6.4
High 100 96.2 97.01 89.2 28165 2326 282 75
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relevant for sources located below the mean obstacle height. On the
other hand, arrays of obstacles also increase turbulent mixing. In
particular, pollutants emitted from sources located above the mean
obstacle height can be efficiently entrained below the obstacle level at a
relatively shorter downwind distance from the source compared to cases
without obstacles. These results imply that fenceline monitors at 1.5–3
m above the ground and located at a 500 m–3000 m (depending on size
of the facility) downwind of possible emission sources can detect the
plumes due to upset emissions either close to them or located above the
obstacles. Results here imply that omitting obstacles generally leads to
lower downwind, near-surface modeled concentrations. The larger the
facility, farther the fenceline from the source, and the higher the source
release, the more underprediction resulting from omitting the obstacle
effect will be. Therefore, apart from the source being low (below the
mean obstacles height) and far (xL= 100h), neglecting obstacles in most
cases would introduce a low bias in the model predictions of concen-
trations. This finding also corroborates with results in Pirhalla et al.
(2021), where they reported that EPA’s AERMOD using Gaussian
dispersion modeling neglecting effects of obstacles underestimates the
concentrations, especially at the far field. The evidence suggests that
results from Gaussian dispersion models without accounting for effects
of the obstacles, such as often used as the basis of regulatory risk as-
sessments, lead to biased comparison to real world observations at the
near-ground level.

As already mentioned in Sec.3.1, the effects of obstacles can affect
the estimation of emission using an inverse modeling approach. Since

the estimated emission QD is proportional to C1́4,o
Cmodel, where Cmodel is usually

inferred from inverse-modeling approach given some known emission
rate Qmodel. Thus, an underprediction of Cmodelmeans the overestimation
of QD for most cases if neglecting the obstacle effect. In other words,
neglecting obstacles, one would erroneously estimate a given observed
concentration was caused by a larger emission event than actually
occurred.

4.2. Implications for the U.S. EPA fenceline monitoring program

It is important to note that a statistically significant positive corre-
lation (correlation coefficient = 0.31 with p-value of 0.01) between
monitored concentration increment and reported emission rate is found,
as shown in Fig. S6 in the Supplementary Material. This suggests that the
fenceline concentrations and upset emissions reported by individual
facilities are likely to be consistent, at least qualitatively, with the
occurrence of upset events. However, modeling results in Sec.3.1 show
that substantial under-reporting can still be quite prevalent after ac-
counting for the uncertainties in source locations and obstacle config-
urations, which are consistent with previous studies (Bouchard et al.,
2023; Gray and Sahu, 2023). Also, as the fenceline monitors record both
non-upset and upset events, the statistically significant correlation be-
tween them strongly hints at the importance of upset emissions in total
emissions, which are typically neglected in air quality modeling. Future
studies could evaluate the correlation between the concentration
increment and the routine emissions, if data become available.

In addition, the modeled and observed concentrations are in closer
agreement when the reported events are characterized by high emission
amount and high emission rate, which also means the high anomalies of
observed concentrations. All these evidences indicate that if an upset
event involved high emissions and tend to happen for longer than a few
hours (but not longer than one week), they are likely to be more accu-
rately reported in terms of the total emission amount. It can be specu-
lated that high anomalies of fenceline monitored concentrations might
trigger a more thorough investigation of incidences leading to such
upset emissions. Thus, it is also of future interest to understand the role
of fenceline monitoring results in shaping facilities’ practice or protocol
of reporting these events.

4.3. Recommendations of monitoring and reporting system for HAPs

The proposed diagnostic framework can be extended to other HAPs,
where the chemical lifetime is longer than their mixing time in the sub-
kilometer scale. The framework is also transferable to other industrial
sources of air pollution, in which similar fenceline monitoring and upset
emission reporting systems similar to that in Texas have been set up.
Based on results in this study, we make the following general recom-
mendations regarding the monitoring and reporting system for HAPs.

1. Expanding fenceline monitoring is a necessary first step to apply a
diagnostic framework similar to the proposed method to assess the
potential under-reporting more widely. The model underprediction
for benzene upset emissions demonstrated here makes a strong case
for the need to expand fenceline monitoring.

2. If more frequent reporting of routine emissions becomes available, (i.
e., rather than the annual-average, which is typical among emission
inventories), the current diagnostic framework can be applied to
fenceline monitoring results.

3. For upset emissions and routine emissions, more detailed reporting
on the location of the emission source, especially the estimated
source height and distance to perimeter, would improve the preci-
sion of emission quantity and rate estimates derived using the cur-
rent framework.

4. It is expected that measurement-based quantification of upset emis-
sions and routine emissions would be possible, provided onsite
meteorological condition such as wind speed and direction, together
with monitors at more than a single height become available. Then,
the measurement can be combined with inverse modeling method
that is appropriate for this sub-kilometer-scale problem for emission
estimation.

With improved monitoring and reporting systems for HAPs, the
spatiotemporal resolution of the emission inventories can be further
improved, facilitating better comparisons with observations and further
improvements to emission estimates.

4.4. Implications of assumptions and limitations of current study

Here we summarize how assumptions and limitations of this study
affect the analysis results, especially pertaining to the comparison be-
tween model and observation.

Firstly, wind directions at the local refinery during duration of upset
emissions may not be accurately represented by the weather stations. A
global cross check of wind direction indicates that at least one fenceline
monitor showing elevated values was located downwind using the wind
direction data for majority of the upset emission events. Therefore, it is
quite likely that signals from upset emissions have been captured by the
fenceline monitors.

Secondly, this study is limited by not being able to distinguish upset
and non-upset emissions due to data availability. However, the fenceline
monitors show signals of all emission types. We applied three methods
(See Sec.2.2) to calculate background concentration Cbg,o and to disen-
tangle the signal due to the upset events. The higher concentration
increment during reported upset emission events shown in Table S3 in
the Supplementary Material confirms that it is possible to distinguish
upset emissions, despite larger uncertainty if the events are character-
ized by short duration and small magnitude. Such uncertainty may drive
the lower end of the comparative result that currently spans orders of
magnitude.

Thirdly, one of the assumptions is that the plume centerline is
aligned with locations of the fenceline monitors for the entirety of
emission, such that a maximum overlap exists. However, this is unlikely
to be the case because of gaps between the fenceline monitors and un-
steady wind directions causing plume meandering. To alleviate this
problem, we created a statistical estimate of the maximum of the con-
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centration increment (See Sec.3.2). Note that the non-overlapping effect
will result in lower observed concentration increment, which even
further confirms under-reporting if Có,max > Max[C1́4,m].

Fourthly, this study is limited by only considering neutral stability in
the generated database. In unstable conditions, concentration within the
roughness sublayer is lower than that in neutral stability due to
increased vertical mixing (Marucci and Carpentieri, 2020), vice versa for
stable conditions. However, considering the operations of facilities
releasing waste heat and high sensible heat flux during daytime, un-
stable condition might occur more frequently. An estimation of the
stability parameter z/L based on a sensible heat flux of 500 W/m2 and
surface friction velocity of 0.5 m/s, z/L ranges from 0.13 to 0.44 for z =
3–10 m. Thus, the modeled neutral concentration potentially has a high
bias, but this will not change the main conclusion of the paper regarding
potential under-reporting.

5. Conclusion

In this study, we applied a computational fluid dynamics modeling
approach using LES coupled with LSM to understand the effects of ob-
stacles on the dispersion of a passive tracer. Assuming a constant
continuously released emission source, a dataset of three dimensional
concentration field consisting of 120 different scenarios (i.e., variable
obstacle heights, arrangements, wind directions, and source locations)
was generated. Despite the idealized setup of the simulations, these
conclusions are expected to be generalizable to fenceline monitors
around the facilities at a spatial scale below 2 km. Then, this dataset is
scaled by the reported benzene upset emissions in fourteen facilities,
where fenceline monitors were installed to record the two-week-
averaged benzene concentrations.

Even though the exact locations of the benzene upset emissions are
unknown, the generated concentration fields correspond to a large
number of possible relative locations between emission and monitors
downwind, which enable comparisons between the modeled and the
observed concentrations. As inferring the exact source locations from
the two-week-averaged monitoring data can be challenging, we
considered the modeled concentration increments due to upset emis-
sions at a minimum source distance xL from a downwind fenceline

monitor. Two metrics η and <Có,max>
<C1́4,m>

are also computed to compare the

modeled and observed concentrations. Using the reported emission rate
and assuming the source is located at distance xL away from a downwind
fenceline monitor, majority of the events show underprediction, where

the median values of <Có,max>
<C1́4,m>

across all considered events ranges from 3 to

95 (See Table 1) depending on the source height.
In light of the two study aims, a few key take-away points that can be

generalized beyond the benzene fenceline data considered in this study
are summarized below.

1. Results from the obstacle-resolving LES-LSM suggest that effects of
obstacles need to be considered for modeling ground-level concen-
trations of non-reactive HAPs, especially for fenceline dispersion
studies at the kilometer to sub-kilometer scale.

2. The source height relative to the obstacles and ground-level (i.e.,
1.5–3 m fenceline monitors) measurement locations in terms of
downwind distance from the source location are important factors
controlling the concentration. Omitting obstacles in modeling would
underestimate concentrations at all distances for near-ground mea-
surements if the source height is above the obstacles.

3. The obstacle-resolving LES-LSM can be applied to generate a dataset
with variable obstacle configurations, wind directions, and atmo-
spheric stability (to be considered in future studies). By considering
appropriate metrics of evaluation, the dataset can be applied to have
a fast, first-order evaluation of the accuracy of self-reported emis-
sions across multiple facilities.
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