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I had the privilege of learning from Lena as a graduate student at Cornell. During those years Lena’s enthusiasm and dedication to
uncovering the physics ofmaterials through cutting-edge electronmicroscopywas a constantmotivating force.My research under
her mentorship focused on mapping picometer- to Ångström-scale atomic distortions in a wide variety of functional materials.
This was one of many areas in which Lena’s work had a significant impact. She pushed the limits of measuring lattice distortions
linked to connections between charge, spin, lattice, and orbital degrees of freedom in quantum materials and expanded the tech-
nique to cryogenic and intermediate temperatures, enabling direct visualization of temperature-driven phase transitions [1-3].
One analysis method that has been particularly impactful is the extraction of picometer-scale periodic lattice distortions
(PLDs) using atomic column fitting and comparison to a reference lattice generated by damping the modulation of interest
from the atomic-resolution image FFT [1]. Since this technique requires selection of distinct sets of Fourier peaks to produce
the reference image, it has the potential to extract distortions related to different phases in crystals with phase coexistence.
To demonstrate this ability, we chose LaNiO3-δ as a model system. While LaNiO3 has a mundane reputation as the only rare

earth nickelate that does not exhibit electronic or magnetic transitions, oxygen deficient compounds have shown more compli-
cated electronic and magnetic behavior. As the oxygen vacancy concentration, δ, is increased from 0 to 0.5, the crystal undergoes
ametal-to-insulator transition, and for δ= 0.25 and 0.5, it is ferro- and antiferromagnetic, respectively, at low temperature. These
property changes are linked to regions of ordered oxygen vacancies, which tend to coexist over length scales of hundreds of nano-
meters. This phase coexistence makes analysis of the structure and properties of the vacancy-ordered phases very difficult.
By identifying the peaks in an image FFT that are associated with each phase and separately mapping them using the above

atomic displacement mapping technique, we identified the cation displacement patterns in the LaNiO2.5 and LaNiO2.75 phases
as shown in figure 1. The extracted displacement patterns confirm the previously published structure for the δ = 0.5 phase [4]
and elucidate the cation displacements for the δ = 0.25 phase for the first time. The extraction of real space lattice distortions
in heterogeneous crystals enabled by this analysis is relevant to a variety of functional oxides, nitrides, and more across the fields
of energy materials, multiferroics, and quantum materials.
This work during my doctoral studies continues to play an important part in my investigation of conductance switching mech-

anisms in candidate materials for neuromorphic computing. These switching mechanisms often leverage metal-to-insulator or
spin transitions that are concomitant with subtle distortions in the atomic lattice. The spin transition in cobalt oxides has
been a recent focus of our efforts [5]. I will show how we used atomic column mapping, in combination with electron energy
loss spectroscopy (EELS), to characterize its spin transition upon in-situ heating. Direct visualization of the heating-induced lat-
tice distortions and the heterogeneity therein inform our understanding of the transformation mechanism and suggest directions
for further material development [6].
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Fig. 1. Atomic column displacementsmapped for La along the [110]pc projection of LaNiO3-d. (a) FFT of the HAADF-STEM image shown in b and e, where
the peaks circled in blue and green correspond to the d = 0.5 and 0.25 phases, respectively. (b,e) Displacements associated with the d = 0.5 and 0.25
phases, respectively, over a ∼15 nm field of view. A subset of b(e) is presented in c(f), more clearly displaying the displacement pattern. An atomic model
of [110]pc-oriented LaNiO3 is shown in d and g overlaid with arrows indicating the displacement patterns for the d = 0.5 and 0.25 phases. The arrow size
indicates the magnitude, and the arrow direction and color indicate the direction of the displacement for each atomic column.
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