

Mapping Lattice Distortions Across Phase Transitions With Atomic-Resolution STEM

Michelle A Smeaton, Hong Zheng, Elliot J Fuller, Suhas Kumar, J F Mitchell,
Katherine L Jungjohann, Lena F Kourkoutis

Meeting-report

Mapping Lattice Distortions Across Phase Transitions With Atomic-Resolution STEM

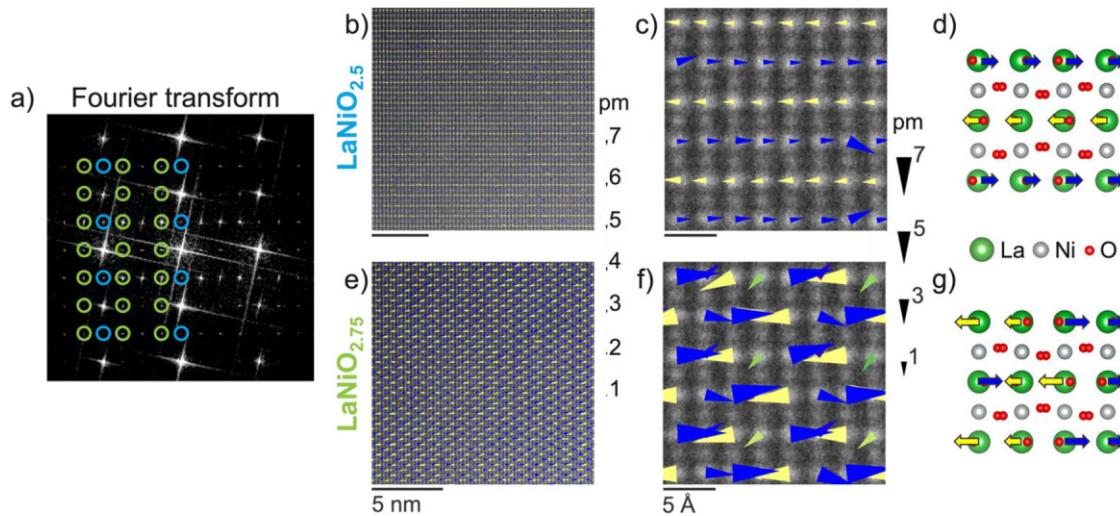
Michelle A. Smeaton¹, Hong Zheng², Elliot J. Fuller³, Suhas Kumar³, J. F. Mitchell², Katherine L. Jungjohann¹, and Lena F. Kourkoutis^{4,5}

¹National Renewable Energy Laboratory, Golden, CO, United States

²Argonne National Laboratory, Lemont, IL, United States

³Sandia National Laboratories, Livermore, CA, United States

⁴School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States


⁵Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY, United States

I had the privilege of learning from Lena as a graduate student at Cornell. During those years Lena's enthusiasm and dedication to uncovering the physics of materials through cutting-edge electron microscopy was a constant motivating force. My research under her mentorship focused on mapping picometer- to Ångström-scale atomic distortions in a wide variety of functional materials. This was one of many areas in which Lena's work had a significant impact. She pushed the limits of measuring lattice distortions linked to connections between charge, spin, lattice, and orbital degrees of freedom in quantum materials and expanded the technique to cryogenic and intermediate temperatures, enabling direct visualization of temperature-driven phase transitions [1-3]. One analysis method that has been particularly impactful is the extraction of picometer-scale periodic lattice distortions (PLDs) using atomic column fitting and comparison to a reference lattice generated by damping the modulation of interest from the atomic-resolution image FFT [1]. Since this technique requires selection of distinct sets of Fourier peaks to produce the reference image, it has the potential to extract distortions related to different phases in crystals with phase coexistence.

To demonstrate this ability, we chose $\text{LaNiO}_{3-\delta}$ as a model system. While LaNiO_3 has a mundane reputation as the only rare earth nickelate that does not exhibit electronic or magnetic transitions, oxygen deficient compounds have shown more complicated electronic and magnetic behavior. As the oxygen vacancy concentration, δ , is increased from 0 to 0.5, the crystal undergoes a metal-to-insulator transition, and for $\delta = 0.25$ and 0.5, it is ferro- and antiferromagnetic, respectively, at low temperature. These property changes are linked to regions of ordered oxygen vacancies, which tend to coexist over length scales of hundreds of nanometers. This phase coexistence makes analysis of the structure and properties of the vacancy-ordered phases very difficult.

By identifying the peaks in an image FFT that are associated with each phase and separately mapping them using the above atomic displacement mapping technique, we identified the cation displacement patterns in the $\text{LaNiO}_{2.5}$ and $\text{LaNiO}_{2.75}$ phases as shown in figure 1. The extracted displacement patterns confirm the previously published structure for the $\delta = 0.5$ phase [4] and elucidate the cation displacements for the $\delta = 0.25$ phase for the first time. The extraction of real space lattice distortions in heterogeneous crystals enabled by this analysis is relevant to a variety of functional oxides, nitrides, and more across the fields of energy materials, multiferroics, and quantum materials.

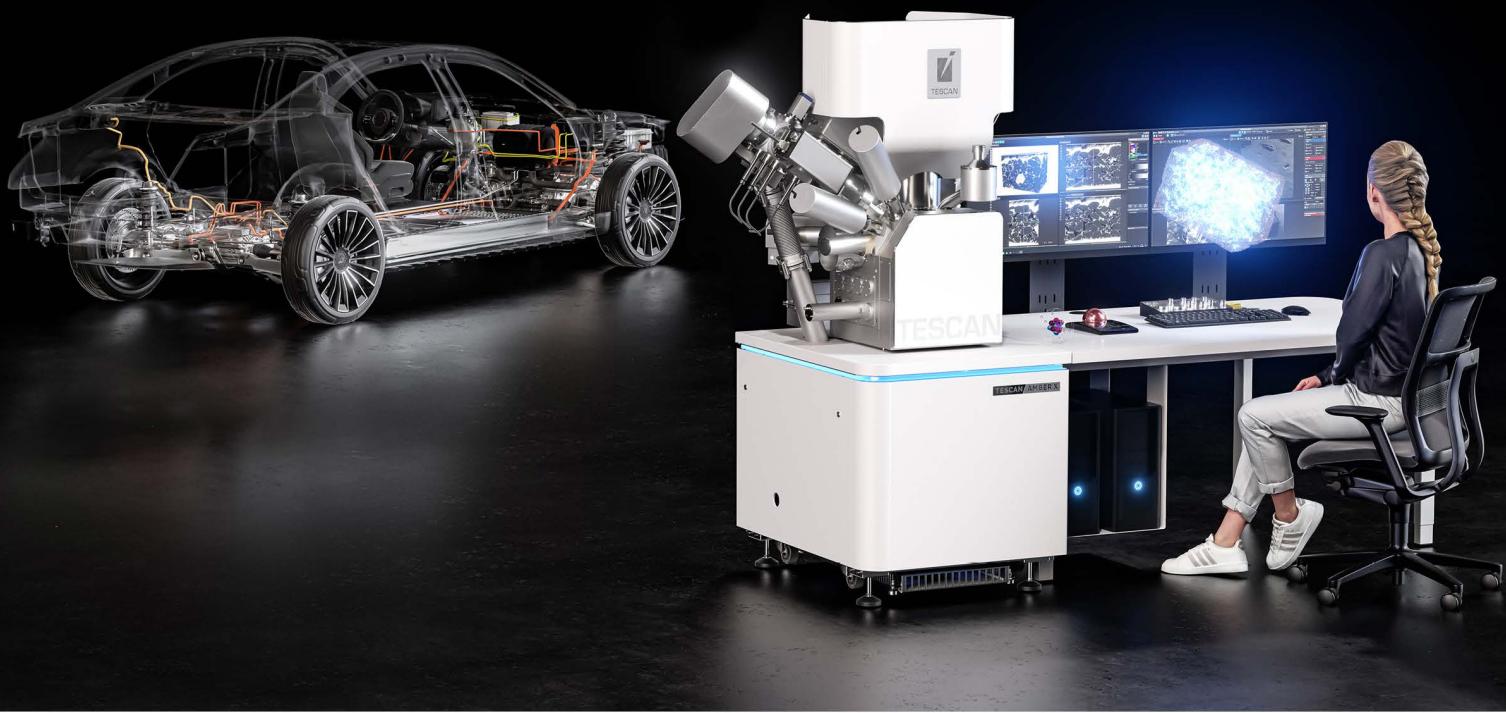

This work during my doctoral studies continues to play an important part in my investigation of conductance switching mechanisms in candidate materials for neuromorphic computing. These switching mechanisms often leverage metal-to-insulator or spin transitions that are concomitant with subtle distortions in the atomic lattice. The spin transition in cobalt oxides has been a recent focus of our efforts [5]. I will show how we used atomic column mapping, in combination with electron energy loss spectroscopy (EELS), to characterize its spin transition upon in-situ heating. Direct visualization of the heating-induced lattice distortions and the heterogeneity therein inform our understanding of the transformation mechanism and suggest directions for further material development [6].

Fig. 1. Atomic column displacements mapped for La along the $[110]_{pc}$ projection of LaNiO_{3-d} . (a) FFT of the HAADF-STEM image shown in b and e, where the peaks circled in blue and green correspond to the $d = 0.5$ and 0.25 phases, respectively. (b,e) Displacements associated with the $d = 0.5$ and 0.25 phases, respectively, over a ~ 15 nm field of view. A subset of b(e) is presented in c(f), more clearly displaying the displacement pattern. An atomic model of $[110]_{pc}$ -oriented LaNiO_3 is shown in d and g overlaid with arrows indicating the displacement patterns for the $d = 0.5$ and 0.25 phases. The arrow size indicates the magnitude, and the arrow direction and color indicate the direction of the displacement for each atomic column.

References

1. BH Savitzky *et al.*, *Nat Commun* **8** (2017), p. 1883.
2. I El Baggari *et al.*, *Proc Natl Acad Sci* **115** (2017), p. 1445.
3. N Schnitzer *et al.*, arXiv:2402.08580 (2024).
4. JA Alonso *et al.*, *J Phys: Condens Matter* **9** (1997), p. 6417.
5. CNR Rao *et al.*, *Top Curr Chem* **234** (2004), p. 1. <https://doi.org/10.1007/b95410>
6. This work was supported as part of the Reconfigurable Materials Inspired by Nonlinear Neuron Dynamics (REMIN) Energy Frontier Research Center, funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). Growth of the cobalt oxide film was performed at Sandia National Laboratories under contract #DE-NA-0003525. Microscopy characterization of the films was performed at the National Renewable Energy Laboratory under contract #DE-AC36-08GO28308. LaNiO_3 crystal growth was performed in the Materials Science Division of Argonne National Laboratory and sponsored by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division. Microscopy characterization of the LaNiO_3 crystal was supported by the National Science Foundation under Cooperative Agreement No. DMR-2039380 and made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875).

TESCAN FIB-SEM

Drive your materials development
and get comprehensive answers.

Fast and effortless!

info.tescan.com/matsci-fib-sem

Scan for more information