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Abstract— The size of image volumes in connectomics
studies now reaches terabyte and often petabyte scales
with a great diversity of appearance due to different sample
preparation procedures. However, manual annotation of
neuronal structures (e.g., synapses) in these huge image
volumes is time-consuming, leading to limited labeled train-
ing data often smaller than 0.001% of the large-scale image
volumes in application. Methods that can utilize in-domain
labeled data and generalize to out-of-domain unlabeled
data are in urgent need. Although many domain adaptation
approaches are proposed to address such issues in the
natural image domain, few of them have been evaluated
on connectomics data due to a lack of domain adaptation
benchmarks. Therefore, to enable developments of domain
adaptive synapse detection methods for large-scale con-
nectomics applications, we annotated 14 image volumes
from a biologically diverse set of Megaphragma viggianii
brain regions originating from three different whole-brain
datasets and organized the WASPSYN challenge at ISBI
2023. The annotations include coordinates of pre-synapses
and post-synapses in the 3D space, together with their one-
to-many connectivity information. This paper describes the
dataset, the tasks, the proposed baseline, the evaluation
method, and the results of the challenge. Limitations of
the challenge and the impact on neuroscience research
are also discussed. The challenge is and will continue
to be available at https://codalab.lisn.upsaclay.fr/
competitions/9169. Successful algorithms that emerge
from our challenge may potentially revolutionize real-world
connectomics research and further the cause that aims to
unravel the complexity of brain structure and function.
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I. INTRODUCTION

NEURONS are the basic functional units of the brain
that can be long enough to span brain hemispheres

and specifically connect to other neurons with nanometer-
sized synapses. Synapses constrain the information flow in the
brain and thus knowing synaptic connectivity is essential for
understanding brain function and dysfunction. To investigate
such connectivity, neuronal imaging methods with both a large
field of view and nanometer resolution are needed. Fortunately,
with the development of Volume Electron Microscopy [1]–[5],
those requirements are met and as a result, many terabyte
and petabyte-scale image volumes are being produced [6],
[7]. Techniques involving machine learning [8], [9], especially
Deep Learning [10], can label such large-scale image volumes
automatically with good accuracy [11], provided that large-
scale annotated data are available for training the model. How-
ever, manual annotation of neuronal structures (e.g., synapses)
in these huge image volumes is time-consuming [12], leading
to limited labeled training data often smaller than 0.001%
of the large-scale image volumes in application. Moreover,
image volumes across different brain samples may manifest
a great diversity of appearances, making it hard for deep
learning models that are trained with data from one sample
to generalize well on data from other different samples. In
the natural image domain, a line of research called domain
adaptation (DA) is well-suited to tackle the aforementioned
issues but it is less evaluated on the synapse detection task
in the connectomics field, due to a lack of domain adaptation
benchmarks.

Based on limited training data, some challenges are hosted
for developing state-of-the-art machine learning algorithms
and most of them are designed for neurite tracing, such
as SNEMI3D1 and BigNeuron [13] in VEM and Light Mi-
croscopy images, respectively. In the neuron connectivity
graph, neurons are the nodes and synapses are the edges.
There is a lack of synapse detection challenges compared
with neurite tracing. Here, we hosted a challenge, called

1https://snemi3d.grand-challenge.org/
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WASPSYN, that aims to set a new benchmark to evaluate
the effectiveness of current domain adaptation methods when
tailored to the synapse detection task. The challenge data
consists of 14 carefully annotated image volumes from a bi-
ologically diverse set of microwasp (Megaphragma viggianii)
brain regions, originating from three different whole-brain
datasets. Coordinates of pre-synapses and post-synapses in
the 3D space, together with their one-to-many connectivity
information, are included in the annotations. This paper gives
an overview of the challenge, covering the dataset, the tasks,
the proposed baseline, the evaluation method, and the analysis
of the challenge results.

A. Related Work

In this section, we provide a comparison between the
WASPSYN challenge and an existing challenge CREMI (Cir-
cuit Reconstruction from Electron Microscopy Images), as
well as an overview of notable literature on synapse detection
and domain adaptation.

1) Comparison with an Existing Challenge: CREMI2 is a
challenge at MICCAI 2016 conference. Volumes of adult
Drosophila melanogaster brain with pre- and post-synapse
annotations are provided in this challenge. It has substantially
facilitated computer vision research in the connectomics com-
munity and helped to achieve accurate neuron segmentation
and synapse detection results. However, CREMI still lacks
coverage that we aim to address in the WASPSYN challenge:

• Volumes in CREMI are acquired using Serial Sec-
tion Transmission Electron Microscopy (SS-TEM) with
anisotropic voxel size. Thus, one missing task is to de-
velop the analysis of another advanced imaging method,
Focused Ion Beam Scanning Electron Microscopy (FIB-
SEM), with isotropic voxel size. The voxel size of our
volumes is 8×8×8 nm compared with 4×4×40 nm in
CREMI. A detailed comparison of imaging methods can
be found in [2].

• Our challenge focuses on testing generalization capabil-
ity. In contrast with CREMI, whose data are from the
same image stack where the test volumes are close to
the training volumes, we provide data from three brain
samples, generating a diverse set of test volumes from
different domains. In total, we have annotated 14 volumes
compared to 6 volumes in the CREMI challenge.

• Different from CREMI in which synaptic clefts and post-
synaptic density are easy to identify, such structures in
our volumes are not clear due in part to smaller neurons
and lower planar resolution. As a result, it is more
challenging to detect post-synapses in our data.

• For each synapse, CREMI annotates multiple point pairs
across the synaptic cleft and there are many such points
in each pre-synapse. Since the post-synaptic densities are
not always clearly visible but pre-synaptic motifs (also
known as T-bar ribbons in the insect nervous system) are
always visible in our volumes, we label one point in each
T-bar ribbon in the bouton. Thus, the distance from the

2https://cremi.org/

pre-synapse to the corresponding post-synapses is much
longer than the cross-membrane distance in CREMI.
This requires a larger field of view when developing the
machine learning model. Besides, deciding pre- and post-
synapse connectivity becomes harder in the WASPSYN
challenge as our data exhibit one-to-many mapping while
CREMI data exhibit one-to-one mapping crossing the
post-synaptic density.

• The mushroom body neurons in insects have distinct
synapse structures compared to other neurons. No such
volumes are presented in the CREMI challenge.

• CREMI provides cell instance segmentation annotations
for all the volumes, which could be used to help train the
models. In contrast, we do not have those labels, resulting
in a harder synapse detection task.

In short, an immense diversity of neuron and synapse textures
exists in WASPSYN data and it is challenging to maintain
consistent accuracy across different brain samples. We focus
on testing the generalization capability of domain adaptation
algorithms and hope that successful methods emerging from
this challenge will reduce the required amount of manual
annotations in real-world connectomics applications.

2) Synapse Detection: Synapse detection [14], [15] has
gained increasing attention as it is a crucial task in con-
nectomics. Early research methodologies [16]–[20] primarily
centered around segmenting the synaptic cleft region with
hand-crafted image features. Becker et al. [17] introduced
the context cues features, which were computed in multiple
image channels with several Gaussian kernels. Then AdaBoost
was further employed to select the discriminative features.
Jagadeesh et al. [18] presented an attribute-based descriptor
for synapse classification and localization in SS-TEM images
of the rabbit retina. Kreshuk et al. [19] proposed a two-stage
training algorithm and performed pixel classification directly
in 3D, where a Random Forest classifier was trained for
final object classification. Due to the insufficient discriminative
power of the hand-crafted features used in these methods, their
performance still does not meet the practical demands.

With the development of deep learning techniques, the field
of synaptic detection in electron microscopy volumes has
witnessed significant advancements in recent years. Diverse
strategies [21], [22] have emerged for the automated detection
of synapses, while further investigations have delved into the
intricacies of synaptic detection in more challenging model
organisms. Significantly, in the context of vertebrates, recent
methodologies have showcased a dependable ability to deduce
synaptic connectivity. For example, Dorkenwald et al. [23]
developed the SyConn framework for synapse detection, which
attained great results on the electron microscopy data from
zebrafish, mouse, and zebra finch using deep convolutional
neural networks. Nonetheless, when it comes to insect brains,
the process of recognizing synaptic connections is notably
more intricate. This complexity arises from the relatively
smaller size of synapses in contrast to those in vertebrates. Ad-
ditionally, there’s a frequent occurrence of polyadic synapses
in insect brains, wherein a single pre-synaptic site establishes
connections with multiple post-synaptic sites.

To tackle these challenges, Kreshuk et al. [24] proposed
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a probabilistic graphical model to learn the synaptic partner
assignment, where random variables were used to represent
adjacent neurite synaptic roles. Heinrich et al. [25] proposed
a 3D U-Net architecture and training approach for synaptic
cleft segmentation in non-isotropic SS-TEM of insect nervous
systems, achieving significant advancements over previous
methods on the CREMI challenge dataset. Huang et al. [26]
introduced a two-step automated system that predicts synaptic
connections in Drosophila brain images, first identifying T-
bars and then predicting partnering post-synaptic densities,
showing its effectiveness in accurately reconstructing complex
synaptic connections and outperforming existing methods.
Buhmann et al. [14] further introduced a single-step method,
which simultaneously identifies pre-synaptic and post-synaptic
sites and predicts their connectivity using a 3D U-Net. In this
work, we further shift our attention to synapse detection within
the microwasp brain, which has a much higher synapse density.

3) Domain Adaptation: Deep learning-based machine learn-
ing technology [27]–[29] has achieved remarkable success
over the past decade. Along with its wide application, a
significant challenge arises due to the domain shift prob-
lem [30], stemming from variations in distributions between
the source or reference data and the target data. As a spe-
cial case of transfer learning [31], domain adaptation has
emerged as a promising solution to address the above issue,
which aims to bridge the distribution gap that exists among
different yet interconnected domains. Existing methods for
domain adaptation can be categorized into supervised DA,
semi-supervised DA, and unsupervised DA based on label
availability in the target domain [32], [33]. Supervised DA
usually assumes a small number of labeled data from the target
domain are available for training the model. However, data
annotation is time-consuming and labor-intensive, particularly
in the context of medical image data [34]. Therefore, more
challenging scenarios have been proposed: semi-supervised
DA and unsupervised DA. For semi-supervised DA, a limited
set of labeled data is augmented with a supplementary pool of
unlabeled data from the target domain to facilitate the training
process. Meanwhile, unsupervised DA exclusively relies on
the utilization of unlabeled target data to train the adaptation
model. In this paper, we focus on the most challenging setting
where no labeled target domain data are available.

To bridge the domain gap, existing unsupervised DA meth-
ods often consider aligning at two distinct levels: images
and features [34], [35]. The primary objective of feature-level
alignment is to acquire domain-invariant features across vari-
ous domains, accomplished through the utilization of specifi-
cally tailored deep neural networks. Yan et al. [36] proposed a
discrepancy-based method, which fine-tuned the deep models
on the target domain with pseudo labels. ADDA [37] presented
an adversarial-based approach, which employed generative
adversarial networks (GANs) to guarantee indistinguishability
between the source and target domains. Some research [38]
also explored reconstruction-based approaches, which leverage
data reconstruction as an auxiliary task to create a shared
representation between the source and target domains. While
these works focus on feature-level alignment, another line of
research performs image-to-image translation for unsupervised

DA. For example, Pizzati et al. [39] employed an image-to-
image translation network to bridge domain gaps and achieved
great performance in semantic segmentation tasks. Li et al.
[40] demonstrated improved neuron membrane segmentation
performance after translation from the X-ray domain to the
electron microscopy domain. Some of these DA methods are
explored and utilized by participants in this challenge.

B. Main Contributions
The main contributions of this paper are three folds:
• We provide the first domain adaptation benchmark for

synapse detection in the connectomics field, including 14
volumes of FIB-SEM images from microwasp brains with
pre- and post-synapse annotations.

• We set up an online evaluation website that is accessible
continuously for researchers to test and compare the
performance of their proposed algorithms.

• We give a detailed description of the dataset, propose a
reasonable baseline method, and conduct a comprehen-
sive analysis of challenge results.

II. METHODS

A. Challenge Organization
The WASPSYN challenge is sponsored by the Simons

Foundation and is associated with the 2023 IEEE 20th Interna-
tional Symposium on Biomedical Imaging3 (ISBI 2023). It is
also covered in media by Computer Vision News4. Participants
can download the labeled training set and unlabeled test set for
developing synapse detection algorithms. The use of additional
datasets from other sources is not allowed. Results on the test
set should be submitted to the challenge website at https://
codalab.lisn.upsaclay.fr/competitions/9169
by participants for evaluation. The maximum number of sub-
missions per day per team is 5 and the teams should submit
all cases in the test set. A continuous evaluation is available at
the challenge website but only the top 3 participants from sub-
missions created before the challenge deadline were awarded
prizes and invited to share their methods at ISBI 2023 WASP-
SYN challenge workshop. The dataset will also continue to
be publicly available to everyone after the challenge under
the CC-BY license. Participants are encouraged to perform
an uncertainty or statistical analysis of their algorithms and
report the results of the analysis in their publications. The
code availability is voluntary but we strongly encourage the
participants to open-source their code for reproducibility.

B. Dataset
WASPSYN dataset consists of 14 image volumes from

Megaphragma viggianii, a type of insect with a small brain
size. These wasps have evolved anucleate neurons, likely due
to the selective pressure that has driven miniaturization [41].
The scientific significance is detailed in previous publications
[41]–[43]. We present a detailed description of the WASPSYN
dataset below.

3https://2023.biomedicalimaging.org/en/CHALLENGES.
html

4https://www.rsipvision.com/ComputerVisionNews-2023March/
42/
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1) Acquisition: The whole head of Megaphragma viggianii
was firstly stained with heavy metal and embedded in resin
[44]. Subsequently, the sample was imaged using an enhanced
Focused Ion Beam Scanning Electron Microscope (FIB-SEM)
[45]–[47] with an isotropic voxel size of 8× 8× 8 nm.

Fig. 1. Image sections from three samples. Top row to bottom row:
sections from sample 1, sample 2, and sample 3. Left column to right
column: sections from X-Y, X-Z, and Y-Z plane. Arrows: synaptic sites
identified in the section. Red arrows: synaptic sites of mushroom bodies
specifically. Scale bar: 0.5 µm.

2) Notable Features:
• Cross-sample variation: We imaged three brain samples

and then annotated 14 image volumes from them. As
shown in Fig. 1, significant appearance differences (i.e.,
domain differences) can be observed among three sam-
ples, posing generalization challenges to machine learn-
ing models. Based on our observation, microwasp brain
anatomy is conservative at the neural circuit level [48].
The variation among different samples is mostly from
sample preparation and imaging parameter variations, i.e.,
the samples were prepared according to a protocol with
parameter variations. Specifically, sample 2 was prepared
according to the protocol described in [44] and embedded
into Durcupan. Sample 1 and sample 3 were prepared
using the same protocol as sample 2 but with minor
differences. Sample 1 was prepared without ferrocyanide
treatment and embedded in Epon. As for sample 3, the
time of primary fixation was reduced and all washing
stages were lengthened.

• Challenging cases: In the mushroom body, multiple
Kenyon cell terminals connect to an output neuron ter-
minal, exhibiting a rosette-like structure. Pre-synaptic
terminals of Kenyon cells in a rosette lack platforms and

are smaller than typical pre-synapses, making them harder
to detect.

3) Annotations: Each image volume was initially annotated
by one of five annotators (Section VI). These annotations were
subsequently peer-reviewed by a different annotator. The anno-
tators, who were either full-time or part-time technical staff,
had specialized training in interpreting electron microscopy
images and annotating ultrastructure in insect neurons for
at least two years. We used CATMAID [49] and NeuTu
[50] with DVID [51] to label the pre-synapses and post-
synapses. In the brain of Megaphragma viggianii, a chemical
synapse consists of a pre-synaptic terminal, accompanied by an
electron-dense motif called T-bar, and multiple post-synaptic
sites characterized by electron-dense regions. A T-bar consists
of a platform, or “table-top”, and a pedestal connecting the cell
membrane and the platform. A pre-synapse point annotation
(T-bar glyph) should be placed at the connecting point of
the platform and the pedestal. A large platform may have
contacts with more than one pedestal, in which case each
contact point should be annotated as a separate pre-synapse.
Neuronal processes are annotated as post-synapses if post-
synaptic density is easy to identify (e.g., in sample 3). If
post-synaptic density is not recognizable (e.g., in sample 1),
all bodies within 40 nm from the edge of the platform are
considered to have post-synapses (see Fig. 2 for details). We
expect that the network trained using our ground truth would
learn that only the touching neurite within a short distance of
T-bar platform (Fig. 2) could be a post-synapse candidate. Fig.
3 shows an example of annotations for an image volume. It
can be observed that each pre-synapse is connected to several
post-synapses, annotated by points and lines representing their
locations and connections. Specifically, the annotations are
coordinates of pre-synapses’ and post-synapses’ locations in
the 3D space, together with their one-to-many connectivity
information.

platformplatform

200 nm200 nm

platformplatform

a b

Fig. 2. The platform of a T-bar is a small structure that typically extends
a few hundred nanometers in length. It is positioned parallel to the
membrane and separated from it by about 40 nm of space, which is
indicated by the dotted lines. The post-synaptic terminals, indicated by
the pink dots, are marked by post-synaptic densities (PSDs; (a)), and
their distribution corresponds to the extent of the platform in principle. If
PSDs are not clearly visible, as in (b), all profiles within 40 nm from the
tips of the platform are considered post-synaptic terminals. Scale bar:
200 nm.

4) Data Split: Table I provides detailed information on each
image volume in the dataset. The training set includes 5
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X-Y X-Z Y-Z 3D

0.5 µm

Fig. 3. Visualization of the ground truth annotations of an image volume from sample 3. Yellow dots: locations of pre-synapses. Cyan dots: locations
of post-synapses. Cyan lines: synaptic connectivity. Scale bar: 0.5 µm.

volumes from sample 3 while the test set includes 9 volumes
(3 from each sample). Participants can access all 14 volumes
but only the training set has ground truth annotations. In such
a design, volumes from sample 3 are considered in-domain
(i.e., source domain) data, and volumes from the other two
samples are considered out-of-domain (i.e., target domain)
data, enabling us to test the generalization ability of machine
learning models.

C. Tasks

In this challenge, we define two computational tasks fol-
lowing the data annotations:

• Pre-synapse Detection (Task 1): Participants are re-
quired to predict the locations of pre-synapses in the 3D
space using the provided dataset.

• Post-synapse Detection (Task 2): Participants are re-
quired to predict the locations of post-synapses in the 3D
space as well as the synaptic connectivity (i.e., IDs of the
pre-synapses to which the post-synapses are connected)
using the provided dataset.

D. Evaluation of Submissions

Participants are required to submit their detection results
of pre-synapses and post-synapses including their connectivity
for evaluation. To select the appropriate strategy for evaluation,
we follow the newly established Metrics Reloaded5 [52]
framework. Based on the suggestion from the framework,
the detection accuracy of a submission will be evaluated by
solving an assignment problem [53] minimizing the Euclidean
distance between detected synapses and ground truth synapses
to find true matches and calculating the F1-score. Formally,
given a set of detected synapses (D) by a participant and a
set of ground truth synapses (G), we want to find a bipartite
matching f : D → G with the Hungarian algorithm [53] to
minimize the following cost function:∑

d∈D

C(d, f(d)), (1)

5https://metrics-reloaded.dkfz.de/

where C(·) denotes the Euclidean distance of a matched pair.
Next, F1-score is defined as:

F1 =
2TP

2TP + FP + FN
, (2)

where TP is the true positive, FP is the false positive, and FN
is the false negative.

• Evaluation of Pre-synapse Detection: Detected pre-
synapses are considered to be potential matches to the
ground truth pre-synapses. After solving the assignment
problem, an unmatched detected pre-synapse will be
counted as one FP, an unmatched ground truth pre-
synapse will be counted as one FN, and a falsely matched
pre-synapse pair will be counted as one FP and one FN.
The pre-synapse detection accuracy will be expressed as
the F1-score calculated using TPs, FPs, and FNs. Notably,
we use a threshold to determine the falsely matched
pairs. If the Euclidean distance between the detected pre-
synapse and the matched ground-truth pre-synapse in a
pair exceeds the threshold, this pair will be considered
a falsely matched pair. Specifically, for each volume, we
calculate the minimum Euclidean distance between two
pre-synapses. Then, we get the average of these minimum
distances across all volumes and set the half value of the
average as the threshold, which is 88 nm for pre-synapse
detection.

• Evaluation of Post-synapse Detection: Since our data
involves one-to-many synapse connectivity, for each
matched pre-synapse pair, we compare the post-synapses
connected to it by solving the assignment problem men-
tioned above. An unmatched but detected post-synapse
will be counted as one FP, an unmatched ground truth
post-synapse will be counted as one FN, and a falsely
matched post-synapse pair will be counted as one FP and
one FN. The F1-score for post-synapse detection can be
computed using TPs, FPs, and FNs. Similarly, we use a
threshold of 52 nm for post-synapse detection.

• Ranking Scheme: For each test volume, we calculate
an F1-score for pre-synapse detection (task 1) and an
F1-score for post-synapse detection (task 2). Then, we
calculate the arithmetic mean of these two scores to get
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TABLE I
DETAILED INFORMATION ON EACH IMAGE VOLUME IN THE DATASET.

Training Volume Voxel Size Volume Size # of Pre-synapses # of Post-synapses Brain Region Label Availability

Sample 3 Volume 0 8× 8× 8 nm 400× 400× 400 295 880 MB-ML* "

Sample 3 Volume 1 8× 8× 8 nm 416× 416× 416 155 718 AL* "

Sample 3 Volume 2 8× 8× 8 nm 416× 416× 416 225 1504 PLP* "

Sample 3 Volume 3 8× 8× 8 nm 416× 416× 416 47 272 GNG* "

Sample 3 Volume 4 8× 8× 8 nm 416× 416× 416 261 878 CBL* "

Test Volume Voxel Size Volume Size # of Pre-synapses # of Post-synapses Brain Region Label Availability

Sample 1 Volume 0 8× 8× 8 nm 600× 600× 600 268 3441 GNG %

Sample 1 Volume 1 8× 8× 8 nm 600× 600× 600 164 1746 medulla, OCh1* %

Sample 1 Volume 2 8× 8× 8 nm 600× 600× 600 527 5264 medulla %

Sample 2 Volume 0 8× 8× 8 nm 400× 400× 400 151 1652 medulla %

Sample 2 Volume 1 8× 8× 8 nm 400× 400× 400 185 1296 AL %

Sample 2 Volume 2 8× 8× 8 nm 600× 600× 600 254 2732 MB calyx %

Sample 3 Volume 0 8× 8× 8 nm 400× 400× 400 188 1059 MB-VL* %

Sample 3 Volume 1 8× 8× 8 nm 416× 416× 416 197 1240 MB-ML protocerebrum %

Sample 3 Volume 2 8× 8× 8 nm 416× 416× 416 232 1607 OL* %

* MB-ML: mushroom body medial lobe. AL: antennal lobe. PLP: posterior lateral protocerebrum. GNG: gnathal ganglia (root of the cervical connective).
CBL: lower unit of the central body (ellipsoid body). OCh1: first optic chiasm. MB-VL: mushroom body vertical lobe. OL: optic lobe.

the final score for each test volume. Lastly, we average
the final scores over all test volumes to determine each
participant’s position on the leaderboard.

E. Baseline Method

To facilitate the challenge and provide the participants with
a starting point for developing their own synapse detection
algorithms, we propose a two-step method based on 3D U-
Net [54], [55] as the challenge baseline which, to the best of
our knowledge, is the first approach that aims to tackle the
one-to-many synapse detection problem, as depicted in Fig. 4.

1) Training: At the training stage, the first step is to train a
model for pre-synapse detection (Fig. 4-a). The input to the 3D
U-Net is a small 3D image volume randomly sampled from
the whole volume. Inspired by [56], the images are augmented
by the following methods: brightness and contrast adjustment,
Gamma transform, Gaussian noise or Gaussian blurring, ran-
dom black boxes, perspective transformation in 2D, flipping,
transpose, image misalignment by shifting 2D sections. The
point annotations (3D coordinates) are transformed into voxel
cubes with a size of 3×3×3 to be used as the training target
with a binomial cross-entropy loss. In this way, the output of
the model is a 3D pre-synaptic probability map, similar to a
common semantic segmentation task. The second step is to
train another model for post-synapse detection (Fig. 4-b). The
input to the model includes a pre-synapse sampled from the
ground truth annotations and a small image volume around that
pre-synapse cropped from the whole volume. Similarly, the
model aims to predict a 3D post-synaptic probability map. The
3D U-Net architecture is modified from a previous synapse
detection method [57]. All kernel sizes are correspondingly
changed to isotropic.

2) Inference: At the inference stage, for pre-synapse detec-
tion, we process a whole image volume using a 3D sliding
window. The window volumes overlap with each other by

50%, yielding eight-fold coverage of each voxel. The overlap-
ping outputs from the model are blended together to produce
a 3D pre-synaptic probability map. To find the exact pre-
synapse locations, we detect local maxima in the probability
map. As for post-synapse detection, we process each of the
previously detected pre-synapses together with its surrounding
image volume for doing the inference, producing a 3D post-
synaptic probability map. Then, we detect local maxima in
the probability map to find the exact post-synapse locations.
The local maxima is filtered with a threshold of 0.3 and a
minimum distance of 15 voxels. The inference is conducted
using chunkflow [58].

III. CHALLENGE ENTRIES

Since the launching of the challenge, 48 teams have par-
ticipated and over 255 submissions have been made on the
challenge website. Below is a brief description of the methods
proposed by the top 3 teams.

A. First Place: Team qicq1c
Team qicq1c presented a two-stage segmentation-based

framework (AdaSyn) [59] for domain adaptive synapse detec-
tion with weak point annotations. They address the detection
problem using an instance segmentation method. In the first
stage, the team obtained the ground truth of synapse masks by
expansion operation and trained a 3D segmentation network to
predict synaptic regions. The network outputs two channels:
one for pre-synaptic regions and another for post-synaptic
regions. These predicted masks are then processed using
connected component labeling to separate individual synapses.
The location of each synapse is determined by calculating the
center point coordinate of the corresponding mask. Then, the
team assigned the nearest pre-synapse ID to each post-synapse
using the nearest neighbor principle. In the second stage, to
improve the generalization ability of the network, they adopted
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team proposed a Point Matching Network (PMN) to tackle
the challenge. Specifically, they adopted the VGG-16 [64]
model pre-trained on ImageNet as the backbone to extract
abundant semantic representation. The feature map in stage 3
(downsampled 8 times) and that in stage 4 (downsampled 16
times) are concatenated and then fed into two parallel network
branches. The two branches predict a classification score map
of pre-synapses and post-synapses, respectively. In the training
phase, the ground truth points are matched with the predicted
point proposals based on the matching cost by the Hungarian
algorithm. Regarding the loss function, the probability of all
the point proposals and the distance between the matched point
pairs are considered. In the testing phase, pre-synapses and
post-synapses are obtained by filtering the classification scores
and then matched with each other.

IV. RESULTS

In this section, we will present and discuss the quantitative
results of the baseline and the methods proposed by the top
3 teams, followed by showing qualitative results highlighting
true positive, false positive, and false negative cases.

A. Quantitative Results

Table II presents the overall results of synapse detection.
Table III and Table IV present the results of pre- and post-
synapse detection, respectively, on each volume. As expected,
all methods generally work better on sample 3, which is in
the same domain as the provided training data, compared to
sample 1 and 2 results. Besides, the detection accuracy of
pre-synapses is generally higher than that of post-synapses
as there are many more post-synapses and their connectivity
to pre-synapses also needs to be detected correctly. In Fig. 1,
the texture difference (i.e., domain gap) between sample 3 and
sample 2 is larger than that between sample 3 and sample 1. As
such, volumes from sample 2 are more challenging, resulting
in lower detection accuracy for all methods. According to
Table II, III, and IV, the performance of the baseline method
on sample 1 and sample 2 is much lower than that on sample
3, which fully reflects the challenges brought by the out-of-
domain data caused by cross-sample variations. On the other

hand, the leading methods developed by challenge participants
show improved performance on sample 1 and sample 2 with
the help of various domain adaptation algorithms, effectively
alleviating the domain shift problem.

TABLE II
RESULTS COMBINING PRE- AND POST-SYNAPSE DETECTION. THE

NUMBERS SHOWN ARE F1-SCORES.

Test Volume Baseline melony#3 WeiHuang#2 qicq1c#1

Sample 1 Volume 0 0.343 0.274 0.505 0.623
Sample 1 Volume 1 0.308 0.213 0.424 0.555
Sample 1 Volume 2 0.427 0.255 0.527 0.617

Sample 2 Volume 0 0.187 0.256 0.368 0.576
Sample 2 Volume 1 0.242 0.259 0.312 0.426
Sample 2 Volume 2 0.262 0.250 0.386 0.581

Sample 3 Volume 0 0.604 0.416 0.638 0.699
Sample 3 Volume 1 0.673 0.439 0.671 0.767
Sample 3 Volume 2 0.624 0.415 0.596 0.699

Overall Score 0.408 0.309 0.492 0.616

TABLE III
RESULTS OF PRE-SYNAPSE DETECTION. THE NUMBERS SHOWN ARE

F1-SCORES.

Test Volume Baseline melony#3 WeiHuang#2 qicq1c#1

Sample 1 Volume 0 0.359 0.307 0.620 0.796
Sample 1 Volume 1 0.259 0.212 0.499 0.650
Sample 1 Volume 2 0.439 0.249 0.598 0.637

Sample 2 Volume 0 0.153 0.288 0.586 0.757
Sample 2 Volume 1 0.293 0.312 0.500 0.624
Sample 2 Volume 2 0.293 0.334 0.665 0.837

Sample 3 Volume 0 0.687 0.461 0.787 0.851
Sample 3 Volume 1 0.762 0.450 0.758 0.851
Sample 3 Volume 2 0.738 0.464 0.753 0.808

TABLE IV
RESULTS OF POST-SYNAPSE DETECTION. THE NUMBERS SHOWN ARE

F1-SCORES.

Test Volume Baseline melony#3 WeiHuang#2 qicq1c#1

Sample 1 Volume 0 0.326 0.241 0.389 0.451
Sample 1 Volume 1 0.356 0.214 0.349 0.459
Sample 1 Volume 2 0.416 0.261 0.456 0.598

Sample 2 Volume 0 0.220 0.223 0.150 0.396
Sample 2 Volume 1 0.191 0.207 0.124 0.227
Sample 2 Volume 2 0.230 0.166 0.106 0.325

Sample 3 Volume 0 0.522 0.372 0.488 0.547
Sample 3 Volume 1 0.584 0.428 0.583 0.683
Sample 3 Volume 2 0.510 0.366 0.440 0.591

Challenge rankings can be unstable depending on how
they are computed, therefore, inspired by [65], we perform
a ranking uncertainty analysis by bootstrapping the challenge
results using Rankings Reloaded toolkit6. Fig. 9 shows the
results of the ranking uncertainty analysis. It suggests that, in
post-synapse detection (Fig. 9-c), the uncertainty of ranking is
slightly larger, but in general, the rankings of the four methods
are stable in all three analyses.

6https://www.rankings-reloaded.de/
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B. Qualitative Results

Fig. 10 shows the qualitative results of pre- and post-
synapse detection in sample 1, sample 2, and sample 3, from
the first-place team’s method. The results are consistent with
what we have observed in Section IV-A. The detection of
pre-synapses is generally easier than that of post-synapses
since the proportion of true positive (magenta) cases in pre-
synapse detection results is significantly larger. Results from
sample 1 and sample 2 are worse than those of sample 3
due to the existing domain gaps. Although the majority of
pre-synapses in all three samples are accurately identified,
the domain gaps appear to have a more detrimental effect
on post-synapse detection based on the proportion of false
negative (yellow) cases. This suggests that the inherent domain
differences make it considerably challenging to detect post-
synapses in sample 1 and 2. Specifically, in pre-synapse
detection, false negative cases are often observed in locations
that have ambiguous textures, and false positive cases are often
observed in locations that resemble pre-synaptic regions. In
post-synapse detection, false negative cases usually come from

pre-synapses that have too many connected post-synapses,
making it difficult for the model to cover all of them. False
positive cases usually come from several closely located post-
synapses that are wrongly assigned to only one pre-synapse
but actually belong to two or more pre-synapses.

V. DISCUSSION

A. One-step Approach v.s. Two-step Approach
Upon reviewing the methods for synapse detection proposed

in the challenge and in previous literature, we could roughly
divide them into two categories: one-step approaches and
two-step approaches. A one-step approach refers to detecting
pre- and post-synapses in one inference step while a two-
step approach refers to detecting pre-synapses first and then
detecting post-synapses for each pre-synapse during inference.
In the challenge dataset, there are particular occasions when
a post-synapse is connected to two pre-synapses, especially
among mushroom bodies. One-step approaches may make
mistakes on such occasions while two-step approaches are
not negatively affected since they deal with the pre-synapses
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Fig. 10. Qualitative results of pre- and post-synapse detection in sample 1, sample 2, and sample 3, from the first-place team’s method. Dots and
lines: magenta-true positive, yellow-false negative, and cyan-false positive. Scale bar: 0.5 µm.

one by one. However, one-step approaches generally have
the advantage of larger throughput and better computational
efficiency because there are redundant overlaps of image
volumes when sampling each detected pre-synapse for post-
synapse detection in two-step approaches. Therefore, when
making the choice between these two categories, one may need
to consider the density of synapses in the data, i.e., choose
two-step approaches when the density is low, and vice versa.

B. Limitations of the Challenge Design

We have identified a number of limitations that should be
addressed in future studies. First, due to resource constraints,
participants performed the algorithms’ training offline. Addi-
tional data may potentially be used by certain teams that are
not accessible to others and thus could introduce bias when
comparing performance against each team. Enabling docker-
based training of models directly on the challenge platform
would be desirable. Second, the number of samples in the
dataset, although already larger than that of the previous
challenge CREMI, is still limited to some extent, preventing

the developed algorithms from achieving higher accuracy. It
would be possible to open source more data samples for the
challenge but this is subject to the availability of resources
needed to provide manual annotations. Third, a certain level of
uncertainty exists in the ground truth annotations as annotators
need to decide the exact point location even though we
provided a guidance for annotators. Such fuzziness in point
annotations could make the learning process harder than the
previous segmentation mask style annotations. In the future,
a desirable algorithm that emerges from this challenge should
be able to incorporate the fuzziness into its modeling process.
Last, this challenge considers the problem of out-of-domain
generalization across different brain samples in microwasp.
A more challenging and interesting research theme could be
considering the generalization problem across species beyond
microwasp, e.g., extending the dataset to include brain regions
from fly, mouse, etc.

C. Impact on Future Research
In the WASPSYN challenge, different domain adaptation

methods (either borrowed from the natural image domain
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or newly developed) are evaluated and compared on the
synapse detection task, making it possible to identify methods
that are superior when applied to connectomics research and
helping explore novel ways to reduce the number of man-
ual annotations needed to train a reasonably good machine
learning model. Besides, this challenge also demonstrates that
providing only point annotations as labels is also plausible for
training machine learning models to detect synapses, a dataset
preparation strategy that is more labor-efficient compared to
producing segmentation mask style annotations (i.e., voxel
painting of cleft regions). Although leading methods have
demonstrated effective improvements, the scores are still not
satisfactory, and the challenge of domain adaptation with
weakly annotated data is still not well-solved. Therefore, the
challenge website will continue to run, and we hope that some
revolutionary algorithms will stand out in the future.

We believe that future research can be explored in the
following aspects: 1) Models. Recent years have witnessed the
huge success of foundation models. For example, SAM [66]
is a foundation model for image segmentation and has been
adapted for various domains. Utilizing and adapting existing
powerful foundation models for domain adaptive synapse
detection could be a promising direction. 2) Algorithms.
Developing new domain adaption algorithms is important as
one of the biggest challenges for the WASPSYN benchmark
is the domain gap. Studying more advanced domain adaption
methods [67], [68] and applying them to the WASPSYN
challenge would naturally bring performance improvements.
3) Data. The quality and size of data largely determine the
performance of the model. While collecting and annotating
real data is time-consuming and labor-intensive, high-quality
data can be greatly expanded by synthesizing data. Recent re-
search [69] has demonstrated the feasibility of using diffusion
models as data engines.

D. Impact on Connectomics Community

After pre-processing each image volume and producing
ground truth annotations for the training set, the challenge
data is made publicly available and has facilitated scientific
research in related fields. The starter code and baseline method
are provided to help participants dive into the problem more
easily. Besides, the online evaluation ensures that algorithms
developed by participants are compared fairly against each
other. Through these efforts, wide participation is achieved
from research groups around the world.

VI. CONCLUSION

The WASPSYN challenge at ISBI 2023 is the first to
evaluate a wide range of methods applied to the domain
adaptive synapse detection problem in microwasp brain con-
nectomes. The main goal is to provide a platform and a
standardized benchmark for comparison of synapse detection
methods under the out-of-domain setting. We establish a low
entry barrier by producing electron microscopy volumes with
manual annotations and enabling automatic evaluation on
CodaLab platform. The dataset contains 14 image volumes

from 3 different microwasp brain samples, exhibiting signif-
icant domain difference that is suitable for evaluating the
generalization ability of participants’ algorithms. A baseline
using a two-step approach is also proposed to serve as a
reference method for participants. Additionally, in this paper,
we also discuss the quantitative and qualitative results of the
challenge entries as well as the limitations and potential impact
of the challenge itself. It is our hope that the WASPSYN
challenge can help researchers in connectmoics field take a
step further in disentangling the wiring diagram of the brain.
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