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INTRODUCTION: Although the functions per-
formed by most of the vital organs in humans
are not very different compared with other
animals, those performed by the human brain
clearly separate us from the rest of life on the
planet. However, detailed knowledge con-
cerning the synaptic circuitry underlying hu-
man brain function is lacking. Connectomic

imaging approaches are now available to
render neural circuits of sufficiently large
volume and high enough resolution to study
the connectivity at the level of individual neu-
rons and their synaptic connections but over
a scale comprising thousands of neurons.
Generating such a dataset was the goal of
this project.

RATIONALE: One critical barrier to obtaining hu-
man neural circuits has been the access to high-
quality human brain tissue. Organ biopsies
provide valuable information in many human
organ systems, but biopsies are rarely done in
the brain except to examine or excise neoplastic
masses, so most of them are problematic for the
investigation of normal human brain structure.
One attempt has been to use brain organoids
made from human cells, but at present, they do
not approximate brain tissue architectonics (e.g.,
cortical layers are not present). A direct ap-
proachwould be tomap cells and circuits from
human specimens made available from neuro-
surgical interventions forneurological conditions
in which pieces of the cortex are discarded be-
cause they obstruct access to a pathological site.
We posited that the human brain tissue that is
a by-product of neurosurgical procedures could
be leveraged to study normal—and ultimately
disordered—human neural circuits.

RESULTS:Here, we describe such a sample of
human temporal cortex, 1 mm3 in volume,
which extends through all cortical layers. The
sample was obtained during surgery to gain ac-
cess to anunderlying hippocampal lesion froma
patientwith epilepsy.We imaged this sample by
high-throughput serial section electron mi-
croscopy, generating a petascale dataset that
was analyzed with new tools and computa-
tionally intensive methods. We reconstructed
thousands of neurons, more than a hundred
million synaptic connections, and all of the
other tissue elements that comprise human
brain matter, including glial cells, the blood
vasculature, and myelin. Because the dataset
is large and incompletely scrutinized, we are
sharing all of the data in an online resource
(https://h01-release.storage.googleapis.com/
landing.html) and also providing tools for
analysis and proofreading. We found a pre-
viously unrecognized class of directionally
oriented neurons in deep layers (see figure,
panel J) and very powerful and rare multi-
synaptic connections between neurons through-
out the sample (see figure, panel K).

CONCLUSION: This work provides evidence of
the feasibility ofhumanconnectomicapproaches
to visualize and ultimately gain insight into the
physical underpinnings of normal and disor-
dered human brain function. It is hoped that
this endeavor will be aided by providing free
access to all of the data and relevant tools.▪
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1 mm3 of human temporal cortex
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57,000 cells

Triangular
neurons

The shared H01 dataset. A range of histological features in 1 mm3 of human brain were rendered, including
neuropil (A) and its segmentation (B) at nanometer resolution, annotated synapses (C), excitatory neurons
(D), inhibitory neurons (E), astrocytes (F), oligodendrocytes (G), myelin (H), and blood vessels (I). A previously
unrecognized neuronal class (J) and multisynaptic connections (K) were also identified.
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To fully understand how the human brain works, knowledge of its structure at high resolution is needed.
Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of
human temporal cortex that was surgically removed to gain access to an underlying epileptic focus.
It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and
comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were
the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic
orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal
inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the
mysteries of the human brain.

T
he human brain is a vastly complicated
tissue and, to date, little is known about
its cellular microstructure, including
the synaptic circuits. Disruption of these
circuits is likely associated with various

brain disorders. Technologies such as diffu-
sion magnetic resonance imaging (MRI) tract
tracing (1), high-resolution MRI (2), functional
MRI (fMRI) (3), and others [see reviews in
(4, 5)] have improved our knowledge of the
structure and function of the human brain
at and below millimeter resolution. However,
to identify the structure of neural networks at
the synaptic level requires orders of magni-
tude higher resolution using light microscopy
or electron microscopy (EM). Light microscopy
approaches to visualizing neural networks have
been successful in tracing full connectivity in
the peripheral nervous system, where the den-
sity of axons is relatively low compared with
the central nervous system (6, 7). Light-based

methods in the central nervous system are
advancing rapidly (8–16), but for dense neural
networks, the most successful approaches in
the brain have used volume EM, in which re-
construction of every cellular element and
synapse is possible due to the extremely high
spatial resolution afforded by the short wave-
length of electrons (17–25). Because of auto-
mation and rapid imaging modalities, serial
EM can now scale to image cubic millimeter
volumes at nanometer resolution. Here, we
used these approaches in a human brain tis-
sue sample.
High-quality human brain tissue specimens

are available from neurosurgical interven-
tions in living individuals in whom part of
the cortex was removed because it obstructed
access to a pathological region. Here, we de-
scribe such a sample, a rapidly preserved (see
the materials and methods), 170-mm-thick slab
of human cortex from the anterior part of the
middle temporal gyrus of a 45-year-old female.
The sample has a total volume of just over
1 mm3 and was removed to gain access to an
epileptic focus in the underlying hippocampus.
An important caveat related to human surgical
samples is that they originate in individuals
with pathologies of the nervous system such as
epilepsy, tumors, or neurodegenerative diseases.
In this case, we cannot exclude the possibility
that long-term epilepsy, or its pharmacological
treatment, had subtle effects on the nanometer-
scale structure of the sample. However, at least
by light microscopy–based neuropathological
examination, the sample was deemed normal,
lacking, e.g., the band of aggregated neurons
that is seen in the outer part of layer 2 when

hippocampal sclerosis associated with epilepsy
extends into the adjacent temporal lobe (26).
We sought to reconstruct a human sample

spanning all six layers of cortex, which is ~3mm
from layer 1 to the white matter. The through-
put limits of serial section EM constrained the
total thickness of the reconstructed sample.
However, because the sample is oriented per-
pendicular to the pia and follows the fanned-out
directions of the principal axons anddendrites
of pyramidal neurons, many of these could be
traced across cortical layers. The acquisition,
computational alignment, automated three-
dimensional (3D) segmentation, and auto-
mated synaptic annotation of digital human
brain tissue at this large scale and fine re-
solution not only enables access to neuronal
circuitry comprising thousands of neurons
and millions of synapses, but also provides a
clear view of all the other tissue elements that
comprise human brain matter, including the
glial cells and blood vasculature, and of the
relationships between various cell types. A
wide range of questions related to human
brain biology are thus open to scrutiny from
a single sample, which we have named H01.
To aid in its analysis, we are sharing all of the
data fromH01 and the tools used to analyze it in
an online resource: https://h01-release.storage.
googleapis.com/landing.html.

The reconstructed brain sample

The sample that we analyzed is from the left
anterior middle temporal gyrus resected to
gain access to an underlying epileptic focus.
It was subjected to rapid fixation, stained
with heavymetals (27) and embedded in resin,
after which 5019 sections with a mean thick-
ness of 33.9 nm were collected on tape (28),
giving a total thickness of 170 mm (see the ma-
terials and methods). Each section was im-
aged by multibeam scanning EM at 4 × 4 nm2

resolution (Fig. 1A and table S1) and aligned
(Fig. 1B), yielding a dataset ~1.4 petabytes in
size and 1.05 mm3 in volume after correcting
for sectioning-induced tissue compression (see
the materials and methods).
We generated a 3D reconstruction of nearly

every cell and process in the aligned volume
using a multiresolution flood-filling network
(FFN) (29). This produced fragments of whole
objects (base segments), which were then ag-
glomerated to produce larger objects, includ-
ing cell bodies with axons and dendrites (Fig. 2,
A and B; see the materials and methods). How-
ever, this process of agglomeration gave rise
to merge errors between nearby objects, such
as a passing axon and dendrite, which in many
cases could be corrected using automatic clas-
sification of the objects (Fig. 2C; see the ma-
terials and methods). Because there was a
trade-off between removing split errors and
adding merge errors, we generated two dif-
ferent agglomerations in the online platform
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Neuroglancer (https://h01-dot-neuroglancer-
demo.appspot.com/#!gs://h01-release/assets/
neuroglancer_states/20230907/c2_vs_c3.json).
The c2 agglomeration favored fewer split er-
rors (and thus longer processes) but with a
higher number ofmerge errors. Conversely, the
c3 agglomeration had more split errors but
fewer merge errors. By proofreading neurons
in Neuroglancer (https://h01-dot-neuroglancer-
demo.appspot.com/#!gs://h01-release/assets/
neuroglancer_states/20230907/proofread_
cells.json; see table S2 and the materials and
methods), we found that the c3 agglomeration
required 1.6-fold less correction of merge
errors (257 versus 400 merge correction
operations per cell, P < 10–7, n = 104, Student’s
paired t test) but 2.1-fold more correction of
split errors (504 versus 238 split correction
operations per cell,P< 10–10, n= 104, Student’s
paired t test) when compared with the c2
agglomeration (excluding dendritic spines).
Split errors were not uniformly distributed
across the H01 volume (fig. S1; see the mate-
rials and methods), as shown by mapping
the tendency (blue: high, red: low) of seg-
ments in the c3 agglomeration to traverse
consecutive z layers in Neuroglancer (https://
h01-dot-neuroglancer-demo.appspot.com/#!gs://

h01-release/assets/neuroglancer_states/20230907/
unique_segment_density_plot_h01.json). Merge
errors in the base segmentation itself were
rare, being observed in only 13 of 365,404 base
segments comprising the proofread neurons
(0.0036%). All subsequent analyses in the pre-
sent study were based on the c3 agglomeration.

Synapse prediction

Identifying synapses was necessary to analyze
the connectivity between neurons in this data-
set. As shown in Fig. 2D,we usedmachine learn-
ing tools to train automated synapse classifiers
to identify the pre- and postsynaptic compo-
nent of each synapse anddeterminewhether the
presynaptic terminal was excitatory or inhib-
itory (see the materials andmethods). Manual
proofreading of a selection of axons covering all
cortical layers showed that the number ofmissed
synapses (false negatives) for excitatory and
inhibitory synapseswas 11 and35%, respectively.
The false discovery rate for excitatory and inhib-
itory synapses was 3.2 and 2.7%, respectively
(table S3). In total, 149,871,669 synapses were
automatically detected in the volume. A total
of 111,272,315 synapses were classified as ex-
citatory and 38,599,354 as inhibitory. Based
on proofreading, excitatory and inhibitory

synapses were classified correctly 86.89 and
84.98% of the time, respectively. Adjusting for
the measured false discovery, false-negative,
and excitatory or inhibitory misclassification
rates, we estimate that the H01 volume con-
tains a total of 102.5 million (67.1%) excitatory
synapses and 50.3 million (32.9%) inhibi-
tory synapses. Analyzing the postsynaptic
component of 133,704,881 of the automati-
cally identified synapses (see the materials
and methods), we found, as expected, a high
percentage of these synapses located on den-
drites (99.4%), with far fewer innervating the
axon initial segments (AIS, 0.197%) or somata
(0.394%).

Tools for cell reconstruction
and circuit exploration

Although some analyses of the data will not be
affected by the agglomeration split and merge
errors described above, other analyses, partic-
ularly those at the level of neuronal circuits,
require correction of these agglomeration er-
rors by proofreading. Because of the large
number of neuronal structures, it is infeasible
for a single laboratory to proofread the en-
tire datasetmanually. To facilitate scientific studies
that require correction of agglomeration errors
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Fig. 1. H01 dataset, image acquisition, and alignment. (A) A fresh human
surgical cerebral cortex sample was rapidly preserved, stained, embedded
in resin, sectioned at ~33 nm, collected on tape, and imaged using the ATUM–
multibeam SEM (ATUM-mSEM) method. The Zeiss mSEM electron microscope
uses 61 beams that image a hexagonal area of ~10,000 mm2 simultaneously,
which allows for large areas to be imaged rapidly. For each section, all of the
resulting tiles were then stitched together (left); this section is ~4.5 mm2 in
area and was imaged with 4 × 4 nm2 pixels. Image of synapse is shown at right.
Given the necessity of some overlap between the stitched tiles, this single

section required the collection of >300 gigabytes of data. (B) Fine-scale
alignment with optical flow. Left: an x–y cross-section of the initial coarsely
aligned subvolume exhibits drift and jitter. Center: two adjacent XY sections,
z (green) and z-1, are overlaid to illustrate their misalignment. Image patch–
based cross-correlation computes an x–y flow field between them. Red
and blue intensities, which indicate the respective horizontal and vertical flow
components, were used to warp one of the sections, improving their alignment
(relax and warp overlay). Right: x–z view of the same subvolume with flow
realignment applied.
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by proofreading, we provide a collaborative
online proofreading platform for H01 (https://
h01-release.storage.googleapis.com/proofread-
ing.html), which is built upon the CAVE (Con-
nectome Annotation and Versioning Engine)
infrastructure (30). This tool is web based and
tightly integrated with the Neuroglancer viewer.
Proofreaders can interactively update the seg-
mentation by correcting merge and split er-
rors. All proofreaders have access to the most
up-to-date segmentation at all times to avoid
redundant edits bymultiple communitymem-
bers. We selected the c3 agglomeration as a
starting point for the collaborative proofread-
ing process. Anyone can apply to become a
proofreader, and proofreaders may download
data relating to the cells that they have proof-
read for subsequent analyses, as demonstrated
in online tutorials (https://github.com/VCG/
cave-scripts). The most recent version of the

proofread volume is always available to browse
in Neuroglancer (https://ngl.brain-wire.org/#!
gs://h01-release/assets/neuroglancer_states/
cave/demo.json) by any interested researcher
without applying to be a proofreader.
VAST (Volume Annotation and Segmenta-

tion Tool) (31) is a versatile, free software tool
(https://lichtman.rc.fas.harvard.edu/vast/) that
can be used to view, segment, and annotate
large voxel datasets. In contrast to the CAVE
system described above, which focuses mainly
on the correction of split and merge errors of
the agglomerated segmentation, VAST can be
used to generate new ground-truth segmenta-
tions of objects of interest (e.g., vasculature or
organelles) by manual voxel painting and to
create annotated binary skeletons for quanti-
tative analysis (e.g., volume or lengthmeasure-
ments). VAST can also be used to agglomerate c2
or c3 segments locally. To make the H01 image

data available in VAST, we extended the pro-
gramto readdatadirectly from theNeuroglancer-
compatible online storage. Results from VAST
can be exported in various formats for analysis
and visualization. VAST also includes an ap-
plication programming interface (API) that al-
lows for script-based automation using Matlab.
VAST was used for several results in this study,
including the manual labeling and classifica-
tion of all cell bodies described below.
For analysis, various databases are available

in the H01 online resource (https://h01-release.
storage.googleapis.com/data.html) to enable
specific queries about the cellular and synaptic
data. However, these are not integratedwith the
Neuroglancer platform and they do not support
more complex queries at the neuronal network
level. To address this, we developed a stand-
alone program, CREST (Connectome Recon-
struction and Exploration Simple Tool). CREST
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Fig. 2. Segmentation, split correction, and merge error correction through
neuronal subcompartment classification and synapse prediction. (A) Example
of sequential segmentation with an FFN. Objects are filled sequentially from seed
locations until the 3D volume is segmented completely. (B) FFN agglomeration.
Left: site between two adjacent base segments (white box is the 2D image; black box
below shows the 3D image) is a candidate agglomeration location. Center: FFN
segmentation is seeded from points A and B independently. Right: If the resulting A
and B segmentations are mutually consistent, then the object pair is merged
(below). (C) Subcompartment prediction and merge error correction. Left: a single
reconstructed object with a merge error where axon and dendrite cross near
each other. The object is converted to a reduced skeleton representation (blue).
Middle: fields of view around a subset of skeleton nodes are input to a subcompartment
classification model. Red nodes show a predicted dendrite; blue nodes show a
predicted axon. The inconsistency in subcompartment predictions is detected, and

the agglomeration graph is cut at the location that maximally improves
subcompartment consistency. Right: the separated axon and dendrite after applying
the suggested cut; a 3D rendering of separated fragments with subcompartment
predictions can be seen in Neuroglancer (https://h01-dot-neuroglancer-demo.
appspot.com/#!gs://h01-release/assets/neuroglancer_states/20240424/fig2c.
json). (D) Synapse detection and classification. Top: x–y cross-section of EM image
input to synapse detection model (left) and the resulting presynaptic (magenta)
and postsynaptic (green) prediction masks (right). Bottom: cross-section of EM
image and presynaptic (left red, right blue) and postsynaptic (green) object
segmentation inputs to excitatory versus inhibitory classification model. Right: 3D
rendering of a dendrite with predicted incoming excitatory (yellow) and inhibitory
(blue) synaptic sites; a 3D rendering of all inputs to this neuron can be seen in
Neuroglancer (https://h01-dot-neuroglancer-demo.appspot.com/#!gs://h01-
release/assets/neuroglancer_states/20210601/figs/fig2d.json).
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can be used to identify and explore the con-
nections of cells based on a number of those
cells’ features, including thenumbers of synaptic
inputs or outputs of a given strength (see strong
synaptic connections described below). CREST
can also be used to explore and graph chains of
synaptically connected neurons, finding both
how a neuron’s postsynaptic influence diverges
across multiple generations of downstream
neurons and how presynaptic influences con-
verge from multiple generations of upstream
neurons. It should be noted that paths iden-
tified in this way require manual verification
given the presence of agglomeration merge er-
rors and, to a lesser extent, synapse false posi-
tives. Verified paths of interest can be saved
locally, along with the schematic view of the
path, for later re-viewing using the CREST tool.
Finally, CREST also features a proofreading tool
that allows cells to be proofread and each ver-
sion of a cell saved locally. Detailed user instruc-
tions and the CREST program are available
fromtheCRESThomepage (https://github.com/
ashapsoncoe/CREST).

Cellular and synaptic organization

The entire segmented volume (Fig. 3), including
the synaptic and subcompartment annotations,
are available for exploration within the Neuro-
glancer platform. A video demonstration of how
to explore the various data overlays,modify their
appearance, and navigate the H01 dataset is
available online (32).
The H01 resource is divisible into many

subcategories. On the basis of skeleton node
classifications and manual annotations, and
excluding extracellular spaces, myelinated
axon sheaths, and tissue artifacts (see the ma-
terials and methods), the neuropil by volume
is composed of unmyelinated axons (~40.2%),
dendrites (~25.8%), glial processes (~15.5%),
somata (~9.4%), myelinated axons excluding
their sheaths (~7.5%), collapsed blood vessels
(~1.5%), AIS (~0.07%), and cilia (~0.03%) (see

also table S4 for breakdown by cortical layer).
In addition to these well-known categories, we
found a number of unidentified cortical objects
that accounted for very little volume (fig. S2).
We analyzed all of the cells with nuclei in

the sample (Fig. 4), manually identifying and
quantifying them (table S5, table S6). There
were 49,080 neurons and glia (Fig. 4A) and
8100 blood vessel–related cells (57,180 cells
total; Fig. 4B). Glia outnumbered neurons 2:1
(32,315 versus 16,087). Of the neurons, 65.5%
were spiny (10,531, of which 8803 had a pyram-
idal shape), 29.1% were nonspiny and nonpy-
ramidal and thus classified as interneurons
(4688), and 5.4% (868) did not easily fit into
this binary categorizationmostly because their
somatawere not fully in the volume. Therewere
also some unusual neurons that were difficult
to classify; examples of this last category are
shown in fig. S3. Overall, the density of neu-
rons was ~16,000/mm3, approximately one-
third lower than previously estimated from
light microscopy of human temporal cortex
(33) and nearly 10-fold lower than the density
of the association cortex of the mouse (34–36).
The cells within the sample showed macro-

scopic organization: Cortical layers were clear-
ly distinguishable by cell soma volume (Fig. 4A).
To find an objective layering boundary criterion,
we used cell soma size and clustering density,
generating a six-layered cortex and white mat-
ter (fig. S4; see thematerials andmethods). The
fiducial lines in each panel of Fig. 4 are based
on these layers (named in Fig. 4A). There were
fewer cells with large cell bodies in the white
matter and cortical layer 1 because these re-
gionswere populatedmainly by glial cells with
cell body sizes that were smaller than neurons
(Fig. 4A, blue). The largest cells (Fig. 4A, red)
weremostly in a broad, deep, infragranular band
corresponding to layer 5 and a supragranular
band corresponding to layer 3, as expected (37).
The 3D shape of cells plus their EM appear-
ances allowed their classification into types.

The largest cell somata belonged to spiny py-
ramidal neurons, with variation in soma size
across the cortical layers (Fig. 4C). Nonpyram-
idal neurons were much less spiny, had smaller
cell body sizes, and as a group were not ob-
viously arranged into layers (Fig. 4D).
The glial cells did show differences between

the layers (Fig. 4, E to G). The compact and
complicated arbors of protoplasmic astrocytes
were densely tiled in layers 2 to 6, as described
previously (38–40). However, in themore super-
ficial parts of layer 1, they were often more in-
termingled, had a higher density, and were
smaller in size (Fig. 4E and fig. S5, A, B, and E).
Fibrous astrocytes in the white matter were
more elongated than those that occupied the
cortical layers.
Two other kinds of glia, microglia and oligo-

dendrocyte precursor cells (OPCs), had almost
even density across all layers but showed af-
finity for the vasculature (fig. S5C), whereas as-
trocyte cell bodies did not (41). Because of the
similar morphologies of OPCs andmicroglia,
a self-supervised machine learning approach
(SegCLR) was used to distinguish these types
[see thematerials andmethods and (42)], with
2517 cells predicted to be microglia, 1626 pre-
dicted to be OPCs, and 2102 that were unclas-
sified (Fig. 4G and fig. S6).
Another type of glia, oligodendrocytes (n =

20,139), were distributed according to a gra-
dient, with the lowest density in the upper lay-
ers and highest density in the white matter,
as would be expected given their role in myelin
formation (Fig. 4F and fig. S5E). Like microglia
and OPCs, oligodendrocytes showed affinity for
blood vessels (fig. S5C). Perivascular oligoden-
drocytes formed lines along radially oriented
blood vessels in the white matter and to a lesser
degree elsewhere in the volume (fig. S5D). Mye-
lin, a product of oligodendrocytes, followed
the oligodendrocyte density gradient, with the
highest density in the white matter and the
lowest in layer 2 (Fig. 4H and table S4). A

Fig. 3. Segmented H01
volume. Left: oblique view
of the H01 dataset after all
automatic segmentation
steps, which has been
trimmed to the fully imaged
volume and stretched to
compensate for section
compression from ultrathin
sectioning. The C3 auto-
segmentation is overlaid in
random colors. Right: cut-
out of the dataset at the
location of the red rectangle
showing a cross-section of
the aligned image stack.
The pink lines show where the two sectioning series join (phase 1 and phase 2).

1 mm

17
0 

μm
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substantial number of myelinated axons ran
radially between the white matter and super-
ficial layers (Fig. 4H, green) and horizontally
within layers in two orthogonal axes (Fig. 4H,
red and blue). In layer 1, a set of large-caliber
myelinated axons ran tangentially through

our slice parallel to the pia. The myelin in the
white matter ran primarily orthogonal to the
plane of the section (Fig. 4H, blue, and fig. S7).
These axon orientations can be used to vali-
date diffusion tensor imaging signals in the
human brain in vivo (43, 44).

The reconstructed blood vessels (~230 mm
in length) did not showmuch evidence of layer-
specific behavior but had a lower density in the
regions surrounding large vessels and in the
white matter (Fig. 4B), presumably because of
the lower metabolic demands of myelinated

1 mm

small        large

Microglia
OPCs
Unclassified

All neuron and glia cell 
bodies, colored by 
cell body volume

Blood vessels, nuclei
Endothelial cells
Pericytes
Bridges

Spiny neurons
(mostly pyramidal)

Smooth neurons
(interneurons)

Astrocytes
(random color)

Oligodendrocytes

Myelin by direction -
Perpendicular
Tangential
Radial

White Matter                
        L6 L5 L4 L3 L2 L1

A B

C D

FE

G H

Fig. 4. Distribution of cells, blood vessels, and myelin in the sample. White
lines indicate layer boundaries based on cell clustering. (A) All 49,080 cell bodies
of neurons and glia in the sample colored by soma volume. (B) Blood vessels
and the nuclei of the 8136 associated cells; 3D renderings of all blood vessels can
be viewed in Neuroglancer (https://h01-dot-neuroglancer-demo.appspot.com/#!
gs://h01-release/assets/neuroglancer_states/20240424/fig4b.json). Inset
shows a magnified view of the location of the individual cell types. (C) Spiny

neurons (n = 10531; putatively excitatory) colored by soma volume.
(D) Interneurons (n = 4688; few spines, putatively inhibitory) colored by soma
volume. (E) Astrocytes (n = 5474). (F) Most of the oligodendrocytes (n = 20,139)
in the volume. (G) Cell bodies (n = 6702) of microglia and OPCs. (H) Myelinated
axons in the volume color coded by topological orientation. Most axons in
white matter run in the perpendicular direction. Images and scale bar are without
correction for ultrathin sectioning compression.
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axons forATP tomaintain transmembrane ionic
gradients (45). The vasculature was lined by
4604 endothelial cells (Fig. 4B, green, ~20/mmof
vasculature) and a more heterogeneous group
of 3549 pericytes and other perivascular cell
types (Fig. 4B, blue,~15/mmof vasculature) also
within the basement membrane but displaced
slightly further from the lumen (Fig. 4B). Blood-
less bridges (n = 74), composed of basement
membrane and pericytes but lacking endothe-
lial cells and a lumen (46–48), connected dif-
ferent capillaries in the dataset (Fig. 4B, red).
From a functional standpoint, a critical com-

ponent of brain tissue is its synapses. Using a
U-Net classifier, ~150 million synapses were
identified and divided into two categories,
excitatory and inhibitory (see the materials
and methods). The density of the ~111 million
excitatory synapses was highest in layers 1 and
3 (Fig. 5A), whereas the ~39 million inhibitory
synapses peaked in density in layer 1 (Fig. 5B).
The percentage of excitatory synapses of total
[calculated as excitatory/(excitatory + inhib-
itory)] was broadly similar across layers, being
slightly lower in layer 1 (Fig. 5C), as previ-
ously reported (33). The identification of all
synapses and their assignment to specific pre-
and postsynaptic partners allowed the render-
ing of excitatory and inhibitory input to each
pyramidal cell (Fig. 5D). In the pyramidal neu-
ron shown in Fig. 5D, as in other excitatory
neurons, the synapses on the AIS, cell body
and proximal dendrites were largely inhibi-
tory (blue), whereas in the spiny dendritic
regions, there weremore excitatory synapses
(orange) than inhibitory ones. Such excitatory
and inhibitory compartmentalization was not
evident on interneurons (e.g., see Fig. 5E).
Comparing the ratio of excitatory to inhibitory
input in each cortical layer onto pyramidal
neurons and interneurons showed that the
excitatory to inhibitory balance varied slightly
between layers, with the highest proportion of
inhibitory input tending to occur in the layer
in which the given cell type’s soma resides
(Fig. 5F and table S7).
To determine what kinds of biological in-

sights might be made from the use of this re-
source, we then examined two phenomena
that we came across while looking at the
image data.

Morphological subcategories of layer 6
triangular neurons

The deepest layer of the cerebral cortex is not
as well characterized asmore superficial layers
(49), in part because it contains a greater di-
versity of cell types, especially in primates (50).
This resource provides a large set of deep layer
neurons and can therefore potentially be used
to better characterize these cell types. We ana-
lyzed the so-called “triangular” or “compass”
cells that reside in layer 6 but are not well un-
derstood (49, 51–53). These spiny neurons

are characterized by an apical-going dendrite;
however, unlike pyramidal neurons, they each
have one especially large basal dendrite rather
than a more uniform skirt of basal dendrites.
We identified all of the triangular neurons in
the H01 volume (Fig. 6A), most of which re-
sided in layers 5 and 6 (n = 876), comprising
approximately one-third of the spiny neurons
in these layers.
The large basal dendrites of triangular neu-

rons emerged from the cell somata at various
angles (hence the name “compass cell”), rang-
ing from 180° from the apical dendrite (i.e.,
toward thewhitematter) to~90° fromtheapical
dendrite. The mean orientation was ~126° (Fig.
6B).We could groupmany of these cells into two
categories along the anterior-posterior axis:
those in which the basal dendrite projected
toward section 1 (in the “reverse-going” direc-
tion) and those in which the basal dendrite
projected in the opposite (“forward-going”) di-
rection, toward section 5292 (green and ma-
genta cells, respectively; Fig. 6, C and D, and
movie S1). By taking into account the curva-
ture of the layers, we obtained a locally cal-
culated average apical dendrite direction (i.e.,
in the “radial direction” toward the pia; see fig.
S8). Using these data and the orientation of
the basal dendrite, we found that the majority
(~77.5%) of the triangular cells were either clear-
ly forward-going (n = 347) or reverse-going (n =
339), forming a bimodal distribution, whereas
the rest had basal dendrites that were more
tangential (n= 186; four cellswere outlierswith
basal dendrites pointing toward the radial di-
rection) (Fig. 6, E to G). The axis formed by these
basal dendrites is themain axis of themyelinated
axons in the subjacentwhitematter,which, based
on the information available, is the anterior-
posterior axis of the temporal lobe.
The fact that the basal dendrites, on aver-

age, pointed slightly toward the white matter
meant that the two sets of basal dendrites were
not parallel to each other. Rather, each subgroup
had basal dendrites at mirror symmetrical an-
gles (Fig. 6, C and D). Moreover, we found other
mirror symmetrical features, such as the rela-
tive absence of branches on the upper side of
the basal dendrite and the scarcity of apical
dendrite branches pointing in the same direc-
tion as the basal dendrite (see, e.g., Fig. 6D).
Whenwe rendered the two subgroups of neu-

rons (forward-going or reverse-going), it ap-
peared that theywere not uniformly distributed.
To avoid identification bias at the border of
the image stack,we included only neuronswith
cell bodies located in the middle half of the
volume (centered in sections 1323 to 3970; n =
431; Fig. 6, H to J). We then analyzed the near-
est neighbor triangular cell to each of these
neurons and found that its basal dendrite
pointed in the same direction as the basal den-
drite of its nearest neighbor more often than
would be expected by chance, showing statis-

tically significant clustering (Fig. 6K; Fisher’s
exact test, P = 0.005). This indicates that these
cells do cluster to some degree. Patchiness of
axonal projections to layer 6 has been seen with
anterograde labeling experiments in humans
(54). What the function of this bimodal distrib-
ution of triangular cell basal dendrite directions
signifies remains to be determined.

Multisynaptic connections between axons
and specific postsynaptic partners

Previous work showed that axons in rodent
cerebral cortex occasionally establish multiple
synapses on the same postsynaptic cell (25, 55).
We sought to determine whether the same
phenomenon exists in human cerebral cortex.
CREST was used to systematically identify
strong connections (see thematerials andmeth-
ods for details), where a single axon established
multiple synapses on the same postsynaptic
cell. Many examples of this phenomenonwere
found. These included excitatory and inhibitory
axons that innervated excitatory and inhibi-
tory postsynaptic dendrites in any combination
(Fig. 7, A to D). These strong connections were
rare. For nearly all cells, the histogram of the
number of synapses per axonal input showed
a rapid decline from the most common occur-
rence, where an axon established one synapse
with a target cell (96.49%). Two synapse con-
tacts occurred uncommonly (2.99%), even fewer
three-synapse contacts were observed (0.35%),
and connections with four or more synapses
occurred rarely (0.092%; see table S8 for counts
of inputs to all neurons). Despite the overall
rarity of strong connections, however, we found
that 39% of the 2743 neurons that were well
innervated in the volume (i.e., having at least
3000 synapses onto their dendrites) had at least
one input with seven or more synapses, raising
the possibility that rare, powerful axonal inputs
are a general characteristic of neuronal innerva-
tion in human cerebral cortex. These analyses
excluded chandelier cell axons innervating AIS,
which are well known to make multisynaptic
connections (56). It should also be noted that
these results are based on the uncorrected c3
agglomeration data with many axonal splits
and therefore likely underestimate the strength
of individual connections.
To get amore accurate account of how often

an axon establishes multiple synapses on its
postsynaptic partners, we proofread the axon
and postsynaptic partners of a layer 3 pyram-
idal neuron that had been identified by CREST
as establishing at least 19 synapses on one
nearby interneuron. Most of its postsynaptic
partners (387 of 397; 97.5%) received one (72%),
two (16%), three (7%), or four (2%) synaptic con-
tacts from this axon. These contacts were gen-
erally formed by relatively straight axonal
branches appearing to be incidental to their
juxtaposition with the dendrites that they
innervated, which is consistent with Peters’
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rule (57). By contrast, at eight sites where the
axon crossed dendrites of a nearby inhibitory
interneuron, it established a spatially restricted
cluster of synapses at each site, giving rise to a
total of 53 synapses between this pair of cells

(Fig. 7E). This excitatory axon also strongly
innervated four other inhibitory neurons in
its vicinity. To assess whether this pyramidal
neuronwas exceptional, we also reconstructed
the axon of a nearby layer 3 pyramidal neuron

and its 251 postsynaptic partners. It was found
to have three strong connections (more than
seven synapses), including 30 synapses with
an inhibitory partner and 13 synapses with an
excitatory partner (see table S9 for all data).

Density of excitatory synapses Density of inhibitory synapses Percentage of excitatory synapsesA B C

D E

F

20 μm

20 μm

Fig. 5. Synapse distributions. (A) Volumetric density of excitatory (E)
synapses. (B) Volumetric density of inhibitory (I) synapses. (C) Percentage
of excitatory synapses in different layers (calculated as E/(E + I) * 100%).
Lowest values are purple; highest values are yellow. (D) Representative
pyramidal neuron, with excitatory (orange) and inhibitory (blue) synapses shown.
(E) Representative interneuron. (F) Plot of percentages of excitatory

(red bars) and inhibitory (blue bars) synaptic inputs in different cortical
layers (row names) to different neuron types. Orange triangles represent
pyramidal neurons, and blue circles represent interneurons; their row
locations indicate the cortical layer location of their cell bodies. Data are
shown for each cortical layer in which at least 100 cells of that type receive
synaptic inputs.
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Many of these strong connections shared a
commonmorphological configuration. In some
cases, the axon co-fasciculated with the den-
drite to remain in close contact for tens of mi-
crometers, allowing it to establish many en
passant synapses with the same target cell
(as shown in Fig. 7C). More commonly, how-
ever, the axon did not appear to have a spe-
cial affinity for growing along the dendrite
and instead approached the dendrite, as was

typical of axons that made one-synapse con-
nections, by forming a synapse at the site of
intersection without deviating its trajectory
before or after the synapse. In addition to a
synapse at the closest point of intersection,
these axons sent terminal branches to the
same target cell, usually on both sides of the
intersection, suggesting that the axon may
have sprouted “up” to establish synapses on the
dendrite and sprouted its terminal branches

“down” to establish additional synapses with
the same target cell on the other side (Fig. 7,
A and B).
Thismotif is suggestive of purpose,meaning

that some pre- or postsynaptic pairs had a rea-
son to be far more strongly connected than was
typical. The alternative possibility is that given
the thousands of axonal inputs to each of
thousands of target cells, outlier results are
simply part of the long tail of a distribution.

Basal dendrite angle from radial direction, 876 cells

Basal dendrite angle around radial direction, 876 cells Basal dendrite angles by sector

Basal dendrite direction of nearest neighbor
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Fig. 6. Two mirror symmetrical subgroups of deep layer triangular neurons.
(A) Location of neurons with both one large apical and one large basal dendrite.
Color represents cell soma size, as in Fig. 4A. (B) Distribution of directions
of the basal dendrites of triangular neurons, where the direction is the angle
between the radial direction and the basal dendrite direction. (C) Side view of the
neurons with apical dendrites pointing either forward in the z-stack (magenta)
or in the reverse direction (light green). (D) Example of two triangular neurons
with basal dendrites pointing in opposite directions showing the mirror symmetry
of these two subgroups. (E) Histogram of basal dendrite angles around the

radial direction. (F) Polar plot of the data in (B) and (E). Light green indicates the
339 triangular cells with basal dendrites pointing toward section 0; magenta
indicates the 347 triangular cells with basal dendrites pointing toward section
5292; light and dark gray indicate the 106 and 80 triangular cells, respectively,
with basal dendrites pointing sideways in the cutting plane. (G) Explanation
of the directional color coding in this figure. (H to J) Anatomical clustering among
members of the two subgroups. (K) Bar graph comparing the basal dendrite
direction of each cell with its nearest neighbor in the actual data (left) and
control with dendrite directions shuffled (right).
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We therefore sought a conservative null model
to simulate the number of axons with powerful
connections if the connections were stochas-
tically formed, based on the actual trajecto-
ries of axons and dendrites and the observed
properties of axonal branches. The model
allowed every simulated axon to form the
same number of synapses that it did in the
actual data, but now on any of the dendritic
branches that came within its vicinity to
match the reach of the actual axons (see the
materials and methods). We were interested
to see how often an axon would establish
multiple synapses with a single target cell.
The results indicate that this random model
of synaptic partnering (Fig. 7F, blue line) is
inconsistent with the incidence of strongly

paired neurons (Fig. 7F, red line) that we
found in H01 (P < 10−10, n = 79,827,631 axons
analyzed). This tendency for axons to estab-
lish more synapses with certain target cells
than would be expected by chance was found
to about the same when we analyzed just
inhibitory or just excitatory axons (fig. S9).
Thus, among a large number of exceedingly
weak incidental connections, human cere-
bral cortex neurons appear to be innervated
by a small subset of excitatory and inhibitory
inputs that purposefully establish more power-
ful connections.

Discussion

The central tenet of connectomics is capturing
both big and small scales by reconstructing

individual synaptic connections in volumes
large enough to encompass neural circuits (58).
Our aim in this work was to create a resource
that allows the study of the structure of human
six-layered cerebral cortex at nanometer-scale
resolution within an approximately millimeter-
scale volume. We chose a slab that extended
from layer 1 to white matter (~3 mm) oriented
along the plane of apical dendrites and prin-
cipal axons with sufficient depth (170 mm) to
allow the tracing of axons across multiple cor-
tical layers. The nanometer scale is required to
identify individual synapses and to distinguish
tightly packed axonal and dendritic processes
from one another (59). We acquired trillions
of voxels, and thus more than a petabyte of
digital image data. This amount of data allows

E to I

I to II to E

E to E B

C

A

D

E F

Fig. 7. Unusually powerful synaptic connections. (A) An excitatory axon
(green) forms eight synapses onto a spiny dendrite of an excitatory neuron
(purple). One synapse is en passant and the rest appear to require directed
growth of the axon to contact the same dendrite. (B) An excitatory axon (blue)
forms eight synapses onto a smooth dendrite of an inhibitory neuron (green),
again, with one en passant connection and the rest apparently requiring directed
growth. (C) An inhibitory axon (red) forming 18 synapses on the apical dendrite

of a spiny pyramidal excitatory neuron (yellow). (D) An inhibitory axon (green)
forming nine synapses onto the smooth dendrite (yellow) of another inhibitory
neuron. (E) A total of 53 synaptic connections from a proofread layer 3 pyramidal
neuron onto a nearby inhibitory interneuron. (F) Plot comparing the observed
(red line) and expected (blue line) percentage of axons making their strongest
connection of between one and 20 synapses onto individual postsynaptic
partners. The percentage is expressed on a log scale.
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for the visualization of the same volume of
brain tissue at the supracellular, cellular, and
subcellular levels and for studying the relation-
ships between and among large numbers of
annotated neurons, synapses, glia, and blood
vessels. Perhapsmost importantly, the resource
presented here provides the opportunity to
study the complicated synaptic relationships
between many neurons in a slab of human
association cerebral cortex.
To aid further study, we provide here several

software tools. Neuroglancer is a browser-based
tool that can be used to explore the H01 data-
set visually, including the EM ultrastructure,
the segmentations, and synaptic and cell type
annotations. CREST, a tool that builds on
Neuroglancer, enables the exploration of the
synaptic pathways converging on or diverg-
ing from any neuron in the volume. CAVE also
builds on Neuroglancer to provide community-
based online proofreading of this multibeam
dataset. Finally, VAST allows users to export,
annotate, and measure any features in the
dataset by skeletonization or voxel painting.
Using these tools in the H01 sample, we un-

covered some interesting phenomena. In ad-
dition to several oddities (fig. S2), we found a
morphological distinction between compass
cells in layer 6 with basal dendrites that ori-
ented in two preferred directions.We also found
neurons that generated 50 or more synapses
on individual postsynaptic partners. Other
previously undescribed features might be
found upon further analysis of this dataset.
Studying human brain samples has special

challenges. Although tissue fixed after a short
postmortem delay can be of sufficient quality
to allow the identification of synapses (60),
membranous structures containing no cyto-
plasm are sometimes observed, which are not
seen in rapidly preserved samples. Fortunate-
ly, the histological quality of the H01 brain
sample in terms of visualizing neurons, glia,
and their organelles was equivalent to the
rodent perfused cardiac samples used in the
past (23, 25, 55). Because there were fewmem-
brane breaks, the data could be reconstructed
both manually and with machine learning.
This strongly suggests that rapid immersion
of fresh tissue in fixative is a viable alternative
to perfusion and should be especially useful in
human connectomics studies going forward
(61). More problematic is that fresh samples
from healthy individuals are unlikely to ever
be available through this neurosurgical route.
Although this individual’s temporal lobe did
not show substantial pathological changes by
light microscopy, as stated in the neuropath-
ological report, it is possible that long-term epi-
lepsy, or its treatment with pharmacological
agents, had some more subtle effects on the
connectivity or structure of the cortical tis-
sue. There were some oddities identified in
this tissue, including a number of extremely

large spines, axon varicosities filled with un-
usual material, and a small number of axons
that formed extensive whorls (fig. S2). At
present, we are unable to determine whether
these resulted from a pathological process or
if they are simply rare. Comparing samples
obtained from individuals with different un-
derlying disorders will allow for a better un-
derstanding of the phenomena seen here.
Another challenge with studying human

brain tissue from association cortex is that its
circuits are likely established, at least in part, as a
consequence of experience, raising the ques-
tion of how similar one person’s association
cortex will be to another’s. Although atlases de-
scribing intersubject variability of human cortex
exist for the micro- and macroscopic scales (62),
a lack of humandatasets at the nanometer scale
means that intersubject variability of human
cortical microcircuits is currently not known.
Between individual Caenorhabditis elegans
nematodes with identical genomes, although
the majority of connections were stereotyped,
40% of the neuron-to-neuron connectivity dif-
fered between individuals (19). Given the far
greater variability in human experience, be-
havior, and genetics, and the fact that humans
and other vertebrates have pools of identified
neuron classes (63) rather than individual iden-
tified neuron types, it may be more challenging
to compare neural circuits between human
brains. This challenge also presents an opportu-
nity to uncover the physical instantiation of
learned information. Even if the circuits differ in
their particulars, it is possible that a metalogic
formemory can be found by looking at enough
data in the future field of “engramics” (64, 65).
Without question, approaches to uncovering

the meaning of neural circuit connectivity data
are in their infancy, but this petascale dataset
is a start.

Methods summary

Tissue resected from the anterior middle tem-
poral gyrus underwent rapid immersion fixa-
tion and staining with osmium and other heavy
metals (27). The sample was then embedded
in resin, and 5019 sections were collected at an
average thickness of 33.9 nmusing an automatic
tape-collecting ultramicrotome (ATUM) (28)
for a total sample thickness of 0.170 mm. Sec-
tions were imaged using a multibeam scanning
EM at 4 × 4 nm2 resolution (Fig. 1A), giving a
total imaged volume of 1.05 mm3 after cor-
recting for a compression of 28% in the cutting
direction, and a raw data size of up to 350 giga-
bytes per section, or 1.8 petabytes in total.
From a total of 247 million tiles, 196 million

image tileswere stitched together and coarsely
aligned by usingmicroscope stage coordinates
and image features to relax an elastic triangular
mesh of each tile and each section (Fig. 1B,
left). A fine-scale refining alignment based on
optical flow between neighboring sections re-

moved remaining drift and jitter from the uni-
fied ~1.4 petabyte image volume (Fig. 1B, center
and right).
A multiresolution FFNwas used to segment

the image data (29), producing base segments
(Fig. 2A) that were then agglomerated using
FFN resegmentation to produce more com-
plete reconstructed cells and processes (Fig. 2B).
Because occasional agglomeration errors pro-
duced mergers between nearby objects (Fig.
2C, left), we skeletonized the segmentation
and classified skeleton nodes within each cell
as axon, dendrite, astrocyte, soma, cilium, or
AIS (Fig. 2C, center), allowing an automated
cut to be made at the site of merge errors (Fig.
2C, right).
To identify synaptic sites, we trained a clas-

sifier based on a U-Net architecture to label
three classes: background, presynaptic, and
postsynaptic (Fig. 2D). We trained a two-class
ResNet-50 classifier to classify each identified
synapse as excitatory or inhibitory based on its
EM appearance, postsynaptic structure type,
and presynaptic neuron type, if known.
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