

Mesoscale Convective Systems in the Congo Basin: Seasonality, Regionality, and Diurnal Cycles

Patrick C. Andrews, Kerry H. Cook, Edward K. Vizy

Department of Geological Sciences
The University of Texas at Austin
Austin TX
USA

Published in *Climate Dynamics*

August 30, 2023

This preprint has not undergone any post-submission improvements or corrections. The Version of Record of this article is published in Climate Dynamics, and is available online at <https://doi.org/10.1007/s00382-023-06903-7>

The citation for this work is as follows:

Andrews, P.C., K.H. Cook, and E.K. Vizy 2024: Mesoscale convective systems in the Congo Basin: Seasonality, regionality, and diurnal cycles. *Clim. Dyn.*, 62, 609-630. <https://doi.org/10.1007/s00382-023-06903-7>

Corresponding Author: Patrick C. Andrews (patrickandrews@utexas.edu)

35 *Abstract*

36 Twenty years of IMERG precipitation estimates are used to evaluate the contributions of mesoscale
37 convective system (MCS) rainfall to total rainfall in the Congo Basin. Studying these systems advances
38 our basic understanding of Congo Basin rainfall on all time scales.

39 The seasonality of MCS rainfall in the Congo Basin follows the seasonality of total rainfall with high
40 rainfall in spring, summer, and fall and a winter dry season in each hemisphere. In the equinoctial
41 seasons, MCS rainfall accounts for $\geq 80\%$ of total rainfall within 5° of the equator with the highest rainfall
42 rates occurring along the eastern and western boundaries of the basin. In boreal summer, MCS rainfall
43 maxima occur near the Cameroon Highlands (9°E - 18°E) and in boreal winter, they occur along the
44 eastern orography (22°E - 28°E). The 80% percent contribution is sustained in the continental interior
45 (15°E - 25°E , 5°S - 5°N) throughout the year.

46 The diurnal cycle of MCS rainfall is similar to that of total rainfall. Diurnal cycles are unimodal in the
47 equinoctial seasons but are regionally and seasonally inhomogeneous in the solstitial seasons. Regardless
48 of modality, MCS rainfall is highest at 15Z (1600/1700 LT) and lowest at 10Z. MCS percent contribution
49 changes little throughout the diurnal cycle but is highest ($\geq 90\%$) at 04Z close to the continental interior.
50 Larger MCSs contribute their greatest percentage of MCS rainfall (83-92%) between 04Z and 07Z, while
51 more-intensely precipitating MCSs have no seasonally or regionally consistent diurnal cycle.

52 Seasonal and diurnal MCS rainfall maxima are associated with unstable MSE profiles in the lower
53 troposphere. Changes in moisture drive the seasonal cycle of MSE while changes in temperature drive its
54 diurnal cycle.

55

56 **Key words:** Congo Basin rainfall, equatorial African precipitation, African rainfall seasonality, African
57 rainfall diurnal cycle, mesoscale convective system, IMERG

58

59

60

61 **DECLARATIONS**

62 Funding: The research was supported by the U.S. National Science Foundation Award #26-1016-20

63

64 Conflicts of Interest/Competing Interests: none

65

66 Availability of data and material: IMERG data is freely available at <https://gpm.nasa.gov/data/imerg>

67

68 Code availability: Figures for the analysis were produced using the GRaDs software freely available at

69 <http://cola.gmu.edu/grads/gadoc/gadoc.php>, and using Python software freely available at

70 <https://www.python.org/>

71

72 Authors' contributions. All three authors contributed to the final manuscript, and an MCS identification
73 algorithm was provided by Edward Vizy.

74

75

76

77

78

79

80

81

82

83

84

85

86

87 *1. Introduction*

88 The Congo Basin is one of the most convectively-active areas on the planet. It contains six of the
89 top ten and over half of the top 500 locations of highest lightning frequency within the Tropical Rainfall
90 Measuring Mission (TRMM) satellite range (Albrecht et al. 2016) and has the largest fraction of the top
91 0.1% most extreme values in brightness temperature, lightning flashes per minute, and maximum height
92 of 40-dBZ radar reflectivity (Zipser et al. 2006). The extreme nature of Congo convective proxies
93 suggests this region is prone to intense rainfall as precipitation ice-water content and lightning flash-rate
94 density correlate positively with instantaneous rain rates, although how they correlate to total surface
95 rainfall is less well-understood (Petersen and Rutledge 2001, Zipser et al. 2006).

96 Mesoscale convective systems (MCSs) are organized systems of convective cells capable of
97 producing heavy rain and damaging winds and that exhibit a distinct life-cycle of growth, maturity, and
98 decay when compared to individual convective cells (Leary and Houze 1979, Zipser et al. 1982). Using
99 the TRMM Precipitation Radar, MCSs were found to be the primary contributor of Congo Basin rainfall,
100 delivering upwards of 70% of annual precipitation to this region (Nesbitt et al. 2005). This suggests
101 MCSs are vital to the delivery of rainfall in the Congo Basin and play an important role in establishing the
102 diurnal cycle of rainfall. Prior MCS studies for the Congo Basin have primarily focused on the equinoctial
103 rainy seasons (Laing et al. 2011, Hartman et al. 2020), however, the month of maximum lightning flash
104 rate density can occur outside the equinoctial seasons depending on the region of the Congo (Albrecht et
105 al. 2016). An assessment of MCSs and their diurnal cycles in all four seasons is needed to further develop
106 our understanding of rainfall delivery systems for the Congo Basin and to fully account for regional
107 differences in MCS activity. Here we construct a 20-year climatology of MCS rainfall in the Congo Basin
108 using Integrated Multi-satellite Retrievals for GPM (IMERG) precipitation estimates and describe its
109 seasonal, diurnal, and regional variations. In addition, MCS contributions to total rainfall are quantified.

110 Background on MCS rainfall and its variability over central equatorial Africa is reviewed in
111 Section 2. Data and methodology, including MCS identification criteria, are provided in Section 3.

112 Results in section 4 are in two sections: equinoctial and solstitial seasons. Connections to physical
113 mechanisms are shown in section 5. Section 6 provides a summary and conclusions.

114 2. *Background*

115 MCSs are associated with high rainfall events such as flash floods and contribute a large
116 percentage of total rainfall in the tropics and subtropics. Using data from the Tropical Rainfall
117 Measurement Mission (TRMM), Nesbitt et al. (2005) found that 50-90% of tropical and subtropical
118 rainfall is contributed by MCSs. Other studies with a focus on Africa confirm this result. For example,
119 Vizy and Cook (2018) found that MCSs generated in a convective-permitting WRF model contribute over
120 90% of nocturnal rainfall in August over the southwestern Sahel. Similarly, Liu et al. (2019) found that
121 MCSs identified in TRMM contributed 80% of total rainfall to sub-Saharan Africa during boreal summer.
122 A subset of MCSs, termed mesoscale convective complexes (MCCs), strongly influence certain regions
123 of Africa such as the northern Sahel, which received 36% of its total July rainfall from only 7 MCCs in
124 1987 (Laing et al. 1998). These large storm systems persist on average for 11 hours and typically form
125 cloud shields 300,000 km² in size (Laing and Fritsch 1993).

126 Compared to sub-Saharan Africa, MCSs in the Congo Basin are less well-documented and their
127 regional importance is unclear. Hartman et al. (2020) found that the region between 0° and 5°S shows the
128 greatest seasonal consistency in average MCS speed and duration, but how MCSs were related to total
129 rainfall was not quantified. Studies agree that MCSs are most abundantly generated to the west of the high
130 terrain of the Great Rift Valley and near the Cameroon Highlands (Jackson et al. 2009, Laing et al. 2011,
131 Hartman et al. 2020) although Vemado and Filho (2021) found that westward-propagating MCSs may
132 initiate in East Africa and regenerate along the orography of the Rift Valley, impacting the Congo.
133 Studies also agree that MCSs are most frequent in the afternoon between 15Z and 18Z in equatorial
134 Africa (Jackson et al. 2009, Laing et al. 2011, Hartman et al. 2020) but achieve their largest areal extent at
135 night as the storms mature (Nesbitt and Zipser, 2003).

136 The seasonal rainfall regime in the Congo Basin is often described as bimodal but this is an
137 artifact of a large averaging region that extends over the equator (Cook and Vizy, 2022). Except for a thin

138 strip along the equator classified as humid and several small bimodal regions in the east, Hermann and
139 Mohr (2011) find rainfall is unimodal in Congo Basin at the seasonal scale. In the past, precipitation
140 seasonality in the Congo has been erroneously attributed to the migration of the Intertropical Convergence
141 Zone (ITCZ) across the basin but seasonal influences on rainfall are more complex and vary regionally. In
142 a study examining the seasonal influence of various sea surface temperature (SST) anomalies on five sub-
143 divisions of the Congo, Balas et al. (2007) found that rainfall in each region was affected by a unique
144 combination of seasonal SSTs. For the Congo, Dyer et al. (2017) found that while the Indian Ocean and
145 local evapotranspiration are the primary sources of precipitable moisture for the Congo, their relative
146 importance may shift as contributions from other sources of moisture such as the Atlantic shift seasonally.

147 Observational studies of Congo precipitation are largely satellite-based as only a handful of rain
148 gauge stations remain operational (Nicholson et al. 2018). Without calibration from ground
149 measurements, satellite rainfall estimates can differ by up to 2000 mm per year between datasets
150 (Washington et al. 2013) and blended satellite and gauge datasets can produce spurious trends if the
151 quantity of rain gauges decreases over the study period (Maidment et al. 2015). Such a decrease has
152 happened over the last century in the Congo. However, satellite-based observation continues to improve
153 through advances in sensor technology and international collaboration such as with the deployment of the
154 Global Precipitation Measurement mission (GPM) and its core observatory.

155 In this paper, we present a climatological assessment of MCSs (2000-2020) with a regional
156 emphasis. We examine how MCS rainfall varies over the seasonal and diurnal cycles and consider how
157 those cycles may change regionally. We do not seek to diagnose variability in MCS storm morphology or
158 rainfall mechanisms but this paper provides a valuable foundation for future diagnostic research.

159 *3. Data and Methodology*

160 *3.1 Data*

161 Precipitation estimates from the IMERG gridded precipitation dataset for 2000-2020 (Huffman et
162 al. 2019) are analyzed in this paper. The 0.1°-resolution IMERG final run product 3BIMERGHHR
163 merges microwave and microwave-calibrated infrared estimates from numerous satellites, providing

164 rainfall estimates every 30 minutes. For years prior to 2014, IMERG V06 recalibrates estimates initially
165 calibrated to TRMM to GPM in order to extend the IMERG dataset back to 2000 and to produce a
166 consistent temporal and spatial resolution. V06 improvements to grid point interpolation and satellite
167 intercalibration have improved IMERG's ability to capture the diurnal cycle compared to similar
168 observational datasets (Tan et al. 2019). IMERG also validates well at the synoptic scale over Africa
169 (Dezfuli et al. 2017) and its predecessor TRMM Multi-satellite Precipitation Analysis (TMPA)
170 demonstrates excellent agreement with rain gauges in West Africa on monthly timescales (Nicholson et
171 al. 2003). IMERG is chosen here for estimating MCS rainfall over the rain-gauge sparse Congo Basin for
172 its high spatial and temporal resolutions, including its ability to capture the diurnal cycle of rainfall.

173 The Congo Basin is defined here as western equatorial Africa between 10°S-10°N and 9°E-30°E.
174 This area is further sub-divided by latitude into four 5° averaging regions which extend from the Atlantic
175 coast to 30°E (Fig. 1). Box 1 spans 10°N – 5°N, box 2 from 5°N to 0°, box 3 from 0° to 5°S, and box 4
176 from 5°S to 10°S. Averaging regions are determined from areas of coherent MCS contribution to total
177 rainfall in Figures 3 and 8 as well as from areas of similar diurnal and seasonal peak rainfall via a grid
178 point analysis (not shown).. Elevations exceeding 1000m occur in boxes 1 and 4, and near the eastern
179 boundaries of boxes 2 and 3. The interiors of boxes 2 and 3 are at lower elevations (≤ 400 m) than their
180 surroundings and elevations exceeding 600m divide the interiors of boxes 2 and 3 from the Atlantic coast.
181 Rainfall in this region progresses northward across the Congo from austral summer to boreal summer,
182 with peaks most often concentrated near high terrain (Fig 1a-d).

183 3.2 Methodology

184 Rainfall rate thresholds and size criteria are used to identify MCSs, similar to previous studies
185 (Laurent et al. 1998, Laing et al. 1998, Durkee et al. 2009, Laing et al. 2011, Hartman et al. 2020).
186 Individual MCS storms are not tracked in this study, but rather, MCS rainfall is identified every half-hour
187 for the 20-year period. We define MCS rainfall as a rainfall rate of 25 mm day^{-1} or greater that occupies at
188 least 2000 km^2 area. These criteria are consistent with past studies (Vizy and Cook 2019, Vizy and Cook
189 2018, Liu et al. 2019). While the 25 mm day^{-1} rain rate may exclude some smaller MCS rainfall rates

190 associated with the stratiform rain anvil and decay of the cloud shield (Roca et al. 2017), the threshold
191 must be high enough in order to isolate MCS rainfall from weaker convective events over the 20-year
192 period. As such, results presented in this paper may slightly underestimate MCS rainfall. A 2000 km²
193 rain-shield threshold is commonly used in MCS studies (Mohr and Zipser 1996, Nesbitt and Zipser 2003,
194 Vizy and Cook 2019, Liu et al. 2019) to distinguish more disorganized convective activity from organized
195 systems of thunderstorms. Roca et al. (2017) found that 97% of tropical MCSs attained sizes larger than
196 5000 km² which suggests our size threshold selection should not impact results.

197 Since there may be some dependency of the results on the selection of these threshold values,
198 additional thresholds at higher values are applied and compared to our results to test the sensitivity of
199 threshold choice. This includes using an increased rain rate threshold of 100 mm day⁻¹ over a contiguous
200 area of 2000 km² (abbreviated throughout the paper as **LRR MCS**) and a larger size threshold of 10,000
201 km² that rain contiguously at least 25 mm day⁻¹ (**LS MCS**). The choice of higher threshold values is
202 somewhat arbitrary, however, the values are selected to be large enough to contrast the lower threshold
203 MCS rainfall but not so large as to be infrequent.

204 After MCS rainfall has been identified, it is compared with the MCS percent contribution to total
205 rainfall (MCS rainfall divided by total rainfall) in order to evaluate the importance of MCS rainfall to
206 total rainfall. The use of both metrics allows us to identify when high MCS rainfall has a low percentage
207 contribution to total rainfall or vice versa.

208 Additionally, MCS percent contribution at the higher thresholds is used to examine how MCS
209 characteristics such as areal size and rainfall intensity vary throughout the diurnal cycle. This provides
210 information on whether peaks in the diurnal cycle occur because of an increase in MCS size, an increase
211 in MCS rainfall intensity, or a combination of both. Peaks may also occur due to changes in the number
212 of MCSs, however, we do not count MCSs in this study. We choose not to count storms because we do
213 not track individual storms through space or time due to the dynamic behavior and life cycle of storms.
214 Because of this, an MCS count metric would be flawed. However, a peak associated with neither larger
215 nor more intensely raining MCSs may by elimination be associated with an increase in the number of

216 MCSs. Note that MCS percent contribution for the higher thresholds is calculated by dividing the higher
217 threshold MCS rainfall by the lower threshold MCS rainfall, not by total rainfall. This is because the LS
218 and LRR MCS rainfall are already included within “total” MCS rainfall identified at the lower thresholds.

219 To assess MCS modality over the diurnal cycle, several quantitative criteria are applied to MCS
220 rainfall, similar to prior studies (Zhang et al. 2016, Liu et al. 2019). Diurnal cycles are calculated as the
221 mean rainfall rate that occurs at each half-hour interval. A *peak* is defined as when MCS rainfall is at
222 least 0.5 mm day^{-1} higher than MCS rainfall ± 3 hours away. The threshold value of 0.5 mm day^{-1} was
223 selected as it successfully distinguishes between the sharp and gentle decreases in MCS rainfall in the
224 diurnal cycle shown in Figures 4 and 9. A diurnal cycle consisting of one peak is deemed unimodal, two
225 peaks as bimodal, and zero peaks as neither. MCS rainfall is further classified into continuous afternoon
226 and nighttime rainfall to characterize diurnal cycles without peaks. A diurnal cycle is said to have
227 *continuous afternoon rainfall* if MCS rainfall ± 3 hours away from the afternoon maximum is at least 85%
228 of the afternoon maximum value. Similarly, a diurnal cycle is deemed to *have continuous nighttime*
229 *rainfall* if MCS rainfall at 04Z is at least 75% of MCS rainfall at 21Z. The times 21Z and 04Z are selected
230 as they respectively represent the evening minimum and nighttime maximum for instances of bimodal
231 rainfall observed in the diurnal cycles in Figures 4 and 10. The value of 75% is used over 85% due to the
232 longer nighttime averaging period.

233 For our seasonal analysis, the wettest and driest months (Apr, Oct, and Jan, Jul respectively) are
234 selected to contrast dry and wet seasons. We opt for representative months in our analysis as the typical
235 three-month seasonal delineation e.g. MAM, JJA, etc. may not fit onto the seasonality of rainfall in the
236 Figure 1 averaging regions.

237

238 *4. Results*

239 *4.1 Seasonality of MCSs*

240 A variety of influences modify Congo Basin precipitation only on a seasonal basis. For example,
241 ascent associated with both the Tropical Easterly Jet (TEJ) and the northern African Easterly Jet (AEJ)

242 increases mid-level convergence, and consequently precipitation, over the northern Congo in boreal
243 summer (Nicholson 2009), and low-level winds north of 6°N are primarily controlled by cyclonic
244 circulation driven by the Saharan heat low in boreal summer (Pokam et al. 2014). Because these
245 phenomena strongly impact only a portion of the Congo, it is important here to assess seasonal
246 precipitation at the regional scale to best capture differences in total and MCS rainfall.

247 In Figure 2, the total rainfall rate (solid black line), the MCS rainfall rate (solid red line), and the
248 MCS percent contribution toward total rainfall (dotted red line) are averaged over each Congo averaging
249 region (Fig. 1) for every month of the year. In the two boundary regions (Fig. 2a-b), there is only one wet
250 season and one dry season for both total and MCS rainfall. In the northern boundary region box 1 (Fig.
251 2a), total and MCS rainfall rates are highest in August averaging 7.7 and 6.1 mm day⁻¹ respectively and
252 are lowest in Dec-Jan both averaging <1 mm day⁻¹. The boreal winter minimum in box 1 is seasonally
253 opposite to the minimum of the southern boundary region box 4 which occurs in Jun-Jul (Fig. 2b), and
254 both average <1 mm day⁻¹. However, the box 4 maximum in November is not seasonally opposite to the
255 Aug maximum of box 1, and total and MCS rainfall average 6.7 and 5.1 mm day⁻¹ respectively at that
256 time.

257 MCS percent contributions in box 1 (Fig. 2a) and box 4 (Fig. 2b) plateau before MCS rainfall
258 reaches its respective seasonal maximum. MCS percent contribution plateaus in box 1 at near 80% of
259 total rainfall from May-Oct and in box 4 between 70-75% of total rainfall from Sep-Apr. The plateau is
260 reached as average MCS rainfall surpasses approximately 4 mm day⁻¹ in both regions. Thereafter, MCS
261 percent contribution in box 1 and box 4 reaches a minimum of <35% as MCS rainfall falls to ~0 mm day⁻¹
262 in the winter seasons.

263 Similar to the boundary regions, total and MCS rainfall are highest in late summer/boreal autumn
264 and lowest in the solstitial seasons. In the northern equatorial region box 2 (Fig. 2c), total and MCS
265 rainfall are highest in October averaging 7.5 and 6 mm day⁻¹ respectively and are lowest in January
266 averaging 1 mm day⁻¹, thus sustaining MCS rainfall even in the driest season. In the southern equatorial

267 region box 3 (Fig. 2d), total and MCS rainfall are highest in November averaging 8 and 6.5 mm day⁻¹
268 respectively and are lowest in July, also averaging 1 mm day⁻¹.

269 Unlike the two boundary regions, box 2 (Fig. 2c) and box 3 (Fig. 2d) maintain high average MCS
270 percent contributions of 75-80% of total rainfall throughout the year, even during their respective dry
271 seasons. However, average MCS percent contributions in box 3 decrease to 60% of total rainfall during
272 boreal summer while they remain high in box 2 year-round.

273 In general, MCS rainfall supports the seasonality of total rainfall in the Congo Basin. All regions
274 comprising the Congo Basin experience one wet season from spring to fall and one dry season in winter
275 in the monthly averages for both total and MCS rainfall. This is consistent with the analysis of Cook and
276 Vizy (2022) which showed that a mistaken impression of bimodal seasonality in the Congo Basin arises
277 when averaging regions that span the equator are used. The highest average MCS rainfall occurs in every
278 region in roughly boreal autumn, and the month of maximum MCS rainfall progresses southward from
279 August in box 1, to October in box 2, and to November in boxes 3 and 4. Boxes 1, 2, and 3 average
280 similar maximum seasonal values (6-6.5 mm day⁻¹) while box 4 averages the least (5 mm day⁻¹). MCS
281 rainfall is lowest in either January or July for all four averaging regions depending on the hemisphere.
282 Averaging regions sufficiently capture the seasonality of rainfall and an individual IMERG grid point
283 analysis of seasonality yielded similar results with few zonal differences (not shown).

284 In the two equatorial regions, the seasonal cycles of both total and MCS rainfall appear to be
285 bimodal with peaks in the equinoctial seasons. However, because total and MCS rainfall rate averages
286 remain high (>3 mm day⁻¹) during the interim solstitial season, the seasonal cycles are better characterized
287 as unimodal with decreased rainfall during the interim solstitial season.

288

289 *4.2.1 Equinoctial Seasons – Seasonal Cycle*

290 To better highlight inter-seasonal and regional differences, equinoctial months are assessed
291 separately from solstitial months. In Figure 3, average monthly MCS rainfall (mm day⁻¹) and MCS
292 percent contribution are mapped across the Congo Basin for the equinoctial months April (Fig. 3a-b) and

293 October (Fig. 3c-d). In April (Fig. 3a), a MCS percent contribution maximum of $\geq 85\%$ develops in the
294 continental interior centered on 21°E along the Congo River. MCS percent contribution remain high at
295 80% throughout the basin from 5°S to 5°N and along the southern Atlantic coast. MCS percent
296 contribution decreases meridionally but not symmetrically, tapering off to 70% toward 10°S and to 50-
297 60% toward 10°N. MCS rainfall (Fig. 3b) also decreases with latitude and reaches a minimum in northern
298 box 1, coinciding with the MCS percent contribution minimum. However, MCS rainfall maxima are not
299 necessarily located within the MCS percent contribution maximum centered on 21°E (Fig. 3a) but rather
300 are found along the Atlantic coast, in spots along the 6-7°S latitude band, and at the feet of the Rwenzori
301 mountains around 27°E.

302 In October (Fig. 3c), the distribution of MCS percent contribution values resembles that of April
303 (Fig. 3a). An MCS contribution of 80% of total rainfall is found from 5°S to 5°N, however, the
304 continental interior maximum observed in April does not form and MCS percent contribution are high
305 ($\geq 70\%$) throughout all of the Congo, including in northern box 1. Higher MCS contribution in box 1
306 during October is likely supported by the higher MCS rainfall (Fig. 3d) which exceeds 1 mm day $^{-1}$
307 throughout the basin.

308 Both equinoctial seasons share an MCS percent contribution of at least 80% between 5°S and 5°N
309 and an area of high MCS rainfall (≥ 8 mm day $^{-1}$) along 27°E near the Rwenzori mountains. MCS rainfall
310 is higher and more well-distributed throughout the Congo Basin in October resulting in a decreased
311 meridional gradient of MCS percent contribution from the equatorial region to 10°. A decrease from 1
312 mm day $^{-1}$ in October to 0 mm day $^{-1}$ in April along 10°N produces a 20% drop in MCS percent
313 contribution (Fig. 3a-b), suggesting MCS percent contribution is sensitive to low MCS rainfall rates.
314 MCS percent contribution shows less sensitivity to higher MCS rainfall rates as exemplified by the large
315 range of MCS rainfall values (3-8 mm day $^{-1}$) within the April percent contribution maximum. However,
316 MCS percent contribution insensitivity to MCS rainfall may be dependent on location as a 5-8 mm day $^{-1}$
317 decrease in MCS rainfall along the southern Atlantic coast in box 4 in October only results in a decrease
318 of 10-15% in percent contribution.

319 4.2.2 *Equinoctial Seasons - Diurnal Cycle*

320 Previous TRMM studies find that MCS counts are highest in the afternoon between 15Z and 18Z
321 in both sub-Saharan Africa (Liu et al. 2019) and in the Congo Basin (Jackson et al. 2009). The half-hour
322 resolution in IMERG V06 offers an improvement over the resolution of TRMM and allows us to more
323 accurately resolve the timing of the MCS diurnal cycle.

324 Figure 4 displays the diurnal cycles of MCS rainfall (solid lines) and MCS percentage
325 contribution to total rainfall (dashed lines) in April and October averaged over the equatorial (Fig. 4a-b)
326 and boundary (Fig. 4c-d) Figure 1 averaging regions. Diurnal cycles begin at 12Z to more easily compare
327 evening, nighttime and morning rainfall. Total rainfall is not plotted due to its high similarity to MCS
328 rainfall. In April (Fig. 4a) and October (Fig. 4b), MCS rainfall in boxes 2 and 3 is highest at 15Z
329 (1600/1700 Local Time (LT)) and lowest at 10Z (1100/1200 LT). Time zones in the Congo split at
330 approximately 20°E into UTC +1 in the west and UTC +2 in the east. The diurnal cycle of MCS
331 rainfall in box 3 is unimodal with continuous nighttime rainfall in both equinoctial seasons. The diurnal
332 cycle of MCS rainfall in box 2 is classified as continuous through the afternoon and nighttime in April
333 and as bimodal in October with a secondary minimum and maximum at 22Z and 04Z, respectively. In
334 both seasons, nighttime and early morning MCS rainfall in box 2 averages about 1 mm day⁻¹ higher than
335 in box 3 but MCS percent contributions in both boxes remain similar. The diurnal cycle of MCS percent
336 contribution is comparatively flat, changing by ~10% between 12Z and 07Z.

337 In the boundary regions, MCS rainfall is also highest between 15Z-16Z and lowest at 10Z in both
338 April (Fig. 4c) and October (Fig. 4d). Here both regions' diurnal cycles are unimodal but nighttime MCS
339 rainfall is lower than in the equatorial regions. MCS percent contribution is seasonally higher by 5-15% in
340 the wetter boundary region, but is similar between regions in the morning and afternoon between 08Z and
341 18Z. Overall, MCS percent contribution is lower than in the equatorial regions, particularly when either
342 region is dry.

343 In the equinoctial seasons, the diurnal cycle of MCS rainfall is similar to that of total rainfall with
344 unimodal rainfall throughout the basin except in box 2. MCS percent contribution remains consistent
345 through the afternoon and night despite large changes in MCS rainfall over the diurnal cycle. Nighttime
346 MCS rainfall is lower than afternoon MCS rainfall for all regions and is lowest in box 1. Equatorial
347 regions distinguish themselves from the boundary regions with continuous nighttime MCS rainfall
348 sustained above 3.5 mm day^{-1} and bimodal rainfall in box 2.

349 In Figure 5, MCS rainfall is mapped across the Congo Basin at key times in the diurnal cycle
350 identified in Figure 4. Here, MCS rainfall in April and October is shown at the 15Z MCS rainfall
351 afternoon maximum (Fig. 5a-b), the 04Z secondary maximum (Fig. 5c-d), and the 10Z diurnal minimum
352 (Fig. 5e-f). At 15Z, MCS rainfall maxima are found on the eastern and western boundaries of the basin in
353 both April (Fig. 5a) and October (Fig. 5b). The maxima ($22-28 \text{ mm day}^{-1}$) along the eastern orography in
354 box 3 and in the northern basin along the Atlantic coast are seasonally invariant and occur to the west of
355 elevated terrain. Additional high MCS rainfall ($12-26 \text{ mm day}^{-1}$) occurs on a seasonal basis in the
356 southern interior basin and along the southern Atlantic coast in boreal spring and throughout the northern
357 interior basin in boreal fall.

358 At 04Z (Fig. 5c-d), MCS rainfall maxima ($8-18 \text{ mm day}^{-1}$) surround the continental interior of the
359 basin in both equinoctial seasons with larger rainfall rates in the east. MCS rainfall falls below 4 mm day^{-1}
360 where the 15Z maxima occur. There is little difference in the distribution of maxima between April and
361 October although maxima values are larger in October (Fig. 5d).

362 At the diurnal minimum 10Z (Fig. 5e-f), MCS rainfall is concentrated within the continental
363 interior close to the Congo River in both April (Fig. 5e) and October (Fig. 5f), but similar to 04Z, MCS
364 rainfall maxima values are slightly higher in October.

365 Figures 5 shows a distinction in the location of afternoon and nighttime MCS rainfall maxima
366 during the equinoctial seasons. Afternoon MCS rainfall maxima occur along the eastern and western
367 boundaries of the basin while nighttime MCS maxima occur closer to the continental interior. Afternoon

368 MCS rainfall at 15Z shifts meridionally within the interior basin but changes little in magnitude between
369 April and October while nighttime MCS rainfall at 04Z remains stationary but intensifies in October.

370 In Figure 6, MCS percent contribution is mapped across the Congo in April and October at the
371 afternoon MCS rainfall maximum 15Z (Fig. 6a-b), the secondary maximum 04Z (Fig. 6c-d), and the
372 diurnal minimum 10Z (Fig. 6e-f). While afternoon MCS rainfall maxima in Figure 5 were found only on
373 the eastern and western boundaries of the basin, MCS percent contribution in April (Fig. 6a) exceeds 80%
374 throughout the eastern and central basin with some locations within 5° of the equator exceeding 90% of
375 total rainfall. Moreover, an $\geq 80\%$ percent contribution occurs wherever MCS rainfall exceeds 4 mm day^{-1}
376 (see Fig. 5a), well below the maximum values observed at this time. In October (Fig. 6b), MCS percent
377 contribution is more homogenous, and again exceeds 80% wherever MCS rainfall exceeds 4 mm day^{-1}
378 (Fig. 5b).

379 At 04Z, a 90% MCS percentage contribution is found throughout the continental interior and an
380 80% MCS percentage contribution is found throughout the basin from 8°S to 8°N in both April (Fig. 6c)
381 and October (Fig. 6d). The 90% MCS percent contribution is centered on the northern Congo river in
382 April and additionally along the southern Congo river in October. MCS rainfall exceeds 80% wherever
383 MCS rainfall rates are 2 mm day^{-1} or greater (see Fig. 5c-d).

384 At 10Z, MCS percentage contribution is lowest throughout the boundary regions and along the
385 eastern and coastal orography (10-60%) in both April (Fig. 6e) and October (Fig. 6d). A 70% MCS
386 percent contribution is maintained in the continental interior within boxes 2 and 3 where MCS rainfall is
387 sustained above 4 mm day^{-1} .

388 By examining the diurnal cycle of MCS rainfall and percent contribution, we find that the diurnal
389 cycle of equinoctial MCS rainfall is unimodal in boxes 1, 3, and 4, with a peak at 15Z and a minimum at
390 10Z (Fig. 5). High nighttime rainfall in box 2 results in continuous afternoon and nighttime rainfall in
391 April and bimodal rainfall in October. The 15Z peak is comprised of seasonally invariant MCS rainfall
392 ($\geq 20 \text{ mm day}^{-1}$) that occurs along the eastern and western boundaries of the Congo Basin, primarily to the
393 west of elevated terrain. Additional high MCS rainfall occurs within the interior of the hemisphere for

394 which summer most recently occurred (e.g. the northern basin in October). At 04Z, MCS rainfall maxima
395 shift away from the eastern and western boundaries and toward the continental interior suggesting
396 propagation of MCSs inland. MCS rainfall almost completely accounts for total rainfall in the continental
397 interior at 04Z ($\geq 90\%$). Because MCS rainfall rates are on average lower at 04Z than during the 15Z
398 afternoon peak, higher MCS percent contribution at 04Z indicate a drastic reduction in non-MCS rainfall
399 at this time.

400 In order to assess threshold sensitivity and how MCSs may intensify between the 15Z afternoon
401 and 04Z nighttime maxima, we evaluate MCSs at a higher size threshold (LS MCSs) and at a higher
402 rainfall rate threshold (LRR MCSs). Figure 7 shows the percentage of MCS rainfall contributed by LS
403 MCSs (dashed lines) and LRR MCSs (solid lines) over the diurnal cycle for the representative equinoctial
404 months April (Fig. 7a) and October (Fig. 7b). In April (Fig. 7a), the LS MCS percent contribution
405 increases linearly over the diurnal cycle from its minimum at 10Z-13Z (61%-79% of MCS rainfall) to its
406 maximum at 06-07Z (85-92%). This result agrees with the examination of the MCS diurnal cycle by
407 Nesbitt and Zipser (2006) which found that after afternoon genesis, the median area of MCSs increased
408 over the diurnal cycle with a peak at 09Z. This suggests that on average equinoctial MCS rainfall at 04Z
409 is delivered by larger MCSs compared to 15Z as MCSs develop and expand their cloud shield through the
410 night in accordance with the MCS life cycle (Houze 1981, Roca et al. 2017). Regional variations are
411 small, and the equatorial regions maintain a MCS percent contribution 5-10% higher than the boundary
412 regions throughout the diurnal cycle in April. The diurnal cycle of LRR MCSs is more complicated with a
413 minimum at 10Z followed by small maxima at 20Z, 00Z, and 04Z in all four regions. Our results suggest
414 that more intensely raining MCSs are more uniform through the diurnal cycle than larger MCSs in boreal
415 spring.

416 In October (Fig. 7b), the diurnal cycle of LS MCSs is similar to that of April (Fig. 7a) although
417 regional differences are smaller from 15Z-06Z. In contrast to April, a clear maximum in LRR MCSs
418 emerges at 04Z-05Z in the equatorial regions with an MCS percent contribution nearly 20% higher than at
419 the 15Z maximum. This suggests that on average MCS rainfall at 04Z is delivered by more intensely

420 precipitating MCSs than at 15Z in boreal autumn, but only in the equatorial regions. While Nesbitt and
421 Zipser (2006) found MCS rain rates did not increase over the diurnal cycle, differences may be
422 attributable to their use of the entire TRMM domain (35°S to 35°N) or to differences in the diurnal cycle
423 that cannot be resolved at the TRMM 3-hour temporal resolution. While our results suggest some
424 congruence in the timing of LS and LRR MCSs, particularly in the early and late morning, Mohr and
425 Zipser (1996) found no significant relationship between size and intensity for MCSs. If LSS and LR
426 MCSs do not underlie the 15Z maximum, then it is likely that this peak arises due to an increase in the
427 number of MCSs.

428 Figure 7 confirms that our results are insensitive to the size threshold. Despite increasing the size
429 threshold by a factor of four, LS MCSs account for 80-92% of MCS rainfall except at the 10Z diurnal
430 minimum when MCS rainfall is low. Equatorial regions are more insensitive to the threshold than
431 boundary regions. Our results may be somewhat sensitive to the rain rate threshold as MCS rainfall at the
432 increased threshold accounts for only 40-60% of MCS rainfall outside of the 10Z diurnal minimum. This
433 difference in MCS percent contribution between the larger size and rain rate thresholds may be due to
434 differences in their respective range of values. For example, 97% of MCSs are larger than 5000 km²
435 (Roca et al. 2017) and MCCs easily achieve sizes of 300,000 km² (Laing and Fritsch 1993), a magnitude
436 100 times larger than our size threshold. However, MCS cores observed in IMERG rarely exceed 800 mm
437 day⁻¹, a magnitude about 10 times larger than our rain rate threshold.

438 *4.3.1 Solstitial Seasons – Seasonal Cycle*

439 Here we examine the seasonality and diurnal cycle of MCS rainfall and MCS percent contribution
440 during the representative months for the solstitial seasons. In Figure 8, average monthly MCS rainfall
441 (mm day⁻¹) and MCS percent contribution are shown for the representative solstitial months, January (Fig.
442 8a-b) and July (Fig. 8c-d). In January (Fig. 8a), MCS percentage contribution exceeds 80% throughout
443 box 3 and in portions of box 2, but rapidly falls under 50% north of 5°N. A maximum of 85-90%
444 develops close to the equator but less coherently than in April (Fig. 3a). The low MCS percent
445 contribution in box 1 is associated with MCS rainfall under 1 mm day⁻¹ (Fig. 8b). In contrast to the

446 equinoctial seasons, MCS rainfall maxima in boreal winter are found only in the east: close to the
447 Rwenzori Mountains and in the eastern portion of box 4.

448 The distribution of MCS percent contribution in boreal summer (Fig. 8c) differs from both the
449 other solstitial season January (Fig. 8a) and the two equinoctial seasons shown in Figure 3. During boreal
450 summer, a $\geq 85\%$ MCS percent contribution maximum develops in western box 1 to the north of the
451 Cameroon highlands, not near the continental interior. MCS percent contribution falls under 50%
452 throughout box 4 and along the Atlantic coast south of 0° . In July, MCS rainfall (Fig. 8d) is at a
453 maximum in the northwest, aligning with the percent contribution maximum, and decreases along the
454 meridional gradient of MCS percent contribution.

455 Figure 8 shows that regional differences in MCS percent contribution between the solstitial
456 seasons are greater than those between the equinoctial seasons. While both box 1 and box 4 peak in MCS
457 rainfall in their respective summer season, the summer MCS percent contribution maximum is found
458 close to the equatorial continental interior in boxes 2 and 3 during austral summer and towards the Sahel
459 in box 1 during boreal summer. In contrast to the equinoctial seasons, solstitial MCS rainfall is
460 concentrated on only one of the lateral boundaries of the Congo. Moreover, low MCS rainfall and percent
461 contribution are zonally uniform in box 1 during austral summer but are not zonally uniform in boreal
462 summer. In both boundary regions, MCS rainfall falls to 0 mm day^{-1} at the edge of the Congo rainforest
463 which dips further south in the interior basin (10°S - 0°).

464 *4.3.2 Solstitial Seasons - Diurnal Cycle*

465 Figure 9 displays the diurnal cycles of MCS rainfall (solid lines) and MCS percentage
466 contribution to total rainfall (dashed lines) for the solstitial seasons averaged over the equatorial (Fig. 9a-
467 b) and boundary (Fig. 9c-d) Figure 1 averaging regions. In January (Fig. 9a), the diurnal cycle of MCS
468 rainfall in box 3 is unimodal with a peak at 04Z and the MCS rainfall in box 2 is continuous through the
469 afternoon and night with a maximum at 16Z. Box 3 in January is the only instance of higher MCS rainfall
470 occurring at nighttime and not in the afternoon. In July (Fig. 9b), the diurnal cycle in box 2 is bimodal
471 despite its lower nighttime MCS rainfall compared to box 3 in January. MCS percent contribution in box

472 3 remain below 60% throughout the diurnal cycle, averaging the lowest MCS percent contribution for
473 either equatorial region in any season.

474 In the boundary regions, MCS rainfall is unimodal in box 4 in January (Fig. 9c) and is continuous
475 throughout the afternoon and night in box 1 in July (Fig. 9d). In their respective dry seasons, both MCS
476 rainfall and percent contribution are extremely low in boxes 1 and 4, averaging <1 mm day $^{-1}$ and 5-30%
477 of total rainfall throughout the diurnal cycle respectively. Box 1 averages higher MCS rainfall through the
478 night in boreal summer than any other Congo region at any point in the year, highlighting the high
479 seasonality north of 5°N which has the lowest nighttime MCS rainfall through the rest of the year. In
480 contrast, the unimodal diurnal cycle with continuous nighttime MCS rainfall is seasonally invariant in box
481 4 (barring the dry season).

482 Figure 9 shows that the diurnal cycle of MCS rainfall changes regionally and seasonally in the
483 solstitial seasons, in contrast to the more uniform equinoctial seasons (Fig. 4). However, in all seasons,
484 rainfall in the Congo is MCS percent contribution retains the flat diurnal cycle also observed in the
485 equinoctial seasons, although it is much lower in value when MCS rainfall is low. Regions with low MCS
486 rainfall (0.5 - 1.5 mm day $^{-1}$) show an MCS percent contribution (35-60%) and regions with near-zero
487 MCS rainfall (<0.5 mm day $^{-1}$) show the lowest MCS percent contribution (5-30%).

488 In Figure 10, MCS rainfall is shown at the afternoon MCS rainfall maximum 15Z (Fig. 10a-b),
489 the secondary maximum 04Z (Fig. 10c-d), and the diurnal minimum 10Z (Fig. 10e-f) for the solstitial
490 seasons. At 15Z, MCS rainfall maxima occur near both lateral boundaries of the basin in January (Fig.
491 10a) and in July (Fig. 10b) despite only appearing on one boundary in the seasonal average (Fig. 8a-b),
492 and are smaller in magnitude compared to the equinoctial seasons (10 to 18 mm day $^{-1}$). However, MCS
493 rainfall maxima at 04Z occur near only one lateral boundary, specifically, in the east close to the equator
494 near the Rwenzori Mountains in January (Fig. 10c) and in the northwest close to the Cameroon Highlands
495 in boreal summer (Fig. 10d). At 10Z, MCS rainfall resembles the distribution of 04Z minima (Fig. 10e-f)
496 similar to other seasons.

497 Figure 10 shows, similar to the equinoctial seasons, 15Z maxima occur along both the eastern and
498 western boundaries and 04Z maxima occur near the continental. Boreal summer is an outlier and is the
499 only season with nighttime MCS rainfall maxima that occur mostly outside of the equatorial regions.
500 Because afternoon MCS rainfall far exceeds nighttime rainfall in the equinoctial seasons, the monthly
501 average largely reflects afternoon. In the solstitial seasons, afternoon and nighttime rainfall are of similar
502 magnitudes. This results in MCS rainfall concentrating on one side of the Congo in the monthly average
503 (Fig. 8) wherever both afternoon and nighttime MCS rainfall occur.

504 In Figure 11, MCS percent contribution in January and July is mapped across the Congo at the
505 afternoon MCS rainfall maximum 15Z (Fig. 11a-b), the secondary maximum 04Z (Fig. 11c-d), and the
506 diurnal minimum 10Z (Fig. 11e-f). At 15Z, MCS rainfall exceeds 80% in both January (Fig. 11a) and July
507 (Fig. 11b) wherever MCS rainfall exceeds 2 mm day^{-1} , a lower threshold than in the equinoctial seasons.
508 MCS percent contribution rapidly fluctuates between 0% and 90% between 3°N and 8°N in January and
509 between 0° and 9°S in boreal summer where MCS rainfall is very low. This suggests that while MCSs are
510 seasonally uncommon during these regions' winters, they are highly important to total rainfall when they
511 impact that region. This is also observed at 04Z in both January (Fig. 11c) and July (Fig. 11d) in the same
512 regions but areas of 90% MCS contribution are augmented. This does not occur as commonly in the
513 equinoctial seasons when MCS rainfall is low ($<1 \text{ mm day}^{-1}$), but can be observed at 10Z in April (Fig.
514 6e). Similar to the equinoctial seasons, MCS percent contribution is high ($\geq 90\%$) throughout the
515 continental interior. MCS rainfall maxima at 10Z (Fig 11e-f) follow the destruction of maxima at 04Z and
516 again displays rapidly changing MCS percent contribution (0-90%) where MCS rainfall is extremely low.

517 Figure 12 shows the percentage of MCS rainfall contributed by LS MCSs (dashed lines) and LRR
518 MCSs (solid lines) over the diurnal cycle for the representative solstitial months January (Fig. 12a) and
519 July (Fig. 12b). Due to extremely low MCS rainfall at the higher threshold, box 1 and box 4 are omitted
520 from their respective dry seasons. In January, the MCS percent contribution of LS MCSs is at a maximum
521 at 06Z-07Z (83-91%) and is at a minimum at 12Z-15Z (63-73%), as in the equinoctial seasons. The MCS
522 percent contribution of LRR MCSs is at a maximum at 04Z for boxes 3 and 4 but similar to the

523 equinoctial seasons, it is not regionally homogenous. A minimum occurs at 10Z across regions. Diurnal
524 cycles in July (Fig. 12b) are similar to those in April. However, boreal summer is the only season out of
525 four where LS MCS and LRR MCS percent contribution is highest in a boundary region (box 1).

526 Figure 12 shows that LS MCSs increase linearly in percentage contribution of MCS rainfall in all
527 seasons. This suggests that the 04Z maximum and nighttime MCS rainfall more broadly are associated
528 with larger MCSs and afternoon MCS rainfall is not, in agreement with prior MCS studies (Nesbitt and
529 Zipser 2003, Roca et al. 2017). MCS rainfall maxima likely occur at 15Z due to an increase in the number
530 of MCSs in all seasons. Moreover, MCS counts double at 15Z compared 04Z (not shown) as afternoon
531 heating of the surface generates new convective cells. The diurnal cycle of LRR MCSs is more regionally
532 and seasonally variable, but some regions seasonally display a 04Z maximum, suggesting that the 04Z
533 maximum in total MCS rainfall is seasonally associated with more intensely precipitating MCSs.

534 *5. Connections Between Convection and Environmental Conditions*

535 An examination of moist static energy (MSE) profiles is used to understand environmental
536 controls on the seasonal and diurnal cycles of MCS rainfall. This analysis distinguishes between the roles
537 of low-level temperature and moisture variations in producing a vertically unstable environment (e.g.,
538 Zhang et al. 2016, Zhou and Cook 2020). MSE is defined as the sum of the energy contributed by dry
539 enthalpy, latent heating, and geopotential in an air parcel according to

$$540 \quad MSE = c_p T + L_v q + gz, \quad (1)$$

541 where c_p is the specific heat of dry air at constant pressure, T is air temperature, L_v is the latent heat of
542 vaporization for water, q is specific humidity, g is acceleration due to gravity, and z is height from the
543 surface. When MSE decreases with altitude, the environment is convectively unstable, and vice versa. A
544 neutral MSE profile can indicate that convection is operating to mix heat vertically.

545 Figure 13 displays vertical profiles of MSE and its components averaged over the regions shown
546 in Fig.1 during their respective wet and dry seasons. All profiles begin at 950 hPa to clear the topography
547 and end at 675 hPa since MSE profiles are similar above this level. Results are summarized below:

- 548 • Figure 13a shows MSE profiles averaged over the equatorial regions (boxes 2 and 3).
549 Here, the wet and dry seasons are both associated with unstable (negative) MSE profiles
550 below 725 hPa. An examination of other months (not shown) indicates that these regions
551 are convectively unstable throughout the year.
- 552 • Figure 13b shows the moisture components of MSE in the equatorial averaging regions.
553 The dashed gray line is the geopotential component, which is the same in all seasons and
554 regions. Seasonal differences in MSE gradients (Fig. 13a) are associated with this
555 component but they are small - slopes during the dry season are steeper than during the
556 wet season, but by less than 20%.
- 557 • The temperature component, $c_p T$, does not vary seasonally box 3 (Fig. 13c). Low-level
558 warming in box 2 during the dry season mitigates the moisture effect of stabilizing the
559 vertical column (Fig. 2b), but it does not dominate.
- 560 • Figure 13d shows MSE profiles in the boundary regions (boxes 1 and 4). Both boundary
561 region wet seasons have negative MSE profiles between 900 and 725hPa. In contrast, the
562 dry season in box 1 has a positive MSE profile below 725hPa; the dry season in box 4 has
563 an overall neutral MSE profile.
- 564 • Figure 13e shows seasonal moisture profiles in the boundary regions. The seasonal
565 differences in the signs of the MSE profiles in these regions are replicated in the L_q
566 profiles.
- 567 • Small seasonal changes in the temperature profile (17% and 25%, respectively) do not
568 account for the seasonal changes in the MSE profile (Fig. 13f). Similar to box 2, the
569 temperature profile in box 1 is more negative in the dry season, however, this seasonal
570 change is small compared to the change in the moisture profile.

571 In summary, during the dry seasons in boundary regions (boxes 1 and 4), which average about 0
572 mm day⁻¹ in MCS rainfall, MSE profiles are positive and neutral, indicating large-scale atmospheric

573 conditions that are unfavorable to deep convection. In the equatorial regions (boxes 2 and 3), where MCS
574 rainfall is sustained even in the relatively dry seasons (averaging >1 mm day $^{-1}$), MSE profiles remain
575 negative throughout the year. In all regions, seasonal differences in MSE profiles are driven by seasonal
576 changes in the moisture component, L_vq .

577 Figure 14 displays vertical profiles of MSE at 15Z (dark lines) when all regions experience a
578 precipitation maximum, and at 04Z (light lines) when some regions experience a secondary maximum.
579 All profiles are averaged over the representative months when MCS rainfall is present, meaning year-
580 round in the equatorial regions and during the respective wet seasons of the boundary regions. Results are
581 summarized below:

- 582 • MSE profiles in the equatorial regions are negative below 725hPa at 15Z (Fig. 14a). At 4Z, MSE
583 slopes are \sim 70% steeper (more neutral) than at 15Z below 850 hPa, consistent with differences in
584 MCS precipitation.
- 585 • This diurnal difference in the MSE slopes is not due to diurnal differences in the moisture
586 component slopes (Fig. 14b), which increase by only about 6%, but rather by a 50% increase in
587 the slope of the temperature component below 850 hPa (Fig. 14c).
- 588 • Profiles of MSE and its components in the boundary regions are shown in Figs. 14d-f. The
589 results are similar to the equatorial regions, with temperature differences dominating the diurnal
590 cycle. Slopes are negative from 875 to 725 hPa and neutral below 875 hPa at 15Z. At 4Z, the
591 slope of MSE profiles below 875 hPa is \sim 50% larger, indicating less favorable conditions for
592 convection. This corresponds to lower nighttime MCS rainfall in these regions compared to the
593 equatorial regions.

594 In summary, the MCS rainfall 15Z maximum is associated with negative MSE profiles between
595 875 and 725 hPa. Diurnal differences in MSE profiles are driven primarily by diurnal temperature
596 differences.

597

598 6. *Summary and Conclusions*

599 Prior research has shown that mesoscale convective storms (MCSs) are frequent and intense in
600 the Congo Basin, delivering at least 70% of Congo rainfall (Nesbitt et al. 2005). In this paper, we clarify
601 the importance of MCSs to Congo rainfall through an evaluation of the seasonal, diurnal, and regional
602 variability of climatological MCS rainfall. Using IMERG precipitation estimates, MCS rainfall is
603 identified every half hour for twenty years via size and rainfall criteria and compared with total rainfall.
604 IMERG's high spatial and temporal resolution, cross-dataset climatological adjustments, and validation in
605 other parts of Africa (Dezfuli et al. 2017) provide confidence in its ability to estimate rainfall in a region
606 where precipitation observations have been historically limited (Washington et al. 2013). Assessment at
607 the regional scale is critical to understanding Congo rainfall because precipitation regimes and its
608 seasonal influences are not homogenous across the basin.

609 Findings on the seasonality of MCS activity in the Congo Basin are summarized as follows:

- 610 • The seasonality of MCS rainfall in the Congo Basin follows the seasonality of total rainfall. Both
611 exhibit one wet season and one dry season. The wet season occurs during spring, summer and fall and
612 the dry season occurs during winter (Cook and Vizy 2021).
- 613 • Similar to total rainfall, MCS rainfall is at a maximum in late boreal summer and fall for all regions
614 of the Congo. The month of maximum MCS rainfall progresses southward from August at 5°N-10°N,
615 to October at 0°-5°N, and to November at 10°S-0°.
- 616 • The percent contribution of MCS rainfall to total rainfall varies seasonally and regionally as detailed
617 below.

618

619 In the equinoctial seasons,

- 620 • MCS rainfall is highest ($\geq 8 \text{ mm day}^{-1}$) along the Atlantic coast and adjacent to the eastern orography,
621 i.e., the eastern and western boundaries of the Congo Basin. Maxima north of 2°S in boreal autumn
622 and south of 0° in boreal spring, although there is a maximum to the west of the Rwenzori Mountains
623 (3°S - 0°) in both equinoctial seasons.

- 624 • MCS percent contribution maxima (80-85%) are uniform in the continental interior within 5° of the
625 equator, and even higher values (85%-90%) develop around the northern Congo River (17°E-25°E) in
626 boreal spring.

627

628 In the solstitial seasons,

- 629 • In contrast to the equinoctial seasons, MCS rainfall maxima do not occur simultaneously on the
630 eastern and western boundaries of the Congo Basin. A maximum ($\geq 8 \text{ mm day}^{-1}$) occurs in the
631 west adjacent to the Cameroon Highlands in boreal summer and a maximum ($\geq 6 \text{ mm day}^{-1}$) is in
632 the east close to the Rwenzori Mountains in austral summer.

- 633 • Similar to the equinoctial seasons, MCS percent contribution maxima ($\geq 80\%$) are uniform in the
634 continental interior in boreal winter, but they are less homogenous north of the equator.

635 Additional MCS percent contribution maxima ($\geq 80\%$) occur between 5°N and 10°N in boreal
636 summer.

- 637 • Differences in the location of MCS rainfall and MCS percent contribution maxima in the monthly
638 average are attributed to differences in their maxima timing and location within the diurnal cycle.

- 639 • MCS rainfall rates and percent contribution are extremely low ($\sim 0 \text{ mm day}^{-1}$, $< 50\%$) in winter in
640 both hemispheres between 5° and 10° latitude. In boreal winter, the dryness is zonally uniform
641 between 5°N-10°N, tracing the northern edge of the tropical rainforest. In austral winter, the
642 dryness between 10°S-5°S is not zonally uniform. Low MCS and total rainfall rates also trace the
643 southern perimeter of the tropical forest which dips further south in the continental interior.

644

645 Findings about the diurnal cycle of MCSs in the Congo are as follows:

- 646 • The diurnal cycle of MCS rainfall is the same as that of total rainfall. In the regional averages, the
647 MCS and total precipitation maxima always occur in the afternoon at 15Z during all seasons. The
648 minimum is always in the late morning at 10Z.

- 649 • Bimodal diurnal cycling occurs in the northern equatorial region (0° - 5° N) during boreal summer
650 and boreal fall. Here, a second maximum occurs at 04Z and a second minimum occurs at 22Z.

651

652 In the equinoctial seasons,

- 653 • The diurnal cycle of MCS rainfall is unimodal throughout the Congo except in the northern
654 equatorial region (0° - 5° N) during boreal summer and fall.
- 655 • Between the equator and (0° - 5° N), MCS rainfall falls continuously throughout the afternoon and
656 night (15Z-04Z) in boreal spring and is bimodal in boreal fall.
- 657 • MCS percent contribution varies throughout the diurnal cycle. Between 15Z and 08Z, it ranges
658 between 75%-82% of total rainfall close to the equator (5° S- 5° N) and falls to 60%-65% at 10Z
659 (precipitation minimum). At 5° - 10° latitude in both hemispheres, it ranges from 62%-80%
660 between 15Z and 08Z and falls to 45-50% at 10Z. The minimum occurs at 10Z as nighttime
661 MCSs continue to dissipate and afternoon MCS generation has not yet begun.
- 662 • At the 15Z maximum, high MCS rainfall (up to 26 mm day^{-1}) occurs in both equinoctial seasons
663 along the eastern and western boundaries of the basin adjacent to the Cameroon Highlands,
664 Rwenzori Mountains, and equatorial Atlantic coast. Additional high MCS rainfall (12 - 26 mm
665 day^{-1}) occurs in the southern continental interior (16° E- 25° E) and along the southern Atlantic
666 coast in boreal spring and throughout the northern continental interior (13° E- 22° E) in boreal fall.
667 An MCS percent contribution of $\geq 80\%$ occurs wherever the MCS rainfall exceeds 4 mm day^{-1} .
- 668 • At 04Z, strong MCS rainfall (8 - 12 mm day^{-1}) occurs close to the continental interior biased
669 toward the east. Here an MCS percent contribution of $\geq 80\%$ occurs wherever average MCS
670 rainfall exceeds 2 mm day^{-1} . An MCS percent contribution of $\geq 90\%$ occurs over the northern
671 Congo River in both equinoctial seasons and additionally over the southern Congo River in
672 boreal fall.

- 673 • At the 10Z minimum, MCS rainfall occurs primarily in the continental interior (15°E-25°E) with
674 a percent contribution of $\geq 70\%$.

675

676 In the solstitial seasons,

- 677 • In contrast to the equinoctial seasons, the diurnal cycle of MCS rainfall is not homogenous across
678 regions or seasonally within regions.
- 679 • In the summer season in both hemispheres, the diurnal cycle of MCS rainfall is unimodal south of
680 the equator but it is bimodal between 0°-5°N. Between 5°N-10°N it is continuous throughout the
681 afternoon and night.
- 682 • During the winter, average MCS rainfall remains near 0 mm day⁻¹ through the diurnal cycle
683 beyond 5° of the equator.
- 684 • In both seasons, MCS rainfall maxima at 15Z occur along the eastern and western boundaries to
685 the west of high terrain. Maxima in austral summer are lower than in other seasons (14-18 mm
686 day⁻¹) and have the smallest areal extent.
- 687 • At 04Z, high MCS rainfall in austral summer (8-12 mm day⁻¹) occurs primarily in the continental
688 interior toward the east, similar to the equinoctial regions. In boreal summer, high MCS rainfall
689 (8-12 mm day⁻¹) does not occur in the continental interior but instead occurs in the northwestern
690 portion of the basin.
- 691 • At the 10Z minimum, MCS rainfall occurs in the continental interior with a percent contribution
692 of $\geq 70\%$, and also in NW Congo (9°E-25°E), similar to equinoctial seasons.

693

694 Results from examining larger MCSs, with an area $\geq 10,000 \text{ km}^2$ and rain rates exceeding 25 mm day⁻¹ are
695 as follows:

- 696 • Larger systems follow the seasonality and distribution of the total population of MCSs but there
697 are differences in the diurnal cycle.

- 698 • The contribution of larger MCSs to total MCS rainfall increases linearly through the diurnal cycle
699 from a minimum at mid-day (10Z-13Z; 60%-80%) to a maximum in the early morning (06Z-07Z;
700 83%-92%). Equatorial regions (within 5° of the equator) remain above 80% throughout the
701 diurnal cycle. Percent contributions mostly above 80% indicate that the sensitivity to the choice
702 of the 2000 km² size threshold is small.
- 703 • The MCS rainfall peak at 04Z has a greater contribution from larger MCSs compared to the
704 afternoon peak at 15Z.

705
706 MCSs that deliver intense precipitation, greater than 100 mm day⁻¹, have the following
707 characteristics:

- 708 • Intense storms have the same seasonality and distribution as the total MCS population, but there
709 are differences in the diurnal cycle.
- 710 • Diurnal cycles differ depending on season and region. However, in regions with a defined
711 maximum, it always occurs at 04Z. The contribution of intense storms to total MCS rainfall
712 ranges from 20%-55% to in the equinoctial seasons, and from 25%-68% in the solstitial seasons.
713 Large decreases in MCS percent contribution (40-80%) indicates some sensitivity to the 25 mm
714 day⁻¹ threshold, particularly when MCS rainfall is low.
- 715 • Depending on the season and region, the MCS rainfall peak at 04Z has a greater contribution
716 from more intensely raining MCSs than the peak at 15Z.

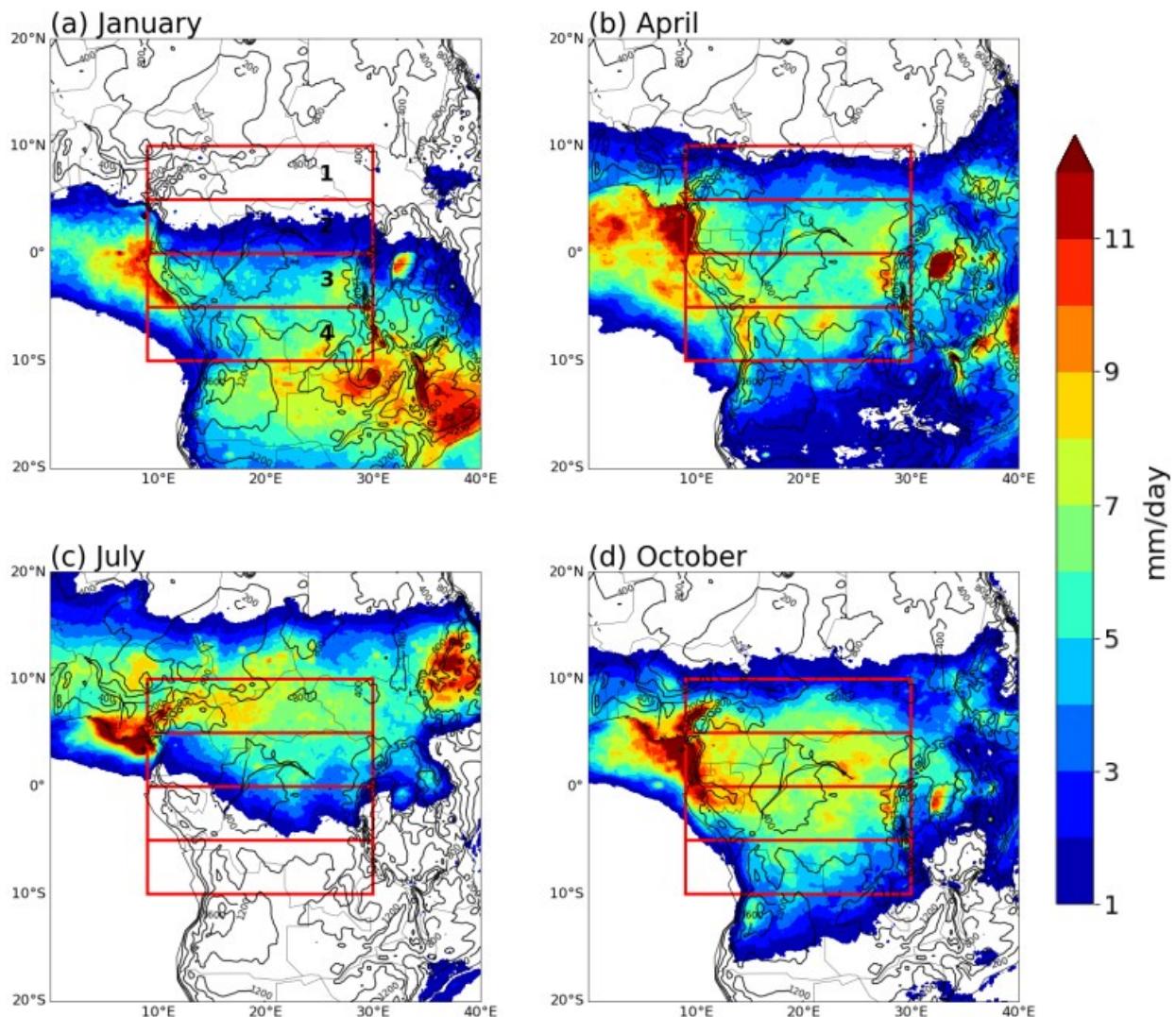
717
718 Connections to the large-scale environment are as follows:

- 719 • Seasonal and diurnal MCS rainfall maxima are associated with negative (unstable) MSE
720 profiles in the lower troposphere.
- 721 • This large scale instability is driven seasonally by differences in moisture and diurnally by
722 differences in temperature.

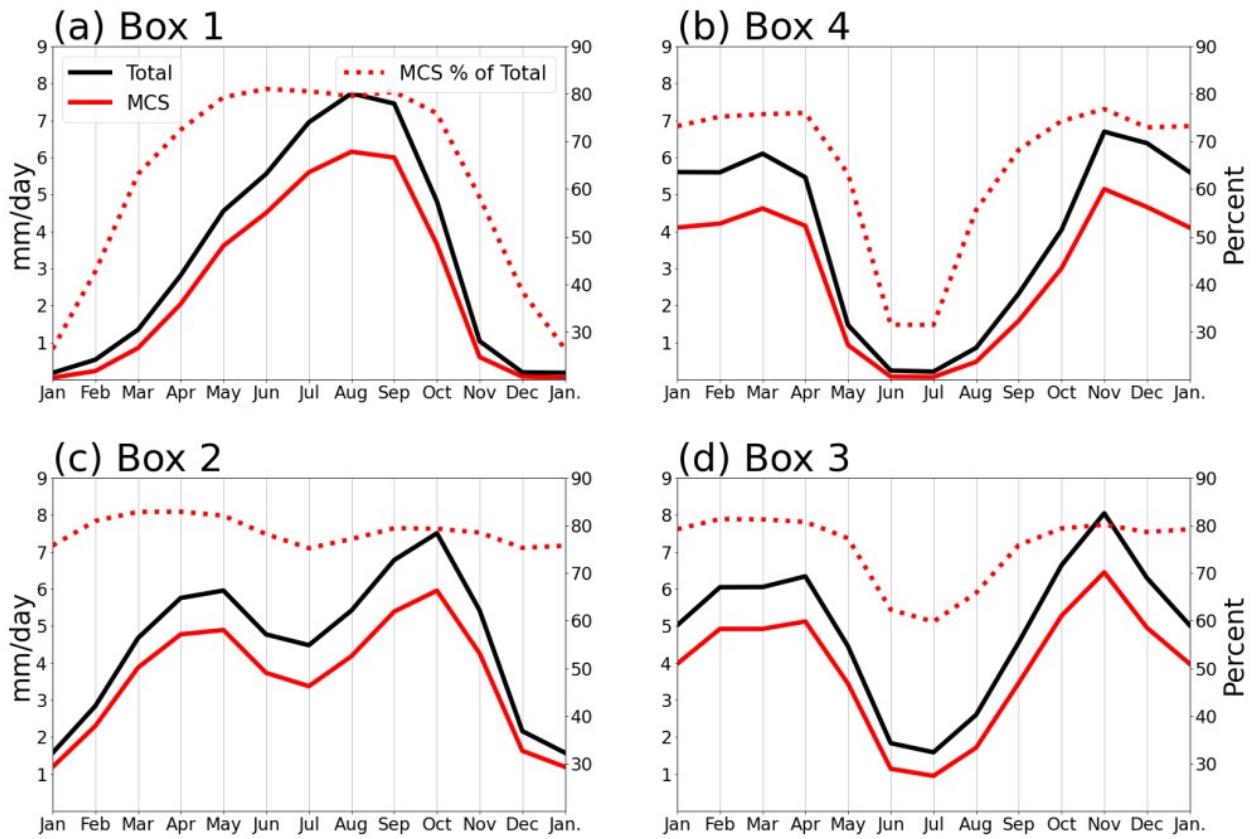
- 723 • Lower nighttime temperatures that support atmospheric stability are uniform throughout the
724 Congo.
- 725 • The moisture levels that largely control atmospheric stability vary more strongly in the
726 boundary regions than in the equatorial regions, and this leads to stronger seasonality of MCS
727 rainfall in the boundary regions.

728
729 This analysis shows that MCS activity in the Congo Basin exhibits complex variations on seasonal
730 and diurnal time scale. Further developing our understanding of these systems is vital to advancing our
731 ability to capture these systems in models and predict their behavior on all time scales. This detailed study
732 of MCS activity in the Congo Basin would not have been possible without the existence of the IMERG
733 dataset, and especially its extension from seven to twenty years by the incorporation of TRMM data.
734 Twenty years of observations is minimal for capturing a climatology, and probably inadequate for
735 detecting precipitation trends. Continued and enhanced production of high resolution datasets at the
736 climatological scale is vital to improve our current understanding of Congo Basin rainfall, especially as
737 the climate continues to change through the twenty-first century.

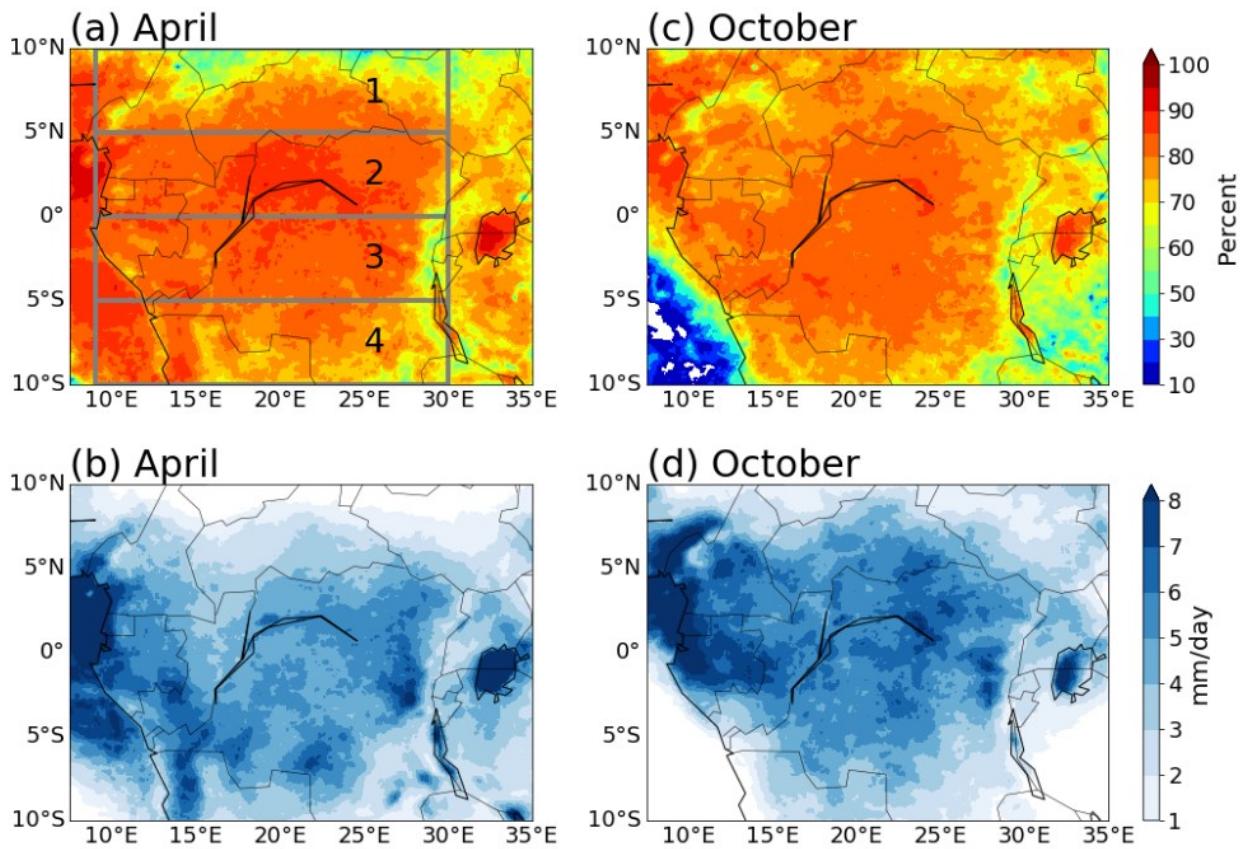
738
739 **Acknowledgements:** Support from NSF Award #26-1016-20 is gratefully acknowledged. The authors
740 acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for
741 providing database resources that have contributed to the research results reported within this paper.
742 URL: <http://www.tacc.utexas.edu>. The Grid Analysis and Display System software (GrADS) developed
743 at COLA/IGES was used for generating select figures. We also thank the reviewers for their insight.

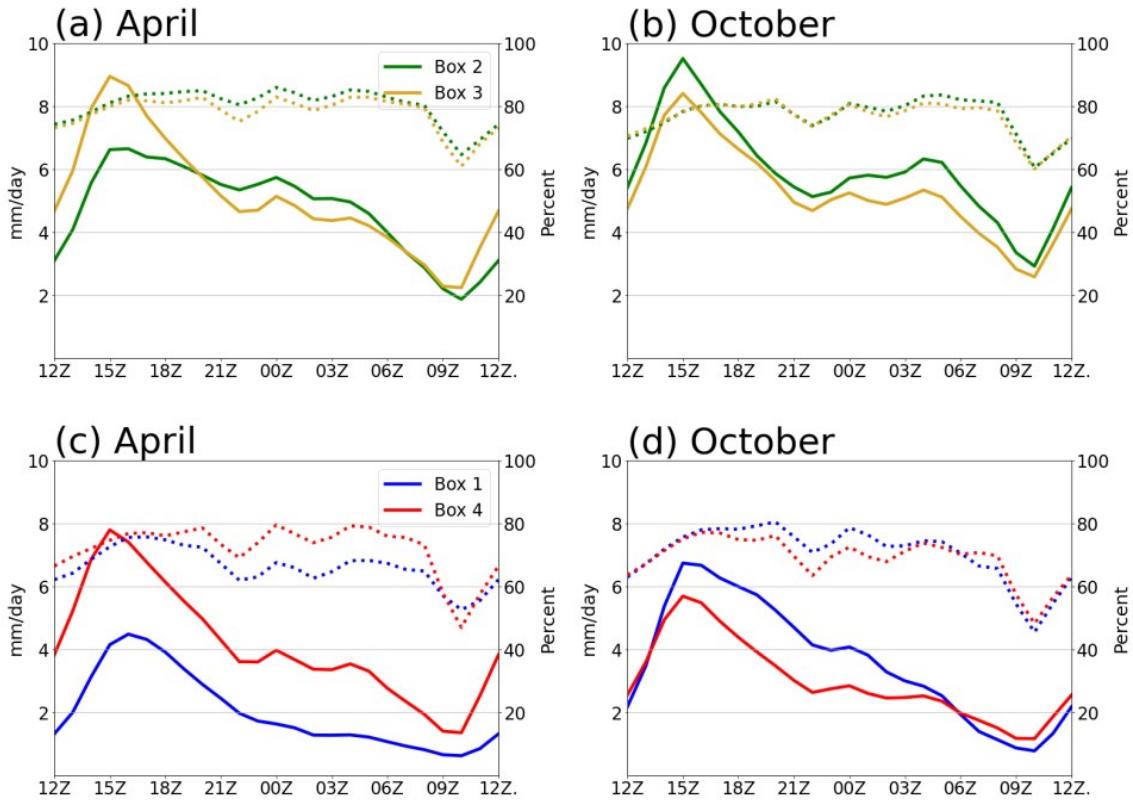

744
745
746

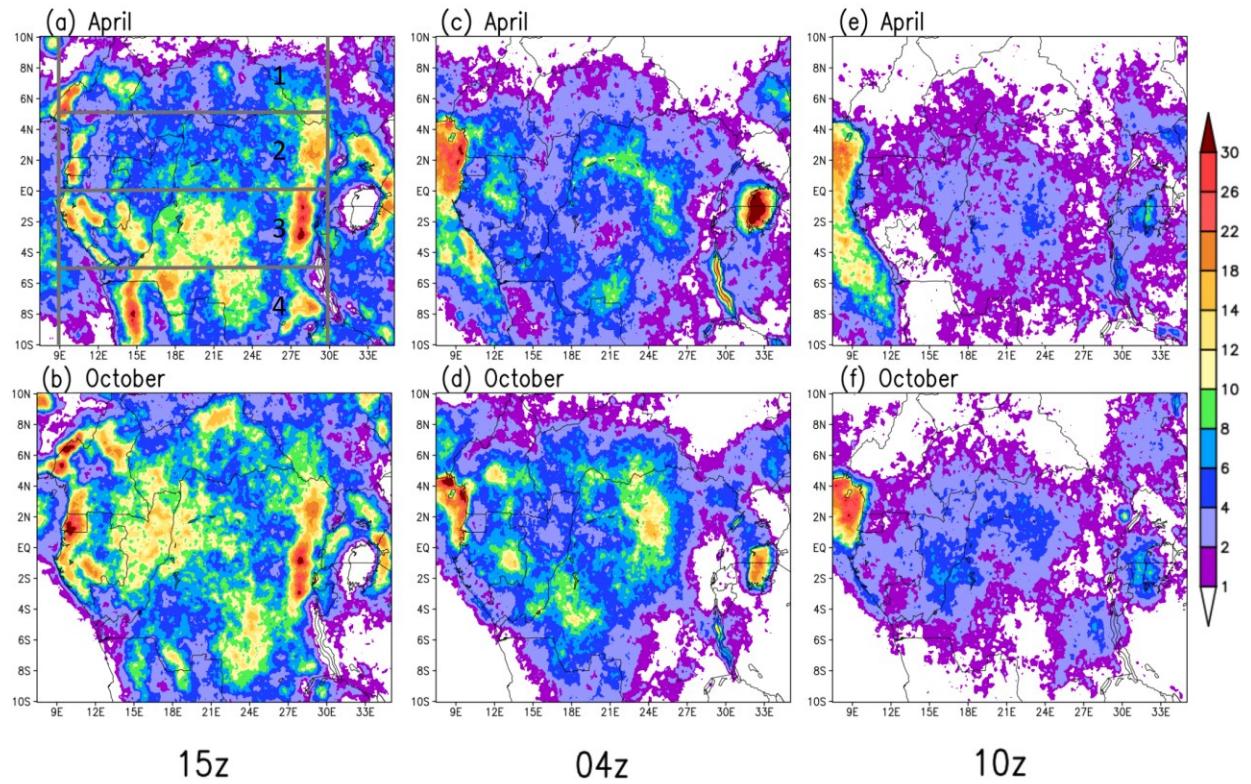
References

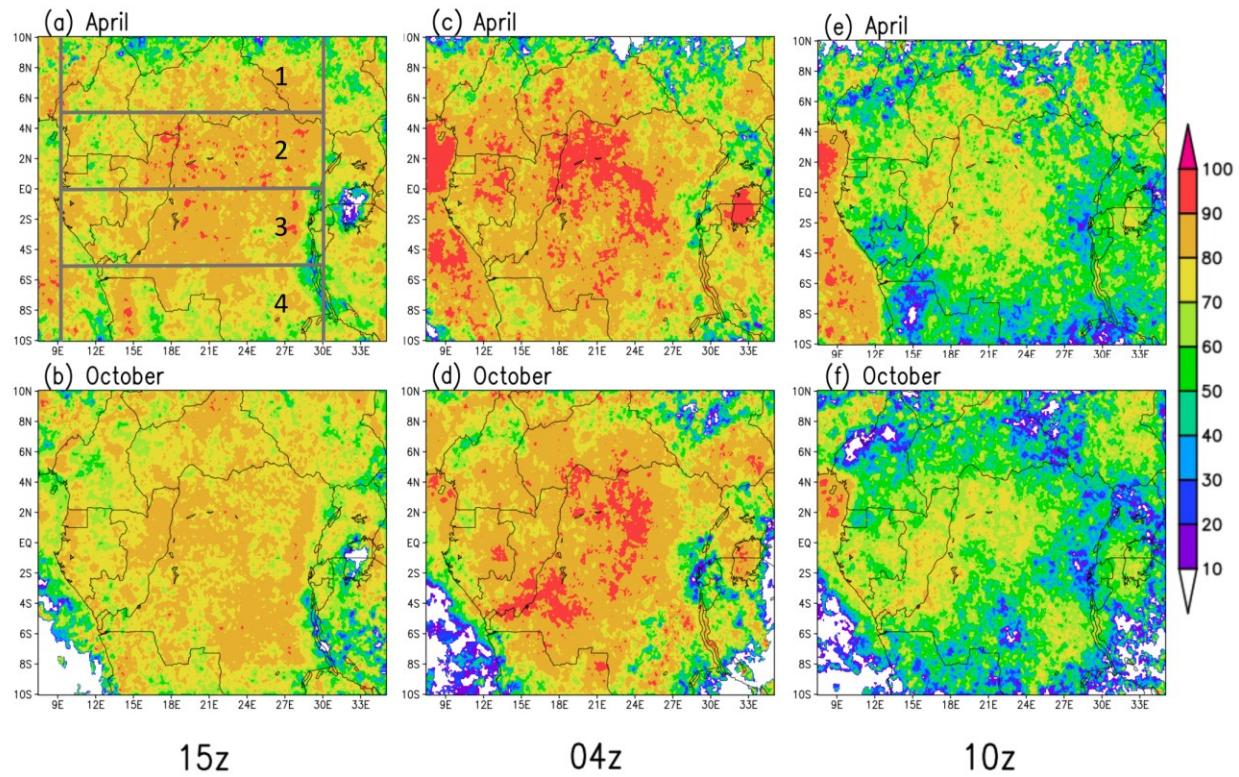

- Albrecht, Rachel I., Steven J. Goodman, Dennis E. Buechler, Richard J. Blakeslee, and Hugh J. Christian. “Where Are the Lightning Hotspots on Earth?” *Bulletin of the American Meteorological Society* 97, no. 11 (2016): 2051–68. <https://doi.org/10.1175/BAMS-D-14-00193.1>.
- Balas, N., S. E. Nicholson, and D. Klotter. “The Relationship of Rainfall Variability in West Central Africa to Sea-Surface Temperature Fluctuations.” *International Journal of Climatology* 27, no. 10 (2007): 1335–49. <https://doi.org/10.1002/joc.1456>.
- Cook, Kerry H., Vizy, Edward K. “Hydrodynamics of Regional and Seasonal Variations in Congo Basin Precipitation” Submitted to *Climate Dynamics* (2022)
- Dezfouli, Amin K., Charles M. Ichoku, George J. Huffman, Karen I. Mohr, John S. Selker, Nick van de Giesen, Rebecca Hochreutener, and Frank O. Annor. “Validation of IMERG Precipitation in Africa.” *Journal of Hydrometeorology* 18, no. 10 (2017): 2817–25. <https://doi.org/10.1175/JHM-D-17-0139.1>.
- Durkee, Joshua D., Thomas L. Mote, and J. Marshall Shepherd. “The Contribution of Mesoscale Convective Complexes to Rainfall across Subtropical South America.” *Journal of Climate* 22, no. 17 (2009): 4590–4605. <https://doi.org/10.1175/2009JCLI2858.1>.
- Dyer, Ellen L. E., Dylan B. A. Jones, Jesse Nusbaumer, Harry Li, Owen Collins, Guido Vettoretti, and David Noone. “Congo Basin Precipitation: Assessing Seasonality, Regional Interactions, and Sources of Moisture: CONGO BASIN: REGIONAL MOISTURE SOURCES.” *Journal of Geophysical Research: Atmospheres* 122, no. 13 (2017): 6882–98. <https://doi.org/10.1002/2016JD026240>.
- Hartman, Adam T. “Tracking Mesoscale Convective Systems in Central Equatorial Africa.” *International Journal of Climatology* 41, no. 1 (2021): 469–82. <https://doi.org/10.1002/joc.6632>.
- Herrmann, Stefanie M., and Karen I. Mohr. “A Continental-Scale Classification of Rainfall Seasonality Regimes in Africa Based on Gridded Precipitation and Land Surface Temperature Products.” *Journal of Applied Meteorology and Climatology* 50, no. 12 (2011): 2504–13. <https://doi.org/10.1175/JAMC-D-11-024.1>.
- Houze, Robert. “Cloud Clusters and Large-Scale Vertical Motions in the Tropics.” *Journal of the Meteorological Society of Japan* 60, no. 1 (1981): 396–410.
- Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., et al. (2019). Algorithm Theoretical Basis Document (ATBD) version 06. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA (PDF) *Differences in the Diurnal Variation of Precipitation Estimated by Spaceborne Radar, Passive Microwave Radiometer, and IMERG*.
- Jackson, Brian, Sharon E. Nicholson, and Douglas Klotter. “Mesoscale Convective Systems over Western Equatorial Africa and Their Relationship to Large-Scale Circulation.” *Monthly Weather Review* 137, no. 4 (April 1, 2009): 1272–94. <https://doi.org/10.1175/2008MWR2525.1>.
- Laing, Arlene G., and J. Michael Fritsch. “Mesoscale Convective Complexes in Africa.” *Monthly Weather Review* 121 (1993): 2254–63.
- Laing, Arlene G., J. Michael Fritsch, and Andrew J. Negri. “Contribution of Mesoscale Convective Complexes to Rainfall in Sahelian Africa: Estimates from Geostationary Infrared and Passive Microwave Data.” *Journal of Applied Meteorology* 38 (1998): 957–64.
- Laing, Arlene G., Richard E. Carbone, and Vincenzo Levizzani. “Cycles and Propagation of Deep Convection over Equatorial Africa.” *Monthly Weather Review* 139, no. 9 (2011): 2832–53. <https://doi.org/10.1175/2011MWR3500.1>.
- Laurent, H., N. D’Amato, and T. Lebel. “How Important Is the Contribution of the Mesoscale Convective Complexes to the Sahelian Rainfall?” *Physics and Chemistry of the Earth* 23, no. 5–6 (1998): 629–33.
- Leary, Colleen A., and Robert A. Houze. “The Structure and Evolution of Convection in a Tropical Cloud Cluster.” *Journal of the Atmospheric Sciences* 36, no. 3 (1979): 437–57. [https://doi.org/10.1175/1520-0469\(1979\)036<0437:TSAEOC>2.0.CO;2](https://doi.org/10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2).
- Liu, Weiran, Kerry H. Cook, and Edward K. Vizy. “The Role of Mesoscale Convective Systems in the Diurnal Cycle of Rainfall and Its Seasonality over Sub-Saharan Northern Africa.” *Climate Dynamics* 52, no. 1–2 (2019): 729–45. <https://doi.org/10.1007/s00382-018-4162-y>.

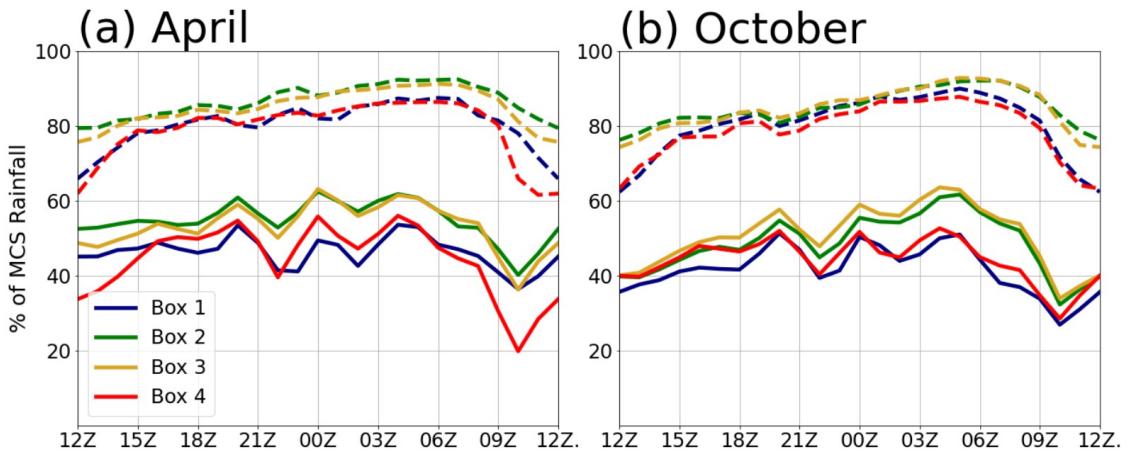
- Maidment, Ross I., Richard P. Allan, and Emily Black. "Recent Observed and Simulated Changes in Precipitation over Africa." *Geophysical Research Letters* 42, no. 19 (2015): 8155–64. <https://doi.org/10.1002/2015GL065765>.
- Mohr, Karen I., and Edward J. Zipser. "Mesoscale Convective Systems Defined by Their 85-GHz Ice Scattering Signature Size and Intensity Comparison over Tropical Oceans and Continents." *Monthly Weather Review* 124 (1996): 2417–37.
- Nesbitt, Stephen W., and Edward J. Zipser. "The Diurnal Cycle of Rainfall and Convective Intensity According to Three Years of TRMM Measurements." *Journal of Climate* 16 (2003): 1456–75.
- Nesbitt, Stephen W., Robert Cifelli, and Stephen A. Rutledge. "Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features." *Monthly Weather Review* 134 (2005): 2702–21.
- Nicholson, S. E., B. Some, J. McCollum, E. Nelkin, D. Klotter, Y. Berte, B. M. Diallo, et al. "Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part II: Validation of TRMM Rainfall Products." *Journal of Applied Meteorology* 42 (2003): 1355–68.
- Nicholson, Sharon E. "A Revised Picture of the Structure of the 'Monsoon' and Land ITCZ over West Africa." *Climate Dynamics* 32, no. 7–8 (2009): 1155–71. <https://doi.org/10.1007/s00382-008-0514-3>.
- Nicholson, S. E., D. Klotter, A. K. Dezfuli, and L. Zhou. "New Rainfall Datasets for the Congo Basin and Surrounding Regions." *Journal of Hydrometeorology* 19, no. 8 (2018): 1379–96. <https://doi.org/10.1175/JHM-D-18-0015.1>.
- Petersen, Walter A., and Stephen A. Rutledge. "Regional Variability in Tropical Convection: Observations from TRMM." *Journal of Climate* 14 (March 2001): 3566–86.
- Pokam, Wilfried M., Caroline L. Bain, Robin S. Chadwick, Richard Graham, Denis Jean Sonwa, and Francois Mkankam Kamga. "Identification of Processes Driving Low-Level Westerlies in West Equatorial Africa." *Journal of Climate* 27, no. 11 (2014): 4245–62. <https://doi.org/10.1175/JCLI-D-13-00490.1>.
- Roca, R., T. Fiolleau, and D. Bouniol. "A Simple Model of the Life Cycle of Mesoscale Convective Systems Cloud Shield in the Tropics." *Journal of Climate* 30, no. 11 (2017): 4283–98. <https://doi.org/10.1175/JCLI-D-16-0556.1>.
- Tan, Jackson, George J. Huffman, David T. Bolvin, and Eric J. Nelkin. "Diurnal Cycle of IMERG V06 Precipitation." *Geophysical Research Letters* 46, no. 22 (2019): 13584–92. <https://doi.org/10.1029/2019GL085395>.
- Vemado, Felipe, and Augusto José Pereira Filho. "Convective Rainfall in Lake Victoria Watershed and Adjacent Equatorial Africa." *Atmospheric and Climate Sciences* 11, no. 03 (2021): 373–97. <https://doi.org/10.4236/acs.2021.113022>.
- Vizy, Edward K., and Kerry H. Cook. "Mesoscale Convective Systems and Nocturnal Rainfall over the West African Sahel: Role of the Inter-Tropical Front." *Climate Dynamics* 50, no. 1–2 (2018): 587–614. <https://doi.org/10.1007/s00382-017-3628-7>.
- Vizy, Edward K., and Kerry H. Cook. "Understanding the Summertime Diurnal Cycle of Precipitation over Sub-Saharan West Africa: Regions with Daytime Rainfall Peaks in the Absence of Significant Topographic Features." *Climate Dynamics* 52, no. 5–6 (2019): 2903–22. <https://doi.org/10.1007/s00382-018-4315-z>.
- Washington, Richard, Rachel James, Helen Pearce, Wilfried M. Pokam, and Wilfran Moufouma-Okia. "Congo Basin Rainfall Climatology: Can We Believe the Climate Models?" *Philosophical Transactions of the Royal Society B: Biological Sciences* 368, no. 1625 (2013): 20120296. <https://doi.org/10.1098/rstb.2012.0296>.
- Zhang, Gang, Kerry H. Cook, and Edward K. Vizy. "The Diurnal Cycle of Warm Season Rainfall over West Africa. Part I: Observational Analysis." *Journal of Climate* 29, no. 23 (2016): 8423–37. <https://doi.org/10.1175/JCLI-D-15-0874.1>.
- Zhao, Siyu, and Kerry H. Cook. "Influence of Walker Circulations on East African Rainfall." *Climate Dynamics* 56, no. 7–8 (2021): 2127–47. <https://doi.org/10.1007/s00382-020-05579-7>.
- Zipser, E. J. "Use of a Conceptual Model of the Life-Cycle of Mesoscale Convective Systems to Improve Very Short-Range Forecasts." *Nowcasting* K.A. Browning, Ed., no. Academic Press (1982): 191–204.

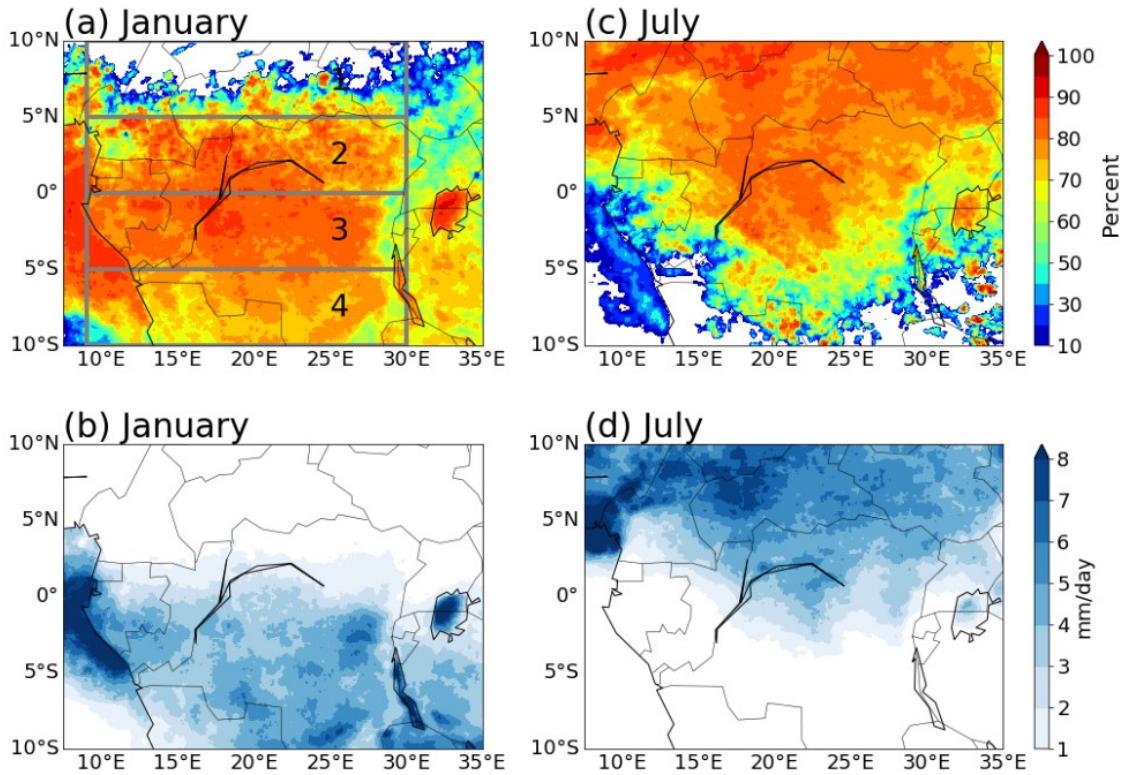

Zipser, E. J., Daniel J. Cecil, Chuntao Liu, Stephen W. Nesbitt, and David P. Yorty. "WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH?" *Bulletin of the American Meteorological Society* 87, no. 8 (2006): 1057–72. <https://doi.org/10.1175/BAMS-87-8-10>

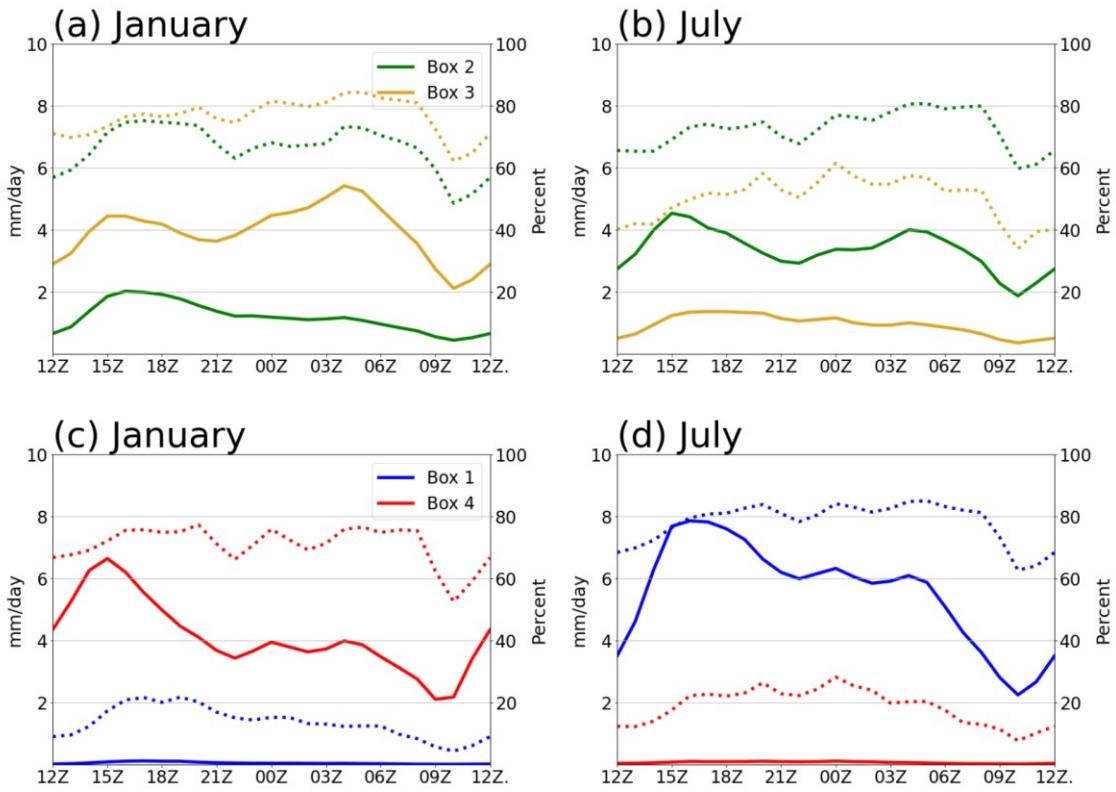

Figure 1. 2001-2020 IMERG climatological precip (mm/day) for (a) January, (b) April, (c) July, and (d) October. Elevation is shown in 400m contour intervals. Location of Congo Basin analysis region (a, red box) and smaller rainfall averaging regions: box 1 (10°N-5°N), box 2 (5°N-0°), box 3 (0°-5°S), and box 4 (5°S-10°S). All averaging regions extend from the Atlantic coast to 30°E.

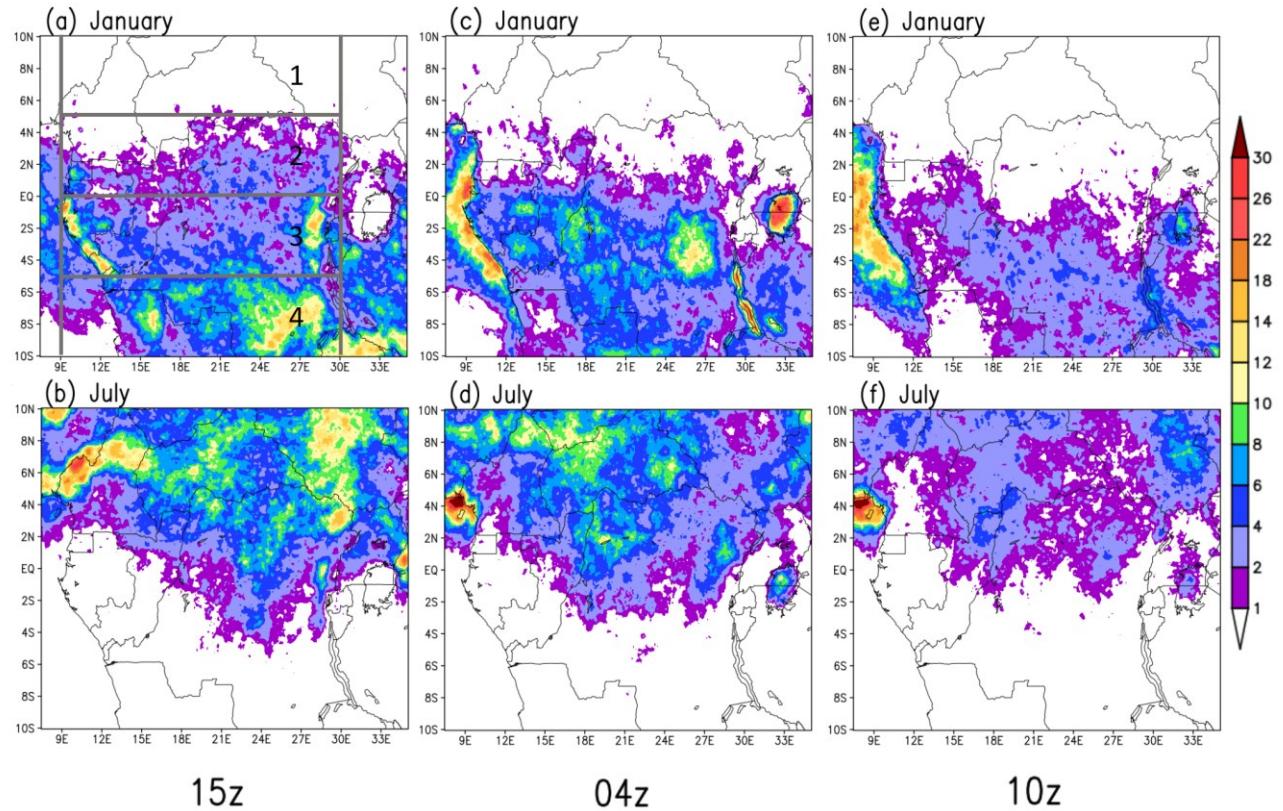

Figure 2. 2000-2020 climatological monthly-mean MCS rainfall (solid red line; mm day^{-1}), total rainfall (solid black line; mm day^{-1}) and percentage of total rainfall delivered by MCSs (dotted red line; percent) averaged over the boundary regions (a) box 1 and (b) box 4 and the equatorial regions (c) box 2 and (d) box 3 shown in Figure 1. Rainfall over water is excluded.

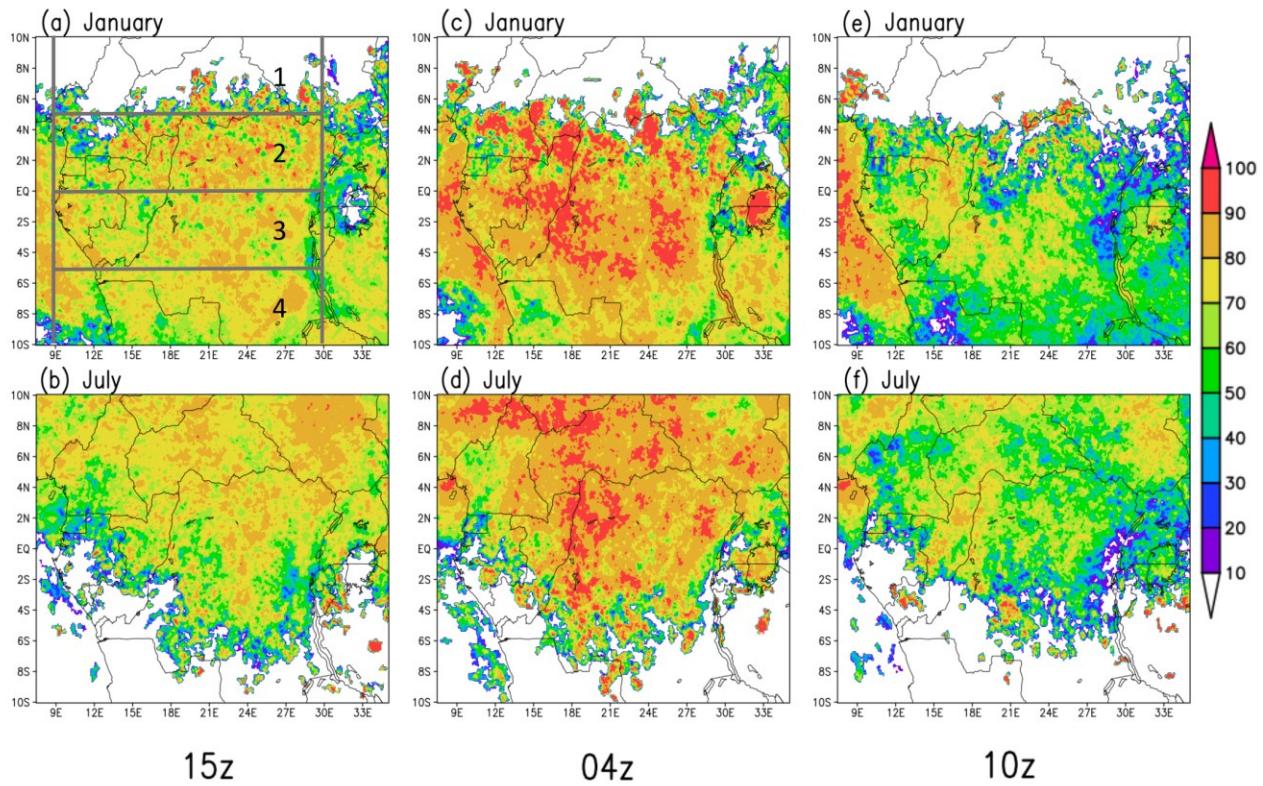

Figure 3. April climatological (a) MCS percentage contribution to total rainfall (%) and (b) MCS rainfall (mm day^{-1}) at 0.1° resolution. (c) and (d) are the same as (a) and (b), respectively, but for October.

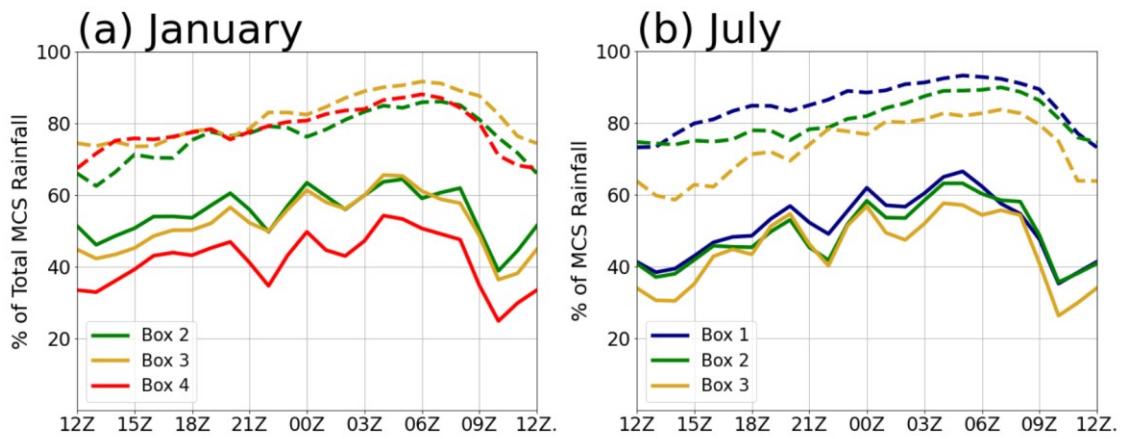

Figure 4. The diurnal cycles of MCS rainfall (solid lines; mm day^{-1}) and MCS percentage contribution (dotted lines, percent) for the box 2 and box 3 averaging regions for (a) April and (b) October. (c)-(d) is the same as (a)-(b), respectively, but for box 1 and box 4. Rainfall over water is excluded.

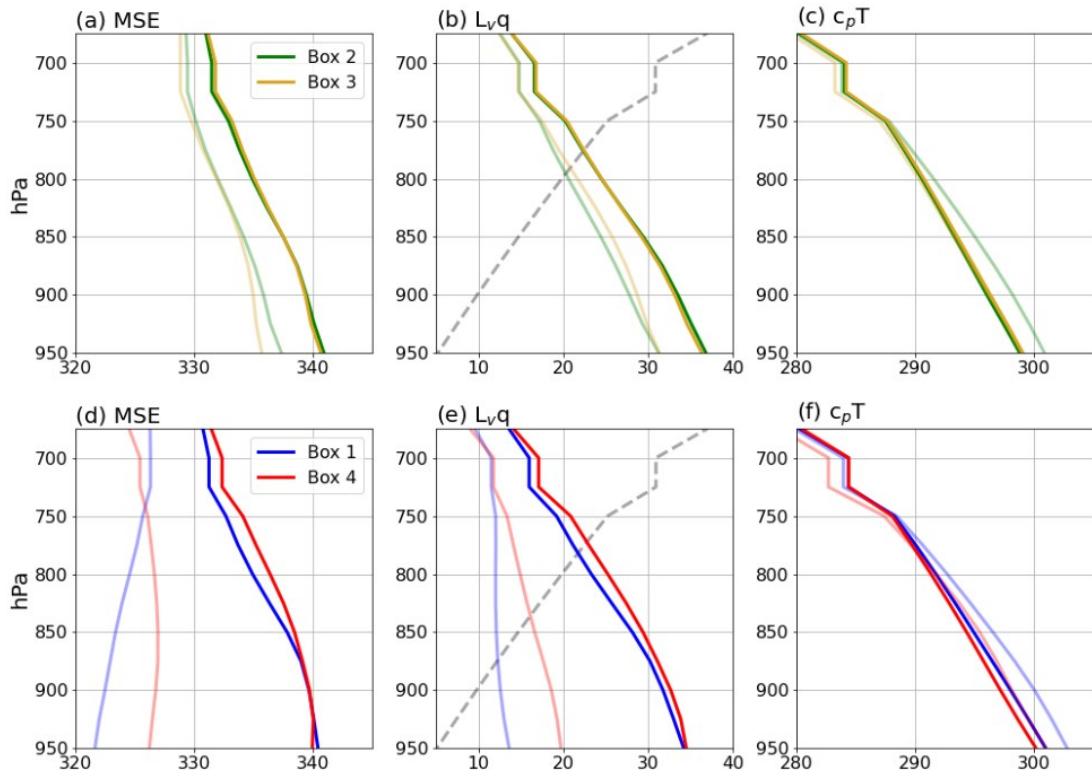

Figure 5. Climatological MCS rainfall (mm day^{-1}) at 0.1° resolution for April and October respectively at (a, b) 15Z, (c, d) 04Z, and (e, f) 10Z.


Figure 6. Same as Figure 5, but for MCS percent contribution (%) to total rainfall.


Figure 7. Climatological percentage of MCS rainfall contributed by MCSs at an increased size threshold (dashed lines; 25 mm day^{-1} , $10,000 \text{ km}^2$) and at an increased rain rate threshold (solid lines, 100 mm day^{-1} , 2000 km^2) for Figure 1 averaging regions in (a) April and (b) October. Percent changes are calculated from the initial MCS criteria: 25 mm day^{-1} and 2000 km^2 . Rainfall over water is excluded.


Figure 8. January climatological (a) MCS percentage contribution to total rainfall (%) and (b) MCS rainfall (mm day^{-1}) at 0.1° resolution. (c) and (d) are the same as (a) and (b), respectively, but for July.


Figure 9. The diurnal cycles of MCS rainfall (solid lines; mm day) and MCS percentage contribution (dotted lines; %) for the box 2 and box 3 averaging regions for (a) January and (b) July. (c) and (d) are the same as (a) and (c), respectively, but for box 1 and box 4. Rainfall over water is excluded.


Figure 10. Climatological MCS rainfall (mm day^{-1}) at 0.1° resolution for January and July respectively at (a, b) 15Z, (c, d) 04Z, and (e, f) 10Z.

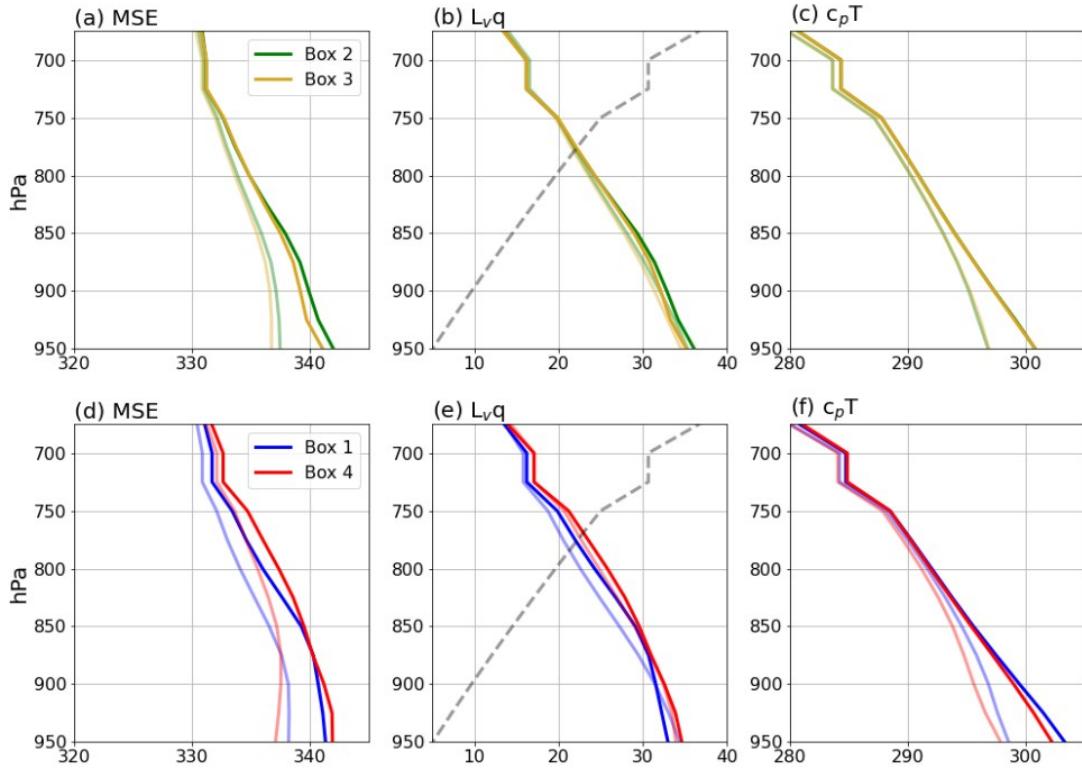

Figure 11. Same as Figure 10, but for MCS percent contribution to total rainfall.

Figure 12. Climatological percentage of MCS rainfall contributed by MCSs at an increased size threshold (dashed lines; 25 mm day^{-1} , $10,000 \text{ km}^2$) and at an increased rain rate threshold (solid lines, 100 mm day^{-1} , 2000 km^2) for Figure 1 averaging regions in **(a)** January and **(b)** July. Percent changes are calculated from the initial MCS criteria: 25 mm day^{-1} and 2000 km^2 . Rainfall over water is excluded.

Figure 13. 1979-2020 ERA5 vertical profiles of MSE (a), L_vq (b) and c_pT (c) averaged over the box 2 and 3 averaging regions for respective wet (dark lines) and dry (light lines) seasons. (d) – (f) are the same as (a) – (c) but for boxes 1 and 4. Units are in $10^3 \text{ m}^2 \text{ s}^{-2}$. Geopotential is included in panel (b) and (e) (dashed line).

Figure 14. 1979-2020 ERA5 vertical profiles of MSE (a), L_vq (b) and c_pT (c) averaged over the box 2 and 3 averaging regions at 15Z (dark lines) and 04Z (light lines) for respective wet seasons. (d) – (f) are the same as (a) – (c) but for boxes 1 and 4. Units are in $10^3 \text{ m}^2 \text{ s}^{-2}$. Geopotential is included in panel (b) and (e) (dashed line).