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ABSTRACT: Carbic anhydride is an underappreciated starting material for
3D-printable, non-hydrogel photopolymers. Compared with other norbor-
nene precursors, carbic anhydride is cheaper and reactive via aminolysis. As
a result, the generalized and efficient functionalization with carbic anhydride
can increase the utilization of thiol-norbornene photopolymers. Here, we
report carbic anhydride’s catalyst-free condensation with two commodity
polymers: amine-functionalized polypropylene glycol and polydimethylsilox-
ane. The reaction completes in 1 h, produces water as the only byproduct,
and does not require purification. It is therefore affordable, facile, and green.
Mixing the product with thiol cross-linkers and the appropriate photo-
additives produces photopolymers that are printable via Digital Light
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Processing. The photopolymers exhibit tunable tensile properties and a functional surface by varying the polymer backbone and thiol
stoichiometry. Moreover, the photopolymers are 3D-printed into true-to-scale human aorta models and porous scaffolds with high
resolution. The simple yet versatile platform will benefit additive manufacturing of soft materials and beyond.

hiol-norbornene photopolymers are excellent for vat
photopolymerization due to their facile click chemistry."
Nevertheless, their 3D-printing is mainly limited to hydrogels
that comprise norbornene-functionalized gelatin, hyaluronic
acid, methylcellulose, and chitosan.”* An exception is 4Degra,
a 3D-printable photopolymer that comprises polycarbonate
with pendant norbornenes.* In addition, we recently reported a
3D-printable triblock copolyester comprising norbornene
repeating units.” Nevertheless, thiol-norbornene photopoly-
mers are difficult to scale because their synthesis uses toxic
coupling agents, laborious purification, and, in some cases,
moisture-sensitive catalysts. While thiol cross-linkers are
commodity chemicals, a common norbornene-functionalized
macromer—such as norbornene-functionalized polyethylene
glycol—costs $315 for 1 g.° This is more expensive than a 12K
resolution Digital Light Processing (DLP) printer (ANY-
CUBIC Photon Mono MS5s, $269).” Because most DLP
printers need at least 30 mL of photopolymer to coat the
bottom of the resin vat, available norbornene-functionalized
macromers are too cost-prohibitive to 3D print at scale.
Thus, scalable thiol-norbornene photopolymers need a more
affordable starting material and a more scalable synthesis.
Among the norbornene precursors, carbic anhydride (CA) is
the cheapest and greenest. For example, CA is produced via a
Diels—Alder reaction of cyclopentadiene with maleic anhy-
dride: the latter can be derived from sustainable feedstocks and
hydrolyzed to maleic acid, a natural metabolite.® This sharply
contrasts S-norbornene-2-carboxylic acid, which uses acrylic
acid—a nonsustainable and carcinogenic feedstock—as the
dienophile. On the other hand, CA reacts via alcoholysis or
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aminolysis, thermodynamically favorable processes that can
take place without a catalyst. If water is removed from the
reaction mixture, CA’s reaction with amine yields norbornene
dicarboximide.” Adapting this strategy—ryet to be explored in
vat photopolymerization—will make the synthesis of thiol-
norbornene photopolymers greener and more economical.

The norbornene dicarboximide-functionalized polymers are
synthesized from amine-functionalized PPG and PDMS
(Scheme 1). Toluene removes the water azeotropically and
affords a homogeneous reaction mixture. Regardless of the
molecular weight or the amine’s steric hindrance, all reactions
proceed to ~100% conversion within 1 h, as verified by water
collected in a Dean—Stark trap. "H NMR indicates the clean
formation of norbornene dicarboximide from the singlet at
6.0—6.1 ppm (Figure 1). Except for 7kPDMS-SCA, all
products are transparent liquids. 7kPDMS-SCA’s opacity
potentially arises from the partial crystallinity of the pendant
norbornene dicarboximide propyl side chains. Overall, this
green, catalyst-free, and efficient synthesis uses recyclable
toluene, produces water, and does not require any purification,
thus reducing the cost and difficulty of norbornene
functionalization.

S Macro Letters)

Received: May 19, 2024
Revised:  July 3, 2024
Accepted: July 9, 2024
Published: July 11, 2024

https://doi.org/10.1021/acsmacrolett.4c00334
ACS Macro Lett. 2024, 13, 915-920


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Warrick+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nathaniel+Wright"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yadong+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmacrolett.4c00334&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/amlccd/13/8?ref=pdf
https://pubs.acs.org/toc/amlccd/13/8?ref=pdf
https://pubs.acs.org/toc/amlccd/13/8?ref=pdf
https://pubs.acs.org/toc/amlccd/13/8?ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsmacrolett.4c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/macroletters?ref=pdf
https://pubs.acs.org/macroletters?ref=pdf

ACS Macro Letters

pubs.acs.org/macroletters

Scheme 1. Synthesis of Norbornene Dicarboximide Polymers from Amine-Functionalized Polypropylene Glycol (PPG) or

Polydimethylsiloxane (PDMS)“
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“The prefix M,, represents the average molecular weight of the amine-functionalized starting material. The number preceding CA represents the
number of norbornene dicarboximide groups in a single chain. For example, amine-terminated PPG (M, = 2 kDa) affords 2kPPG-2CA.
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Figure 1. '"H NMR spectra of norbornene dicarboximide-function-
alized polymers showing their end group structure (500 MHz,
CDCl,). Full spectra are in the Supporting Information (Figures S1
and S2).

Two thiol cross-linkers, pentaerythritol tetrakis(3-mercapto-
propionate) (PETMP) and 4—6% (mercaptopropyl)-
methylsiloxane]-dimethylsiloxane copolymer (polySH), are
used to study photopolymerization. PETMP is miscible with
PPG-based polymers but not with PDMS-based polymers. As a
result, 0.9kPDMS-2CA:PETMP is a milky-white mixture. We
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attempted to solubilize PDMS-based polymers with polySH,
which has an M, of 6—8 kDa and five mercaptopropyl groups
per chain on average. However, only SkPDMS-2CA:polySH is
transparent. All immiscible mixtures remain stable emulsions
after overnight storage without agitation. 0.9kPDMS-2CA:po-
lySH forms stable, micellar aggregates via an unfavorable
interaction between the nonpolar PDMS backbone and the
polar PETMP. The relatively polar norbornene dicarboxamide
is probably at the exterior to react with PETMP. The
immiscibility of 7kPDMS-SCA:polySH is more challenging
to explain because 7kPDMS-5CA begins as a milky-white
liquid. Favorable interactions between norbornene dicarbox-
imide and mercaptopropyl side chains should still occur.
Regardless, aggregate formation may lead to a heterogeneous
network and affect the mechanical properties of 3D-printed
materials.'” However, further investigation is outside the scope
of this report, and the homogenization of PDMS in aliphatic
polymers to improve their mechanical properties is still under
active research.'’

To assess the printability of norbornene dicarboximide
photopolymers, we investigated their photorheology with
400—500 nm light to capture the common 405 nm wavelength
used in many resin printers. Judging by the crossover point of
loss modulus and storage modulus, only SkPPG-3CA:PETMP
cross-links too slowly (Figure S3) for DLP printing (385 or
40S nm). Cross-linked SkPPG-3CA:PETMP is also extremely
soft and tacky, indicative of a weak network not suitable for
DLP 3D-printing. We initially suspected the partial norbor-
nene functionalization would lead to inefficient cross-linking.
However, diffusion NMR of SkPPG-3CA confirms all
norbornenes are covalently linked to the PPG backbone
(Figure S4). Therefore, SkPPG-3CA:PETMP’s weak mechan-
ical properties may arise from its imperfect network structures
(i.e, macrocycles that do not increase the cross-linking
density). All other photopolymers cross-link quickly, with
various crossover points (Figure 2, Figure S3) reflecting the
structure—property relationships. 7ZkPDMS-SCA:polySH cross-
links much faster than SkPDMS-2CA:polySH because the
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Figure 2. Photorheology and viscosity of representative photopolymers (names are abbreviated to their respective backbone; see Table 1 for
details). The photorheology data of 2kPPG and 7kPDMS are in Figure S3. Ultraviolet (UV) radiation (400—500 nm, 10 mW/cm?) is switched on
at 10 s (G, storage modulus; G”, loss modulus). The cross-linker is either polySH or PETMP, and all formulations use the same photoadditives.
Diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide (TPO) initiates UV cross-linking; 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) scavenges
radicals to increase resin shelf life and resolution; and 2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene (BBOT) absorbs UV to reduce UV penetration

depth.

Table 1. Properties of Various Photopolymers

Photopolymer” E (MPa)©
2kPPG-2CA:PETMP 3.0 + 0.1
0.9kPDMS-2CA:PETMP" 21 +0.1
7kPDMS-5CA:polySH 0.6 + 0.07
SkPDMS-2CA:polySH” 0.08 + 0.006

Ermn G (MPa)* T, (°C)¢
57% + 4% 11+ 01 —49
97% + 2% 1.5 + 0.1 -8
45% + 1% 0.2 + 0.07 N/A®
82% + 1% 0.03 + 0.001 N/A®

“All photopolymers are 3D printable. “Opaque photopolymers with a milky-white color. “Derived from uniaxial tensile testing (n = 3). E, Young’s
modulus; €,,,,, strain-at-failure; o,,,,,, ultimate tensile strength. “Measured via differential scanning calorimetry (DSC) on the second heating ramp.

“Not detected in the DSC temperature range (—80 to 120 °C).

former has a higher norbornene concentration. Given these
results, the heterogeneity of 0.9kPDMS-2CA:PETMP,
7kPDMS-5CA:polySH, and SkPDMS-2CA:polySH does not
jeopardize the photo-cross-linking. Lastly, the complex
viscosity of all formulations is well below S Pa-s (Figure 2),
which is the upper viscosity limit of commercial DLP
printers.'’ 2kPPG-2CA:PETMP is the most viscous due to
PPG’s higher crystallinity than PDMS. Among the PDMS-
based photopolymers, 7kPDMS-5CA:polySH is the most
viscous due to its PDMS backbone having a higher molecular
weight.

After rheological studies identified four printable formula-
tions (Table 1), we 3D-printed dog-bone-shaped specimens to
study their mechanical properties (Figure 3A, Table 1), as well
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as two challenging structures, true-to-scale human aorta and
porous scaffolds (Figure 3B-D), to showcase their printability
on a commercial DLP printer. Of note, the photopolymers
composed of PDMS(7kPDMS-SCA:polySH and SkPDMS-
2CA:polySH) do not display Ty in the DSC temperature range
(—80—120 °C). This result agrees with the extremely low T,
—120 °C, of commercial PDMS elastomers.'” Switching the
thiol cross-linker to PETMP increases the T, to =8 °C, as
observed for 0.9kPDMS-2CA:PETMP (Table 1). The higher
T, reflects a higher cross-linking density, which is the result of
PETMP having a lower molecular weight and a shorter PDMS
backbone. Compared with 0.9kPDMS-2CA:PETMP, 2kPPG-
2CA:PETMP has a much lower T, (=49 °C, Table 1) because
of its longer backbone and lower cross-linking density. Low T,
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Figure 3. (A) Representative stress—strain curves of 3D printed thiol-norbornene networks (photopolymers’ names are abbreviated to their
polymer backbone due to space constraints). (B) Photograph and scanning electron microscopy (SEM) image (scale bar: S00 ym) of a porous
gyroid puck and a porous gyroid puck tube; pores are estimated to be 200—300 ym in diameter. (C, D) High-fidelity DLP 3D-printing of a true-to-
scale aortic arch rendered from patient Computed Tomography (CT) scans. (E) Surface functionalization with cysteamine. The ruler division is 1

mm.

ensures soft elasticity at room temperature. The absence of
melting and crystallization corresponds with the thermal
properties of the PPG and PDMS backbones and reflects the
limited chain mobility of cross-linked networks.

Next, we investigated the effect of the average molecular
weight between each cross-linking point (M,) on the tensile
properties. The 1:1 reactivity of thiol-norbornene generates
evenly spaced cross-links.”” Therefore, for 2kPPG-2CA:-
PETMP and 0.9kPDMS-2CA:PETMP, M, of their polymer
precursors approximates the M. For 7kPDMS-5CA:polySH
and SkPDMS-2CA:polySH, M, is inferred by the assumed even
distribution of mercaptopropyl groups along the polySH
backbone. Uniaxial tensile testing reveals a general trend
among the PDMS-based photopolymers: Young’s modulus and
ultimate tensile strength inversely correlate with the M, (Table
1, Figure 3A). The low molecular weight of PETMP, its tetra
functionality, and the 0.9-kDa PDMS backbone culminate in
the high Young’s modulus (E = 2.1 = 0.1 MPa) and high
tensile strength (0, = 1.5 + 0.1 MPa) of 0.9kPDMS-
2CA:PETMP. Switching the backbone to PPG (M, = 2 kDa)
yields a stiffer network despite a higher M, as observed for
2kPPG-2CA:PETMP (Table 1, E = 3.0 + 0.1 MPa). PPG’s
high crystallinity might have contributed to its improved
stiffness.

To demonstrate the printability of our system, we first
printed porous gyroid pucks (Figure 3B) and a porous gyroid
tubular scaffold (Figure SS) with 2kPPG-2CA:PETMP and
0.9kPDMS-2CA:PETMP. Scanning electron microscopy
(SEM) shows well-resolved pore structures (Figure 3B, Figure
S5), matching the overall shape of the STL model. We then
printed true-to-scale human aortas with the two softest
elastomers, SkPDMS-2CA:polySH and 7kPDMS-5CA:polySH.
We selected the aorta model for two reasons. First, it is
important in medical education, surgical planning, etc. In
addition, the hollow structure has thin walls (<1 mm) and
overhangs; features that are challenging to achieve with 3D-
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printing. 7kPDMS-SCA:PETMP withstands the suction force
generated by the hollow structure upon elevation from the
bottom of the resin vat. The well-resolved local features, arch,
and arterial branches indicate excellent printability (Figure
3C,D, Figure S6). 0.9kPDMS-2CA:PETMP and 2kPPG-
2CA:PETMP, however, adhere more to the fluorinated
ethylene propylene (FEP) film of the resin vat and cannot
print the thin-walled model. Increasing the wall thickness to 2
mm solves this problem by reinforcing the model (Figure S7).
For SkPDMS-2CA which has the lowest Young’s modulus (E =
0.08 + 0.006 MPa), a 2 mm wall is necessary to stabilize the
ultrasoft model during printing.

Compared with acrylate photopolymers, the off-stoichio-
metric effect is a major advantage of the thiol-norbornene
system. The thiol cross-linker as the limiting reagent results in
a softer network and a functional surface furnishing unreacted
norbornenes. Using 0.9kPDMS-2CA as the model, we added
0.7 eq of PETMP to form the off-stoichiometric photopolymer,
which remains printable but has lower tensile properties (E =
0.36 + 0.04 MPa, ¢, = 66% + 2%, 6, = 0.20 + 0.02 MPa).
A lower glass transition temperature (Tg = —37 °C) confirms
the lower cross-linking density. Detecting unreacted norbor-
nenes using Fourier-Transform Infrared Spectroscopy (FT-IR)
fails, as the C=C stretch of norbornene is eclipsed by the
carbonyl C=0 stretch of PETMP (Figure S8). Therefore, we
converted unreacted norbornenes to amines by grafting
cysteamine via thiol-norbornene click chemistry. 3D-printed
pucks were exposed to a methanolic cysteamine solution
containing 1 wt % TPO at room temperature with or without
UV light for 1 h. After thoroughly washing the pucks with
ethanol, we placed them in a ninhydrin solution. The sensitive
ninhydrin assay detects the resultant free amines by forming a
purple imine product colloquially known as Ruhemann’s
purple.”® As thiol-norbornene click chemistry cannot proceed
via base catalysis or without radicals, pucks without UV
exposure serve as negative controls. Pucks exposed to UV start

https://doi.org/10.1021/acsmacrolett.4c00334
ACS Macro Lett. 2024, 13, 915-920


https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.4c00334/suppl_file/mz4c00334_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00334?fig=fig3&ref=pdf
pubs.acs.org/macroletters?ref=pdf
https://doi.org/10.1021/acsmacrolett.4c00334?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Macro Letters

pubs.acs.org/macroletters

turning purple within 30 s and become dark purple within a
few minutes. Negative controls do not display color changes in
the same time frame. This drastic difference proves the
feasibility of surface modification of off-stoichiometric thiol—
ene photopolymers.'*

Next, we compared norbornene dicarboximide photo-
polymers with literature precedents. To our knowledge,
PPG-based thiol—ene photopolymers have never been
reported before. As expected, PPG diacrylate (M, = 0.4—2
kDa) cross-links into stiff (E = 263—3366 MPa), brittle (&,,,, =
2—12%) materials that require 5—30 vol % PPG (M, = 0.4
kDa) diluent to be printable via DLP."> 2kPPG-2CA:PETMP
is therefore more advantageous for soft elastomer applications.
The mechanical properties of photopolymers based on 2kPPG-
2CA can be further tuned via thiol stoichiometry and the
length of the PPG backbone.

In contrast, PDMS-based thiol—ene photopolymers have
applications in soft robotics and microfluidics.'® The appeal
lies in 3D-printing’s efficiency and versatility, which soft
lithography hardly possesses.'” " Vinyl- and methacrylate-
functionalized PDMS are commercially available and mixing
them with thiol cross-linkers like polySH affords 3D-printable
photopolymers. However, norbornene functionalization is
more advantageous due to its green synthesis presented thus
far and documented use in biorthogonal click chemistry. As a
result, we examined whether norbornene dicarboxamide-
functionalized PDMS exhibits the same mechanical perform-
ance.

Wallin et al. used a blend of bifunctional vinyl-terminated
PDMS and polySH (M, = 4—6 kDa, 2.5% or 5% thiol) to 3D-
print soft robots that self-heal via thiol—ene click reactions
from pockets of unreacted resins.'® Vinyl-terminated PDMS
(M, = 6 kDa) cross-linked with polySH (M, = 4—6 kDa, 5%
thiol) has a Young’s modulus of 0.09 kPa and a strain-at-failure
of 76%. SkPDMS-2CA:polySH has similar tensile properties.
This agreement is not surprising, because SkPDMS-2CA:po-
lySH has similar molecular weights and alkene and thiol
functionalities. Fleck et al. reported a printable photopolymer
comprising a methacrylate—PDMS copolymer and polySH (E
= 11.5 MPa, &, = 12%)."® The higher degree of methacrylate
and thiol functionalities (7—9%), as well as the potential free
radical cross-linking of methacrylate, contribute to the high
stiffiness and low strain-at-failure. Additionally, the high
viscosity (~4 Pa-s) may jeopardize resolution. In their
follow-up work, replacing multifunctional methacrylate-
PDMS with methacryloxypropyl-terminated PDMS not only
reduced the resin viscosity to ~0.5 Pa-s, but lowered the
Young’s modulus to 0.3 MPa and increased the strain-at-failure
to 59%.'” Compared with these precedents, norbornene
dicarboximide-functionalized PDMS performs similarly.
Although adding functionality such as thiourea can further
improve mechanical properties,” it is beyond the scope of this
preliminary report.

In conclusion, the catalyst-free condensation between
amine-functionalized PPG or PDMS and CA affords a family
of norbornene dicarboximide functionalized polymers—with
water as the only byproduct. The reaction is affordable and
green and occurs at a 100-g scale without purification. The
product constitutes a novel platform for thiol-norbornene
photopolymers—which have tunable Young’s modulus,
excellent printability on a commercial DLP printer, and a
surface for click chemistry modification. Because the molecular
weight of amine starting materials ranges from 0.8 to 7 kDa, we
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expect our method to be compatible with commodity small-
molecule amines and other high-molecular-weight, amine-
functionalized polymers. The broad substrate scope affords a
highly rigid or ultrasoft thiol-norbornene network, or anywhere
in between. Cheap but versatile, our method can benefit
additive manufacturing of soft materials and beyond.
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