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Abstract—This letter proposes a generative neural network
architecture for spatially consistent air-to-ground channel
modeling. The approach considers the trajectories of uncrewed
aerial vehicles along typical urban paths, capturing spatial depen-
dencies within received signal strength (RSS) sequences from
multiple cellular base stations (gNBs). Through the incorporation
of conditioning data, the model accurately discriminates between
gNBs and drives the correlation matrix distance between real and
generated sequences to minimal values. This enables evaluating
performance and mobility management metrics with spatially
(and by extension temporally) consistent RSS values, rather than
independent snapshots. For some tasks underpinned by these
metrics, say handovers, consistency is essential.

Index Terms—Cellular network, channel model, drone, 5G,
generative neural network, ray tracing, uncrewed aerial vehicle
(UAV).

I. INTRODUCTION

NEXT-GENERATION mobile networks are envisioned to
reliably connect uncrewed aerial vehicles (UAVs) [1],

[2], [3], [4]. This will require a re-engineering of existing
deployments, e.g., via multiantenna techniques, dedicated
infrastructure, and cellular-satellite integration [5], [6], [7].
Accurate channel models are crucial for evaluating these and
other solutions.

Extending statistical channel models to air-to-ground sce-
narios is challenging due to the complex dependencies
on UAV altitude, orientation, and building height, among
other aspects [8], [9], [10]. Data-driven approaches have
been put forth for site-specific channel modeling, mapping
spatial locations to channel parameters through regres-
sion [11], [12], [13]. Generative neural networks (GNNs)
provide an alternative for non-site-specific propagation
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modeling [14], [15], [16]. However, existing works can only
produce independent channel snapshots, failing to capture
how signals fluctuate during motion. While adequate for
performance evaluations where a marginal distribution suf-
fices, say for coverage, this is insufficient and might cause
artifacts when designing networks to cope with UAV mobility.

This letter proposes a new GNN architecture for spatially
consistent air-to-ground channel modeling. Specifically, the
large-scale channel behavior is represented, as embodied by
the local-average received signal strength (RSS); this subsumes
every aspect save for the small-scale fading. In fact, the
transmit power is set to 0 dBm and the antennas are taken
to be omnidirectional, such that the RSS (in dBm) exactly
equals the large-scale channel gain (in dB). The approach
considers a UAV flying along random typical trajectories in
an urban area. To capture dependencies within sequences RSS
from multiple base stations (gNBs) on buildings of varying
heights, a generative adversarial network (GAN) is introduced
that incorporates two types of conditioning data: the distance
sequence from a specific gNB, and the gNB index. This
allows generating RSS sequences along designated trajectories
corresponding to a particular gNB. Ray tracing is used for
data provisioning, although the approach is compatible with
measured data. This model:

• Successfully learns the marginal distribution of RSS from
different gNBs and accurately discriminates between
them, despite their similarity.

• Generates spatially consistent RSS sequences, with the
correlation matrix distance between real and generated
sequences converging to minimal values. Data augmenta-
tion through sequence self-convolution further enhances
the accuracy of the model.

Once trained, the model can serve as the workhorse of
system-level evaluations consisting of:

• Producing UAV trajectories and gNB locations stochas-
tically, based on a deployment model providing
conditioning data for each UAV-gNB link.

• Sampling random vectors from a prior distribution and
feeding them to the model, along with the conditioning
data, thus obtaining a sequence of RSS values.

With a faster spatial sampling rate, a similar approach could
be employed to incorporate the small-scale fading and produce
the full multipath channel response, including path gains,
delays, and angles.

II. PROBLEM FORMULATION

A UAV and several gNBs are considered, respectively acting
as receiver and transmitters. By reciprocity, their roles are
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Fig. 1. Simulation area showing an example of a UAV trajectory (red)
between buildings (green) and the locations of three gNBs (�).

interchangeable. On a circumscribed area in the city of Boston,
the gNBs located on buildings of varying heights and the UAV
follows random typical trajectories at a fixed height of 30 m.
Fig. 1 depicts a typical such trajectory.

Spatially Consistent Generative Model: Each gNB-UAV
link is characterized by the RSS. The collection of RSS values
for the kth trajectory are denoted by

x k
i = [p1, . . . , pN ], (1)

where i is the gNB identifier, N the number of spatial steps,
and pn the RSS value at the nth step. Similarly, the evolution
of the UAV-gNB distance is denoted by

uk
i = [d1, . . . , dN ], (2)

where dn is the 3D distance at the nth step. In the sequel, we
employ a conditioning variable c equal to the gNB identifier
i, yet the methodology can be extended to more general
conditioning variables, such as the height and gNB type. The
goal is to capture dependencies within the RSS sequences
for multiple specific gNBs across a set of typical trajectories,
i.e., to model the conditional distribution p(x |u , c). This can
be achieved by a generative model described by the mapping

x = f (z ,u , c), (3)

where z is a random latent vector following a prior distribution
p(z), usually uniform or Gaussian. This generating function
f (z, u, c) is to be trained with data. This formulation allows
differentiation among gNBs while capturing similarities in the
RSS spatial distribution.

Exploitation of the Model: Once trained, this generative
model can be conveniently applied in simulations. UAV
trajectories and gNB locations can be stochastically gener-
ated based on a deployment model, providing the condition
vector u for each UAV-gNB link. Random vectors z can be
sampled from the prior distribution, and with u, z, and the
categorical information c, the sequence of RSS values x can be
obtained. These RSS values can be generated for intended and
interfering links, enabling the computation of many quantities

Fig. 2. Proposed generative channel model architecture.

of interest as experienced by a UAV along its route, say signal-
to-interference-plus-noise ratios, bit rates, and frequency and
success of handovers (cell reselections).

III. METHODOLOGY

A. Generative Model Architecture

The proposed architecture incorporates two types of condi-
tioning data, namely the distance sequences u and the gNB
indices c. This enables the generation of RSS sequences along
specific trajectories for a particular gNB. The architecture,
depicted in Fig. 2, is based on the transformer time-series
conditional GAN (TTS-CGAN) [17] and multivariate time-
series conditional GAN (MTS-CGAN) [18] with appropriate
modifications. Specifically, the conditioning on gNB indices
follows the auxiliary classifier GAN paradigm of TTS-CGANs
while that on distance sequences relies on the classical con-
ditional GAN paradigm of MTS-CGANs. Both the generator
(G) and the discriminator (D) share a similar structure. They
consist of three TransformerEncoder layers, each with
five attention heads. Each layer includes a multi-head attention
module followed by a feed-forward multi-layer perceptron
(MLP) with a Gaussian error linear unit (GELU) activa-
tion function. Normalization layers precede both blocks, and
dropout layers (with drop rate ρ = 0.5) follow them. Generator
and discriminator only differ in their input and output layers.
Their structure is summarized in Table I.

Generator: The input consists of a label embedding for
the conditioning variable c and a linear transformation of the
distance sequence u, to allow for their concatenation together
with the random latent vector z. The concatenated vector
is then mapped to a sequence of the same length with 50
embedding dimensions. With this configuration, the task is to
generate RSS sequences related to a specific gNB, based on
the distance sequences experienced from that gNB.

Discriminator: The input module includes a patch and a
positional embedding layer. Letting C be the number of gNBs,
a sequence of N steps, whether real or generated, can be
viewed as an image of shape (C, 1, W), i.e., with height 1,
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TABLE I
GENERATOR, DISCRIMINATOR, AND TRAINING PARAMETERS

width W = N, and C color channels. This image is evenly
divided into W/P patches, each with shape (C, 1, P), and a
learned positional encoding value is added to each patch to
preserve its positional information.

The output module consists of a binary classification layer
to classify signals as true or generated, and a multi-class
classification layer to determine the originating gNB. Based
on the distance sequences provided as conditioning data, the
discriminator has two objectives:

• Adversarial classification, correctly classifying time
series as true or generated.

• Categorical classification, accurately assigning the label
to the input series.

B. Loss Function

The game between discriminator and generator spans two
levels: adversarial classification and categorical classification.
Let x̂ = G(z | u , c) be the generator’s output while Dadv(·)
is the output of the discriminator’s adversarial head and Dcls(·)
the output of the discriminator’s classification head.

Adversarial Classification: The least-squares (LS) loss
function is adopted [19], with the discriminator D minimizing

L
(D)
LS =

1

2
EX∼pX (x )

[
(Dadv(x | u)− tR)

2
]

+
1

2
EZ∼pZ (z )

[
(Dadv(x̂ | u)− tF)

2
]
, (4)

where tR and tF are the binary labels (targets) for real and
generated data, respectively. The generator G minimizes

L
(G)
LS =

1

2
EZ∼pZ (z )

[
(Dadv(x̂ | u)− tR)

2
]
, (5)

thus attempting to make D classify generated data x̂ as real.
Categorical Classification: Based on the cross-entropy

(CE) loss, discriminator and generator respectively minimize

L
(D)
CE = −E[logDcls(x | u)] (6)

L
(G)
CE = −E[logDcls(x̂ | u)]. (7)

Overall Loss: Discriminator and generator respectively
seek the minimum of the total loss functions

LD = L
(D)
LS + L

(D)
CE (8)

LG = L
(G)
LS + L

(G)
CE . (9)

C. Validation Through First- and Second-Order Statistics

To evaluate the model’s ability to capture the underlying
probability distribution, the first- and second-order statistics
of real and generated signals are compared. To that end, the
marginal cumulative distribution function (CDF) of the RSS
and the correlation matrix distance (CMD) between real and
generated RSS sequences are examined.

Marginal Distribution: For a given gNB, consider two sets
containing the real and generated RSS sequences, both sets
having shape (B, W) with B and W being the batch size and
sequence length, respectively. Each set is flattened into a 1D
vector of length n = B ·W over which the CDF is computed.

Correlation Matrix Distance: The sequence length W is
regarded as the number of random variables while B is treated
as the number of realizations. Covariance matrices Σ1 and
Σ2 are then computed for the sets of real and generated
sequences,and from those the correlation matrices: from Σ1,
we construct A1 =

√
diag(Σ1) and then normalize Σ1 into

R1 = A−1
1 Σ1A

−1
1 . (10)

Similarly, from Σ2 we construct A2 and obtain R2. Matrices
R1 and R2 contain every second-order statistic for the real and
generated RSS sequences, respectively, with no assumptions
on stationarity. (If wide-sense stationarity holds, the matrices
are Toeplitz, but in general that is not the case for the RSS.)
The CMD between R1 and R2 is [20]

CMD(R1,R2) = 1− trace(R1R2)

‖R1‖F ‖R2‖F
∈ [0, 1], (11)

where ‖ · ‖F denotes Frobenius norm. The CMD tends to 1 if
R1 and R2 are maximally different, while it vanishes if they
are equal up to a scaling factor, which is the desired outcome.

IV. NUMERICAL RESULTS

Next, the dataset production process is detailed and two case
studies are presented to showcase the model’s effectiveness.

A. Dataset Production

Due to the limited availability of data on UAV channels, the
ray tracing package Wireless InSite by Remcom is employed
and the RSS is computed by adding the ray powers at any
given location [21, Sec. 4.2].

Deployment Scenario: A 3D representation of a region
measuring 1200 m × 1120 m is imported, corresponding to the
city of Boston (see Fig. 1). The representation includes terrain
and building data. Transmitting gNBs are manually positioned
on three rooftops, 30 m above street level. These sites are
potential locations for providing connectivity to UAVs or other
aerial devices [7], [22].

Ray Tracing: Simulations are conducted at 28 GHz, which
is the dominant frequency for emerging 5G mmWave systems.
Buildings are modeled as made of concrete with permittivity
5.31 F/m and conductivity of 0.024 S/m, and the maximum
number of reflections and diffractions are set to 6 and 1,
respectively. For each gNB, an RSS map is generated over
the entire region, sampled every 2 m at a height of 30 m,
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Fig. 3. CMD computed on the test set vs. number of training iterations for
the case of a single gNB, with and without data augmentation.

and assuming 0 dBm transmit power and unitary antenna
gains at both transmitter and receiver. The 2-m sample spacing
is a conservative choice that ensures minimal change in
the large-scale channel behavior across consecutive samples.
(Further modeling the scall-scale fading would require a
smaller spacing, on the order of half the wavelength, as that is
the minimum coherence distance of the small-scale process.)

RSS Sequence Production: UAVs are placed along multiple
random trajectories at 30 m of height, produced via
MATLAB’s Vehicle Network Toolbox, each consisting of
600–800 steps with a 2-m interval. The RSS sequences X
are created by recording the RSS values at each intersection
between a trajectory and the power map associated with
each gNB. The 3D distance between each intersection and
the gNB’s location are computed to construct the dis-
tance sequences U. Let X = [x (1), . . . ,x (K )] and U =
[u(1), . . . ,u(K )] assemble all RSS sequences and all 3D
distances, where K is the total number of each. Further,
with c identifying the gNB assigned to each sequence, let
c = [c1, . . . , cK ]. Thus, x, U, and C encapsulate all of the
information gathered during the data production process.

Training Data Augmentation: Augmentation is employed to
further expand the training data. This facilitates the model’s
convergence, particularly in cases where data is scarce (say in
the case of a single gNB, as discussed next). While this step
may not be necessary for ray tracing data, as more trajectories
and more gNB power maps could be produced, it becomes
crucial when the model is trained with measurements, which
are considerably more time-consuming. Using the Python
package tsaug, a self-convolution operation is applied to
each RSS sequence with a flat kernel window of size 20.
The resulting convolved sequences are then appended to the
existing dataset.

B. Case Study I: Single gNB

To begin with, let us consider only gNB 2 in Fig. 1. Without
the need to differentiate among different gNBs, the categorical
classification can be disabled and the training can focus
solely on the classical adversarial game between generator
and discriminator. This entails updating the weights of the
discriminator and generator based only on (4) and (5).

Fig. 3 displays the CMD on the test set as a function of the
number of training iterations, with and without training data
augmentation via convolution. Data augmentation does help
to achieve a smaller correlation matrix distance between real
and generated RSS sequences, resulting in a more accurate

TABLE II
FINAL CMD VALUES WITH AND WITHOUT DATA AUGMENTATION

and spatially consistent model. The final value of the CMD on
the test set is reported in Table II, providing further evidence
of the model’s accuracy.

Fig. 4 illustrates the evolution of the correlation matrix
for the generated RSS sequences as the training progresses,
when data augmentation is employed during training, with the
conditioning distance sequences extracted from the test set.
Note that the rows/columns of Fig. 4 can be interpreted as the
autocorrelation of the RSS sequences. The correlation matrix
for the corresponding real RSS sequences is also displayed,
demonstrating the convergence.

C. Case Study II: Multiple gNBs

Next, let us evaluate the generator’s ability to capture differ-
ent distributions by reintroducing the categorical classification
head of the discriminator. The model is trained with data
from the three gNBs in Fig. 1, updating the discriminator and
generator according to (8) and (9).

Fig. 5 presents, on the left-hand side, the CDF of real and
generated RSS values corresponding to the distances in the
test set, for gNB 2 with data augmentation. On the right-
hand side, it presents the mean (solid and dashed lines) and
standard deviation (shaded areas) of the real and generated
RSS as a function of the UAV-gNB distance. Log-distance
least-squares fits are also shown, with the reference distance
set to the central point of the axis (2.25 km) and path loss
exponents of 2.38 (real) and 2.44 (generated). The model is
seen to successfully learn the distribution of the RSS and its
dependence on the distance.

Fig. 6 depicts the CMD on the test set, averaged for
the three gNBs, as a function of the number of training
iterations, with and without data augmentation. As the CMD
decreases, the model learns to generate spatially consistent
RSS sequences that are stochastically similar to the real ones.
Data augmentation aids in achieving an even smaller CMD
between real and generated sequences. The final values of
the correlation matrix distance are reported in Table II. Fig. 6
also displays the evolution of the classification loss (7) at the
generator for the case of data augmentation.1 As the total loss
nears zero, the model successfully discriminates among gNBs.

V. CONCLUSION

This letter has introduced a GNN architecture for spa-
tially consistent air-to-ground channel modeling. The approach
effectively captures the spatial dependencies in RSS sequences
(equivalently in large-scale channel gains) from multiple gNBs
and can be instrumental for system-level evaluations of various
metrics. While the presented case studies relied on ray tracing
data, the model can also be trained with field measurements.

Follow-up work could aim—at the expense of a faster spa-
tial sampling rate and increased complexity—at incorporating

1The discriminator classification loss (6), not shown, follows a similar trend.
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Fig. 4. Evolution of the correlation matrix for generated RSS sequences as compared to the one of real RSS sequences.

Fig. 5. Left-hand side: CDF of the real and generated RSS values. Right-hand
side: mean (solid and dashed lines) plus/minus standard deviation (shaded
areas) of the real and generated RSS vs. distance and respective log-distance
least-squares fits. Generated sequences are obtained by training with data
augmentation.

Fig. 6. CMD averaged across multiple gNBs vs. training iterations. The
categorical classification loss of the generator is also shown.

the small-scale fading, altogether delivering the full multipath
response with path gains, delays, and angles of arrival and
departure for all propagation paths. These would further extend
the applicability of the model to multiantenna communication.
Exploring the model’s ability to generalize across environ-
ments would be another relevant research direction.
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