

Contrasting effects of an extended fall period and winter heatwaves on the overwintering fitness of diapausing disease vector, *Aedes albopictus*

Samantha L. Sturiale^{a,*}, Peter A. Armbruster^a

^a Department of Biology, Georgetown University, Washington, DC 20057

* Corresponding author: Samantha L. Sturiale, sls366@georgetown.edu

Running head: Impacts of fall duration and winter heatwaves on overwintering fitness

Keywords: climate change; *Aedes albopictus*; diapause; winter; overwintering; carry-over effects

Abstract

Climate change is expected to dramatically alter autumnal and winter conditions in many temperate regions. However, limited data is available to accurately predict how these changes will impact species' overwinter survival and post-winter fitness. Here, we determine how a longer, warmer fall period and winter heatwaves affect overwintering fitness and post-winter performance of the invasive mosquito vector, *Aedes albopictus*. We found that a longer, warmer fall period representative of early entry into diapause did not affect overwinter survival but did lead to reduced post-winter performance for multiple traits. Specifically, larvae that experienced longer, warmer fall conditions as diapause embryos exhibited reduced post-diapause larval starvation tolerance, increased post-diapause larval mortality, and longer post-diapause larval development compared to individuals from the short-fall treatments. These negative post-diapause fitness effects likely resulted from the greater energetic demands and/or damage incurred during the warmer, longer fall period. In contrast, exposure to winter heatwaves increased overwinter survival, possibly by allowing diapausing embryos to escape or repair cold injury. Finally, fall treatment and winter heatwaves had an interactive effect on male development time, while neither treatment impacted pupal mass in either sex. Overall, our results highlight that experiments that fail to measure post-diapause fitness are likely to substantially under-estimate the impacts of climate change on post-winter performance. Additionally, our results emphasize that it is crucial to consider the potentially conflicting effects of different aspects of climate change on a species' overall overwintering success.

1 **1. Introduction**

2 Predicting biological responses to climate change is a major challenge with important
3 implications for biodiversity conservation (Scheffers et al. 2016), agriculture (Luedeling et al.
4 2009; Lehmann et al. 2020), and disease ecology (Carlson et al. 2022). A substantial body of
5 research investigating the biological impacts of climate change has emerged over the last 20
6 years, but many studies focus exclusively on the effects of warmer spring and summer (i.e.,
7 growing season) conditions (Gallinat et al. 2015; Williams et al. 2015; Lehmann et al. 2020).
8 However, climate change will also affect other seasons, generally causing extended growing
9 seasons (i.e., later onset of winter and earlier start to spring), increases in average winter
10 temperatures, and a greater frequency of extreme events such as winter heatwaves (Kunkel et al.
11 2004; Linderholm 2006; Liu et al. 2006; Hansen et al. 2012; Liu et al. 2018; Marshall et al.
12 2020). There is increasing evidence across taxa that conditions during winter can cause
13 significant carry-over effects on reproduction, life history, and population growth the following
14 growing season (Bradshaw et al. 1998; Norris and Marra 2007; Harrison et al. 2011; Boggs and
15 Inouye 2012; O'Connor et al. 2014). Thus, the paucity of studies that investigate how autumnal
16 and winter thermal conditions impact overwinter and post-winter fitness presents a major
17 limitation to accurately predicting overall biological responses to climate change.

18 Many temperate arthropods survive winter by entering diapause, a pre-programmed
19 developmental arrest triggered by a token cue (e.g., photoperiod) that forecasts environmental
20 degradation (Koštál 2006). Because diapause is an anticipatory response, individuals typically
21 spend several months or more in developmental arrest while conditions are still suitable for
22 growth (Denlinger 2022). Diapause often confers protection from environmental stressors
23 through enhanced nutrient storage, metabolic suppression, increased cold tolerance, and greater
24 desiccation resistance compared to non-diapause individuals (Denlinger 2022). Nevertheless,
25 diapausing arthropods are still sensitive to changes in thermal conditions. For example, some
26 diapausing species exhibit increased energy expenditure (i.e., energy drain) at high temperatures
27 (Han and Bause 1998; Hahn and Denlinger 2007; Sinclair 2015; Nielsen et al. 2022). This
28 mechanism likely underlies observations of reduced mass and survival of diapausing arthropods
29 following longer and/or warmer fall or winter conditions (Han and Bause 1998; Gomi 2000;
30 Irwin and Lee 2000; Williams et al. 2003; Bosch and Kemp 2004; Sgolastra et al. 2010;
31 Sgolastra et al. 2011; Abarca et al. 2019; Nielsen et al. 2022). Additionally, winter heatwaves
32 can deleteriously reduce cold tolerance levels during diapause, causing cold injury once
33 temperatures drop (Šlachta et al. 2002; Sobek-Swant et al. 2012; Williams et al. 2014). These
34 results suggest that, despite their dormant state, diapausing arthropods may still be vulnerable to
35 changes in fall and winter climate.

36 It remains difficult to predict the net impact of a warming climate on winter-diapausing
37 arthropods for several reasons. First, limited studies exist across species (Bale and Hayward
38 2010), and not all species show similar fitness effects in response to warming. While some
39 species exhibit reduced fitness following warmer overwintering periods, other species show little
40 to no negative effects (Williams et al. 2003; Mercader and Scriber 2008; Williams et al. 2012).

41 For some overwintering arthropods, warmer winter temperatures have even facilitated northern
42 range expansions (Jepsen et al. 2008). Second, diapause represents an alternative developmental
43 trajectory with distinct physiological characteristics that can modify post-arrest growth and
44 reproduction (Denlinger 2002; Koštál 2006; Batz et al. 2020; Denlinger 2022), but not all studies
45 consider the post-diapause phase of this trajectory in assessments of overwintering fitness (Han
46 and Bauce 1998; Sgolastra et al. 2011; Abarca et al. 2019). As a result, these studies cannot
47 detect carry-over effects at later life stages that may impact individual fitness and population
48 dynamics in the growing season (O'Connor et al. 2014). Finally, few studies have
49 simultaneously manipulated both fall and winter temperatures when investigating the impacts of
50 thermal conditions during diapause (but see (Bosch and Kemp 2004)). Diapause is a dynamic
51 physiological process (Koštál 2006), meaning that the impacts of heat exposure may depend on
52 the timing during the overwintering period as well as prior thermal conditions. Thus, it remains
53 difficult to predict how species will respond to the cross-seasonal warming expected to occur in
54 nature.

55 Here, we examine the fitness consequences of ecologically realistic heat exposure during
56 diapause in an important vector species, the Asian tiger mosquito, *Aedes albopictus*. We exposed
57 diapausing *Ae. albopictus* embryos to a full-factorial combination of thermal treatments that
58 differed in: (1) fall duration and temperatures to simulate early versus late entry into diapause;
59 and (2) exposure to winter heatwaves (zero or three heatwaves). Fall treatments were designed to
60 simulate the extremes of the natural range of *Ae. albopictus*' diapause entry dates while winter
61 treatments were designed to simulate average to above-average winter heatwave challenge based
62 on recent temperature records. This design allowed us to examine the consequences of
63 ecologically realistic conditions that will likely become more extreme as climate change
64 continues to progress. We then measured overwinter survival, and post-diapause larval mortality,
65 larval development time, larval starvation tolerance, and pupal mass to assess the cumulative
66 fitness consequences of these cross-seasonal treatments. We predicted that heat exposure
67 resulting from earlier entry into diapause (i.e., a longer, warmer fall period) and winter
68 heatwaves would decrease overwinter survival and post-diapause fitness by increasing energy
69 drain in diapausing embryos. We also predicted that winter heatwaves would decrease
70 overwinter survival by deleteriously reducing cold tolerance.

71 2. Materials and Methods

72 2.1. Study system

73 Temperate populations of *Aedes albopictus* undergo a photoperiodically-mediated, maternally-
74 induced embryonic diapause at the pharate larvae stage (Armbruster 2016). This species is a
75 highly invasive pest which has rapidly expanded from its native range in Southeast Asia to
76 occupy all continents except Antarctica (Benedict et al. 2007; Kraemer et al. 2019). Most
77 research on the response of diapause *Ae. albopictus* embryos to temperature focuses on lower
78 thermal limits due to interest in understanding the role of cold temperatures in determining the
79 northern distribution limit of this species (Hanson and Craig 1994; Thomas et al. 2012).

80 However, diapausing embryos also routinely encounter warm temperatures in nature, but the
81 fitness consequences of this exposure remain unknown. For example, field collections performed
82 in Washington D.C. show that female *Ae. albopictus* begin to lay diapause embryos in August
83 when temperatures often reach as high as 20-30°C (Mushegian et al. 2021). Moreover, exposure
84 to high temperatures is likely to increase as climate change causes growing seasons to lengthen
85 (Kunkel et al. 2004; Linderholm 2006; Liu et al. 2006; Liu et al. 2018) and increases the
86 frequency of winter heatwaves (Hansen et al. 2012; Abarca et al. 2019). Because *Ae. albopictus*
87 is a competent vector for several human diseases such as those caused by Zika, dengue, and
88 chikungunya arboviruses, understanding the potential impact of climate change on its
89 overwintering fitness has direct public health implications (Gratz 2004; Lwande et al. 2020).

90 *2.2. Population collection, rearing, and embryo counting*

91 The stock population used for this experiment was originally collected as larvae during June
92 2018 in Manassas, Virginia (Mushegian et al. 2021). The population was propagated for 10
93 generations in the lab with previously described rearing procedures (Batz et al. 2020). Briefly, all
94 rearing was done in a temperature-controlled walk-in incubator held at 21°C, 80% relative
95 humidity, and long-day (LD) photoperiod (16:8 Light:Dark) unless otherwise noted. For the
96 parental generation of the experimental animals, embryos were hatched in an 8.5-L rearing pan
97 with approximately 3-mL of food slurry. The food slurry was made by blending 120-g of dog
98 food (Nutro Ultra Small Breed Puppy, Nutro Products Inc., Franklin, TN) and 40-g of frozen
99 brine shrimp (Sally's Frozen Brine Shrimp, San Francisco Bay Brand, Newark, CA) in 1-L of
100 deionized (DI) water. Three days after hatching, larvae were split into groups of approximately
101 200 and each group was put in a separate 5.5-L Sterilite container with 2-L of DI water placed in
102 the walk-in incubator. Every Monday, Wednesday, and Friday (M-W-F), larvae were transferred
103 to fresh water with approximately 2-mL of food slurry. Pupae were collected three times weekly
104 from larval bins and transferred to six replicate adult cages consisting of 2.5-gallon plastic
105 buckets. Each adult cage contained approximately 430 adults. Adult cages were provisioned with
106 organic raisins (Newman's Own, Westport, CT) ad libitum for sugar feeding. To stimulate
107 females to produce diapausing embryos, adult cages were maintained under an unambiguous
108 short-day (SD) photoperiod (8:16 Light:Dark) inside photoperiod-cabinets located in the walk-in
109 incubator as previously described (Mushegian et al. 2021).

110 One week after the last pupae was collected, all cages were blood-fed to repletion on a
111 human host. The Georgetown University Institutional Review Board (IRB) has determined that
112 mosquito blood feeding is not human research and thus does not require IRB approval; however,
113 the blood feeding protocol has been approved by the Georgetown University Occupational
114 Health and Safety Office. Three to four days after blood feeding, each adult cage was
115 provisioned with three oviposition cups consisting of plastic cups half filled with DI water and
116 lined with a strip of unbleached paper towel (i.e., oviposition paper). Three oviposition papers
117 per cage were collected for three days (M-W-F) from the first gonadotrophic cycle, resulting in a
118 total of 54 oviposition papers (six cages × three papers per cage × three collections).

119 All oviposition papers were left moist for 48 hours and then gently dried. Each
120 oviposition paper was then cut and split into replicates of 118 embryos per paper on average
121 (range: 58-265). For each replicate oviposition paper, desiccated embryos (i.e., not viable) were
122 removed and thus not included in pre-treatment embryo counts. Each oviposition paper replicate
123 was placed in an individual petri dish and haphazardly assigned one of four temperature
124 treatments (Figure 1; Supplementary Table S1). Before and during treatments, replicate dishes
125 were stored inside large plastic containers containing a mesh-covered cup of water to maintain
126 constant relative humidity of approximately 80%. All embryos were kept on LD at 21°C in the
127 walk-in incubator until treatments started on August 12, 2021. Thus, the embryos were 6-10 days
128 post-collection at the start of treatments. Additional details regarding the organization of
129 embryos in growth chambers throughout fall and winter treatments are available in the
130 Supplementary Text section of the Supplementary Information.

131 *2.3. Fall treatments*

132 In nature, earlier fall entry into diapause entails both a longer diapause duration and exposure to
133 warmer temperatures relative to embryos that enter into diapause later in the fall. Therefore, to
134 most accurately approximate natural conditions, our fall treatments differed in both duration and
135 temperature (see Figure 1). Populations of *Ae. albopictus* in the Virginia-Maryland-DC (VA-
136 MD-DC) area first begin to oviposit diapause embryos in mid-August, with 50% diapause
137 incidence observed September 7th, and close to 100% diapause incidence of embryos by mid-
138 November (Mushegian et al. 2021). Therefore, to compare survival and post-diapause fitness of
139 diapause embryos laid early and late in the fall, we chose fall treatment lengths of 122 days
140 (corresponding to a diapause start date of August 1st) for “long-fall” and 30 days (corresponding
141 to a diapause start date of November 1st) for “short-fall” (Figure 1; Supplementary Table S1).
142 The start of winter was defined as December 1st. Thus, our fall treatments simulate the extremes
143 of the natural range of diapause entry dates. The daily temperature range for each month of fall
144 treatments (August-November for the long fall treatment and November for the short fall
145 treatment) was set by taking the average daily maximum and the average daily minimum
146 temperatures for each month from historical temperature data from the years 1990-2020 for the
147 VA-MD-DC area (DayMet TileID 11572, latitude 38 to 40, longitude -78 to -76). To best
148 approximate natural conditions, temperatures during fall treatments oscillated daily between
149 these minimum and maximum temperatures at a rate that approximated a sinusoidal function
150 (Abarca et al. 2019). Embryos were subjected to a decrease in photoperiod throughout the fall
151 treatment to best match natural conditions (see Supplementary Table S1).

152 *2.4. Winter heatwave treatments*

153 Both winter treatments lasted 109 days and consisted of daily fluctuations between -5°C and
 154 5°C, which approximates winter length and temperatures for the VA-MD-DC area (Batz et al.
 155 2020) (Figure 1). We defined a heatwave as three or more consecutive days above the 90th
 156 percentile temperature of a reference period of 1990-2010 (Abarca et al. 2019). To determine an
 157 appropriate heatwave treatment, we first computed the 90th percentile temperature for each
 158 individual winter month using maximum daily temperature data from 1990-2010, with 1990 used
 159 as the earlier boundary due to *Ae. albopictus*' arrival to the United States in the late 1980s
 160 (Armbruster 2016). We then used a custom Python script (see Supplementary File 2) to record
 161 the frequency, timing (i.e., month of occurrence), duration, and maximum daily temperature of
 162 heatwaves for each winter month using maximum daily temperature data from 2011-2020 (see

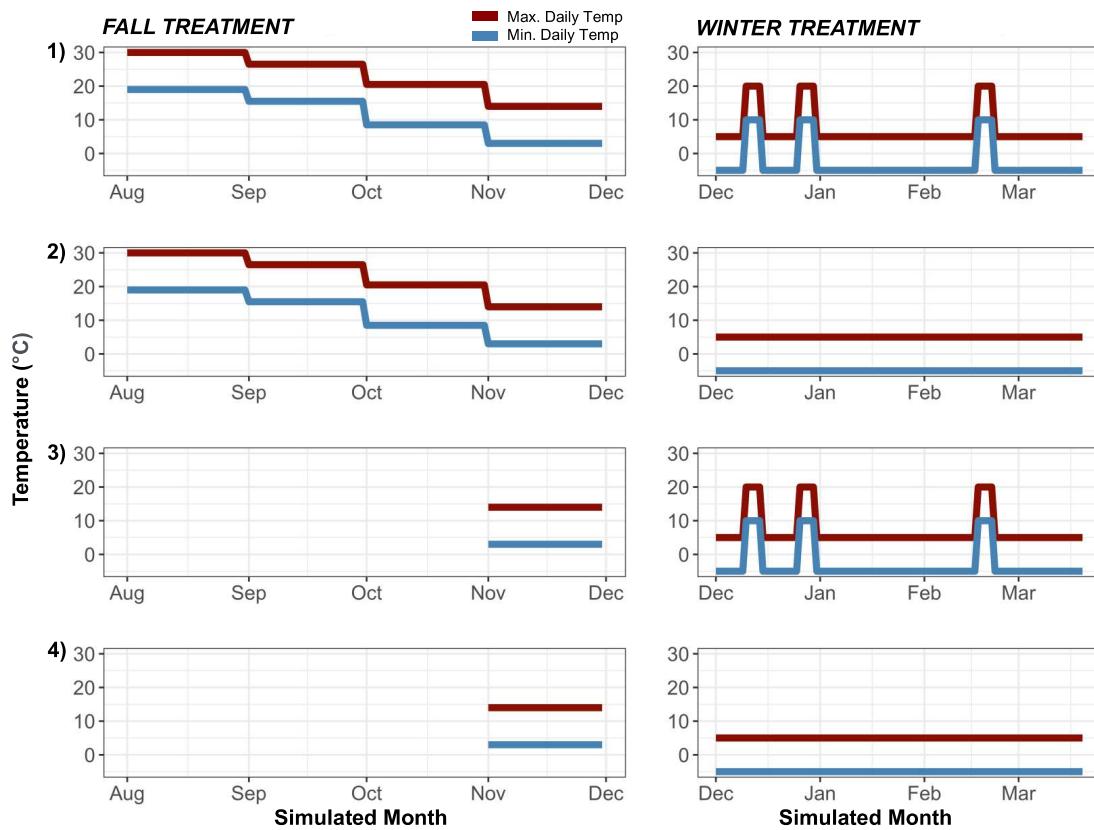


Figure 1. Four temperature treatments used in the experiment: 1) long-fall, winter heatwaves; 2) long-fall, no winter heatwaves; 3) short-fall, winter heatwaves; 4) short-fall, no winter heatwaves. The start of winter treatments immediately followed the end of fall treatments. Red and blue lines represent maximum and minimum daily thermal limits; temperatures oscillated daily between the limits.

163 Supplementary Information for details). We used 2011-2020 to estimate heatwave parameters
 164 that were most relevant to current climate conditions. To simulate a season of average to above-
 165 average winter heatwave challenge based on this analysis, we presented heatwave treatment
 166 embryos with three heatwaves (two in simulated December and one in simulated February)

167 lasting four days each with daily fluctuations between 10°C and 20°C (Figure 1; Supplementary
168 Figures S1). For both winter treatments, we used a short photoperiod representative of winter in
169 the VA-MD-DC area (9:15 L:D).

170 *2.5. Overwinter survival*

171 The day that winter treatments ended, the plastic containers containing replicate papers with
172 embryos were moved to the walk-in incubator and maintained at 21°C, 80% relative humidity,
173 and LD photoperiod for one week. After one week at 21°C, we immersed embryos in water to
174 initiate hatching; all long-fall treatment embryos were 248 days post-collection and all short-fall
175 treatment embryos were 156 days post-collection. To hatch out embryos, we moved each
176 oviposition paper to its own medium sized (10-cm in diameter) petri dish with 50-mL of DI
177 water and four drops of larval food slurry. Larvae were counted for each oviposition paper
178 replicate three days after hatching. Each paper was then gently dried, left for one week in the
179 walk-in incubator at 21°C, then hatched and counted again (Batz et al. 2020). We hatched out
180 each oviposition paper replicate a total of four times. Overwinter survival was calculated for
181 each replicate by dividing the total number of hatched larvae collected by the number of viable
182 embryos counted at the beginning of treatments. Hatched larvae were then either discarded, set
183 aside for the larval starvation tolerance assay, or set aside for the larval growth assay.

184 *2.6. Post-diapause larval starvation tolerance*

185 To measure larval energetic reserves after overwintering, first instar larvae from the overwinter
186 survival assay described above were subjected to a starvation tolerance assay described
187 previously (Batz et al. 2020). On the first hatching stimulus of each oviposition paper replicate
188 described above for overwinter survival, we checked for larvae two to three hours after
189 stimulating hatch. If no hatch occurred, dishes were checked hourly until at least 200 larvae had
190 been collected from each treatment. We made sure to collect larvae within three hours of
191 hatching to minimize the amount of food they ingested before isolation. We also took care to
192 transfer as little water as possible with the larvae. Collected larvae came from multiple replicates
193 from multiple original parental cages for each treatment to minimize bias in representation (see
194 Supplementary Tables S2,S3). Each larva was transferred gently from the petri dish to a well in a
195 sterile 3.4-mL 24-well tissue culture plate (Corning Inc., Corning, NY) containing 1-mL of
196 autoclaved DI water. Larvae were checked daily for death between 1-3pm each day. Death was
197 identified as a failure to move when touched gently with a pipette tip several times. Starvation
198 tolerance was measured as the number of days the larvae was recorded as alive from hatch to
199 death.

200 *2.7. Post-diapause larval growth*

201 Twenty-four hours after the first hatching stimulus described above, larvae were collected from
202 replicate oviposition papers for a larval growth assay conducted as previously described
203 (Armbruster and Conn 2006). Care was taken to spread the selected larvae across multiple
204 replicates from multiple original parental cages for each treatment (see Supplementary Tables
205 S2,S3). Larvae were placed individually in clean 3.4-mL 24-well tissue plates (Corning

206 Inc., Corning, NY), with each well containing a near-optimal amount of diluted and
207 homogenized larval food mixture. The diluted food was made by mixing 5-mL of the original
208 larval food slurry with 1000-mL of DI water. Beginning four days after hatch, larvae were
209 moved to new culture plates containing fresh food/water mixture every M-W-F. Larvae were
210 checked daily for death and pupation. Pupae were sexed and weighed to the nearest 0.01-mg on a
211 microbalance (Mettler Toledo AX105 DeltaRange). We recorded larval developmental time,
212 larval mortality, as well as the sex and mass of each pupa.

213 *2.8. Statistical analysis*

214 Sample sizes for each experiment are given in Table 1. Because overwinter survival data was in
215 the form of proportions of discrete counts (i.e., number of successes and failures per replicate),
216 we compared overwinter survival across the four temperature treatments using a generalized
217 linear mixed effects model (*glmmTMB* function of *glmmTMB* R package) with a beta-binomial
218 distribution with logit link to account for overdispersion (Demétrio et al. 2014). In this model,
219 fall treatment and winter treatment were included as fixed effects, and date of embryo collection,
220 replicate parental cage, and plastic container number (nested within fall treatment) were included
221 as random effects.

222 To analyze starvation tolerance, we used a linear mixed effects regression (*lmer*) model
223 (*lme4* R package), with fall treatment and winter treatment as fixed effects, and date of embryo
224 collection, replicate parental cage, plate number, and plastic container number (nested within fall
225 treatment) as random effects.

226 To analyze data on proportion of larvae that died during larval growth assays, we used a
227 generalized linear mixed effects model (*glmer*) (*car* R package) with a binomial distribution,
228 with fall treatment and winter treatment as fixed effects, and date of embryo collection, replicate
229 parental cage, plate number, and plastic container number (nested within fall treatment) as
230 random effects.

231 To analyze data on larval development time and pupal mass, we used *lmer* models, with
232 fall treatment and winter treatment as fixed effects, and date of embryo collection, replicate
233 parental cage, plate number, and plastic container number (nested within fall treatment) as
234 random effects. Separate models were run for each sex because it is already well established that
235 larval development time and pupal mass are sexually dimorphic in this species (Armbruster and
236 Conn 2006); this approach simplifies the interpretation of the model results by avoiding a
237 potential three-way interaction between fall treatment, winter treatment, and sex. Furthermore,
238 because larval development time and pupal mass have different impacts on male versus female
239 fitness (Bedhomme et al. 2003), using a separate model for each sex allowed us to more directly
240 evaluate the impact of our experimental treatments on sex-specific fitness. Larval development
241 time was log-transformed to improve the normality of residuals for both female and male
242 models.

243 For all models, a type II Anova (*car* R package) was performed to detect significance of
244 fixed effects. For all analyses, all interactions between fixed effects were included in initial
245 models but removed if found to be non-significant ($P > 0.2$). All statistical analyses were

246 conducted in R (version R-4.1.3) (R Core Team 2021). All plots were generated using the
247 *ggplot2* package in R. We ensured that models met the assumptions of normality of residuals and
248 homogeneity of variances by visually inspecting a quantile-quantile plot (Q-Q plot) and a
249 residual plot, respectively (residplot function in *predictmeans* R package).

250 If an interaction between fall and winter treatments was found to be significant, we
251 performed a Tukey's HSD test (*TukeyHSD* function in R) on a one-way ANOVA with treatment
252 (the four possible combinations of fall and winter treatments) as the explanatory variable (*aov*
253 function in R) to determine which of the four groups differed significantly from the others.

Table 1 Sample sizes used for each experiment per treatment combination.

	Long Fall, Winter Heatwaves	Long Fall, No Winter Heatwaves	Short Fall, Winter Heatwaves	Short Fall, No Winter Heatwaves	Total
Overwinter Survival	58 [†] (6810)*	58 (6745)	59 (6873)	59 (6967)	234 (27,395)
Starvation Tolerance	215	215	219	233	882
Larval Growth	165	166	167	168	666

[†]The number of experimental units used for each treatment group (oviposition paper replicates for overwinter survival and individual larvae for starvation tolerance and larval growth assays).

*The number in parentheses indicates the total number of embryos used for each treatment group (summed across oviposition paper replicates).

254 **3. Results**

255 *3.1. Overwinter survival*

256 Overwinter survival was not affected by fall treatment ($\chi^2_{1,224} = 0.043, P = 0.836$; Figure 2), but
257 was significantly affected by winter heatwave treatment, with approximately 10% greater
258 survival observed for embryos that experienced winter heatwaves compared to embryos that did
259 not experience winter heatwaves ($\chi^2_{1,224} = 70.746, P < 0.001$; Figure 2). The interaction between
260 fall and winter treatment was not significant ($P > 0.2$) and was thus removed from the final
261 model. Table S5 provides summary statistics for data on overwinter survival and all other
262 measured traits.

Figure 2. Diapause embryos that experienced winter heatwaves exhibited greater overwinter survival compared to embryos that experienced no winter heatwaves. Color indicates long-fall groups (green) or short-fall groups (orange). Filled circles represent winter with heatwaves (HWs) and unfilled circles representing winter without heatwaves (No HWs). Plots illustrate treatment means \pm 2 standard errors. Significance is shown in the top right corner of the plot. *** indicates $P < 0.001$, ns indicates $P > 0.05$

264 3.2. Post-diapause larval starvation tolerance

265 Larval starvation tolerance was greater for larvae from the short-fall treatments compared to
 266 larvae from long-fall treatments ($\chi^2_{1,874} = 152.529, P < 0.001$; Figure 3A). Winter heatwaves did
 267 not affect larval starvation tolerance ($\chi^2_{1,874} = 0.394, P = 0.530$; Figure 3A). The interaction
 268 between fall and winter treatment was non-significant ($P > 0.2$) and was thus removed from the
 269 final model.

270 3.3. Post-diapause larval growth

271 Larvae from the long-fall treatments exhibited higher post-diapause mortality than larvae from
 272 the short-fall treatments ($\chi^2_{1,659} = 59.305, P < 0.001$; Figure 3B). Winter heatwaves did not affect
 273 larval mortality ($\chi^2_{1,659} = 0.049, P = 0.825$; Figure 3B). The interaction between fall and winter
 274 treatment was not significant ($P > 0.2$) and was thus removed from the final model.

275 Of the 666 larvae used for the larval growth assay, 498 survived to pupation (254 females
 276 and 244 males) and were thus included in comparisons of post-diapause larval development time
 277 and pupal mass. Larvae from the long-fall treatments had a significantly longer post-diapause
 278 larval development time for both females ($\chi^2_{1,246} = 17.409, P < 0.001$; Figure 3C) and males
 279 ($\chi^2_{1,235} = 8.338, P = 0.004$; Figure 3D). There was no effect of winter heatwaves in either sex
 280 ($\chi^2_{1,246} = 2.019, P = 0.155$ for females; $\chi^2_{1,235} = 0.628, P = 0.428$ for males). However, for males,
 281 the interaction between winter and fall treatments was significant ($\chi^2_{1,235} = 7.283, P = 0.007$;

282 Figure 3D) with winter heatwaves resulting in shorter larval development only in male larvae
283 from the long fall treatment. Based on a Tukey's HSD test with a 95% family-wise confidence
284 level, males that experienced a long fall and no winter heatwaves had significantly greater
285 development time than those that experienced a long fall and winter heatwaves ($P\text{-adj} = 0.004$,
286 95% C.I. = 0.019 - 0.139), those that experienced a short fall and winter heatwaves ($P\text{-adj} <$
287 0.001, C.I. = -0.139 - -0.035), and those experienced a short fall and no winter heatwaves ($P\text{-adj}$
288 < 0.001, C.I. = -0.165 - -0.061). For females, the interaction between fall and winter treatment
289 was non-significant ($p > 0.2$) and was thus removed from the final model.

290 For post-diapause pupal mass, we did not detect a significant effect of fall treatment on
291 either sex ($\chi^2_{1,246} < 0.001$, $P = 0.989$ for females; $\chi^2_{1,236} = 1.257$, $P = 0.262$ for males; Figure
292 3E,3F). We also did not detect an effect of winter heatwave treatment on either sex ($\chi^2_{1,246} =$
293 0.475, $P = 0.491$ for females; $\chi^2_{1,236} = 1.877$, $P = 0.171$ for males; Figure 3E,3F). In both sexes,
294 the interaction between fall and winter treatment was non-significant ($P > 0.2$) and was thus
295 removed from the final models. Full model results for all traits can be found in Supplementary
296 Table S4.

297

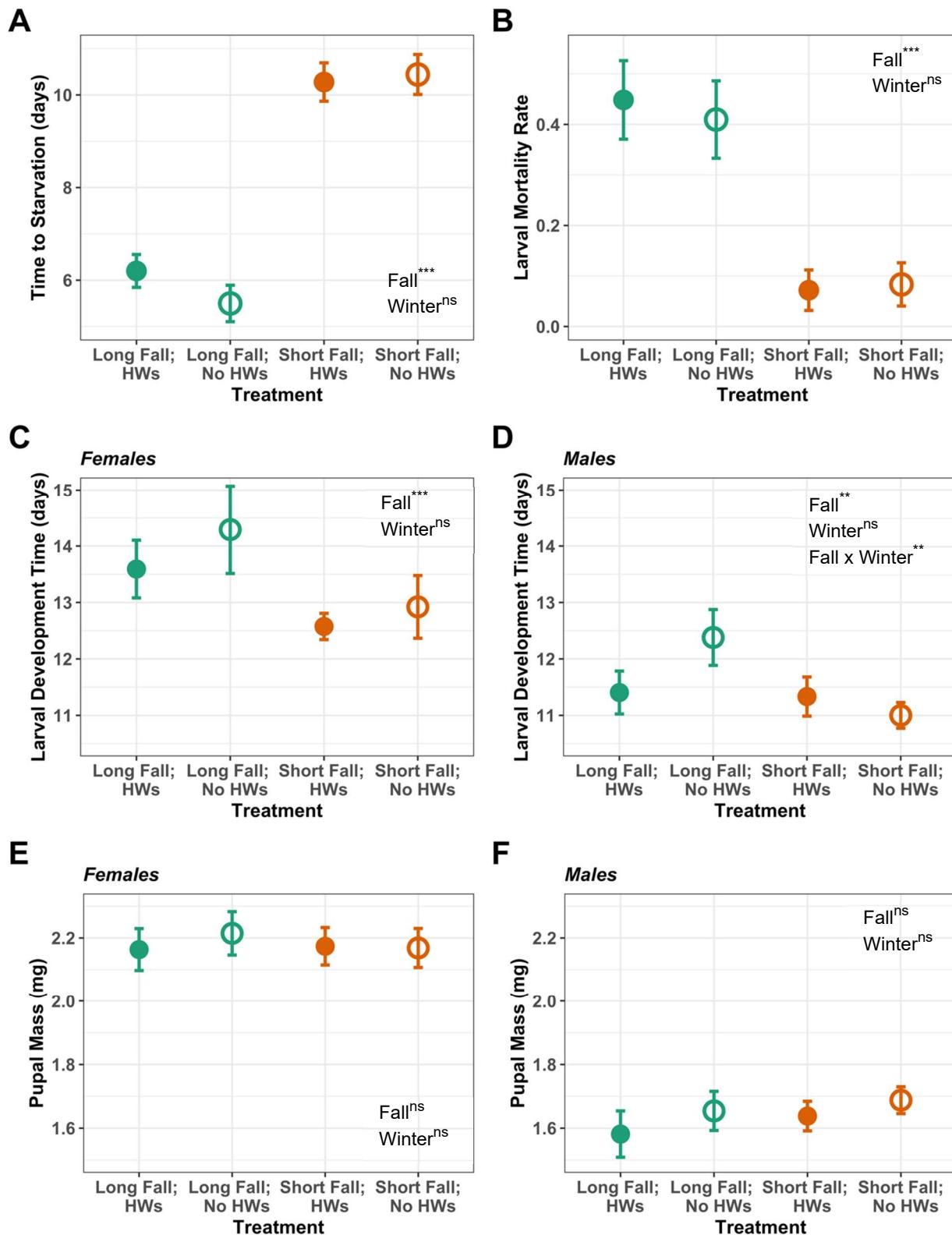


Figure 3 Longer, warmer falls (i.e., “Long Fall”) resulted in negative post-diapause fitness effects, while the inclusion of winter heatwaves (i.e., “HWs”) had minimal effects. Traits measured include: (A) time to starvation; (B) larval mortality rates; (C) female larval development time; (D) male larval development time; (E) female pupal mass; and (F) male pupal mass. Symbols and conventions as in Figure 2. * indicates $P < 0.05$, ** indicates $P < 0.01$

299 **4. Discussion**

300 Many important arthropod pests and pollinators rely on diapause to successfully overwinter in
301 temperate environments (Denlinger 2022). However, it remains difficult to predict the impact of
302 warmer fall and winter conditions resulting from climate change on the overwintering success of
303 these arthropods. Here, we investigated how heat exposure affects the overwinter survival and
304 post-diapause fitness of diapausing arthropods by exposing embryos of *Ae. albopictus* to
305 treatments differing in (1) fall duration and temperatures and (2) winter heatwaves.

306 *4.1. Overwinter survival was unaffected by fall treatment but improved in response to winter*
307 *heatwaves*

308 We did not find any effect of fall treatment on overwinter survival (Figure 2). This result was
309 counter to our expectation that a longer, warmer fall would cause greater overwinter mortality
310 due to energy drain when compared to the short-fall treatment. Survival at the embryonic stage
311 during diapause likely requires relatively little energy expenditure compared to larval or adult
312 stage diapausing arthropods. Thus, any effect of fall treatment on energetic reserves might not
313 have been discernable based on hatching rates alone.

314 In contrast, three simulated four-day winter heatwaves during a 109-day winter period
315 resulted in approximately 10% higher overwinter survival, regardless of whether diapause
316 embryos had been exposed to a long or short-fall (Figure 2). Only a handful of studies have
317 investigated the impact of winter heatwaves on diapausing arthropods. These studies found that
318 winter heatwaves resulted in decreased survival, either through possible thermally induced
319 energy drain (Abarca et al. 2019) or through loss of cold tolerance (Šlachta et al. 2002; Sobek-
320 Swant et al. 2012; Williams et al. 2014).

321 It is possible that in the current study we did not observe heatwave-induced mortality
322 because *Ae. albopictus* undergoes diapause at an immobile stage and is therefore potentially less
323 vulnerable to energy drain than mobile larval or adult diapausing arthropods (Williams et al.
324 2012; Abarca et al. 2019). Arthropods that diapause at mobile stages may be more prone to
325 energy drain either due to the occurrence of incidental movement during warm temperatures
326 (Abarca et al. 2019) or because mobile stages exhibit an inherently less severe metabolic
327 suppression than immobile stage diapausing arthropods (Williams et al. 2012). Our results also
328 contrast with the expectation that winter heatwaves increase overwinter mortality through loss of
329 cold tolerance, though it is possible that our heatwave exposure or cold shock was not severe
330 enough to induce such an effect.

331 There are several possible reasons that winter heatwaves increased overwinter survival in
332 *Ae. albopictus*. Prolonged exposure to cold temperatures can cause injury in arthropods, but these
333 injuries can be repaired during brief, periodic exposure to warmer temperatures (on the scale of
334 hours), leading to improved survival of individuals exposed to fluctuating cold temperature
335 regimes compared to those at constant cold regimes (Renault et al. 2004; Colinet et al. 2006;
336 Koštál et al. 2007; Lalouette et al. 2011). Thus, it is possible that winter heatwaves may provide
337 an opportunity for *Ae. albopictus* to process metabolic waste and undergo repair of damage

338 accumulated during cold exposure. An alternative explanation is that winter heatwaves increased
339 overwinter survival simply by shifting overwintering temperatures closer to the thermal optimum
340 of this species. *Aedes albopictus* is thought to have originated in tropical Southeast Asia and
341 then expanded to temperate areas in both its native and invasive ranges (Porretta et al. 2012).
342 Although few studies have simultaneously assessed multiple insect species' sensitivities to
343 winter warming, those which have suggest more southernly- or widely-distributed species may
344 be less vulnerable to thermally-induced energy drain during overwintering when compared to
345 species with more restricted, northern distributions (Williams et al. 2003; Mercader and Scriber
346 2008; Williams et al. 2012). Thus, it is possible that *Ae. albopictus* may be inherently more
347 vulnerable to cold than warm temperatures because it is an ancestrally tropical species that has
348 expanded into temperate ranges.

349 *4.2. Post-diapause fitness was reduced following exposure to longer, warmer fall, with only*
350 *minimal effects of winter heatwaves*

351 While the longer, warmer fall treatment did not affect overwinter survival, it did have several
352 carry-over effects on post-diapause fitness. Specifically, embryos exposed to a longer, warmer
353 fall exhibited lower larval starvation tolerance (Figure 3A), greater larval mortality (Figure 3B),
354 and longer larval developmental times (Figure 3C,3D). One possible interpretation of these
355 results is that a longer, warmer fall caused energy drain that did not result in observable fitness
356 consequences until after hatching into a more active larval state. Lower larval starvation
357 tolerance observed following longer, warmer fall (Figure 3A) is likely indicative of energy drain
358 because larvae in sterile water are solely reliant on post-diapause energy reserves to survive.
359 Moreover, larvae of the long-fall treatment might have been forced to extend their development
360 time (Figure 3C,3D) to compensate for lower post-diapause energy reserves. The interpretation
361 that a warmer, longer fall reduced energy stores in diapausing *Ae. albopictus* embryos is
362 consistent with studies in other diapausing species. Greater fall temperature and duration led to
363 reduced energy reserves in diapausing larvae of *Choristoneura fumiferana* (Han and Bauce
364 1998) and greater weight loss in diapausing pupae of *Pieris napi* (Nielsen et al. 2022),
365 diapausing adult *Osmia cornuta* (Bosch and Kemp 2004), and diapausing pupae of *Hyphantria*
366 *cunea* (Gomi 2000).

367 An additional, but not necessarily mutually exclusive explanation for these post-diapause
368 negative fitness effects is that a longer, warmer fall led to an accumulation of cellular damage
369 (e.g., oxidative stress, aggregation of misfolding proteins) that did not impede successful
370 hatching but did impact post-diapause survival and development. Some species exhibit slower
371 developmental rates following cold stress during diapause (Turnock et al. 1985) or following
372 acute heat shock outside of diapause (Yocum et al. 1994), likely to repair thermally-induced
373 cellular damage. Additionally, delayed mortality has been observed following cold shock of
374 insects in diapause (Turnock et al. 1983; Turnock et al. 1985; Bale et al. 1989; Marshall and
375 Sinclair 2015; Štětina et al. 2018) and prolonged heat stress of insects in diapause (Nielsen et al.
376 2022). This delayed mortality is generally thought to result from an inability to repair damage

377 incurred during thermal stress (Koštál et al. 2019). Thus, it is possible that in this experiment,
378 stress associated with a warmer, longer fall led to delayed mortality, and in surviving individuals,
379 necessitated a longer post-diapause development period to accommodate repairs. Regardless of
380 the mechanism underlying these carry-over effects, our finding that fall conditions did not impact
381 overwinter survival (Figure 2) but did cause delayed effects on post-diapause larval mortality
382 (Figure 3B) and larval development time (Figure 3C,3D) emphasizes that consideration of post-
383 diapause performance is necessary to accurately assess overwintering fitness following thermal
384 stress.

385 We did not detect an effect of fall treatment on post-diapause pupal mass (Figure 3E,3F).
386 This result suggests that under near-optimal post-diapause rearing conditions, it is possible for
387 surviving larvae to compensate for the effects of a longer, warmer fall. Pupal mass is an accurate
388 predictor of adult female fecundity in this species (Armbruster and Hutchinson 2002); thus, it is
389 likely that surviving females from all treatments would have achieved comparable adult
390 fecundity. Some authors have suggested that species which can feed after diapause are less likely
391 to suffer post-diapause fitness consequences following warmer fall or winter conditions because
392 they can compensate for thermally-induced energy drain (Tauber and Tauber 1986; Irwin and
393 Lee 2000; Williams et al. 2015). Thus, post-diapause feeding may have allowed surviving *Ae.*
394 *albopictus* larvae from the long-fall treatment to ultimately achieve equivalent potential
395 fecundity as those exposed to short fall conditions.

396 Our fall treatments were designed to approximate natural conditions for our study
397 species, where earlier diapause induction leads to both longer fall duration and warmer fall
398 temperatures. As a result, we cannot determine which of these factors (i.e., fall duration or fall
399 temperatures) caused the observed negative carry-over effects on post-diapause fitness. Only one
400 study has simultaneously investigated the effects of pre-winter temperature versus duration on
401 fitness of diapausing insects (Nielsen et al. 2022). Nielsen et al. (2022) found that longer pre-
402 winter duration led to greater weight loss and post-winter mortality in diapausing *P. napi* pupae,
403 and this effect was exaggerated at higher temperatures due to thermally-induced metabolic
404 upregulation. These results suggests that both factors can play an important role during diapause.
405 Regardless, climate change is expected to increase both fall temperatures and length (Kunkel et
406 al. 2004; Linderholm 2006; Liu et al. 2006; Liu et al. 2018), so it is important to investigate the
407 simultaneous effects of these two factors.

408 Despite the strong effect of winter heatwaves on overwinter survival, winter treatment
409 had only a slight impact on post-diapause fitness traits. We observed a significant interaction
410 between fall and winter treatment on male development time (Figure 3D). Males that had
411 experienced a long-fall with no winter heatwaves exhibited significantly longer larval
412 development time compared to the other three treatment groups (Figure 3D). As described
413 above, stressful thermal conditions during diapause can result in slower post-diapause
414 development, likely to allow time for repairs (Turnock et al. 1985). Thus, the increased cold
415 exposure associated with the no-heatwave treatment could have caused additional damage which

416 only had observable effects on development time if it was preceded by a more stressful long fall
417 treatment.

418 *4.5. Implications for the response of *Ae. albopictus* to climate change*

419 Our results indicate that winter warming caused by climate change will likely lead to expansion
420 of *Ae. albopictus* populations on both spatial and temporal scales. Our finding that winter
421 heatwaves increased overwinter survival of diapausing *Ae. albopictus* embryos suggests that this
422 species may be able to expand further northwards as climate change increases the frequency of
423 such extreme events (Liu et al. 2006; Hansen et al. 2012). Many models of *Ae. albopictus*
424 abundance and habitat suitability do not consider thermal variability created by winter heatwaves
425 when selecting their climate variables, instead focusing on more broad-scale variables such as
426 annual mean minimum temperature or mean temperature of the coldest quarter (Benedict et al.
427 2007; Medley 2010; Rochlin et al. 2013). Our results stress that this may cause model
428 predictions of habitat suitability to underestimate the ability for this species to expand to higher
429 latitudes. Even if average or minimum winter temperatures remain low, an increased frequency
430 of short periodic warm spells could reduce cold-induced mortality if they permit repair of cold
431 injury. Climate change has also led to increases in the length of the growing season in many
432 areas (Kunkel et al. 2004; Linderholm 2006; Liu et al. 2006; Liu et al. 2018). As this trend
433 continues, it will likely create strong selective pressure on *Ae. albopictus* to evolve a delayed
434 seasonal entry into diapause due to the negative post-diapause fitness impacts associated with a
435 longer, warmer pre-winter period. Such an evolutionary shift has already been observed in
436 another mosquito species, *Wyeomyia smithii* (Bradshaw and Holzapfel 2001), and other
437 multivoltine diapausing species (Gallinat et al. 2015). Epidemiological modeling of chikungunya
438 virus (CHIKV) dynamics in the United States shows that, in locations with high thermal
439 seasonality, the time of year with the greatest epidemic risk following CHIKV introduction
440 aligned closely with the timing of active *Ae. albopictus* growth and reproduction (Ruiz-Moreno
441 et al. 2012). Thus, temporal expansion of the mosquito's active season is likely to result in
442 prolonged epidemic risk for CHIKV and other vector-transmitted viruses.

443 *4.6. Conclusions*

444 It remains challenging to predict the response of diapausing species to warmer overwintering
445 temperatures due to the limited number of existing studies across species as well as the observed
446 variability in responses. Here, we found that the important vector species, *Ae. albopictus*,
447 exhibited a complex response to heat exposure during fall and winter. Exposure to winter
448 heatwaves increased overwinter survival of diapausing embryos, likely because winter
449 heatwaves allow diapausing embryos to escape and/or repair cold stress. In contrast, exposure to
450 longer, warmer fall conditions led to lower post-diapause starvation tolerance, longer larval
451 development, and increased larval mortality, which could have been caused by energy drain or
452 the accumulation of cellular damage. Ultimately, the development of a more generalizable
453 predictive framework for assessing winter climate change vulnerability may be possible through

454 further studies on the relationship between key life history traits (e.g., metabolic thermal
455 sensitivity, stage at which diapause occurs, the capacity for post-diapause feeding, range breadth)
456 and vulnerability to winter warming.

457 Our finding that fall conditions did not impact immediate hatching success but did cause
458 carry-over effects on post-diapause starvation tolerance, larval mortality, and larval development
459 time emphasizes that consideration of post-diapause fitness effects can radically change
460 assessments of overwintering success following thermal stress. It is crucial that studies consider
461 these carry-over effects to avoid underestimating species' sensitivity to thermal stress. For
462 example, delayed life history effects can lead to changes in population dynamics (Beckerman et
463 al. 2002) and disease transmission (Evans et al. 2021), meaning that failure to consider these
464 effects may result in inaccurate modeling of population-level responses to climate change and
465 shifts in vector-borne disease risk.

466 Finally, while both the long-fall treatment and winter heatwaves treatment involved
467 increasing exposure to warmer temperatures, they had contrasting effects on overwintering
468 fitness. This result challenges the assumption that warmer conditions will be uniformly good or
469 bad for a given species. Thus, to determine the net fitness impact of warmer overwintering
470 conditions, it is critical to simultaneously assess the effects of different aspects of climate
471 change.

472 *Declaration of Competing Interests:* The authors declare that the research was conducted in the
473 absence of any commercial or financial relationships that could be construed as a potential
474 conflict of interest.

475 *CRedit Authorship Contribution Statement:* **Samantha L. Sturiale:** Conceptualization, Data
476 curation, Formal analysis, Investigation, Methodology, Visualization, Roles/Writing – original
477 draft; Writing - review & editing. **Peter A. Armbruster:** Conceptualization, Funding
478 acquisition, Methodology; Project administration, Resources, Supervision, Visualization, Writing
479 - review & editing.

480 *Data Availability:* All data on overwinter survival, post-diapause starvation tolerance, post-
481 diapause larval mortality, post-diapause larval development, pupal mass, and heatwave
482 occurrence from 2011-2020 in the VA-MD-DC area are available in a single Excel file (see
483 Supplementary File 1). The python script used to compute heatwave data with which we
484 parameterized our winter heatwave treatments is available as Supplementary File 2. The R code
485 used to conduct statistical analyses and produce plots is available as Supplementary File 3.

486 *Acknowledgements:* This work was supported by NIH grant 5R01AI132409, NSF grant IOS
487 2128241, and funds from the Davis Family Endowment to PAA. We are grateful to members of
488 the Armbruster lab, Dr. Leslie Ries, and Dr. Martha Weiss for their comments and suggestions.

489 **References**

- 490 Abarca M, Larsen EA, Ries L. 2019. Heatwaves and novel host consumption increase overwinter
491 mortality of an imperiled wetland butterfly. *Frontiers in Ecology and Evolution*. 7:1–13.
492 doi:10.3389/fevo.2019.00193.
- 493 Armbruster P, Conn JE. 2006. Geographic variation of larval growth in North American *Aedes*
494 *albopictus* (Diptera: Culicidae). *Annals of the Entomological Society of America*.
495 99(6):1234–1243. doi:10.1603/0013-8746(2006)99[1234:GVOLGI]2.0.CO;2.
- 496 Armbruster P, Hutchinson RA. 2002. Pupal mass and wing length as indicators of fecundity in
497 *Aedes albopictus* and *Aedes geniculatus* (diptera: Culicidae). *Journal of Medical*
498 *Entomology*. 39(4):699–704. doi:10.1603/0022-2585-39.4.699.
- 499 Armbruster PA. 2016. Photoperiodic Diapause and the Establishment of *Aedes albopictus*
500 (Diptera: Culicidae) in North America. *Journal of Medical Entomology*. 53(5):1013–1023.
501 doi:10.1093/jme/tjw037.
- 502 Bale JS, Hansen TN, Nishino M, Baust JG. 1989. Effect of cooling rate on the survival of larvae,
503 pupariation, and adult emergence of the gallfly *Eurosta solidaginis*. *Cryobiology*.
504 26(3):285–289. doi:10.1016/0011-2240(89)90024-2.
- 505 Bale JS, Hayward SAL. 2010. Insect overwintering in a changing climate. *Journal of*
506 *Experimental Biology*. 213(6):980–994. doi:10.1242/jeb.037911.
- 507 Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA. 2020. Rapid
508 adaptive evolution of the diapause program during range expansion of an invasive mosquito.
509 *Evolution*. 74(7):1451–1465. doi:10.1111/evo.14029.
- 510 Beckerman A, Benton TG, Ranta E, Kaitala V, Lundberg P. 2002. Population dynamic
511 consequences of delayed life-history effects. *Trends in Ecology and Evolution*. 17(6):263–
512 269. doi:10.1016/S0169-5347(02)02469-2.
- 513 Bedhomme S, Agnew P, Sidobre C, Michalakis Y. 2003. Sex-specific reaction norms to
514 intraspecific larval competition in the mosquito *Aedes aegypti*. *Journal of Evolutionary*
515 *Biology*. 16(4):721–730. doi:10.1046/j.1420-9101.2003.00576.x.
- 516 Benedict MQ, Levine RS, Hawley WA, Lounibos LP. 2007. Spread of the Tiger: Global Risk of
517 Invasion by the Mosquito *Aedes albopictus*. *Vector Borne Zoonotic Diseases*. 7(1):76–85.
518 doi:10.1089/vbz.2006.0562
- 519 Boggs CL, Inouye DW. 2012. A single climate driver has direct and indirect effects on insect
520 population dynamics. *Ecol Lett*. 15(5):502–508. doi:10.1111/j.1461-0248.2012.01766.x.
- 521 Bosch J, Kemp WP. 2004. Effect of pre-wintering and wintering temperature regimes on weight
522 loss, survival, and emergence time in the mason bee *Osmia cornuta* (Hymenoptera:
523 Megachilidae). *Apidologie*. 35:469–479. doi:10.1051/apido:2004035.
- 524 Bradshaw WE, Armbruster PA, Holzapfel CM. 1998. Fitness consequences of hibernal diapause
525 in the pitcher-plant mosquito, *Wyeomyia smithii*. *Ecology*. 79(4):1458–1462.
526 doi:10.2307/176758.
- 527 Bradshaw WE, Holzapfel CM. 2001. Genetic shift in photoperiodic response correlated with
528 global warming. *Proceedings of the National Academy of Sciences*. 98(25):14509–14511.
529 doi:10.1073/pnas.241391498.
- 530 Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, Olival KJ, Ross N, Bansal
531 S. 2022. Climate change increases cross-species viral transmission risk. *Nature*.
532 607(7919):555–562. doi:10.1038/s41586-022-04788-w.
- 533 Colinet H, Renault D, Hance T, Vernon P. 2006. The impact of fluctuating thermal regimes on
534 the survival of a cold-exposed parasitic wasp, *Aphidius colemani*. *Physiological*
535 *Entomology*. 31(3):234–240. doi:10.1111/j.1365-3032.2006.00511.x.

- 536 Demétrio CGB, Hinde J, Moral RA. 2014. Models for Overdispersed Data in Entomology. In:
537 Ferreira CP, Godoy WAC, editors. Ecological Modeling Applied to Entomology. Springer
538 International Publishing. p. 219–259. 10.1007/978-3-319-06877-0_9.
- 539 Denlinger DL. 2002. Regulation of Diapause. Annual Review of Entomology. (47):93–122.
- 540 Denlinger DL. 2022. Insect Diapause. Cambridge University Press.
- 541 Evans M V., Newberry PM, Murdock CC. 2021. Carry-over effects of the larval environment in
542 mosquito-borne disease systems. Population Biology of Vector-Borne Diseases. Oxford
543 University Press. p. 155–174.
- 544 Gallinat AS, Primack RB, Wagner DL. 2015. Autumn, the neglected season in climate change
545 research. Trends in Ecology and Evolution. 30(3):169–176. doi:10.1016/j.tree.2015.01.004.
- 546 Gomi T. 2000. Effects of Timing of Diapause Induction on Winter Survival and Reproductive
547 Success in *Hyphantria cunea* in a Transition Area of Voltinism. Entomological Science.
548 3(3):433–438.
- 549 Gratz NG. 2004. Critical review of the vector status of *Aedes albopictus*. Medical and Veterinary
550 Entomology. 18(3):215–227. doi:10.1111/j.0269-283X.2004.00513.x.
- 551 Hahn DA, Denlinger DL. 2007. Meeting the energetic demands of insect diapause: Nutrient
552 storage and utilization. Journal of Insect Physiology. 53(8):760–773.
553 doi:10.1016/j.jinsphys.2007.03.018.
- 554 Han ERN, Bauce E. 1998. Timing of diapause initiation, metabolic changes and overwintering
555 survival of the spruce budworm, *Choristoneura fumiferana*. Ecological Entomology.
556 23(2):160–167. doi:10.1046/j.1365-2311.1998.00111.x.
- 557 Hansen J, Sato M, Ruedy R. 2012. Perception of climate change. Proceedings of the National
558 Academy of Sciences. 109(37). doi:10.1073/pnas.1205276109.
- 559 Hanson SM, Craig GB. 1994. Cold acclimation, diapause, and geographic origin affect cold
560 hardiness in eggs of *Aedes albopictus* (Diptera: Culicidae). Journal of Medical Entomology.
561 31(2):192–201. doi:10.1093/jmedent/31.2.192.
- 562 Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S. 2011. Carry-over effects as drivers of
563 fitness differences in animals. Journal of Animal Ecology. 80(1):4–18. doi:10.1111/j.1365-
564 2656.2010.01740.x.
- 565 Irwin JT, Lee RE. 2000. Mild winter temperatures reduce survival and potential fecundity of the
566 goldenrod gall fly, *Eurosta solidaginis* (Diptera: Tephritidae). Journal of Insect Physiology.
567 46(5):655–661. doi:10.1016/S0022-1910(99)00153-5.
- 568 Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. 2008. Climate change and outbreaks of the
569 geometrids *Operophtera brumata* and *Epirrita autumnata* in subarctic birch forest: Evidence
570 of a recent outbreak range expansion. Journal of Animal Ecology. 77(2):257–264.
571 doi:10.1111/j.1365-2656.2007.01339.x.
- 572 Koštál V. 2006. Eco-physiological phases of insect diapause. Journal of Insect Physiology.
573 52(2):113–127. doi:10.1016/j.jinsphys.2005.09.008.
- 574 Koštál V, Grgac R, Korbelová J. 2019. Delayed mortality and sublethal effects of cold stress in
575 *Drosophila melanogaster*. Journal of Insect Physiology. 113(January):24–32.
576 doi:10.1016/j.jinsphys.2019.01.003.
- 577 Koštál V, Renault D, Mehrabianová A, Bastl J. 2007. Insect cold tolerance and repair of chill-
578 injury at fluctuating thermal regimes: Role of ion homeostasis. Comparative Biochemistry
579 and Physiology Part A: Molecular and Integrative Physiology. 147(1):231–238.
580 doi:10.1016/j.cbpa.2006.12.033.

- 581 Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl
582 L, Marczak LB, et al. 2019. Past and future spread of the arbovirus vectors *Aedes aegypti*
583 and *Aedes albopictus*. *Nature Microbiology*. 4(5):854–863. doi:10.1038/s41564-019-0376-y.
- 584 Kunkel KE, Easterling DR, Hubbard K, Redmond K. 2004. Temporal variations in frost-free
585 season in the United States: 1895–2000. *Geophysical Research Letters*. 31(3):2–5.
586 doi:10.1029/2003GL018624.
- 587 Lalouette L, Williams CM, Hervant F, Sinclair BJ, Renault D. 2011. Metabolic rate and
588 oxidative stress in insects exposed to low temperature thermal fluctuations. *Comparative
589 Biochemistry and Physiology - A Molecular and Integrative Physiology*. 158(2):229–234.
590 doi:10.1016/j.cbpa.2010.11.007.
- 591 Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, Kalinkat G,
592 Neuvonen S, Niemelä P, Terblanche JS, et al. 2020. Complex responses of global insect
593 pests to climate warming. *Frontiers in Ecology and the Environment*. 18(3):141–150.
594 doi:10.1002/fee.2160.
- 595 Linderholm HW. 2006. Growing season changes in the last century. *Agricultural and Forest
596 Meteorology*. 137(1–2):1–14. doi:10.1016/j.agrformet.2006.03.006.
- 597 Liu Q, Piao S, Janssens IA, Fu Y, Peng S, Lian X, Ciais P, Myneni RB, Peñuelas J, Wang T.
598 2018. Extension of the growing season increases vegetation exposure to frost. *Nature
599 Communications*. 9(1). doi:10.1038/s41467-017-02690-y.
- 600 Liu X, Yin ZY, Shao X, Qin N. 2006. Temporal trends and variability of daily maximum and
601 minimum, extreme temperature events, and growing season length over the eastern and
602 central Tibetan Plateau during 1961–2003. *Journal of Geophysical Research Atmospheres*.
603 111(19):1–19. doi:10.1029/2005JD006915.
- 604 Luedeling E, Gebauer J, Buerkert A. 2009. Climate change effects on winter chill for tree crops
605 with chilling requirements on the Arabian Peninsula. *Climate Change*. 96(1):219–237.
606 doi:10.1007/s10584-009-9581-7.
- 607 Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, Bucht G. 2020. Globe-
608 Trotting *Aedes aegypti* and *Aedes albopictus*: Risk Factors for Arbovirus Pandemics.
609 *Vector-Borne and Zoonotic Diseases*. 20(2):71–81. doi:10.1089/vbz.2019.2486.
- 610 Marshall KE, Gotthard K, Williams CM. 2020. Evolutionary impacts of winter climate change
611 on insects. *Current Opinion in Insect Science*. 41:54–62. doi:10.1016/j.cois.2020.06.003.
- 612 Marshall KE, Sinclair BJ. 2015. The relative importance of number, duration and intensity of
613 cold stress events in determining survival and energetics of an overwintering insect.
614 *Functional Ecology*. 29(3):357–366. doi:10.1111/1365-2435.12328.
- 615 Medley KA. 2010. Niche shifts during the global invasion of the Asian tiger mosquito, *Aedes
616 albopictus* Skuse (Culicidae), revealed by reciprocal distribution models. *Global Ecology
617 and Biogeography*. 19(1):122–133. doi:10.1111/j.1466-8238.2009.00497.x.
- 618 Mercader RJ, Scriber JM. 2008. Asymmetrical thermal constraints on the parapatric species
619 boundaries of two widespread generalist butterflies. *Ecological Entomology*. 33(4):537–545.
620 doi:10.1111/j.1365-2311.2008.01001.x.
- 621 Mushegian AA, Neupane N, Batz Z, Mogi M, Tuno N, Toma T, Miyagi I, Ries L, Armbruster
622 PA. 2021. Ecological mechanism of climate-mediated selection in a rapidly evolving
623 invasive species. *Ecology Letters*. 24(4):698–707. doi:10.1111/ele.13686.
- 624 Nielsen ME, Lehmann P, Gotthard K. 2022. Longer and warmer prewinter periods reduce post-
625 winter fitness in a diapausing insect. *Functional Ecology*. 36(5):1151–1162.
626 doi:10.1111/1365-2435.14037.

- 627 Norris DR, Marra PP. 2007. Seasonal interactions, habitat quality, and population dynamics in
628 migratory birds. *Condor*. 109(3):535–547. doi:10.1093/condor/109.3.535
- 629 O'Connor CM, Norris DR, Crossin GT, Cooke SJ. 2014. Biological carryover effects: Linking
630 common concepts and mechanisms in ecology and evolution. *Ecosphere*. 5(3).
631 doi:10.1890/ES13-00388.1.
- 632 Porretta D, Mastrantonio V, Bellini R, Somboon P, Urbanelli S. 2012. Glacial History of a
633 Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger
634 Mosquito *Aedes albopictus*. *PLoS One*. 7(9). doi:10.1371/journal.pone.0044515.
- 635 Renault D, Nedved O, Hervant F, Vernon P. 2004. The importance of fluctuating thermal
636 regimes for repairing chill injuries in the tropical beetle *Alphitobius diaperinus* (Coleoptera:
637 Tenebrionidae) during exposure to low temperature. *Physiological Entomology*. 29(2):139–
638 145. doi:10.1111/j.0307-6962.2004.00377.x.
- 639 Rochlin I, Ninivaggi D v., Hutchinson ML, Farajollahi A. 2013. Climate Change and Range
640 Expansion of the Asian Tiger Mosquito (*Aedes albopictus*) in Northeastern USA:
641 Implications for Public Health Practitioners. *PLoS One*. 8(4):1–9.
642 doi:10.1371/journal.pone.0060874.
- 643 Ruiz-Moreno D, Vargas IS, Olson KE, Harrington LC. 2012. Modeling Dynamic Introduction of
644 Chikungunya Virus in the United States. *PLoS Neglected Tropical Diseases*. 6(11):1–8.
645 doi:10.1371/journal.pntd.0001918.
- 646 Scheffers BR, de Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart
647 SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, et al. 2016. The broad footprint of climate
648 change from genes to biomes to people. *Science* (1979). 354(6313).
649 doi:10.1126/science.aaf7671.
- 650 Sgolastra F, Bosch J, Molowny-Horas R, Maini S, Kemp WP. 2010. Effect of temperature
651 regime on diapause intensity in an adult-wintering Hymenopteran with obligate diapause.
652 *Journal of Insect Physiology*. 56(2):185–194. doi:10.1016/j.jinsphys.2009.10.001.
- 653 Sgolastra F, Kemp WP, Buckner JS, Pitts-Singer TL, Maini S, Bosch J. 2011. The long summer:
654 Pre-wintering temperatures affect metabolic expenditure and winter survival in a solitary
655 bee. *Journal of Insect Physiology*. 57(12):1651–1659. doi:10.1016/j.jinsphys.2011.08.017.
- 656 Sinclair BJ. 2015. Linking energetics and overwintering in temperate insects. *Journal of Thermal
657 Biology*. 54:5–11. doi:10.1016/j.jtherbio.2014.07.007.
- 658 Šlachta M, Vambera J, Zahradníčková H, Koštál V. 2002. Entering diapause is a prerequisite for
659 successful cold-acclimation in adult *Graphosoma lineatum* (Heteroptera: Pentatomidae).
660 *Journal of Insect Physiology*. 48(11):1031–1039. doi:10.1016/S0022-1910(02)00191-9.
- 661 Sobek-Swant S, Crosthwaite JC, Lyons DB, Sinclair BJ. 2012. Could phenotypic plasticity limit
662 an invasive species? Incomplete reversibility of mid-winter deacclimation in emerald ash
663 borer. *Biological Invasions*. 14(1):115–125. doi:10.1007/s10530-011-9988-8.
- 664 Štětina T, Hůla P, Moos M, Šimek P, Šmilauer P, Koštál V. 2018. Recovery from supercooling,
665 freezing, and cryopreservation stress in larvae of the drosophilid fly, *Chymomyza costata*.
666 *Scientific Reports*. 8(1):1–13. doi:10.1038/s41598-018-22757-0.
- 667 Tauber MJ, Tauber CA. 1986. Seasonal Adaptations of Insects. Oxford: Oxford University Press.
- 668 Thomas SM, Obermayr U, Fischer D, Kreyling J, Beierkuhnlein C. 2012. Low-temperature
669 threshold for egg survival of a post-diapause and non-diapause European aedine strain,
670 *Aedes albopictus* (Diptera: Culicidae). *Parasites and Vectors*. 5(1):1–7. doi:10.1186/1756-
671 3305-5-100.

- 672 Turnock WJ, Jones TH, Reader PM. 1985. Effects of cold stress during diapause on the survival
673 and development of *Delia radicum* (Diptera: Anthomyiidae) in England. *Oecologia*. 67:506–
674 510. doi:10.1007/bf00790021
- 675 Turnock WJ, Lamb RJ, Bodnaryk RP. 1983. Effects of cold stress during pupal diapause on the
676 survival and development of *Mamestra configurata* (Lepidoptera: Noctuidae). *Oecologia*.
677 56(2–3):185–192. doi:10.1007/BF00379690.
- 678 Williams CM, Hellmann J, Sinclair BJ. 2012. Lepidopteran species differ in susceptibility to
679 winter warming. *Climate Research*. 53(2):119–130. doi:10.3354/cr01100.
- 680 Williams CM, Nicolai A, Ferguson LV, Bernards MA, Hellmann JJ, Sinclair BJ. 2014. Cold
681 hardiness and deacclimation of overwintering *Papilio zelicaon* pupae. *Comparative
682 Biochemistry and Physiology Part A: Molecular and Integrative Physiology*. 178:51–58.
683 doi:10.1016/j.cbpa.2014.08.002.
- 684 Williams CM, Henry HAL, Sinclair BJ. 2015. Cold truths: How winter drives responses of
685 terrestrial organisms to climate change. *Biological Reviews*. 90(1):214–235.
686 doi:10.1111/brv.12105.
- 687 Williams JB, Shorthouse JD, Lee RE. 2003. Deleterious Effects of Mild Simulated
688 Overwintering Temperatures on Survival and Potential Fecundity of Rose-Galling
689 *Diplolepis* Wasps (Hymenoptera: Cynipidae). *Journal of Experimental Zoology*. 298(1):23–
690 31. doi:10.1002/jez.a.10264.
- 691 Yocom GD, Žďárek J, Joplin KH, Lee RE, Smith DC, Manter KD, Denlinger DL. 1994.
692 Alteration of the eclosion rhythm and eclosion behavior in the flesh fly, *Sarcophaga
693 crassipalpis*, by low and high temperature stress. *Journal of Insect Physiology*. 40(1):13–21.
694 doi:10.1016/0022-1910(94)90107-4.