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Abstract— The growing focus on indoor robot navigation uti-
lizing wireless signals has stemmed from the capability of
these signals to capture high-resolution angular and temporal
measurements. Prior heuristic-based methods, based on radio
frequency (RF) propagation, are intuitive and generalizable
across simple scenarios, yet fail to navigate in complex environ-
ments. On the other hand, end-to-end (e2e) deep reinforcement
learning (RL) can explore a rich class of policies, delivering
surprising performance when facing complex wireless environ-
ments. However, the price to pay is the astronomical amount of
training samples, and the resulting policy, without fine-tuning
(zero-shot), is unable to navigate efficiently in new scenarios
unseen in the training phase. To equip the navigation agent
with sample-efficient learning and zero-shot generalization, this
work proposes a novel physics-informed RL (PIRL) where a
distance-to-target-based cost (standard in e2e) is augmented
with physics-informed reward shaping. The key intuition is
that wireless environments vary, but physics laws persist. After
learning to utilize the physics information, the agent can
transfer this knowledge across different tasks and navigate in an
unknown environment without fine-tuning. The proposed PIRL
is evaluated using a wireless digital twin (WDT) built upon
simulations of a large class of indoor environments from the
AI Habitat dataset augmented with electromagnetic radiation
simulation for wireless signals. It is shown that the PIRL signif-
icantly outperforms both e2e RL and heuristic-based solutions
in terms of generalization and performance. Source code is
available at https://github.com/Panshark/PIRL-WIN.

I. INTRODUCTION

High-frequency transmissions in the millimeter wave
(mmWave) bands are a key component of recently developed
fifth-generation (5G) wireless systems [1], [2]. In addition
to the ability to support massive data rates, the mmWave
bands also enable highly accurate positioning and location
capabilities [3], [4]. The wide bandwidth of mmWave sig-
nals, combined with the use of arrays with large numbers of
elements, enables the resolution of paths with high temporal
and angular resolution. For robotic navigation and SLAM,
mmWave wireless-based positioning can be a valuable com-
plement to camera sensors since the signals can provide
information beyond line-of-sight.

This work considers a wireless indoor navigation (WIN)
problem [5], where a target broadcasts periodic mmWave
wireless signals and a mobile robot (agent) has to locate
and navigate to the target. Importantly, the environment is
initially unknown to the agent. While there has been consid-
erable research on such navigation problems from camera
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Fig. 1: The wireless indoor navigation (WIN) requires the
agent to navigate to the wireless transmitter in an unknown
environment using multi-modal input, including vision and
wireless. The non-physics e2e RL (NPRL), based on relative
distance cost, fails to navigate efficiently in unseen scenarios.
Trained to utilize physics prior, physics-informed RL (PIRL)
acquires zero-shot generalization with interpretable policies.

data (see, for example, a survey of deep reinforcement
learning methods in [6]), the question is how to leverage
the mmWave wireless signals. A growing body of research
attempts to address this question [5], [7], [8], where heuristic
solutions are developed based on the physics properties
of mmWave. For example, [5] presents a simple heuristic
navigation strategy based largely on following the angle
of arrival (AoA) of wireless signals. This physics-based
solution has the advantage that it requires no training and
thus does not overfit any specific environment, displaying
decent zero-shot generalization. However, this heuristic fails
to handle complex wireless environments where mmWave
signals propagate along multiple paths through reflections
and diffractions [9]. Moreover, observations of these paths
are inexact due to noised measurements.

When facing such complex indoor navigation tasks, deep
reinforcement learning (RL) offers an end-to-end (e2e) learn-
ing framework without manual design. Powered by deep
representation learning, e2e RL can learn rich policies from
complex heterogeneous sensor data. However, such a practice
requires hundreds of GPU hours and an exorbitant volume
of training data [10]. The resulting policy tends to overfit the
training environment, generalizing poorly [11] or requiring
pre-exploration when tested in a new environment [8].

To combine the best of two worlds, this work proposes a
physics informed RL (PIRL) approach, training the agent
to utilize physics information through reward shaping. As
illustrated in Figure 1, the key idea is to use e2e RL but
with a relative-distance-based cost function augmented with
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physically-motivated terms, encouraging the policy to seek
actions conforming to physical principles that lead to shorter
paths. For the WIN problem, the physical terms include
attempts to increase the signal strength, follow the angle of
arrival, and navigate to regions where the number of reflec-
tions for the strongest path is reduced. Since these physics
principles hold across different wireless environments, the
proposed PIRL alleviates catastrophic forgetting: previously
acquired knowledge is carried over to the ensuing train-
ing tasks, leading to sample-efficient learning. Additionally,
trained to leverage physics information, the PIRL agent can
deal with unseen environments without fine-tuning, achieving
zero-shot generalization.

We corroborate the proposed PIRL method using a widely-
used AI Habitat indoor navigation dataset [10] combined
with detailed RF propagation simulation developed in [5].
This synthesized simulator is referred to as the indoor
wireless digital twin (WDT). Our contributions are as below.

1) We propose a physically-motivated reward shaping to
achieve physics-informed RL for WIN without map in-
formation, enjoying a simple implementation, see (2).

2) We demonstrate that the PIRL requires fewer training
samples/resources than vanilla e2e RL does (1593 v.s.
2304 GPU-hours), which is particularly valuable in the
WIN problem where wireless simulation is expensive;

3) Our testing experiments show that PIRL generalizes
significantly better to new environments in a zero-shot
manner, compared with heuristic/RL-based baselines;

4) Inspired by recent advances in explainable AI [12], we
conduct sensitivity analysis on the learned PIRL model
regarding the input wireless data, showing that the PIRL’s
actions are interpretable in that they are consistent with
physics principles embedded in the reward shaping.

II. RELATED WORK

Our work subscribes to the recent line of research on
indoor positioning and localization using high-frequency
wireless bands [3]–[5], [8]. Closely related to this work,
[5] considers the same WIN setup and proposes a physics-
based heuristic: following the AoA, which proves effective
in simple scenarios but inadequate when facing complex
wireless environments. Similar to our PIRL, [8] develops
a deep-learning-based localization algorithm, yet it requires
additional map generation for indoor navigation. In contrast,
our PIRL incorporates physics knowledge into the RL model,
delivering efficient navigation in unexplored environments.

This work also falls within the burgeoning field of physics-
informed machine learning, which amounts to introducing
appropriate observational, inductive, and learning biases that
facilitate the learning process [13]. Our proposed PIRL
adopts the last approach: incorporating learning biases, i.e.,
the physics-motivated reward shaping. By selecting appropri-
ate loss functions to modulate the training, the PIRL favors
convergence to solutions adhering to underlying physics.

Similar methodologies have been applied to nuclear assembly
design [14], aircraft conflict resolution [15], and ramp meter-
ing [16]. To the best of our knowledge, this work is among
the first endeavors to investigate the physics principles in
the 5G wireless domain for RL-based indoor navigation. We
refer the reader to Appendix I for an extended discussion1.

III. WIRELESS INDOOR NAVIGATION: TASK SETUP

Consider the WIN task setup in [5], where a stationary
target is positioned at an unknown location in an indoor
environment. The target is equipped with a mmWave trans-
mitter that broadcasts wireless signals at regular intervals.
Equipped with a mmWave receiver, an RGB camera, and
motion sensors, the agent aims to navigate to the target in
minimal time. In contrast to the PointGoal task [17], WIN
does not provide the agent with the target coordinates or map
information. The detailed environment setup and the agent’s
actuation/sensor models are provided below.

The agent pose is given by p = (x, y, φ) where x, y denotes
the xy-coordinate of the agent measured in meters, and φ
represents the orientation of the agent in radius (measured
counter-clockwise from x-axis). The agent aims to locate and
navigate to the target (the wireless transmitter) denoted by
(x∗, y∗). We consider a WIN task where the agent operates
in the presence of multiple kinds of information feedback
that we denote with a vector ot = (mt, p̂t, vt, wt), where
t is the time step, mt is an estimate map, p̂t = (xt, yt) is
the estimated pose, vt = V (pt) represents visual information
and wt = W (pt) represents the wireless information.
a) Map and Pose: The map and pose estimates can come
from any SLAM module. This work uses the state-of-the-
art neural SLAM module proposed in [18] that provides
robustness to the sensor noise during navigation. This SLAM
module internally maintains a spatial map mt and the agent’s
pose estimate p̂t (different from the raw sensor reading p̄t)
at each time step during the navigation process. The spatial
map is represented as mt ∈ [0, 1]2×M×M is a 2-channel
M × M matrix, where M × M denotes the map size and
each entry corresponds to a cell. Let d denote the width
of the map discretization so that each cell is d × d, and
the total area is Md × Md, d =25 cm. Entries of the first
channel of mt denote the probabilities of obstacles within
the corresponding cells, while those of the second channel
represent the probabilities of the cells being explored [18].
b) Wireless Information: W (p) = (gn,Ω

rx
n ,Ωtx

n )Nn=1 ∈
R3×N , where N is the maximum number of detected paths
along which signals propagate. For the n-th path, gn denotes
its signal-to-noise ratio (SNR), Ωrx

n and Ωtx
n denote the

angle of arrival (AoA) and departure (AoD), respectively.
We consider the top N = 5 paths with the strongest signal
strengths among all paths(see [5] and Appendix VI).
c) Visual Information: V (p) ∈ R3×L1×L2 is the 3-channel
RGB camera image input at the pose p, where L1 and L2

denote the height and the width, respectively. In addition to
the wireless sensor and the camera, the agent is also equipped

1Appendix is available at https://arxiv.org/abs/2306.06766
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with motion sensors. The sensor readings lead to the estimate
of the agent pose p̄ = (x̄, ȳ, φ̄), which can be different from
the agent’s authentic pose p. The difference εsen = p̄− p is
referred to as the sensor noise.
d) Actuation: Following [18], we assume the agent utilizes
three default navigation actions, A := {aF , aL, aR}. Here,
aF = (d, 0, 0) denotes the moving-forward command with
a travel distance equal to the grid size d =25 cm; and
aL = (0, 0,−10◦) and aR = (0, 0, 10◦) stand for the control
commands: turning left and right by 10 degrees, respectively.

IV. PHYSICS-INFORMED REINFORCEMENT LEARNING

Navigating within an unknown environment can be viewed
as sequential decision-making using partial observations. The
agent’s state is given by its hidden pose pt, and only partial
information ot collected by sensors is available at each time
step. The state transition is Markovian: pt+1 = pt+at, at ∈
A. Hence, the WIN task is a partially observable Markov
decision process (POMDP), with the observation kernel too
complicated to be analytically modeled.

The navigation performance can be measured through a
stage cost function defined as the Euclidean distance (or any
distance metric, e.g., geodesic distance) between the current
pose and the target position ct = ∥xt − x∗∥2 + ∥yt − y∗∥2.
Denote by Ht := {(ok, ak)t−1

k=1, ot} the set of all possible
observations up to time t, and by H := ∪H

t=1Ht the union of
all histories, where H denotes the horizon length. The agent’s
objective is to find an optimal policy π : H → A such that
the cumulative cost Eπ[

∑H
t=1 ct] is minimized, implying that

the agent navigates to the target in minimal time.
a) Deep RL: The planning algorithms for POMDP [19]
are not suitable for WIN, since the state and the observa-
tion space are of high dimensions and continuum, and the
observation kernel remains unknown. To create model-free
learning-based navigation, one can apply deep reinforcement
learning, such as proximal policy optimization (PPO) [20],
to approximately solve the cost-minimization problem in (1),
where the policy π is represented by an actor-critic neural
network [21], and its model weights are denoted by θ ∈ Rd.

min
θ

LRL(θ) ≜ Eπ(θ)CRL, CRL =
H∑
t=1

ct, (1)

To address the partial observability in WIN, we incorporate
a recurrent module [22] into the actor-critic network archi-
tecture. With the recurrent neural network (RNN), the policy
π(θ) need not take in all past observations {(ok, ak)t−1

k=1, ot},
and instead, the current partial observation suffices, as RNN
can memorize historical input and integrate information
feedback across time [22]. For more details on the RL
implementation, including PPO and RNN, we refer the reader
to Appendix III. We refer to RL with the loss function (1)
as non-physics-based RL (NPRL), to differentiate it from
the physics-informed RL to be described shortly.
b) Insufficiency of End-to-End DRL: We observe in the
experiments that when NPRL policies are deployed, they
exhibit poor generalization ability and sample efficiency.

Due to multiple reflections and diffractions of mmWave, the
wireless field W (p) changes drastically when the transmitter
moves from one location to another, especially when the in-
door environment displays complex geometry. Consequently,
model weights learned for (overfit) one task are barely
relevant to another. In addition to limited generalization, the
NPRL agent requires an astronomical amount of samples due
to catastrophic forgetting. Since wireless fields vary across
different tasks, knowledge of the previously learned task may
be abruptly lost when entering into new tasks. Hence, the
NPRL agent needs to be re-trained under previous tasks,
leading to time-consuming shuffle training [10].
c) Physics-Informed Reinforcement Learning (PIRL):
Physics-informed RL (PIRL) or machine learning has
emerged as a promising approach to simulate and tackle
multiphysics problems in a sample-efficient manner [13]. The
gist is that neural networks can be trained from additional
information obtained by enforcing physics laws. Existing
general-purpose strategies of distilling the physics-domain-
knowledge into the RL agent include supervised-learning ap-
proaches such as imitation learning [23], and RL approaches
such as offline/batch RL [24], [25] and vanilla RL, i.e., online
policy learning, where the agent repeatedly interact with
the digital twin to acquire feedback. This work considers
the simple online learning approach because we need a fair
comparison between our proposed PIRL and other baseline
wireless navigation approaches that are based on online RL
on sample efficiency and generalization.

Adopting online RL, we thus propose to simply augment the
cost with physically-motivated reward shaping presented in
(2), which we denote by LPIRL(θ):

Eπ(θ) [CRL + λLSCLS + λAoACAoA + λSNRCSNR] . (2)

The additional terms are motivated by physics principles in
WIN: CLS, for link-state monotonicity, CAoA for the angle
of arrival direction following, and CSNR for SNR increasing.
λLS, λAoA, and λSNR are weighting constants. The following
presents the three physics-informed terms.
d) Monotonicity of Link States: In mmWave applications,
link states are of great importance [1], [5], which are
primarily categorized into Line-of-Sight (LOS) and Non-
Line-of-Sight (NLOS). A location (x, y) (or equivalently a
pose p) is said to be of LOS if there is a wireless signal path
wherein electromagnetic waves traverse from the source to
the receiver without encountering any obstacles. In contrast,
NLOS signifies the absence of such a direct visual path.
NLOS can further be subdivided into first-order, second-
order, third-order, and so forth. First-order NLOS (1-NLOS)
implies that at least one electromagnetic wave in the wireless
link undergoes a single reflection or diffraction. Likewise,
second-order NLOS (2-NLOS) suggests at least one elec-
tromagnetic wave undergoing two instances of reflection or
diffraction. Similar arguments apply to higher-order NLOS,
denoted by 2+-NLOS. Define ℓ(p) ∈ {0, 1, 2} as the link
state of the pose p, where the link state evaluation 0, 1,
and 2 represent the LOS (0-NLOS), 1-NLOS, and 2+-NLOS
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(a) The link state decreases
monotonically along the short-
est path.

(b) The agent can move re-
versely along the AoA and ex-
plore high SNR area in NLOS.

Fig. 2: The physics principles in WIN.

scenarios, respectively. Note that the link state is a wireless
terminology instead of the actual state input to be fed into
RL models. Instead, the agent learns to infer the link state
from the raw wireless input W (p) [5].

Figure 2a presents a distribution map of link state for
indoor wireless signals. The purple cross represents the target
location. The LOS coverage, by definition, is a connected
area, unlike 1-NLOS, and 2+-NLOS coverage. Hence, when
the agent enters the LOS area, the shortest path to the target
is the straight line connecting the two (see Figure 2a), which
remains within the LOS area. Another important observation
is that the LOS area must be bordered by 1-NLOS, which is
then bordered by 2-NLOS, and so forth. In other words, if the
link state increases as the agent navigates, the resulting path
cannot be optimal. This observation leads to the statement
that a necessary condition for a path to be optimal is that
the link state decreases monotonically along the path, which
motivates the term CLS =

∑
t max{0, ℓt − ℓt−1}.

e) Reversibility of mmWaves: Similar to the principle of
reversibility of light, the mmWave follows the same path if
the direction of travel is reversed. This reversibility principle
leads to a simple yet effective navigation strategy: following
the angle of arrival (AoA) of the strongest path, which ex-
periences the least number of reflections. Besides, [5] shows
that following the AoA of the strongest path in 1-NLOS cases
(NLOS with a single reflection) generally leads to decent
navigation since it tends to find a route around the obstacle.
However, for 2-NLOS cases (ℓt = 2), following the AoA
may not be a reliable solution, since it arises from multiple
reflections or diffractions. To impose this angle tracking, we
add the term CAoA =

∑H
t=1 |Ω̂t − Ωrx

1,t|2 · 1{ℓt ̸=2} into (2)
where Ω̂t is the agent’s moving direction derived from the
action and Ωrx

1,t is the AoA of the strongest path included in
the wireless information wt.
f) Navigation in 2+-NLOS: Due to reflections, diffractions,
and measurement noises, the reversibility principle is less
effective in 2+-NLOS. Denote by g(p) =

∑
i gi(p) the

overall SNR at the pose p, or equivalently, the location (x, y).
A key observation is that g displays remarkable declines in
the transit from the LOS and 1-NLOS to 2+-NLOS areas,
see Figure 2b. Upon statistically analyzing 21 maps, it is
observed that navigating from the 1-NLOS position to the
nearest 2+-NLOS position leads to an average decline of
25.2 dB in SNR. Hence, we propose a navigation heuristic
in 2+-NLOS scenarios: the agent should move along the

Fig. 3: PIRL targets the suboptimal θPIRL shared by various
tasks, instead of optimal policies θ∗A, θ∗B for individual tasks.

reverse direction of the SNR gradient field −(∇xg,∇yg)
(finite differences in practice), i.e., toward the direction
with the stronger signal strength. We remark that such a
heuristic is less helpful in the LOS and 1-NLOS, where ∇g is
relatively insubstantial: the difference between SNRs of two
adjacent mesh vertices is mostly within 3 dB. We add the cost
CSNR =

∑H
t=1 |Ω̂t−νt|2 where νt denotes the angle between

−∇x,yg(pt) and the x-axis. In numerical implementations,
νt is replaced by the steepest descent direction approximated
using finite differences of the mesh points (see Appendix III).
g) Reward shaping and weighting: The negative values of
the per-step evaluations of CLS, CAoA, and CSNR are fed
to PPO as rewards. The weighting constants λLS, λAoA,
and λSNR are properly configured to make the three terms
above claim approximately equal shares in (2) so that no
one dominates the rest in magnitude. Such an arrangement
abides the agent by all physics principles in navigation. The
PIRL hyperparameters setup is deferred to Appendix III
h) What does PIRL learn?: One important observation is
that the physics-based reward shaping is not a potential-based
transformation [26]. To see this, consider a sequence of poses
p1 → p2 → · · · → pn → · · · → p1 such that the agent
can travel through them in a cycle, which can incur a net
positive cost, e.g., CLS is strictly positive when traversing
from LOS to NLOS and then back to LOS. Hence, the policy
invariance theorem [26] tells that (2) leads to a navigation
policy distinct from the shortest path prescribed by (1). For
example, following AoA in the 1-NLOS may yield a detour
around a corner rather than the shortest path. Even though
PIRL is not optimal, it targets suboptimal solution θPIRL

shared across various tasks (because physics principles are
invariant) as shown in Figure 3. The shared suboptimality
alleviates catastrophic forgetting in training and creates zero-
shot generalization in testing.

V. EXPERIMENTS

This section evaluates the proposed PIRL approach for WIN
tasks, aiming to answer the following questions. 1) Sample
Efficiency: does the PIRL take fewer training data than the
non-physics-based baseline? 2) Zero-shot Generalization:
can PIRL navigate in unseen wireless environments without
fine-tuning? 2) Interpretablility: does the PIRL conform to
the physics principles, leading to interpretable navigation?
We briefly touch upon the training procedure, and the exper-
iment setup in the ensuing paragraph, and details are deferred
to Appendix IV. The experiment includes 21 different indoor
maps (15 for training; 6 for testing) from the Gibson dataset
labeled using the first 21 characters in the Latin alphabet
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(A,B, . . . , U ), and each map includes ten different target
positions labeled using numbers (1, 2, . . . , 10). The agent’s
starting position is fixed for each map regardless of the target
position, depending on which, the ten targets for each map
are classified into three categories. The first three targets
(1−3) are of LOS (i.e., the agent’s starting position is within
the LOS area), the next three (4−6) belong to 1-NLOS, and
the rest four (7 − 10) correspond to 2+-NLOS scenarios.
For each task (e.g., A1), the maximum number of training
episodes is 1000, and the training process terminates if the
agent completes the task in more than 6 episodes out of 10
consecutive ones.

We consider three baseline navigation algorithms. 1) non-
physics-based RL (NPRL): the RL policy is of the same
architecture as our proposed PIRL, whereas the reward
function is not physics-informed, i.e., only LRL in (1).
2) Wireless-assisted navigation (WAN): this non-RL-based
method, put forth in [5], relies on a physics-based heuristic
that utilizes wireless signals (following AoAs) exclusively
within LOS and 1-NLOS scenarios while exploring randomly
in 2+-NLOS. WAN uses a pre-trained classification model
to infer the link state. The above two are primarily baselines
since our PIRL is a hybrid of the two methodologies.
Additionally, to highlight the necessity of leveraging wireless
signals in indoor navigation, we consider the third baseline:
Vision-augmented SLAM (V-SLAM), which is a vison-
augmented version of the active neural SLAM (AN-SLAM)
in [18]. V-SLAM only takes in RGB image data without
wireless inputs. The V-SLAM agent is capable of localizing
the target once it falls within the visual (LOS), whereas in
the NLOS, V-SLAM reduces to the AN-SLAM, aiming to
explore as much space as possible. Our experiments use the
pre-trained vision model and neural-SLAM module.
a) Sample Efficiency: We first evaluate the sample efficiency
of the PIRL training process by comparing the number
of training episodes of PIRL in LOS, 1-NLOS, and 2+-
NLOS with those of NPRL. The bar plot in Figure 4
gives a visualization of the sample efficiency in the training
phase on map A (the first map used in the training) and I
(midway in the training). In the early stage of the training, no
remarkable difference between the two is observed. Yet, as
the training proceeds, PIRL demonstrates a superior sample
efficiency on map I, compared with NPRL. This is because
the PIRL agent learns to utilize the physics principles that
persist across different wireless fields, after being trained
on first a few maps. One can see that the PIRL policy
already acquires generalization ability to some extent at this
point, such that lightweight training would be sufficient for
navigating in new environments. In contrast, the NPRL agent,
using vanilla end-to-end learning, may be confused when
exposed to drastically different wireless fields. Hence, the
prior experience does not carry over to the new environment,
and NPRL needs to learn almost from scratch.
b) Generalization: We first highlight that our testing en-
vironments (new maps with different target positions) are
structurally different from training cases. Different room

TABLE I: Success Rates in Map T and Map P.

PIRL NPRL V-SLAM WAN

Map T
LOS 1 1 1 1
1 NLOS 1 1 1 1
2+NLOS 1 0.4 0.65 0.9

Map P
LOS 1 1 1 1
1 NLOS 1 1 1 1
2+NLOS 1 0.45 0.4 0.85

topologies and wireless source locations create drastically
different wireless fields unseen in the training phase, as the
reflection and diffraction patterns are distinct across each
setup. We collect the testing performance of three baselines
and our PIRL on maps P to U , and report the average
results of 20 repeat tests under different random seeds. Since
baselines and PIRL use different reward designs, we consider
the metric normalized path length (NPL) defined as the
ratio of the actual path length (the number of navigation
actions) over the shortest path length of the testing task (the
minimal number of actions). The closer NPL is to 1, the more
efficient the navigation is. The comprehensive comparison
is summarized in Table IV in Appendix V, and Figure 5
gives a visualization of NPLs averaged over the LOS task
(e.g. P1 − 3), the 1-NLOS (e.g., P4 − 6), and the 2+-
NLOS (e.g., P7− 10) on testing maps P and T . Our PIRL
policy generalizes well to these unseen tasks and achieves
the smallest NPLs across all three scenarios. In addition to
NPL, we also report in Figure 5 the Success weighted by
(normalized inverse) Path Length (SPL) and in Table I the
success rate, which are customary in the literature [17].
c) Interpretable Navigation: We provide empirical evidence
that the PIRL leverages the principles stated in Section IV
in the sense that the agent’s behavior is well aligned with
the physics principles. Specifically, we focus on 1) the
reversibility principle: whether the agent follows the AoA,
and 2) the gradient heuristic: whether the agent moves toward
the high-SNR direction. Figure 6a, 6b, and 6c present the
histograms of 1000 sample angle outputs Ω̂ (i.e., moving
directions) at a LOS, a 1-NLOS, and a 2+-NLOS position,
respectively. One can see from these figures that the PIRL
obeys the physics principles enforced by CAoA and CSNR.

Furthermore, we attempt to interpret the PIRL model using
explainable AI methodologies, such as LIME [12]. However,
LIME aims to learn an interpretable model (e.g., decision
trees) using perturbed training data as a surrogate to the
original model. The perturbation is to highlight the fea-
tures contributing the most to the output. The difficulty of
applying LIME in WIN setup is that properly perturbing
the wireless field is challenging. Due to diffractions and
reflections in mmWave propagation, a slight offset to the
target location can create drastically different wireless fields.
Hence, as a compromise, we compute the gradient of the
PIRL model regarding the input wireless data to inspect
whether the instrumental features include AoA in LOS/1-
NLOS and SNR in 2+-NLOS, as suggested by the physics
principles. Figure 6d, 6e, and 6f empirical confirms that the
PIRL model leverages the wireless information as instructed
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Fig. 4: The number of episodes for ten tasks in map A and I. For each map, task number 1-3, 4-6, and 7-10 are tasks of
LOS, 1-NLOS, and 2+-NLOS case, respectively. Compared with NPRL, PIRL requires fewer and fewer episodes on each
case as the training progresses.

Fig. 5: Average NPLs (left) and SPLs (right) returned by navigation policies in the testing. Unlike NPL, SPL uses the inverse
of the path length, and hence, the smaller the SPL one returns, the better it is. Since SPL assign zeros to unsuccessful
navigation instances, we do not report its error bar.

(a) In LOS, PIRL follows
the AoA of the first channel
(strongest path).

(b) In 1-NLOS, PIRL follows
the AoA of the first channel.

(c) In 2+-NLOS, PIRL aims at
high-SNR directions.

(d) In LOS, the PIRL policy
output is mostly sensitive to the
AoA of the first channel.

(e) In 1-NLOS, the PIRL policy
output is mostly sensitive to the
AoA of the first channel.

(f) In 2+-NLOS, the PIRL pol-
icy output is mostly sensitive to
the SNR of the first channel.

Fig. 6: The interpretability experiments on the reversibility
principle and the SNR heuristic.
by the principles, which points to another advantage of
incorporating the physics information into RL: the physics-
based reward components lead to interpretable navigation.
d) Ablation Study: Recall that PIRL differs from WAN in its
use of link state and SNR information. We conduct ablation

TABLE II: Ablation Studies on the SNR and link state terms.
The metric is NPL averaged over all testing tasks.

LOS 1-NLOS 2+-NLOS
WAN 1.01± 0.01 1.45± 0.03 3.83± 0.81
PIRL 1.01± 0.01 1.41± 0.03 2.60± 0.05
SNR Ablation 1.02± 0.02 1.46± 0.04 4.62± 1.15
Link State Ablation 1.02± 0.02 1.47± 0.05 3.90± 1.02

studies regarding CLS and CSNR, for which we report the
NPL results. In the SNR ablation, we replace CSNR with
the relative distance cost in 2+-NLOS to see whether the
SNR heuristic helps the agent navigate efficiently in such a
scenario. As shown in the third row in Table II, the answer
to the question is affirmative, as the SNR ablation returns
significantly higher NPLs in 2+-NLOS. We also suppress
CLS to investigate whether the link-state penalty discourages
the agent from entering the higher-order NLOS area from
the lower-order NLOS. The fourth row in Table II indicates
that without CLS, the agent frequently revisits the high-order
NLOS areas in testing, yielding higher NPLs in NLOS. In
summary, CSNR contributes to PIRL’s success in 2+-NLOS,
and CLS helps stabilize the navigation (less variance).

VI. CONCLUSION

This work develops a physics-informed RL (PIRL) for
wireless indoor navigation. By incorporating physics prior
into reward shaping (RS), PIRL modulates policy learning
favoring those adhering to physics principles. As these
principles are invariant across training/testing tasks, PIRL
alleviates catastrophic forgetting in training and displays
zero-shot generalization in testing. One future extension is to
symbolize the principles, e.g., using formal methods (more
expressive than RS). A synergy of symbolic reasoning and
RL would elevate from the data-driven paradigm and create
generalizable learning in data-starved situations.
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