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Abstract

The atomic force microscopy (AFM) technology is a promising method for nanofabrication due to the high tunability of this affordable platform.
The quality inspection and control significantly impact the manufacturing effectiveness for realizing the functionality of the achieved
nanochannel. Particularly, the surface characteristics of nanochannel sidewalls, which play a significant role in determining the quality of the
nanomachined products, can not be accurately captured using conventional surface integrity metrics (e.g., surface roughness). Therefore, it is
necessary to propose a method to quantitatively characterize the surface morphology and detect the abnormal parts/regions of the nanochannel
sidewall. This paper presents a statistical process control approach derived from the self-affine fractal model to detect the sidewall surface
anomalies. It evaluates changes in the self-affine fractal model parameters (standard deviation, correlation length, and roughness exponent),
which can be used to signify the changes on the sidewall surface; the statistical distributions of these parameters are derived and used to develop
control charts to allow inspection of the sidewall morphology. The approach was tested on the AFM-based nanomachined samples. The results
suggest that the presented approach can effectively reflect the abnormal regions on the machined parts, which opens up a new avenue toward
guiding the quality control and rework for process improvement for AFM-based nanomachining.
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1. Introduction

The atomic force microscopy (AFM)-based nanofabrication
technology can realize functional surfaces under the nanoscale.
It has gleaned attention from various industries due to its low
cost [1], simple operation [2], and high accuracy advantages [3]
[4]. Due to the difficulty and time-consuming procedures of the
AFM-based scanning process, quantitively characterizing
surface characteristics for AFM is low efficient. Therefore,
quality inspection and control are critical to ensure productivity
and provide guidance on the rework and process improvements
(5] [6].

Accurate measurement of these nanoscale products is
important for obtaining the fundamental characteristics of these

products and ensuring the corresponding device’s performance
[7] [8]. Roughness characterization of the nanochannel
sidewall plays a significant role in the quality evaluation of the
nanofabrication, which can impact the performance of the
semiconductor transistors and optical waveguides in Si
photonics [9]. The LER (line edge roughness) and LWR (line
width roughness) were used to study the performance of the
process and characterize the critical dimension (CD) for
achieved nanofabricated surface profiles [10]. These two
metrics are basic parameters to characterize the surface
consistency: the correlation between the LER and LWR was
studied to accurately depict the achieved trench morphology
[11] [12]. However, conventional quantifiers, such as LER,
LWR, bearing area curves, and surface roughness values [R,
(mean roughness), R, (root mean square), and Rz (roughness
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depth)], can only reflect the amplitude changes in first and
second orders of statistics, or they are only suitable for 2D
profile with limited ability to distinguish between different
surface textures [13]. These conventional statistical quantifiers
failed to reflect the part-to-part variations for the line edge
roughness under the nanoscale [14]. For example, the surface
rougness quantifier R; (root mean squared of the profile) of the
sidewall roughness (two profile lines also with comparable R,
values) can only depict the sidewall roughness from the time
series, which cannot show the spectral property of the
morphology of the sidewall. The following simulated profile
lines have the same R, values, but the morphology differs,
indicating that conventional profile quantifiers are insufficient
to reflect the roughness of the sidewall, especially on the
geometry under the nanoscale.
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Fig. 1. Two simulated profile lines with similar roughness values

Therefore, to characterize the achieved nanochannel surface
characteristics at the nanoscale, advanced approaches need to
be applied to represent the changes in functional surface
characteristics quantitively. The line edge is based on the
different scales and frequencies. This motivates us to present
an analytic framework for surface characteristics evaluations
for nanofabrication processes.

Researchers have been investigating quantifiers to evaluate
the integrity of the functional surface in precision
manufacturing. The power spectral density analysis (PSD) is a
promising method to analyze the profile variations of achieved
surface morphology in the frequency domain [15]. To quantify
the texture of the featured surfaces, the PSD was used to
analyze the line pattern dataset from an EUV (Extreme
ultraviolet lithography) ADI (After development inspection)
wafer, which can provide the wafer signature maps of various
metrics of interest and achieve the model correlation and
process control for the scanner process [16]. To simulate
accurate surface topography, the PSD in different dimensions
and height probability distribution was analyzed to generate the
perfect surface with the desired autocorrelation response [17]
[18]. To overcome the noise effects in SEM (Scanning electron
microscopy)-based LER metrology, a deep learning method
combined with PSD and Poisson denoising method was used
to acquire the unbiased LER metrology for line patterns under
nanoscale [19] [20]. In addition to the frequency domain
informatics, the autocorrelation function and height-height
correlation function describe the relationship between the two
points on the line edge position, which can be used to estimate
the roughness parameters and describe the property of the line
edge roughness [21] [22]. However, most existing approaches
can only reflect one property for surface profiles. It is
insufficient to describe the nanochannel characteristics
comprehensively.

In addition, most research only focused on the line edge
roughness (LER) analysis on the sample surface rather than the
sidewall of the achieved trenches during the nanofabrication.
Detection of the sidewall damage is also significant for the

nanofabrication evaluation, and the different damage modes
indicate various machining processes [23]. Meanwhile, the
sidewall roughness is also an essential indicator for evaluating
the different nanofabrication technologies that can be used to
compare the surface condition of the sidewall before and after
the process [24]. Therefore, the quality issue of nanochannels’
sidewall impacts the manufacturing effectiveness and the
technology selection. To accurately measure the sidewall
profiles, the metrological tilting-AFM is used to acquire the
line pattern on the vertical sidewall, and LER and PSD were
used to analyze the changes of the roughness on the sidewall
[25] [26]. In addition, a 3D-AFM with automatic sidewall
roughness (SWR) program is proposed to measure the SWR in
the semiconductor industry, which can effectively improve the
measurement speed and reliability [27]. To ensure the
resolution, a new Payne—Lacey Bending model was proposed
to measure the sidewall roughness under sub-nanometers using
AFM [28].

The self-affine fractal model has been reported to
distinguish the roughness profiles with fine texture changes via
its three parameters: standard deviation (), correlation length
(&), and roughness exponent () [29]. Most related reports used
these parameters as significant indicators to distinguish the line
edge roughness achieved by various methods and compare the
surface morphology before and after treatment [30] [31].
However, very few studies have been reported to adopt such a
model to characterize the achieved line edges (or side walls of
nanotrenches) and functional surface profile. This is mainly
due to the lack of explicit quantification/diagnosis approaches
to signify the self-affine fractal model to the changes in the
surface characteristics under nanoscale.

In this paper, we investigated the surface characteristics of
the AFM-based nanofabrication and presented a quality control
process for the obtained trenches according to their sidewall
roughness. The LER on different height levels of the trench
sidewalls is acquired and analyzed based on the self-affine
fractal model. The statistical distribution of the parameters
from the self-affine fractal model is studied and used to achieve
quality control for the sample morphology under nanoscale.

The remainder of the paper is organized as follows. Sec. 2
presents the setup of the experiments and data acquired from
the experimental sample. The method for the surface roughness
analysis and quality control of the trench sidewall is introduced
in Sec. 3. The results of the quality control analysis for sidewall
roughness are discussed in Sec. 4, followed by the concluding
remarks in Sec. 5.

2. Experimental setup and data collection

The setup of experiments and related parameters are shown
in Fig. 2 [32][33] [34]. The surface morphology of each trench
under various conditions is shown in Fig. 3 (a), and the cross-
section profiles of the fabricated sample are shown in Fig. 3
(b). The depth of the trenches ranges from 2nm to 20nm, and
the width ranges from 20nm to 90nm.
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Fig. 2. AFM-based nanofabrication experiment was conducted on a
commercial AFM system (Park- XE7 AFM system) with a designed
nanovibrator platform; PMMA sample with 200 nm thickness was spin-
coated on silicon substrates with post-bake at 180°C for 90 seconds. DLC190
AFM probe was used to fabricate and image the nanotrenches.
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Fig. 3. (a) Five nanomachined trenches; (b) Cross-sectional profile with
widths and depths of the trenches.

2.1. Data description

To further investigate the detailed profiles of the trenches
and quantify the evaluation process, we used AFM technology
to scan the fabricated sample and remap the surface
morphology using the contour lines of the sample in Fig. 4 (a).
The total sample area is 2x1.5 micrometers, and five cuts from
left to right are machined by various forces (50, 150, 250, 350,
and 450 nNs). For the roughness analysis of the sidewall, the
contour lines of each trench under the 0 z-axis can reflect the
roughness characterization of the sidewall. To observe the
sidewall surface of the trench, we segmented the obtained
model from the middle part of the trench in Fig. 4 (a), and the
morphology of the left sidewall of the trench (Cut 3) is shown
in Fig. 4 (b) and (c). From Fig. 4, we can observe that the
sidewall of the trench is not a smooth surface, with roughness
varying from the bottom to the top area. The rough sidewall of
the nanotrenches can influence the performance of the cutting
trenches under nanoscale, which can not be perfectly noticed
by analyzing the edge roughness on the surface. Therefore, the
roughness analysis of the trench sidewall is essential for
evaluating the quality of the achieved nanotrenches.
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Fig. 4. (a) Top view of sample in contour line style; (b) Bird view of trench
sidewall; (c) Side view of trench sidewall.

For the roughness of nanofabrication, the line edge
roughness (LER) is a significant measurement for cutting-edge
quality evaluation. To evaluate the sidewall roughness
performance, we acquire the line edge profile at each height
level (longitudinal direction) on the trenches' sidewall for the
roughness analysis. In our experiments, we take 0.5 nm as
height intervals for each trench, shown in Fig. 5 (a) and (b).
The line edge profiles at different height levels (contour lines)
of single trenches is plotted in Fig. 5 (c).
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Fig. 5. (a) Bird view of sample in line edge profiles format; (b) Bird view of
sample in line edge profiles format; (c) Trench in line edge profiles format.

The contour lines on the sidewall at different positions along
the z-axis represent the profiles of the trenches. Analyzing the
roughness changes among these line edges can indicate the
sidewall quality (roughness) variation. In this experiment, we
project the line edge of the sidewall on the xy-plane from the 0
z-axis position to the trench bottom with a 0.5 nm interval. To
locate the position of the line edge on each trench sidewall, we
assigned the index number for each line edge on the sidewall,
shown in Fig. 6.

Index: 12345 6
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Fig. 6. The index of the line edge of the trench sidewall.

Based on the cutting results, the first trenches have poor
morphology, as shown in Fig. 3, which has subtle changes in
cutting depth, and the AFM cannot characterize the sidewall
roughness under the nanoscale with high resolution. Therefore,
it was not considered for further analysis. In addition, the
cutting initiation (plunging-in) and cutting tool extraction
(plunging-out) processes during the AFM nanofabrication may
have inconsistency in the achieved surface characteristics; this
may be due to comparable sizes of the tip rake angle, depth of
cut, surface profile, and the material structure, and the resulting
tool-tip geometry may possess uncertainties for the achieved
cutting morphology. Therefore, the analysis does not
consider the initial and ending parts of the trenches shown
in Fig. 3. That is, we only adopt the middle portion of each
machined nanotrench for further analysis and evaluations, and
each trench's corresponding sidewall edge profiles are
projected onto the xy-plane and shown in Fig. 7.

Due to the cutting depth among the trenches, the number of
line edges extracted from various sidewalls differs. Each line
edge’s position (height level) on the trench sidewall is
recorded, and the abnormal part of the trench sidewall can be
marked based on the LER analysis for each line edge.
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Fig. 7. Sidewall edge profiles of each trench (From Cut 2 to Cut 5).
3. Methodology

3.1. Sidewall roughness analysis using the self-affine fractal
model with three parameters

LER can be regarded as variances of the sample points on
the obtained line edge, which can only reflect the amplitude of
the edge for roughness analysis. To accurately depict the line
edge roughness, the self-affine fractal model with three
parameters: the standard deviation (o), the correlation length
(&), and the roughness exponent («) are used to characterize the
surface roughness. Generally, the self-affine fractal model can
be represented by the autocorrelation function of the line edge
R(r) as [30]:

r 2a

R(r) = aze_(g) €))
where r represents a lag distance between the two points on the
edge, o is the standard deviation of the edge profiles, the « is
the roughness exponent, which can reflect the percentage
changes of the high frequency feature and low frequency
feature on line edge; ¢ is the correlation length, which indicates
the spatial feature of the edge. These three parameters are
independent, and can be used to characterize a unique line edge.
Therefore, these three parameters are used to detect the changes
among the contour lines on the trench’s sidewalls, which can
indicate surface fluctuations [26].

o can be calculated based on the coordinates of sample
points on the line edge, and the ¢ and « can be fitted based on
the autocorrelation function (ACF), power spectral density
(PSD), and height-height correlation function (HHCF) of the
line edge roughness profiles [35].

The roughness profiles of the contour line on the sidewall
can be treated as a data sequence as x,, (n = 1,2, ..., N) on the
different positions. d is the distance between the two
neighboring points. The autocorrelation function of roughness

profiles R(r) can be represented as:

1 _ _ __
—Zgzin(xn+m - xn)(xn - xn)

N—m
R =md) =
(r =md) ST (e — %)

where x,, is the mean value of x,,, m = 1,2,..,N — 1. ACF
serves as a quantitative metric to access the randomness or
periodicity of the line edge. It quantifies the correlation
between the data points on the edge, and facilitates the
parameter evaluation. In general, the correlation length ¢ of a
line edge is defined as the lag length at which the value of the
autocorrelation function for this line drops to 1/e [36]:

1
RE@) =3 ©)

The correlation length ¢ defines the property of the line edge
roughness from the spatial perspective. If the distance between
two points of the line edge is within &, the value of these two
points can be considered correlated. Meanwhile, the
relationship between the HHCF (G (r)) and ACF (R(r)) can be
represented as [37]:

G?(r) = 20%[1 - R(1)] 4)

Height-height correlation function (HHCF) is another way
to express the spatial distribution of the line edge roughness
profiles, which also can estimate the correlation length on the

(2)

line edge and reflect the relationship between the lag distance
and roughness exponent. The HHCF can be represented as [9]:
1

N-m 2
1
N —m z (xn+m - xn)z] (5)
n=1

The HHCF of each line edge is plotted, and the
corresponding ¢ of each line at different levels can be fitted
based on the above function, shown in Fig. 8.
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Fig. 8. HHCF of the line edge on the sidewall.

PSD analysis has become a popular method for line edge
roughness, indicating the line edges high-frequency and low-
frequency components. In PSD calculation, we used the
discrete Fourier transform, F(k), which can be represented as
[38]:

_2min

1 N-1
F(kj) = NZ Xpe N (6)

where k; = j/N represents the frequency components. Due to

the symmetrical property of the line edge in the frequency
domain, the PSD (P (k;)) can be represented as:

P(k;) = 2d|F(Ig)[* ™)
where j = 1,2, ..., N/2, the factor of 2 is multiplied to keep the
total power. The corresponding figure of the line edge
roughness based on the PSD analysis is plotted in Fig. 9. The
roughness exponent a can be extracted from the slope of the
line, which is fitted on the short-range regime [39], where

S=-2a—-1 )

-s-1
€)

5
10 A AN

& \\/ \7 sV \_\/1\

£ <Y
= \\J“i“\.
== b
S \ #
Q. i

103 102 107" 10°
Frequency, k(nm‘1)
Fig. 9. PSD of the line edge on the sidewall.
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Therefore, the roughness exponent a of each line edge can
be fitted based on their PSD plot. After we obtained these three
parameters from the corresponding functions and figures, we
one can observe that the parameters of the contour lines at
different locations of the trench sidewall are different, plotted
based on their index in Fig. 10 (Cut 3 is taken as the example).
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Fig. 10. Changes of the roughness parameters (o, a, ) along the height
index (Cut 3).

The fluctuation of the three parameters on the coordinates
along the various heights of the trench sidewall reveals that the
sidewall surface is not a smooth area. The changes in the
parameters on coordinates can be observed, but the variation
tendency of each parameter on the trench can not be
summarized. To elaborate on the roughness changes on the
sidewall, the statistical distribution of these three parameters
will be discussed to identify the abnormal area on the sidewall,
and the quality control analysis will also be applied to the
sidewall of each trench.

3.2. Quality control analysis of sidewall based on the
statistical distribution of parameters

The o is the standard deviation of each line edge on the four
trenches sidewall. Based on the statistical distribution analysis,
the conjugate prior distribution of variance (a2) follows the
inverse gamma distribution [40]:

o?~Inverse — Gamma(agsp, Brgsp) (10)
where the a;g5, is the shape parameter, and the B¢, is the
scale parameter. The specific value of the ;g5 and B¢, can
be regarded as two non-informative prior parameters equal to
1. In addition, these two parameters also can be fitted from the
existing data.

The roughness exponent a of each contour line can be
calculated based on the slope S which is fitted from the PSD
figures in Fig. 9. The relationship between the roughness
exponent @ and slope S is the linear relationship. Therefore,
the statistical distribution of the a can be represented by the
slope S which can be interpreted as the slope distribution in the
Bayesian simple linear regression model.

Based on the previous research, the slope S statistical
distribution can be defined as the student t distribution, which
can be expressed as [41]:

S~t(n 2,8, ses) (11)
where S represents the slope, S is the data center, and the seg
is the standard error of the S.

Based on the relationship between the slope S and a, the
distribution of the & can be written as:

-5-1 -5—1 ses

2 2
where the distribution of the a can be
as a~t(134,0.7829,0.0826).

For the &, we can fit the distribution curve for the obtained
data & of contour lines. The Gamma distribution (y) can
perfectly depict the current data, which indicates that we can
use the Gamma distribution to represent the statistical
distribution of ¢:

) (12)
defined

a = ~t(TL - 2,

§~y(1,6) (13)
where 7 is the shape parameter, and 6 is the rate parameter.
The specific parameters also can be calculated from the fitted
distribution  line, which can be represented as
&~y(3.7697,0.0068).

The distribution of the three parameters is derived based on
the above process, which can be used to analyze the abnormal
line edge on the sidewall and achieve quality control for the
sidewall roughness.

4. Results and Discussion

Based on the statistical distribution of three parameters, we
can plot the quality control charts for the line edges of the
trench based on each parameter. Due to the various
distributions of the parameters, the outliers or the detected
abnormal line edges vary among the different control charts.
To incorporate these three parameters for the quality control of
the sidewall, we applied the family-wise error rate (FWER) to
reassign the alpha values to multiple control charts [42]:

FWER = Pr(rejecting at least one |Hj €H,)
= a,where H, = {H,H,, .., H;}

a=1-(1-a)k (14)
where «; is the new significant value to calculate the boundary
of the quality control chart. The control charts are shown in Fig.
11, separated into two partitions by the green line. The left part
represents the control chart acquired by the training data set
(Cut 2, Cut 3, and Cut 4), which has a more consistent surface
profile generated. The right part is the performance results of
the testing set (Cut 5). The blue lines represent the
corresponding parameter of each line edge; the red lines are the
up and low boundary; the red circles mark the outliers of the
data set, which can be regarded as the abnormal line edges on
the sidewall.
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Fig. 11. (a) Quality control chart based on variance; (b) Quality control
chart based on roughness exponent; (c) Quality control chart based on
correlation length.

Based on the quality control chart analysis, the abnormal
line edge on the trench sidewall can be detected based on the
index of the outliers points on the figures and remapped to the
trench sidewall. Based on the results of Fig. 11, the abnormal
part can be located on the sidewall of different Cuts. In Fig. 12
(a), the trench is cut from the middle position to show the
abnormal part on the left sidewall of the nanochannel (Cut 5),
which is marked by red color. In Fig. 12 (b), the abnormal line
edges on the sidewall acquired from the quality control chart in
Fig.12 are marked in red. (Cut 5 is taken as an example to show
the abnormal part of the sidewall based on the outliers in the
Figures). In addition, we can also observe some abnormal line
edges on Cut 4, which is marked in Fig. 12 (c). However, if the
variations of the conventional surface roughness quantifier R,
does not show significant differences between the normal and

abnormal sidewall morphologies (e.g., R,=1.4151 nm for the
right-hand side sidewall of Cut 5, and R,= 1.9649 nm for its
left-hand side).

Based on the statistical analysis of the parameters and
quality control process for the line edge on the sidewall, the
outliers indicate the abnormal regions on the achieved
nanochannel, which can assist people in evaluating the quality
and assessing the process performance. More importantly, the
developed quality control approach allows us to identify the
anomaly regions (with surface integrity issues) that need to be
remanufactured, which offers the opportunity to enable the
characterizations-inspection-repair/rework via the presented
AFM-based nanofabrication platforms.

@
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Fig. 12. (a) The abnormal area on the left sidewall of the Cut 5 trench; (b)

The abnormal line edges on the left sidewall of Cut 5; (c) The abnormal line
edges on the left sidewall of Cut 4.

5. Conclusions

This paper presents a quality inspection approach to
evaluate the nanotrench sidewall characteristics via a statistical
process control framework on the self-affine fractal model. The
main contributions of this paper can be summarized as follows.

1. The roughness properties of nanochannel sidewalls can
be analyzed via the self-affine fractal modeling on the line
edges to reflect the roughness characteristics. In addition, the
changes in these parameters along the sidewall morphology
variations can indicate that the sidewall of the trench is not a
smooth surface.

2. To accurately diagnose the anomaly regions on the
achieved sidewalls, the quantifier, standard deviation, from the
self-affine fractal model can depict the amplitude changes of
the sidewall surface; the correlation length parameter is used to
reflect the spatial correlations of the line edge, which can
indicate the trends and frequency in the surface variations; the
roughness exponent suggests contributions of high-frequency
and low-frequency fluctuations on the surface characteristics.

3. The developed statistical process control based on the
distributions of these three parameters can precisely locate and
signify the surface profile anomalies, i.e., the rework regions
on the nanochannel sidewalls.

The proposed quality control and evaluation method can
effectively analyze the roughness attributes of nanochannels'
sidewalls and identify anomalies on the sidewall surfaces. It
offers the chance to enable quality control for AFM-based
nanofabrication. In addition, it creates a route for
characterization-diagnosis-rework/repair ~ for =~ AFM-based
nanofabrication technology, which enables the cost- and time-
efficiencies on the presented AFM-based nanofabrication
platform.

In the future, the mechanisms of the nanofabrication will be
studied based on the performance of the trenches' sidewall,
including the impacts on the surface morphology inconsistency
during cutting initiation and tool extraction, and the correlation
between the sidewall roughness and machining parameters will
be investigated to optimize the process to improve the achieved
nanostructure. Meanwhile, the sidewall quality control
approach can combine with the sensor-based monitoring

scheme to achieve the online monitoring of the nanofabrication
(based on more experimental investigations), which can
effectively improve manufacturing -effectiveness at the
nanoscale level and reduce the damage to the sample from the
testing process [32] [33].
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