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Abstract 

The atomic force microscopy (AFM) technology is a promising method for nanofabrication due to the high tunability of this affordable platform. 
The quality inspection and control significantly impact the manufacturing effectiveness for realizing the functionality of the achieved 
nanochannel. Particularly, the surface characteristics of nanochannel sidewalls, which play a significant role in determining the quality of the 
nanomachined products, can not be accurately captured using conventional surface integrity metrics (e.g., surface roughness). Therefore, it is 
necessary to propose a method to quantitatively characterize the surface morphology and detect the abnormal parts/regions of the nanochannel 
sidewall. This paper presents a statistical process control approach derived from the self-affine fractal model to detect the sidewall surface 
anomalies. It evaluates changes in the self-affine fractal model parameters (standard deviation, correlation length, and roughness exponent), 
which can be used to signify the changes on the sidewall surface; the statistical distributions of these parameters are derived and used to develop 
control charts to allow inspection of the sidewall morphology. The approach was tested on the AFM-based nanomachined samples. The results 
suggest that the presented approach can effectively reflect the abnormal regions on the machined parts, which opens up a new avenue toward 
guiding the quality control and rework for process improvement for AFM-based nanomachining.  
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1. Introduction 

The atomic force microscopy (AFM)-based nanofabrication 
technology can realize functional surfaces under the nanoscale. 
It has gleaned attention from various industries due to its low 
cost [1], simple operation [2], and high accuracy advantages [3] 
[4]. Due to the difficulty and time-consuming procedures of the 
AFM-based scanning process, quantitively characterizing 
surface characteristics for AFM is low efficient. Therefore, 
quality inspection and control are critical to ensure productivity 
and provide guidance on the rework and process improvements 
[5] [6]. 
Accurate measurement of these nanoscale products is 
important for obtaining the fundamental characteristics of these 

products and ensuring the corresponding device’s performance 
[7] [8]. Roughness characterization of the nanochannel 
sidewall plays a significant role in the quality evaluation of the 
nanofabrication, which can impact the performance of the 
semiconductor transistors and optical waveguides in Si 
photonics [9]. The LER (line edge roughness) and LWR (line 
width roughness) were used to study the performance of the 
process and characterize the critical dimension (CD) for 
achieved nanofabricated surface profiles [10]. These two 
metrics are basic parameters to characterize the surface 
consistency: the correlation between the LER and LWR was 
studied to accurately depict the achieved trench morphology 
[11] [12]. However, conventional quantifiers, such as LER, 
LWR, bearing area curves, and surface roughness values [𝑅௔ 
(mean roughness), 𝑅௤  (root mean square), and 𝑅௓ (roughness 
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depth)], can only reflect the amplitude changes in first and 
second orders of statistics, or they are only suitable for 2D 
profile with limited ability to distinguish between different 
surface textures [13]. These conventional statistical quantifiers 
failed to reflect the part-to-part variations for the line edge 
roughness under the nanoscale [14]. For example, the surface 
rougness quantifier 𝑅௤ (root mean squared of the profile) of the 
sidewall roughness (two profile lines also with comparable 𝑅௔ 
values) can only depict the sidewall roughness from the time 
series, which cannot show the spectral property of the 
morphology of the sidewall. The following simulated profile 
lines have the same 𝑅௤  values, but the morphology differs, 
indicating that conventional profile quantifiers are insufficient 
to reflect the roughness of the sidewall, especially on the 
geometry under the nanoscale.  

 
Fig. 1. Two simulated profile lines with similar roughness values 

 
Therefore, to characterize the achieved nanochannel surface 

characteristics at the nanoscale, advanced approaches need to 
be applied to represent the changes in functional surface 
characteristics quantitively. The line edge is based on the 
different scales and frequencies. This motivates us to present 
an analytic framework for surface characteristics evaluations 
for nanofabrication processes.  

Researchers have been investigating quantifiers to evaluate 
the integrity of the functional surface in precision 
manufacturing. The power spectral density analysis (PSD) is a 
promising method to analyze the profile variations of achieved 
surface morphology in the frequency domain [15]. To quantify 
the texture of the featured surfaces, the PSD was used to 
analyze the line pattern dataset from an EUV (Extreme 
ultraviolet lithography) ADI (After development inspection) 
wafer, which can provide the wafer signature maps of various 
metrics of interest and achieve the model correlation and 
process control for the scanner process [16]. To simulate 
accurate surface topography, the PSD in different dimensions 
and height probability distribution was analyzed to generate the 
perfect surface with the desired autocorrelation response [17] 
[18]. To overcome the noise effects in SEM (Scanning electron 
microscopy)-based LER metrology, a deep learning method 
combined with PSD and Poisson denoising method was used 
to acquire the unbiased LER metrology for line patterns under 
nanoscale [19] [20]. In addition to the frequency domain 
informatics, the autocorrelation function and height-height 
correlation function describe the relationship between the two 
points on the line edge position, which can be used to estimate 
the roughness parameters and describe the property of the line 
edge roughness [21] [22]. However, most existing approaches 
can only reflect one property for surface profiles. It is 
insufficient to describe the nanochannel characteristics 
comprehensively.  

In addition, most research only focused on the line edge 
roughness (LER) analysis on the sample surface rather than the 
sidewall of the achieved trenches during the nanofabrication. 
Detection of the sidewall damage is also significant for the 

nanofabrication evaluation, and the different damage modes 
indicate various machining processes [23]. Meanwhile, the 
sidewall roughness is also an essential indicator for evaluating 
the different nanofabrication technologies that can be used to 
compare the surface condition of the sidewall before and after 
the process [24]. Therefore, the quality issue of nanochannels’ 
sidewall impacts the manufacturing effectiveness and the 
technology selection. To accurately measure the sidewall 
profiles, the metrological tilting-AFM is used to acquire the 
line pattern on the vertical sidewall, and LER and PSD were 
used to analyze the changes of the roughness on the sidewall 
[25] [26]. In addition, a 3D-AFM with automatic sidewall 
roughness (SWR) program is proposed to measure the SWR in 
the semiconductor industry, which can effectively improve the 
measurement speed and reliability [27]. To ensure the 
resolution, a new Payne–Lacey Bending model was proposed 
to measure the sidewall roughness under sub-nanometers using 
AFM [28].  

The self-affine fractal model has been reported to 
distinguish the roughness profiles with fine texture changes via 
its three parameters: standard deviation (σ), correlation length 
(𝜉), and roughness exponent (𝛼) [29]. Most related reports used 
these parameters as significant indicators to distinguish the line 
edge roughness achieved by various methods and compare the 
surface morphology before and after treatment [30] [31]. 
However, very few studies have been reported to adopt such a 
model to characterize the achieved line edges (or side walls of 
nanotrenches) and functional surface profile. This is mainly 
due to the lack of explicit quantification/diagnosis approaches 
to signify the self-affine fractal model to the changes in the 
surface characteristics under nanoscale.  

In this paper, we investigated the surface characteristics of 
the AFM-based nanofabrication and presented a quality control 
process for the obtained trenches according to their sidewall 
roughness. The LER on different height levels of the trench 
sidewalls is acquired and analyzed based on the self-affine 
fractal model. The statistical distribution of the parameters 
from the self-affine fractal model is studied and used to achieve 
quality control for the sample morphology under nanoscale. 

The remainder of the paper is organized as follows. Sec. 2 
presents the setup of the experiments and data acquired from 
the experimental sample. The method for the surface roughness 
analysis and quality control of the trench sidewall is introduced 
in Sec. 3. The results of the quality control analysis for sidewall 
roughness are discussed in Sec. 4, followed by the concluding 
remarks in Sec. 5. 

2. Experimental setup and data collection 

The setup of experiments and related parameters are shown 
in Fig. 2 [32] [33] [34]. The surface morphology of each trench 
under various conditions is shown in Fig. 3 (a), and the cross-
section profiles of the fabricated sample are shown in Fig. 3 
(b). The depth of the trenches ranges from 2nm to 20nm, and 
the width ranges from 20nm to 90nm. 
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Fig. 2. AFM-based nanofabrication experiment was conducted on a 
commercial AFM system (Park- XE7 AFM system) with a designed 

nanovibrator platform; PMMA sample with 200 nm thickness was spin-
coated on silicon substrates with post-bake at 180˚C for 90 seconds. DLC190 

AFM probe was used to fabricate and image the nanotrenches. 
 

 
Fig. 3. (a) Five nanomachined trenches; (b) Cross-sectional profile with 

widths and depths of the trenches. 

2.1. Data description 

To further investigate the detailed profiles of the trenches 
and quantify the evaluation process, we used AFM technology 
to scan the fabricated sample and remap the surface 
morphology using the contour lines of the sample in Fig. 4 (a). 
The total sample area is 2×1.5 micrometers, and five cuts from 
left to right are machined by various forces (50, 150, 250, 350, 
and 450 nNs). For the roughness analysis of the sidewall, the 
contour lines of each trench under the 0 z-axis can reflect the 
roughness characterization of the sidewall. To observe the 
sidewall surface of the trench, we segmented the obtained 
model from the middle part of the trench in Fig. 4 (a), and the 
morphology of the left sidewall of the trench (Cut 3) is shown 
in Fig. 4 (b) and (c). From Fig. 4, we can observe that the 
sidewall of the trench is not a smooth surface, with roughness 
varying from the bottom to the top area. The rough sidewall of 
the nanotrenches can influence the performance of the cutting 
trenches under nanoscale, which can not be perfectly noticed 
by analyzing the edge roughness on the surface. Therefore, the 
roughness analysis of the trench sidewall is essential for 
evaluating the quality of the achieved nanotrenches. 
 

 
Fig. 4. (a) Top view of sample in contour line style; (b) Bird view of trench 

sidewall; (c) Side view of trench sidewall. 
 

For the roughness of nanofabrication, the line edge 
roughness (LER) is a significant measurement for cutting-edge 
quality evaluation. To evaluate the sidewall roughness 
performance, we acquire the line edge profile at each height 
level (longitudinal direction) on the trenches' sidewall for the 
roughness analysis. In our experiments, we take 0.5 nm as 
height intervals for each trench, shown in Fig. 5 (a) and (b). 
The line edge profiles at different height levels (contour lines) 
of single trenches is plotted in Fig. 5 (c).  

 

(a) 

(b) 

(a) 

(b) 

(c) 
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Fig. 5. (a) Bird view of sample in line edge profiles format; (b) Bird view of 
sample in line edge profiles format; (c) Trench in line edge profiles format. 

 
The contour lines on the sidewall at different positions along 

the z-axis represent the profiles of the trenches. Analyzing the 
roughness changes among these line edges can indicate the 
sidewall quality (roughness) variation. In this experiment, we 
project the line edge of the sidewall on the xy-plane from the 0 
z-axis position to the trench bottom with a 0.5 nm interval. To 
locate the position of the line edge on each trench sidewall, we 
assigned the index number for each line edge on the sidewall, 
shown in Fig. 6. 
 

 
Fig. 6. The index of the line edge of the trench sidewall. 

 
Based on the cutting results, the first trenches have poor 

morphology, as shown in Fig. 3, which has subtle changes in 
cutting depth, and the AFM cannot characterize the sidewall 
roughness under the nanoscale with high resolution. Therefore, 
it was not considered for further analysis. In addition, the 
cutting initiation (plunging-in) and cutting tool extraction 
(plunging-out) processes during the AFM nanofabrication may 
have inconsistency in the achieved surface characteristics; this 
may be due to comparable sizes of the tip rake angle, depth of 
cut, surface profile, and the material structure, and the resulting 
tool-tip geometry may possess uncertainties for the achieved 
cutting morphology. Therefore, the analysis does not 
consider the initial and ending parts of the trenches shown 
in Fig. 3. That is, we only adopt the middle portion of each 
machined nanotrench for further analysis and evaluations, and 
each trench's corresponding sidewall edge profiles are 
projected onto the xy-plane and shown in Fig. 7.  

Due to the cutting depth among the trenches, the number of 
line edges extracted from various sidewalls differs. Each line 
edge’s position (height level) on the trench sidewall is 
recorded, and the abnormal part of the trench sidewall can be 
marked based on the LER analysis for each line edge.  
 

 

(a) 

(b) 

(c) 
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Fig. 7. Sidewall edge profiles of each trench (From Cut 2 to Cut 5). 

3. Methodology 

3.1. Sidewall roughness analysis using the self-affine fractal 
model with three parameters 

LER can be regarded as variances of the sample points on 
the obtained line edge, which can only reflect the amplitude of 
the edge for roughness analysis. To accurately depict the line 
edge roughness, the self-affine fractal model with three 
parameters: the standard deviation (𝜎), the correlation length 
(𝜉), and the roughness exponent (𝛼) are used to characterize the 
surface roughness. Generally, the self-affine fractal model can 
be represented by the autocorrelation function of the line edge 
𝑅(𝑟) as [30]: 

𝑅(𝑟) = 𝜎ଶ𝑒ି൬௥
క൰

మഀ

(1) 
where 𝑟 represents a lag distance between the two points on the 
edge, 𝜎 is the standard deviation of the edge profiles, the 𝛼 is 
the roughness exponent, which can reflect the percentage 
changes of the high frequency feature and low frequency 
feature on line edge; 𝜉 is the correlation length, which indicates 
the spatial feature of the edge. These three parameters are 
independent, and can be used to characterize a unique line edge. 
Therefore, these three parameters are used to detect the changes 
among the contour lines on the trench’s sidewalls, which can 
indicate surface fluctuations [26]. 

 𝜎  can be calculated based on the coordinates of sample 
points on the line edge, and the 𝜉 and 𝛼 can be fitted based on 
the autocorrelation function (ACF), power spectral density 
(PSD), and height-height correlation function (HHCF) of the 
line edge roughness profiles [35]. 

The roughness profiles of the contour line on the sidewall 
can be treated as a data sequence as 𝑥௡ (𝑛 = 1,2, … , 𝑁) on the 
different positions. 𝑑  is the distance between the two 
neighboring points. The autocorrelation function of roughness 
profiles 𝑅(𝑟) can be represented as: 

𝑅(𝑟 = 𝑚𝑑) =
1

𝑁 − 𝑚 ∑ (𝑥௡ା௠ − 𝑥௡തതത)(𝑥௡ − 𝑥௡തതത)ேି௠
௡ୀଵ

∑ (𝑥௡ − 𝑥௡തതത)ଶேି௠
௡ୀଵ

(2) 

where 𝑥௡തതത is the mean value of 𝑥௡ , 𝑚 = 1,2, … , 𝑁 − 1. ACF 
serves as a quantitative metric to access the randomness or 
periodicity of the line edge. It quantifies the correlation 
between the data points on the edge, and facilitates the 
parameter evaluation. In general, the correlation length 𝜉 of a 
line edge is defined as the lag length at which the value of the 
autocorrelation function for this line drops to 1/𝑒 [36]: 

𝑅(𝜉) =
1
𝑒

(3) 

The correlation length 𝜉 defines the property of the line edge 
roughness from the spatial perspective. If the distance between 
two points of the line edge is within 𝜉, the value of these two 
points can be considered correlated. Meanwhile, the 
relationship between the HHCF (𝐺(𝑟)) and ACF (𝑅(𝑟)) can be 
represented as [37]: 

𝐺ଶ(𝑟) = 2𝜎ଶ[1 − 𝑅(𝑟)] (4) 
Height-height correlation function (HHCF) is another way 

to express the spatial distribution of the line edge roughness 
profiles, which also can estimate the correlation length on the 

line edge and reflect the relationship between the lag distance 
and roughness exponent. The HHCF can be represented as [9]: 

𝐺(𝑟 = 𝑚𝑑) = ൥
1

𝑁 − 𝑚
෍ (𝑥௡ା௠ − 𝑥௡)ଶ

ேି௠

௡ୀଵ

൩

ଵ
ଶ

(5) 

The HHCF of each line edge is plotted, and the 
corresponding 𝜉 of each line at different levels can be fitted 
based on the above function, shown in Fig. 8. 
 

 
Fig. 8. HHCF of the line edge on the sidewall. 

 
PSD analysis has become a popular method for line edge 

roughness, indicating the line edges high-frequency and low-
frequency components. In PSD calculation, we used the 
discrete Fourier transform, 𝐹(𝑘), which can be represented as 
[38]: 

𝐹൫𝑘௝൯ =
1
𝑁

෍ 𝑥௡𝑒ିଶగ௜௡
ே

ேିଵ

௡ୀ଴

(6) 

where 𝑘௝ = 𝑗/𝑁 represents the frequency components. Due to 
the symmetrical property of the line edge in the frequency 
domain, the PSD (𝑃(𝑘௝)) can be represented as: 

𝑃൫𝑘௝൯ = 2𝑑ห𝐹൫𝑘௝൯หଶ (7) 
where 𝑗 = 1,2, … , 𝑁/2, the factor of 2 is multiplied to keep the 
total power. The corresponding figure of the line edge 
roughness based on the PSD analysis is plotted in Fig. 9. The 
roughness exponent 𝛼 can be extracted from the slope of the 
line, which is fitted on the short-range regime [39], where  

𝑆 = −2𝛼 − 1 (8) 

𝛼 =
−𝑆 − 1

2
(9) 

 

 
Fig. 9. PSD of the line edge on the sidewall. 
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Therefore, the roughness exponent 𝛼 of each line edge can 
be fitted based on their PSD plot. After we obtained these three 
parameters from the corresponding functions and figures, we 
one can observe that the parameters of the contour lines at 
different locations of the trench sidewall are different, plotted 
based on their index in Fig. 10 (Cut 3 is taken as the example). 

 

 
Fig. 10. Changes of the roughness parameters (𝜎, 𝛼, 𝜉) along the height 

index (Cut 3). 
 
The fluctuation of the three parameters on the coordinates 

along the various heights of the trench sidewall reveals that the 
sidewall surface is not a smooth area. The changes in the 
parameters on coordinates can be observed, but the variation 
tendency of each parameter on the trench can not be 
summarized. To elaborate on the roughness changes on the 
sidewall, the statistical distribution of these three parameters 
will be discussed to identify the abnormal area on the sidewall, 
and the quality control analysis will also be applied to the 
sidewall of each trench. 

3.2. Quality control analysis of sidewall based on the 
statistical distribution of parameters 

The 𝜎 is the standard deviation of each line edge on the four 
trenches sidewall. Based on the statistical distribution analysis, 
the conjugate prior distribution of variance (𝜎ଶ) follows the 
inverse gamma distribution [40]: 

𝜎ଶ~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎൫𝛼ூீ௦௣, 𝛽ூீ௦௣൯ (10) 
where the 𝛼ூீ௦௣  is the shape parameter, and the 𝛽ூீ௦௣  is the 
scale parameter. The specific value of the 𝛼ூீ௦௣ and 𝛽ூீ௦௣ can 
be regarded as two non-informative prior parameters equal to 
1. In addition, these two parameters also can be fitted from the 
existing data. 

The roughness exponent 𝛼  of each contour line can be 
calculated based on the slope 𝑆 which is fitted from the PSD 
figures in Fig. 9. The relationship between the roughness 
exponent 𝛼  and slope 𝑆  is the linear relationship. Therefore, 
the statistical distribution of the 𝛼 can be represented by the 
slope 𝑆 which can be interpreted as the slope distribution in the 
Bayesian simple linear regression model. 

Based on the previous research, the slope 𝑆  statistical 
distribution can be defined as the student t distribution, which 
can be expressed as [41]: 

𝑆~𝑡൫𝑛 − 2, 𝑆መ, 𝑠𝑒ௌ൯ (11) 
where 𝑆 represents the slope, 𝑆መ is the data center, and the 𝑠𝑒ௌ 
is the standard error of the 𝑆.  

Based on the relationship between the slope 𝑆 and 𝛼, the 
distribution of the 𝛼 can be written as: 

𝛼 =
−𝑆 − 1

2
~𝑡(𝑛 − 2,

−𝑆መ − 1
2

,
𝑠𝑒ௌ

2
) (12) 

where the distribution of the 𝛼  can be defined 
as 𝛼~𝑡(134,0.7829,0.0826). 

For the 𝜉, we can fit the distribution curve for the obtained 
data 𝜉  of contour lines. The Gamma distribution ( 𝛾 ) can 
perfectly depict the current data, which indicates that we can 
use the Gamma distribution to represent the statistical 
distribution of 𝜉: 

𝜉~𝛾(𝜏, 𝜃) (13) 
where 𝜏 is the shape parameter, and 𝜃  is the rate parameter. 
The specific parameters also can be calculated from the fitted 
distribution line, which can be represented as 
𝜉~𝛾(3.7697,0.0068). 

The distribution of the three parameters is derived based on 
the above process, which can be used to analyze the abnormal 
line edge on the sidewall and achieve quality control for the 
sidewall roughness. 

4. Results and Discussion 

Based on the statistical distribution of three parameters, we 
can plot the quality control charts for the line edges of the 
trench based on each parameter. Due to the various 
distributions of the parameters, the outliers or the detected 
abnormal line edges vary among the different control charts. 
To incorporate these three parameters for the quality control of 
the sidewall, we applied the family-wise error rate (FWER) to 
reassign the alpha values to multiple control charts [42]: 

𝐹𝑊𝐸𝑅 = 𝑃𝑟൫𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 ห𝐻௝ ∈ 𝐻௢൯
= 𝛼, 𝑤ℎ𝑒𝑟𝑒 𝐻௢ = {𝐻ଵ, 𝐻ଶ, . . , 𝐻௞} 

𝛼௜ = 1 − (1 − 𝛼)ଵ/௞ (14) 
where 𝛼௜  is the new significant value to calculate the boundary 
of the quality control chart. The control charts are shown in Fig. 
11, separated into two partitions by the green line. The left part 
represents the control chart acquired by the training data set 
(Cut 2, Cut 3, and Cut 4), which has a more consistent surface 
profile generated. The right part is the performance results of 
the testing set (Cut 5). The blue lines represent the 
corresponding parameter of each line edge; the red lines are the 
up and low boundary; the red circles mark the outliers of the 
data set, which can be regarded as the abnormal line edges on 
the sidewall. 
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Fig. 11. (a) Quality control chart based on variance; (b) Quality control 

chart based on roughness exponent; (c) Quality control chart based on 
correlation length. 

 
Based on the quality control chart analysis, the abnormal 

line edge on the trench sidewall can be detected based on the 
index of the outliers points on the figures and remapped to the 
trench sidewall. Based on the results of Fig. 11, the abnormal 
part can be located on the sidewall of different Cuts. In Fig. 12 
(a), the trench is cut from the middle position to show the 
abnormal part on the left sidewall of the nanochannel (Cut 5), 
which is marked by red color. In Fig. 12 (b), the abnormal line 
edges on the sidewall acquired from the quality control chart in 
Fig.12 are marked in red. (Cut 5 is taken as an example to show 
the abnormal part of the sidewall based on the outliers in the 
Figures). In addition, we can also observe some abnormal line 
edges on Cut 4, which is marked in Fig. 12 (c). However, if the 
variations of the conventional surface roughness quantifier 𝑅௔ 
does not show significant differences between the normal and 

abnormal sidewall morphologies (e.g., 𝑅௔=1.4151 nm for the 
right-hand side sidewall of Cut 5, and 𝑅௔= 1.9649 nm for its 
left-hand side).  

Based on the statistical analysis of the parameters and 
quality control process for the line edge on the sidewall, the 
outliers indicate the abnormal regions on the achieved 
nanochannel, which can assist people in evaluating the quality 
and assessing the process performance. More importantly, the 
developed quality control approach allows us to identify the 
anomaly regions (with surface integrity issues) that need to be 
remanufactured, which offers the opportunity to enable the 
characterizations-inspection-repair/rework via the presented 
AFM-based nanofabrication platforms. 

 

 

(a) 

(b) 

(c) 

(a) 

(b) 
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Fig. 12. (a) The abnormal area on the left sidewall of the Cut 5 trench; (b) 

The abnormal line edges on the left sidewall of Cut 5; (c) The abnormal line 
edges on the left sidewall of Cut 4. 

5. Conclusions 

This paper presents a quality inspection approach to 
evaluate the nanotrench sidewall characteristics via a statistical 
process control framework on the self-affine fractal model. The 
main contributions of this paper can be summarized as follows. 

1. The roughness properties of nanochannel sidewalls can 
be analyzed via the self-affine fractal modeling on the line 
edges to reflect the roughness characteristics. In addition, the 
changes in these parameters along the sidewall morphology 
variations can indicate that the sidewall of the trench is not a 
smooth surface. 

2. To accurately diagnose the anomaly regions on the 
achieved sidewalls, the quantifier, standard deviation, from the 
self-affine fractal model can depict the amplitude changes of 
the sidewall surface; the correlation length parameter is used to 
reflect the spatial correlations of the line edge, which can 
indicate the trends and frequency in the surface variations; the 
roughness exponent suggests contributions of high-frequency 
and low-frequency fluctuations on the surface characteristics.  

3. The developed statistical process control based on the 
distributions of these three parameters can precisely locate and 
signify the surface profile anomalies, i.e., the rework regions 
on the nanochannel sidewalls. 

The proposed quality control and evaluation method can 
effectively analyze the roughness attributes of nanochannels' 
sidewalls and identify anomalies on the sidewall surfaces. It 
offers the chance to enable quality control for AFM-based 
nanofabrication. In addition, it creates a route for 
characterization-diagnosis-rework/repair for AFM-based 
nanofabrication technology, which enables the cost- and time-
efficiencies on the presented AFM-based nanofabrication 
platform.  

In the future, the mechanisms of the nanofabrication will be 
studied based on the performance of the trenches' sidewall, 
including the impacts on the surface morphology inconsistency 
during cutting initiation and tool extraction, and the correlation 
between the sidewall roughness and machining parameters will 
be investigated to optimize the process to improve the achieved 
nanostructure. Meanwhile, the sidewall quality control 
approach can combine with the sensor-based monitoring 

scheme to achieve the online monitoring of the nanofabrication 
(based on more experimental investigations), which can 
effectively improve manufacturing effectiveness at the 
nanoscale level and reduce the damage to the sample from the 
testing process [32] [33].  
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