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Fig. 1. (A) Accuracy scores achieved by models on a version of DGL’s original materials with minimal pairs. For each phenomenon, accuracy is computed
as the proportion of items in that phenomenon where the model assigns higher probability to the grammatical version of that item (minimal pair) than the
ungrammatical version. (B) x-axis: Difference in sum surprisal (negative log probability) between the sentence presented to humans in DGL’s experiments
versus its counterpart in the minimal pair. y-axis: Human acceptance rate (proportion judged as grammatical) for the presented sentence in each minimal pair.
Each point represents a minimal pair test item.

Do large language models (LLMs) make human-like linguistic
generalizations? Dentella, Günther, and Leivada (1) (DGL)
prompt several LLMs (“Is the following sentence grammati-
cally correct in English?”) to elicit grammaticality judgments
of 80 English sentences, concluding that LLMs demonstrate
a “yes-response bias” and a “failure to distinguish gram-
matical from ungrammatical sentences.” We reevaluate LLM
performance using well-established practices and find that
DGL’s data in fact provide evidence for how well LLMs
capture human linguistic judgments.

The ability to produce well-formed sentences does not
necessarily require being able to articulate the underlying

grammatical rules. This distinction has been long noted
in linguistics (e.g., refs. 2–4), but is blurred by DGL: Their
task tests not only LLMs’ grammatical competence but also
whether models know what “grammatically correct” means.
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Fig. 2. (A) Participant-specific acceptance rates (i.e., rate of judging as grammatical) for sentences that DGL label as “grammatical” (x-axis) versus
“ungrammatical” (y-axis). If participants’ responses perfectly reflected DGL’s normative coding, then all participants would be in the Bottom Right corner
(as exemplified by intrusive resumption). (B) Confusion matrices achieved by models and humans on each phenomenon, when evaluating models using the
same prompt that was seen by humans (“Is the following sentence grammatically correct in English? [SENTENCE] Respond with C if it is correct, and N if it is not
correct.”). “Gram.” = grammatical, and “Ungram.” = ungrammatical. A small fraction of davinci2 and davinci3’s responses (4%) were not codable as corresponding
to “C” or “N,” resulting in missing data.

To remedy this, we follow standard methods (not discussed
by DGL) of evaluating LLMs’ linguistic knowledge (e.g.,
refs. 5–7). Rather than relying on models’ metalinguistic
skills, a method that systematically underestimates LLM
generalization capabilities (8), we directly measure the
probabilities models assign to strings (9). For each sentence
in DGL’s materials, we constructed a lexically matched coun-
terpart differing only in the targeted grammatical feature.
This controlled manipulation isolates grammatical differ-
ences, so a model that has learned the correct generaliza-
tions should assign higher probability to the grammatical
sentence in each minimal pair. Minimal-pair analysis reveals
at- or near-ceiling performance except on center embedding
(Fig. 1), for which humans are also below chance (47.1%
accuracy). Furthermore, minimal-pair surprisal (negative
log-probability) differences predict item-level variation in
human responses: The less surprising a sentence relative

to its minimal pair, the more likely humans are to judge it as
grammatical (Fig. 1; davinci2: Pearson � = −0.74; davinci3:
Pearson � = −0.67).

Moreover, although DGL argue that human-judgment
inaccuracies reflect “performance factors,” their data reveal
systematic variation in human acceptability judgments (Fig.
2A). For instance, the Anaphora phenomenon shows two
groups of participants: one whose judgments conform to
DGL’s labels (Bottom Right cluster) and one judging all
sentences as grammatical (Upper Right cluster). DGL’s logic
would imply that only these latter participants suffer per-
formance constraints. Genuine variability in acceptability is
a better explanation and is consistent with a wide literature
in linguistics (10). For example, the anaphora sentences that
DGL label as ungrammatical use the word “themselves” as
a singular pronoun, which may be perfectly acceptable to
some speakers. Similarly, many participants (43%) judge
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order-of-adverbs sentences like “Gary still perhaps drives
to work” as grammatical, even though DGL code it as
ungrammatical.

Finally, DGL’s task differed subtly for models and hu-
mans: Models were prompted for open-ended responses
(which were subsequently coded as correct/incorrect by
DGL), whereas humans had to provide a binary judgment
by pressing one of two keys. We reevaluated davinci2,
davinci3, GPT-3.5 Turbo, and GPT-4 using the exact prompt
seen by humans (Fig. 2B). The “yes”-bias reported by DGL
disappears for all models except davinci2. While davinci2
and davinci3 still perform near chance, GPT-3.5 Turbo and

GPT-4 outperform humans according to DGL’s normative
grammaticality coding. Overall, we conclude that LLMs
show strong and human-like grammatical generalization
capabilities.
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