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Current Time Series Anomaly Detection
Benchmarks are Flawed and are Creating
the lllusion of Progress

Renjie Wu

and Eamonn J. Keogh

Abstract—Time series anomaly detection has been a perennially important topic in data science, with papers dating back to the 1950s.
However, in recent years there has been an explosion of interest in this topic, much of it driven by the success of deep learning in other
domains and for other time series tasks. Most of these papers test on one or more of a handful of popular benchmark datasets, created
by Yahoo, Numenta, NASA, etc. In this work we make a surprising claim. The majority of the individual exemplars in these datasets
suffer from one or more of four flaws. Because of these four flaws, we believe that many published comparisons of anomaly detection
algorithms may be unreliable, and more importantly, much of the apparent progress in recent years may be illusionary. In addition to
demonstrating these claims, with this paper we introduce the UCR Time Series Anomaly Archive. We believe that this resource will
perform a similar role as the UCR Time Series Classification Archive, by providing the community with a benchmark that allows
meaningful comparisons between approaches and a meaningful gauge of overall progress.

Index Terms—Anomaly detection, benchmark datasets, deep learning, time series analysis

1 INTRODUCTION

TIME series anomaly detection has been a perennially
important topic in data science, with papers dating back
to the dawn of computer science [1]. However, in the last
five years there has been an explosion of interest in this
topic, with at least one or two papers on the topic appearing
each year in virtually every database, data mining and
machine learning conference, including SIGKDD [2], [3],
ICDM [4], ICDE, SIGMOD, VLDB, etc.

A large fraction of this increase in interest seems to be
largely driven by researchers anxious to transfer the consid-
erable success of deep learning in other domains and from
other time series tasks such as classification.

Most of these papers test on one or more of a handful of
popular benchmark datasets, created by Yahoo [5], Numenta
[6], NASA [2] or Pei’s Lab (OMNI) [3], etc. In this work we
make a surprising claim. The majority of the individual
exemplars in these datasets suffer from one or more of four
flaws. These flaws are triviality, unrealistic anomaly density,
mislabeled ground truth and run-to-failure bias. Because of these
four flaws, we believe that most published comparisons of
anomaly detection algorithms may be unreliable. More
importantly, we believe that much of the apparent progress
in recent years may be illusionary.
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For example, Qiu et al. [7] introduce a “novel anomaly
detector for time-series KPIs based on supervised deep-learning
models with convolution and long short-term memory (LSTM)
neural networks, and a variational auto-encoder (VAE) oversam-
pling model.” This description sounds like it has many
“moving parts”, and indeed, the dozen or so explicitly listed
parameters include: convolution filter, activation, kernel
size, strides, padding, LSTM input size, dense input size,
softmax loss function, window size, learning rate and batch
size. All of this is to demonstrate “accuracy exceeding 0.90 (on
a subset of the Yahoo's anomaly detection benchmark data-
sets).” However, as we will show, much of the results of
this complex approach can be duplicated with a single line
of code and a few minutes of effort.

This “one-line-of-code” argument is so unusual that it is
worth previewing it before we formally demonstrate it in Sec-
tion 2.2 below. Almost daily, the popular press vaunts a new
achievement of deep learning. Picking one at random, in a
recent paper [8], we learn that deep learning can be used to
classify mosquitos” species. In particular, the proposed algo-
rithm had an accuracy of 97.8% when distinguishing Aedes vex-
ans from Culex trigeniorhynchus. Should we be impressed? One
of the current authors (Keogh) has significant computational
experience working with mosquitos, and he is impressed.

Suppose however that someone downloaded the original
1185 images from the study and showed that they could clas-
sify them with 100% accuracy using a single line of code'. If
that happened, there are two things we can confidently say:

e We would not for one moment imagine that the one
line of code had any particular value as a classifier.

1. To be clear, we choose this example because it was the first hit for
a Google search for “novel deep learning applications”. We have no
reason to doubt the claims of this paper, which we only skimmed.
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We would assume that this was some kind of “trick”.
Perhaps the Aedes images were in JPEG format and
the Culex images were in GIF format. Or perhaps one
species was recorded in color, and the other in B/W.
Something interesting is clearly happening, but it is
surely not the case that a useful entomological image
classification algorithm takes a single line of code.

e We would have lost some confidence in the original
paper’s results. It is still likely that the paper is genu-
inely doing something useful. However, we would
all be a lot happier trusting the paper’s contribution
if the authors released a statement to the effect of
“we converted all files to [PEG format, and all images to
16-bit B/W, and reran the experiments getting similarly
good results. Moreover, we are confident that our new
publicly released dataset will now not yield to a single line
of code algorithm” .

This is a perfect analogy of our one-line-of-code argu-
ment. Our ability to produce “one-liners” for most datasets
does not mean that the original papers that tested on these
datasets are not making a contribution. However, at a mini-
mum it does strongly suggest that the community needs to
regroup, and test on new datasets that would generally
stump trivial one-line solutions.

Before continuing it is important to note that our discus-
sion of some issues with the benchmark datasets should in
no way be interpreted as criticism of the original introducer
of these datasets. These groups have spent tremendous time
and effort to make a resource available to the entire commu-
nity and should rightly be commended. It is simply the case
that the community must be aware of the severe limitations
of these datasets, and the limitations of any research efforts
that rely upon them.

2 A TAXONOMY OF BENCHMARK FLAWS

Before discussing the four major flaws found in many pub-
lic archives, we will briefly discuss related work, to put our
observations into context.

2.1 Related Work

The literature on anomaly detection is vast [9], [10] with a
particular increase in works in just the last three to five
years [2], [4], [5], [6], [7], [11], [12], [13], [14], [15]. We refer
the interested reader to [10] which offers the reader a
detailed review and taxonomy.

Almost all these works test on one or more public datasets
created by a handful of groups, including Yahoo [5], Numenta
[6], NASA [2] or OMNI [3]. Some papers test on these public
datasets in addition to a private dataset. In many cases, the
authors do not even show a plot of any data from the private
datasets. Thus, here we can clearly make no claims about
such private datasets, other than to note that the use of private
datasets thwarts the community’s laudable move to repro-
ducibility. In addition, the use of private datasets will always
be accompanied by the possibility of unconscious cherry-
picking that the reader or the reviewer will never know about.

There is a strong implicit assumption that doing well on
one of the public datasets is a sufficient condition to declare

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 3, 2023

an anomaly detection algorithm useful (and therefore warrant
publication or patenting). Indeed, this assumption is stated
explicitly in many works, for example Huang [16] notes “(The
Yahoo) AlBenchmark is undoubtedly a good time-series dataset for
testing the general effectiveness of an anomaly detection method”,
and Gao et al. [17] gush that “Yahoo data set has a good coverage
of different varieties of anomalies in time series, such as seasonality,
level change, variance change and their combinations.” However,
we are not aware of any work that has treated this assumption
critically.

In the following four sections, we will introduce four
issues with these public datasets that we believe throws
doubt on the assumption that they are suitable for compar-
ing algorithms or gauging progress in time series anomaly
detection.

2.2 Triviality

A large fraction of the problems in the benchmark datasets
are so simple to solve that reporting success in solving them
seems pointless or even absurd. Of course, trivial is not a
well-defined word, so, to firm up our claim we will make a
practical testable definition:

Definition 1. A time series anomaly detection problem is trivial
if it can be solved with a single line of standard library MAT-
LAB code. We cannot “cheat” by calling a high-level built-in
function such as kmeans or ClassificationKNN or calling
custom written functions. We must limit ourselves to basic vec-
torized primitive operations, such as mean, max, std, diff, etc.

This definition is clearly not perfect. MATLAB allows
nested expressions, and thus we can create a “one-liner”
that might be more elegantly written as two or three lines.
Moreover, we can use unexplained “magic numbers” in the
code, that we would presumably have to learn from training
data. Finally, the point of anomaly detectors is to produce
purely automatic algorithms to solve a problem. However,
the “one-liner” challenge requires some human creativity
(although most of our examples took only a few seconds
and did not tax our ingenuity in the slightest).

Nevertheless, our simple definition gets at the heart of
our point. If we can quickly create a simple expression to
separate out anomalies, it strongly suggests that it was not
necessary to use several thousands of lines of code and tune
up to a dozen parameters to do it.

Perhaps the best way to see this is to imagine that we give
the same challenge to create a “one-liner” for differentiating
protein-coding and noncoding RNA [14], or we had the chal-
lenge of separating positive vs negative Yelp reviews. Both of
these are also one-dimensional problems on which deep
learning appears to have made significant progress in recent
years [14]. However, it seems inconceivable that the bioinfor-
matic or text datasets considered in the literature could be
teased apart with a single line of code, no matter how con-
trived. These are intrinsically hard problems, and the commu-
nities working on them are using intrinsically challenging
datasets.

To illustrate our point, consider Fig. 1, which shows an
example from the OMNI dataset [3]. The example is a multi-
ple-dimensional dataset, here we consider only dimension 19.
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17 M19 (OmniAnomaly/ServerMachineDataset/test/machine-3-11.txt , Column 19)

1 n— Ground Truth
L 1 diff(M19) > 0.1
L 4 M19<0.01
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Fig. 1. (top to bottom) Dimension 19 from SDM3-11 dataset. A binary
vector (red) showing the ground truth anomaly labels. Three examples
of “one-liners” that can solve this problem.

There are dozens of simple one-liners that solve this prob-
lem. In the figure we show three representative examples.

Let us take the time to preempt some possible objections
to this demonstration.

o All the one-liners have a parameter. True, but recall that
most anomaly detection algorithms, especially ones
based on deep learning, have ten or more parame-
ters. Moreover, the results here are not particularly
sensitive to the parameter we set.

o  The choice of dimension was cherry-picked. We deliber-
ately chose one of the harder of the 38 dimensions
here. Most of the rest are even easier to solve.

e  The choice of problem was cherry-picked. Of the twenty-
eight example problems in this data archive, the
majority are this easy to solve with one-liners.

o  The fact that you can solve this problem in one line, does
not mean that other algorithms that are successful in this
dataset are not useful. True, we have acknowledged
that point in multiple places in this work and are
happy to do so again here.

The second most cited benchmark is Numenta [6]. The
Numenta archive is commendably diverse, however most
of the examples, like the one shown in Fig. 2, readily yield
to a single line of code.

We will not even bother to show any examples from the
NASA dataset (the interested reader can view many exam-
ples on [18]). In about half the cases the anomaly is manifest
in many orders of magnitude difference in the value of the
time series. Such examples are well beyond trivial.

Other NASA examples consist of a dynamic time series
suddenly becoming exactly constant (see in Fig. 9). For those
examples, we can flag an anomaly if, say, three consecutive
values are the same, with something such as diff (diff
(Ts)) ==0.

Having said that, perhaps 10% of the examples in the
NASA archive are mildly challenging, although even those
examples do not need to avail of the power of deep learning,
as the yield to decade-old simple ideas [19].

The Yahoo archive [5] is by far the most cited in the lit-
erature. It contains a mixture of real and synthetic data-
sets. Let us consider the first real dataset, which happens
to be one of the more challenging examples (at least to the

AISD: Numenta art_increase_spike_density
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Fig. 2. (top to bottom) The Numenta Art Increase Spike Density data-

sets. A binary vector (red) showing the ground truth anomaly labels. A
“one-liner” (green) that can solve this problem.
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Fig. 3. Yahoo A1-Reall1. A binary vector (red) showing the ground truth
anomaly labels. An example of a “one-liner” (blue) that can solve this
problem. A zoom-in shows how precisely the simple one-linear can
match the ground truth.

human eye). However, as Fig. 3 shows, it readily yields to
a one-liner.

Lest the reader think that we cherry-picked here, let us
consider the entire Yahoo Benchmark [5]. There are 367 time
series in the Yahoo Benchmark; most of them can be solved
with a universal one-liner (1) or (2):

abs(diff(TS)) > u * movmean(abs(diff(TS)), k)
+ ¢ * movstd(abs(diff(TS)), k) (1)

+b
diff(TS) > ux* movmean (diff(TS), k)
+c * movstd(diff(TS), k) ()

+b

where TS is the time series, u is either 0 or 1 to determine
whether movmean is used, k is the window size to compute
k-points mean values and standard deviations, c is the coef-
ficient applied to movstd, and b is the offset to adjust the
center of the right-hand side of (1) or (2).

The only difference between (1) and (2) is to use either
diff (TS) or abs (diff (TS)). From (1) and (2), we can
derive the following simplified one-liners:

abs(dif£(TS)) > b ®)

abs(diff(TS)) > movmean(abs(diff(TS)), k)
+ ¢ * movstd(abs(diff(TS)), k) 4)
+b
diff(TS) > b (5)
diff(TS) > movmean(diff(TS), k)
+ ¢ * movstd(diff(TS), k)

+b 6)

We did a simple bruteforce search to compute individual
k, c and b which solve anomaly detection problems on all
367 time series. As the results show in Table 1, we are sur-
prised by the triviality of the Yahoo Benchmark: 316 out of
367 (86.1%) can be easily solved with a one-liner.

Surprisingly, 193 out of 367, that is more than half, time
series in Yahoo Benchmark can be solved with individual
magic numbers b in (3) or (5). Even for those fourteen time
series solvable with (6) in A3 dataset, they share a common
property of k = 5 and ¢ = 0, while b varies case by case.

The overall 86.1% number seems competitive with most
papers that have examined this dataset [7], [16], [17] (it is
difficult to be more precise than that because of the vagaries
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TABLE 1
Bruteforce Results on Yahoo Benchmark
Dataset Solvable # Time Series # Time Series Percent
with Solved in Dataset
3) 30 67 44.8%
Al 4) 14 20.9%
Subtotal 44 67 65.7%
3) 40 40.0%
A2 4) 57 100 57.0%
Subtotal 97 100 97.0%
5) 84 84.0%
1
A3 ©) 14 00 14.0%
Subtotal 98 100 98.0%
() 39 39.0%
Ad ®) 38 100 38.0%
Subtotal 77 100 77.0%
Total 316 367 86.1%

of scoring functions). Moreover, as we will show in Sec-
tion 2.4, because of some labeling errors, this is probably as
close to perfect as can be achieved on this dataset.

In [18] we show a gallery of dozens of additional exam-
ples from Yahoo [5], Numenta [6], NASA [2] and Pei’s Lab
(OMNI) [3] that yield to one line solutions.

2.3 Unrealistic Anomaly Density
This issue comes in three flavors:

e For some examples, more than half the test data
exemplars consist of a contiguous region marked as
anomalies. For example, NASA datasets D-2, M-1
and M-2. Another dozen or so have at least 1/3 of
their length consist of a contiguous region marked as
anomalies [2].

e For some examples, there are many regions marked
as anomalies. For example, SDM exemplar machine-
2-5 has 21 separate anomalies marked in a short
region.

e In some datasets, the annotated anomalies are very
close to each other. For example, consider Fig. 3, it
shows two anomalies sandwiching a single normal
datapoint.

There are many issues with such an unrealistic anomaly
density. First, it seems to blur the line between classification
and anomaly detection. In most real-world settings, the prior
probability of an anomaly is expected to be only slightly
greater than zero. Having half the data consist of anomalies
seems to violate the most fundamental assumption of the task.
Moreover, many algorithms are very sensitive to the priors.

Another issue is that this unrealistic density greatly con-
fuses the task of scoring and comparing algorithms. Sup-
pose we have a dataset with ten anomalies, one at about
midnight for ten days, reflecting an increasingly weakening
pump filling a tank at the start of a batch process. We could
imagine two rival algorithms, each of which managed to
detect a single anomaly. However, one algorithm finds the
first anomaly, and the other algorithm finds the last. These
outcomes correspond to very different practical results
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Fig. 4. An excerpt from Yahoo A1-Real32. An algorithm that points to A
will be marked as a true positive. An algorithm that points to B will be
marked as a false positive.

when deployed. The former saves ten bad batches being cre-
ated, the latter only one. We might imagine rewarding more
for earlier detection, and in fact the Numenta team [6]
(among others) have suggested that. However, the resulting
scoring function is exceedingly difficult to interpret, and
almost no one uses this [20].

We believe that the ideal number of anomalies in a single
testing time series is exactly one. Moreover, this number should
be communicated with the dataset. This makes the users task a
little easier. Instead of trying to predict if there is an anomaly
in the dataset, the algorithm should just return the most likely
location of the anomaly. However, for this slight simplification
which ignore specificity (which can and should be evaluated
separately), we gain the fact that the evaluation is now binary.
By testing on multiple datasets, we can report the aggregate
results as simple accuracy, which is intuitively interpretable.

2.4 Mislabeled Ground Truth

All of the benchmark datasets appear to have mislabeled
data, both false positives and false negatives. Of course, it
seems presumptuous of us to make that claim, as the origi-
nal creators of the datasets may have had access to out-of-
band data they used to produce the labels. Nevertheless, we
believe that many of the examples we claim are compelling
enough to be unambiguous.

For example, consider the snippet of Yahoo Al-Real32
shown in Fig. 4. Any algorithm that points to location B will
be penalized as having a false positive, but a true positive
region A, is part of the same constant line. Since literally
nothing has changed from A to B, it is hard to see how this
labeling makes sense”.

In Fig. 5 we see another Yahoo time series. There is a
point anomaly (or “dropout”) marked with C. However, at
location 360 there is an almost identical dropout D that is
not labeled as having an anomaly.

In Fig. 6 we see a snippet of Yahoo Al-Real47 with two
labeled anomalies. The one pointed to by E seems like a
dropout, but F is a puzzle. Its rounded bottom visually
looks like a dozen other regions in this example. If we mea-
sure its mean, min, max, variance, autocorrelation, complex-
ity, Euclidean distance to the nearest neighbor, etc. and
compare these numbers to other rounded bottom regions
(Fig. 6 shows two others, of the about 48), there is simply
nothing remarkable about it.

Beyond these issues, there are other labeling issues in the
Yahoo datasets. For example, two datasets seem to be

2.1f the rest of the data had many short constant regions, say of
length 12, then you could imagine that a good algorithm might consider
the 13th constant datapoint in a row an anomaly. However, this is the
only constant region in this dataset.
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Fig. 5. (top) The Yahoo A1-Real46 dataset with its class labels (red).
(bottom) Overlaying two snippets allows a one-to-one comparison
between the region of C and D. The single point marked C is a true posi-
tive, but surprisingly, the point marked D is not.

AlBenchmark-real47
(excerpt)

550 640

Fig. 6. An excerpt from Yahoo A1-Real47. Both E and F are marked as
anomalies, but it is hard to see that F is truly an anomaly.
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Fig. 7. (top) An excerpt from the Yahoo A1-Real67 dataset with its class
labels (red). (bottom) Our proposed label (blue) for this dataset.

essentially duplicates (A1-Reall3 and Al-Reall5). An addi-
tional issue is more subjective, but some of the datasets
seem to have unreasonably precise labels. Consider the
labels shown in Fig. 7(top).

By analogy, some modern automobiles have anomaly
detection sensors to detect violent crashes. Imagine a fast-
moving car is involved in a crash and goes thumbing end-
over-end down the highway. At some points in the rotation,
the car will momentarily have a normal orientation. How-
ever, it would be bizarre to label those regions as “normal”.
Similarly, in Al-Real67 after about 50 almost identically
repeated cycles, at time 1384 the system has clearly dramati-
cally changed, warranting flagging an anomaly. However,
the subsequent rapid toggling between “anomaly” and
“normal” seems unreasonably precise.

There are several reasons why this matters. Most anom-
aly detectors effectively work by computing statistics for
each subsequence of some length. However, they may place
their computed label at the beginning, the end or the middle
of the subsequence. If care is not taken, an algorithm may be
penalized because it reports a positive just to the left (or just
to the right) of a labeled region. This is always a possible
concern, but it becomes much more of an issue with rapid
toggling of states.

One of the most referenced datasets is Numenta’s NY
Taxi data, which records the taxi demand in NY City from
2014/07/01 to 2015/01/31 [6]. According to the original
labels, there are five anomalies, Corresponding to the NYC
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Fig. 8. (top) Numenta’s NY Taxi dataset. (bottom) The time series dis-
cord score of the dataset [19], [21], with peaks annotated. The red text
denotes the ground truth labels.
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Fig. 9. (top to bottom) Three snippets from Mars Science Laboratory:
G-1. The topmost one has the only labeled anomaly in this dataset. How-
ever, the bottom two snippets have essentially identical behaviors as the
anomaly, but are not identified as such.

marathon, Thanksgiving, Christmas, New Year’s Day, and
a blizzard. However, as shown in Fig. 8 this ground truth
labeling seems to have issues.

One minor issue is the anomaly attributed to the NYC
marathon is really caused by a daylight-saving time adjust-
ment that was made the same day.

However, the main problem with the five labels is that
they seem very subjective. After a careful visual analysis,
we believe that there are at least seven more events that are
equally worthy of being labeled anomalies, including Inde-
pendence Day, Labor Day and MLK Day. In addition to
these USA holidays, we can easily detect the impromptu
protests that followed the grand jury decision not to indict
officers involved in the death of Eric Garner, “Large groups
shouted and carried signs through Times Square... Protesters
temporarily blocked traffic in the Lincoln Tunnel and on the
Brooklyn Bridge” [22], and the more formal protest march
that followed ten days later.

It is difficult to overstate the implications of this finding.
At least dozens of papers have compared multiple algo-
rithms on this dataset [6], [11], [12]. However, it is possible
that an algorithm that was reported as performing very
poorly, finding zero true positives and multiple false posi-
tives, actually performed very well, discovering Grand Jury,
BLM March, Comic Con, Labor Day and Climate March, etc.

Finally, let us consider an example from the NASA archive
[2]. In Fig. 9 we show three snippets from a test set. One of the
snippets is labeled with the only anomaly acknowledged in
this dataset. The anomaly corresponds to a dynamic behav-
ior, becoming “frozen” for a period of time. However, the
two other snippets also have this strange neighbor, but are
not marked as anomalies. As always, it is possible that the cre-
ators of this archive have access to some out-of-band informa-
tion that justifies this (none of the metadata or reports that
accompany the data discuss this). However, in this case, it is
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Fig. 10. The locations of the Yahoo A1 anomalies (rightmost, if there are
more than one) are clearly not randomly distributed.

particularly hard to believe these labels. In any case, suppose
we compare two algorithms on this dataset. Imagine that one
finds just the first true anomaly, and the other finds all three
events highlighted in Fig. 9. Should we really report the for-
mer algorithm as being vastly superior?

2.5 Run-to-Failure Bias

There is an additional issue with at least the Yahoo (and
NASA) datasets. As shown in Fig. 10, many of the anoma-
lies appear towards the end of the test datasets.

It is easy to see why this could be true. Many real-world
systems are run-to-failure, so in many cases, there is no data
to the right of the last anomaly. However, it is also easy to see
why this could be a problem, as it drastically affects the
default rate. A naive algorithm that simply labels the last
point as an anomaly has an excellent chance of being correct.

2.6 Summary of Benchmark Flaws

We believe that we have demonstrated that the classic time
series anomaly detection archives are irretrievably flawed.
For example, if we were told that algorithm A could achieve
an F1 score of 1.0 on one of these datasets, should we be
impressed? Given what we know about the amount of mis-
labeling on these datasets, we should not be impressed,
instead we should have to suspect fraud or (much more
plausibly) error.

However, suppose instead that we were told that algo-
rithm B could achieve an F1 score of 0.9 on one of these
datasets. Given what we know about the triviality of these
datasets, this seems like something we could match or beat
with decades-old algorithms. Thus, there is simply no level
of performance that would suggest the utility of a proposed
algorithm.

Similarly, if we were told that algorithm C was compared
to algorithm D on these datasets, and algorithm C emerged
as being an average of 20% better, could we now assume
that algorithm C really is a better algorithm in general?
Again, given what we know about these datasets, even a
claimed 20% improvement (larger than the typically
claimed margin of improvement) would not imbue confi-
dence. Recall just Fig. 8, on that dataset, if algorithm C
scored a perfect score, relative to the claimed labels, we
should regard it as a poor algorithm with low sensitivity.

3 INTRODUCING THE UCR ANOMALY ARCHIVE

Having observed the faults of many existing anomaly detec-
tion benchmarks, we have used the lessons learned to create
a new benchmark dataset, The UCR Time Series Anomaly
Archive [23]. As we explain below, we have endeavored to
make our resource free of the issues we have noted, with one
exception. A small fraction of our datasets may be solvable
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Fig. 11. (top) UCR_Anomaly_BIDMC1_2500_5400_5600, a dataset
from our archive. (bottom) A zoom-in of the region containing the anom-
aly. A PVC observed in an ECG that was recorded in parallel offers out-
of-band evidence that this is a true anomaly.

with a one-liner. There are two reasons for this. First, we
wanted to have a spectrum of problems ranging from easy to
very hard. Second, there are occasionally real-word anoma-
lies that manifest themselves in a way that is amenable to a
one-liner, and their inclusion will allow researchers to make
claims about the generality of their ideas. For example,
AspenTech, an oil and gas digital historian, encodes missing
data as -9999. If the data is ported to another system and nor-
malized, the exact value of -9999 may change, but such a
rapid decrease in value should rightly trigger an anomaly.
Such dropouts are generally easy to discover with a one-
liner.

To prevent the datasets in the archive reflecting the cur-
rent authors’ biases and interests too much, we broadcasted
a call for datasets on social media platforms read by data sci-
entists, and we wrote to hundreds of research groups that
had published a paper with “anomaly detection” in the title
in the last three years. Alas, this did not yield a single contri-
bution. Nevertheless, the datasets span many domains,
including medicine, sports, entomology, industry, space sci-
ence, robotics, etc.

As we discussed in Section 2.3, we believe that the ideal
number of anomalies in a test dataset is one. The reader will
be curious as to how we ensured this for our datasets.
Clearly, we do not have space to explain this for each dataset
(although the archive does have detailed provenance and
metadata for each dataset [23]). Below we show two repre-
sentative examples to explain how we created single anom-
aly datasets.

3.1 Natural Anomalies Confirmed Out-of-Band
Consider Fig. 11 which shows an example of one of the
datasets in our archive. The first 2500 datapoints (the 2500
in the file’s name) are designed to be used as training data,
and the anomaly itself is located between datapoints 5400
and 5600 (the ‘5400 5600’ in the file’s name) indicate the
location of the anomaly.

Here the anomaly is a little subtle. How can we be so con-
fident that is it semantically an anomaly? We can make this
assertion because we examined the electrocardiogram that
was recorded in parallel. This was the only region that had
an abnormal heartbeat, a PVC. Note that there is a slight lag
in the timing, as an ECG is an electrical signal, and the pleth
signal is mechanical (pressure). However, the scoring func-
tions typically have a little “play” to avoid the brittleness of
requiring spurious precision.

Note that we did not directly create an ECG benchmark
here because it is too simple (although we do have a handful
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Fig. 12. (top) UCR_Anomaly_park3m_60000_72150_72495, a dataset
from our Archive. (botftom) This individual had a highly asymmetric gait,
so we created an anomaly by swapping in a single left foot cycle in a
time series that otherwise records the right foot.

of equally simple examples in the archive). We used this gen-
eral technique, of using obvious out-of-band data to annotate
subtle data, to create many of our benchmark datasets.

3.2 Synthetic, but Highly Plausible Anomalies

We can also create single anomaly datasets in the following
way. We find a dataset that is free of anomalies, then insert
an anomaly into a random location. However, we want to
do this in a way such that the resulting dataset is completely
plausible and natural. Fig. 12 shows an example of how we
can achieve this.

Here we started with a two-dimensional time series, con-
taining the left and right foot telemetry on a force plate. The
data came from an individual with an antalgic gait, with a
near normal right foot cycle (RFC), but a tentative and weak
left foot cycle (LFC). Here we replaced a single, randomly
chosen RFC with the corresponding LFC (shifting it by a
half cycle length). The resulting dataset looks comply natu-
ral, modeling a normal gait, where for one cycle the individ-
ual felt a sudden spasm in the leg.

This dataset has another source of viability that happens
three or four times. Because the force plate apparatus is of
finite length, the gait speed changes as the user circles
around at the end of the device. However, we took pains to
ensure that both the training and test data have examples of
this behavior, so it should not be flagged as an anomaly.

When creating such datasets, we attempted to thread the
needle between being too easy, and too difficult. Here we
are confident that this example is not impossibly cryptic, as
nine out of ten volunteers we asked could identify this
anomaly after careful visual inspection.

4 RECOMMENDATIONS

We conclude with some recommendations for the
community.
4.1 Existing Datasets Should Be Abandoned

The community should abandon the Yahoo [5], Numenta
[6], NASA [2] and OMNI [3] benchmark datasets. As we
have demonstrated, they are irretrievably flawed, and
almost certainly impossible to fix, now that we are several
years past their creation. Moreover, existing papers that
evaluate or compare algorithms primarily or exclusively on
these datasets should be discounted (or, ideally reevaluated
on new challenging datasets).

2427

4.2 Algorithms Should Be Explained With
Reference to Their Invariances

We would argue that the task of time series classification has
seen more progress in recent years. In that community, it is
understood that it is often useful to discuss novel algo-
rithms in terms of the invariances they support [24]. These
invariances can include amplitude scaling, offset, occlusion,
noise, linear trend, warping, uniform scaling, etc. [24]. This
can be a very useful lens for a practitioner to view both
domains and algorithms. For example, suppose we wish to
classify mosquitoes sex using a Single-Sided Amplitude
Spectrum of their flight sounds (as was done in [25]). With a
little introspection about entomology and signal processing,
we can see that we want any algorithm in this domain to be
invariant to the amplitude of the signal. We also want some
limited warping invariance to compensate for the fact that
insect’s wingbeat frequency has a dependence of tempera-
ture, but not too much warping, which might warp a slug-
gish female (about 400 Hz) with a much faster male (about
500 Hz). This immediately suggests using a nearest neigh-
bor classifier, with area-under-the-curve constrained DTW
(cDTW) as the distance measure. Here, seeing the problem
as choosing the right invariances is a very helpful way to
both communicate the problem and search the literature for
the right solution.

In contrast, one thing that is striking about many recent
papers in anomaly detection is that the authors do not
clearly communicate under what circumstances the pro-
posed algorithms should work for practitioners that might
want to use them. (The work of [26] is a notable exception.)
For example, would the ideas in [3] work if my data was
similar, but had a wandering baseline that was not relevant
to the normal/anomaly distinction?

We suggest that authors could communicate the impor-
tant invariances with figures.

Consider Fig. 13(top) which shows a one-minute long
electrocardiogram that contains a single anomaly (a prema-
ture ventricular contraction). The figure also shows the
anomaly score from two methods, Telemanom [2] and Dis-
cord [19]. Here we are only interested in the relative values,
so we omitted the Y-axis, in both cases, the higher values
are considered more anomalous. In this example the anom-
aly is very obvious, and gratifyingly, both methods peak at
the location of the anomaly. Visually, we might claim that
Discords offer more discrimination (informally, the differ-
ence between the highest value and the mean values).

In Fig. 13(bottom) we show the same time series, after we
added a significant amount of Gaussian noise. The Discord
approach now provides less discrimination, but still peaks in
the right place. In contrast, Telemanom now peaks in the
wrong location.

This example suggests that one approach might be better
than the other if we expect to encounter noisy data. We are
not suggesting that such visualizations replace the reporting
of metrics such as precision, recall and F1 score, etc. How-
ever, for the datasets we consider in this work, those metrics
often summarize an algorithm’s predictions at just two or
three locations. In contrast, the plots shown in Fig. 13 visually
summarize the algorithm’s predictions at 12000 locations,
and give us a much richer intuition as to the algorithms
invariances.
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Fig. 13. (top) One minute of an electrocardiogram with an obvious anom-
aly that is correctly identified by two very different methods. Telemanom
uses the first 3000 datapoints from training, using the original authors
suggested settings. Discord uses no training data. (boftom) The same
electrocardiogram with noise added confuses one of the algorithms
more that than the other.

4.3 Visualize the Data and Algorithms Output
The point is partly subsumed by the previous point, but
worth explicitly stating.

It is very surprising to note that many papers that study
time series anomaly detection plot few (as few as zero)
examples of the time series themselves, in spite of the fact
that time series analytics (unlike say protein strings) is
inherently a visual domain.

This is more than just a presentation issue; it informs
how we should do research. We suspect that some research-
ers rarely view the time series, they simply pass objects to a
black box and look at the F1 scores, etc. One reason we
believe this is that the four issues we note in this work are
readily visually apparent, they do not need any tools to dis-
cover, other than a way to plot the data. For example, the
issues with Numenta’s NY Taxi dataset discussed in Sec-
tion 2.4 simply “jump out” of the screen if you plot the data,
and the entire data can be comfortably examined on a desk-
top screen, without even the need for zoom or pan [6]. Yet
to our knowledge, no one has noted these problems before.

4.4 A Possible Issue With Scoring Functions

In this work we have mostly confined our interest to prob-
lems with the current datasets. Others have considered prob-
lems with current scoring functions [20]. However, it would
be remiss of us not to note a simple potential issue with
scoring functions, especially when comparing rival algo-
rithms. As we noted above, algorithms can place their com-
puted anomaly score at the beginning, the end or the
middle of the subsequence. Fig. 13(top) nicely illustrates
this. Both approaches can find the obvious anomaly, but
Telemanom places its peak earlier than Discords”. It is easy
to see that unless we are careful to build some “slop” into
what we accept as a correct answer, we run the risk of a

3. This should not be confused with the claim that Telemanom dis-
covers the anomaly earlier, which may or may not be true. This is only a
minor claim about formatting of a particular implementation’s output.
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systemic bias against an algorithm that simply formats its
output differently to its rival. As before, visualization of the
algorithms, together with visualization of the acceptable
answer range (the red bar in Fig. 13) would go a long way
to boost a reader’s confidence that the evaluation is fair.

4.5 The “Deep Learning is the Answer” Assumption
Should Be Revisited

Many recent papers seem to pose their research question as:
“It is obvious that deep learning is the answer to anomaly detection,
here we research the question of what is the best deep learning var-
iant.” Of course, it is logically possible that deep learning is
competitive for anomaly detection, either in general, or in
some well-defined circumstances. However, given our find-
ings above, we are not aware of a single paper that presents
forceful reproducible evidence that deep learning outper-
forms much simpler methods. For example, Fig. 13 shows
that a decades-old method [21] is at least competitive with a
highly cited deep-learning approach on one problem, and
Nakamura et al. [19] provide similar evidence on several
datasets. As always, absence of evidence is not evidence of
absence. Nevertheless, we urge readers to give full consider-
ation to existing methods, which may be competitive, and
which are almost always faster, more intuitive, and much
simpler compared to deep learning methods that are often
slow to train, opaque and heavily parameter-laden.

5 CONCLUSION

We have shown that the most commonly used benchmarks
for anomaly detection have flaws that make them unsuitable
for evaluating or comparing anomaly detection algorithms.
On a more positive note, we have introduced a new set of
benchmark datasets that is largely free of the current bench-
mark’s flaws [23]. However, we do not regard this work as
the last word on the matter. Ideally, a committee or a work-
shop at a conference should gather many diverse viewpoints
on these issues, and draft recommendations for the creation
of a crowdsourced set of benchmark datasets. We hope this
paper will go some way to prod the community into action.
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