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ABSTRACT: We report a synthesis of silicon-linked glycomimetics, demonstrating unique structural properties and metabolic
stability due to the inertness of the C−Si bond. Our method focuses on the stereoselective transfer of silicon and anion addition,
revealing that chirality at the silicon atom can be controlled through kinetic resolution. This approach allows for the selective
generation of 1,2-cis and 1,2-trans isomers via the manipulation of C2-protected silicon ethers and nucleophilic opening of glycal
epoxides. We achieved high selectivity at the anomeric carbon and expanded the scope to include various saccharides and substituted
silanes. Our findings indicate that silicon transfer occurs intramolecularly and is influenced by the nature of the counterion and
reaction conditions. Additionally, chiral silanes produced through our method hold promise for medicinal chemistry applications,
addressing significant gaps in the synthesis and utility of glycomimetics. This work opens new avenues for the development of
bioactive silicon-based molecules.

Glycomimetics, a class of saccharide-derived molecules in
which labile functionalities are replaced with more stable

units, represent a valuable tool in drug development and in

probing fundamental glycobiology.1 While C-linked saccha-
rides, among others, encompass a broad class of bioactive
structures such as antidiabetic drugs and lectin mimetics,
studies incorporating other group 14 elements beyond carbon
are limited. Specifically, the replacement of exocyclic oxygen
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Scheme 1

Table 1. Reaction Developmenta

Entry Reductant Solvent
Temp
[°C]

Time
[min] 2 [%] 3 [%]

1 Li/Nap THF −78 5 52 19
2 Li/Nap PhMe −78 5 N.R.
3 Na/Nap Et2O −78 5 9 26
4 Na/Nap 2-MeTHF −78 4 21 35
5 Na/Nap THF −78 5 53 28
6 K/Nap THF −78 3 64 20
7 K/Nap THF −100 5 N.R.
8 K/Nap PhMe −100 30 0 57
9 K/dtbbp THF −78 3 49 27

aReagent and conditions: Sulfone 1 (1.00 equiv), solvent (0.035 M),
reductant (2.50 equiv, 1.00 M in THF). Yields refer to isolated
material after chromatography purification. dtbbp = di-tert-butylbi-
phenyl, Nap = naphthalene. N.R. = no reaction.
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with silicon remains scarcely explored.2,3 Si-linked glycosides
are an intriguing class of glycomimetics due to their much
longer C1−Si bonds (∼1.94 Å) compared to C−C single
bonds, yet similar to S/Se-linked glycomimetics, and their
resistance to oxidation that may occur at the anomeric
chalcogen (Scheme 1A). However, unlike other mimetics such
as S- and CH2-linked glycosides, which mimic the conforma-
tional behavior of native O-linked glycosides, Si-linked
structures are characterized by low barriers of rotation for
both axial and equatorial isomers (∼2.0 kcal/mol) with no
well-defined single stable rotamer. This novel property of Si-
linked glycosides presents an opportunity to create a class of
reagents with distinct structural features, high metabolic
stability due to the inertness of the C−Si bond, and additional
structural diversity resulting from modifications of the silicon
atom. Furthermore, organosilicon reagents possess novel
medicinal chemistry properties,4−6 and there is a compelling
literature precedent for engaging C1 Si-glycosides in cross-
coupling reactions, addressing an important knowledge gap.
In assembling Si-based glycomimetics, we were drawn to the

unique properties of anomeric nucleophiles and their synthetic

utility in C−C cross-coupling reactions.7−10 Similar to the
preparation of O-linked glycosides, controlling the anomeric
configuration of glycomimetics remains a central focus, with
the challenging 1,2-cis configurations receiving special
attention.11 One reliable method to produce 1,2-cis linked
glycosides capitalizes on intramolecular aglycone delivery12,13

and a direct transfer from the neighboring C2 position
functionalized through silicon,14−18 boron,19−24 and acetal
tethers.25,26 Once activated, these produce the putative
oxocarbenium intermediate and deliver the “cargo” from the
same face as the directing group (Scheme 1B). However, an
analogous approach utilizing C1 anomeric nucleophiles has
been less studied (Scheme 1C). The anionic transfer faces
challenges orthogonal to the Lewis acid pathway, such as harsh
reaction conditions for C1 anion generation (metalation) and
competitive elimination to glycals. Overcoming these obstacles
would constitute a powerful C2 → C1 intramolecular
umpolung aglycon delivery strategy complementary to cationic
pathways. Inspired by the work of Sinaÿ,2 we report herein the
synthesis of Si-linked glycomimetics and the preparation of
1,2-cis and 1,2-trans isomers through iterative manipulation of

Scheme 2. Scope of 1,2-cis Migration under Reductive Conditionsa

aReagents and conditions: 4 (1 equiv), K/Naphthalenide (2.50 equiv, 1.00 M in THF), THF (0.035 M), −78 °C, 5 min. Only one diastereomer
was observed in unpurified reactions mixtures (NMR). Yields refer to homogeneous material isolated after chromatographic purification.
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either C2-protected silicon ethers or nucleophilic opening of
glycal epoxides with silicon-based anions. We demonstrate
exclusive selectivity for the anomeric carbon in each pathway.
Similar to other C1-based nucleophiles, which can be

obtained in any anomeric configuration,7−10 we aimed to
access both anomers of Si-substituted glycosides. We first
focused on the 1,2-cis substituted structures and envisioned
that a direct transfer from silicon ethers of C2 could be
accomplished under reductive conditions. Unlike the synthesis
of C1 stannanes or boronic acids, which may also proceed
through an intramolecular transfer from transient ethers, the
Si-protected glycosides are stable structures. The results in
Table 1 indicate that different reductants and solvents affect
the yield of Si-linked glycomimetics. The most effective
conditions for the transfer are K naphthalenide in THF at −78
°C for 3 min, yielding 64% of 2 and 20% of 3 (entry 6). Li/
Nap in THF also performed well, giving reduced yields of 2
and 19% of 3 (entry 1). Sodium naphthalenide as the
reductant in any solvent tested produced moderate yields of
both products (entries 3−5). Lowering the temperature to
−100 °C with K/Nap resulted in no reaction (entry 7), while
using PhMe as a solvent is generally ineffective for 2 but yields
57% of product 3 at −100 °C for 30 min (entry 8). K/dtbbp in
THF offers balanced yields of both products (entry 9).
Furthermore, highly coordinating additives such as HMPA had
also detrimental effects and favored the elimination only. Other
potential substrates for the generation of C1 anions such as
thioglycosides, sulfoxides and anomeric halides were tested,
but due to low yields or practical considerations of their
stability, they were deprioritized in the subsequent studies.
Analogously, reductive methods with SmI2 also produced
exclusively glucal. Overall, K/Nap in THF at −78 °C was
identified as the optimal conditions for high yields, while
PhMe can be used for the selective production of 3.

Scheme 2 lists the scope of the transfer reaction,
demonstrating its operational versatility across various
saccharides and substituted silanes. Using D-glucose, we
established that vinyl 10, allyl 11, and aromatic 12−14 groups
are tolerated. Similar observations were made regarding alkyl
groups such as TMS 6, TES 7, bulky tert-butyl 8, and long-
chain aliphatic 9 indicating that aromatic or unsaturated
moieties directly attached to Si were not required. The 1,2-cis
transfer reaction necessitates a transition state, wherein the
putative silacycle intermediate induces planarization and
additional strain in the pyranose ring. We hypothesized that
constraining the pyranose ring with a 4,6-benzylidene group
would facilitate the reorganization of the bicyclic system and
favor transfer over the elimination pathway, which could
proceed via an acyclic pathway. Testing the transfer reactions
with glucose benzylidene substrates revealed that the formation
of C1-silyl glycosides 16−18 was efficient (51−56%). By
analogy to the anomeric assistance of C2 with a carbonyl
group, the benzylidene group in glucose and galactose does not
prevent the intermediacy of 1,2-cis linked structures.
The protection of the hydroxyl groups is also not necessary,

as glucose substrates where all of the hydroxyl functionalities
were protected as silicon ethers were suitable substrates for the
transfer, although all of the silicon ethers were lost during the
aqueous workup, producing 21. Trisubstituted silanes (e.g., 16
and 30) were also produced in synthetically acceptable yields.
Besides glucose, other monosaccharides such as fucose 23,
ribose 24, xylose 25, and galactose 26−30 transferred the
silicon moiety with high efficiency. For the reactions with
pentoses 24 and 25, we utilized tri-O-silyl substrates due to
practical considerations and the ease of preparation. In some
cases, we also showed that the problematic olefination could be
stopped if the reaction mixture was quenched with an
electrophile (MeI: 11b, 12b, 13b, 19; Ac2O: 20) without
deterioration of the yield. Finally, the reductive conditions are
also compatible with disaccharide substrates (lactose 22).
Interestingly, attempted 1,5- and 1,6-transfers from 5′-OTBS
D-ribose and 6-OTBS D-glucose substrates resulted in no
products. In all of the reactions, we observed the formation of
only one diastereomer.
To further expand the utility of the reaction, we wondered if

the chiral nature of the saccharide scaffold could be transferred
to the chirality of the silicon atom (Scheme 3). Chiral silanes
are becoming recognized as valuable synthetic tools,27−29 and
various methods have been developed to introduce an
asymmetric silicon,30−36 including resolution of silicon ethers
followed by stereoselective reduction to produce chiral
silanes.37−42 To this end, we first produced a mixture of C2
protected glucose 32 in a reaction with t-BuPhSiH2 and a
Rh(I) catalyst.29 This mixture was then separated, and each
diastereomer was subjected to reductive conditions at low
(−78 °C) and high (23 °C) temperatures. We observed that
the fate of the substrate was determined based on the
configuration of the silicon center: the R-isomer 33 underwent
exclusive elimination producing glucal 3 whereas the S-isomer
34 transferred the silicon group with a high selectivity
producing only one diastereomer of trisubsituted monohy-
drosilane 35 (dr > 99:1).43−45 This novel kinetic resolution
was also observed when a 66:34 mixture of 32 was subjected to
the reductive conditions although the yield of 35 was low
(15%).46 When the diastereoemerically enriched mixtures of
33 and 34 were subjected to K/Nap at higher temperatures,
the corresponding silanols 36 and 37 were produced in 80−

Scheme 3. Kinetic Resolution of Dihydrosilanes

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.4c10978
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/10.1021/jacs.4c10978?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.4c10978?fig=sch3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.4c10978?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


88% yield, and their optical rotation data were compared to the
reported values establishing the absolute configuration at the
silicon atom.47

To complement the studies on 1,2-cis Si-saccharides, we next
focused on establishing the 1,2-trans relationship by opening of
38 epoxides (Scheme 4). The necessary formation of a stable
silicon-centered anion could be accomplished in chlorosilanes
with at least one aryl (Ph) group directly attached to Si and
Li.48−58 Unlike the 1,2-cis transfer reactions, the problematic
Peterson olefination from the resultant alkoxide was not
observed, and the isolated products 39 from the nucleophilic
additions could be easily converted into C2 ethers (e.g., 40b).
Several studies were undertaken to better understand the

mechanism of the transfer process. We observed that electron-
withdrawing groups on the silicon, such as Si(OR)3, promoted
exclusive elimination (Scheme S11). For mannose substrates,
where both the sulfone and silyl ether are in a trans
configuration, the reductive conditions produced glucal only
(Scheme S12). However, when C2-OH was left free, sulfone
reduction provided 1-deoxysaccharide in a high yield (63%,
Scheme S16). In a complementary study, we established that
the generation of a C1 anion from a free C2 alcohol under
reductive conditions (KHMDS followed by K/Nap) and
subsequent quenching with a chlorosilane failed to produce the
intended 2, instead yielding 1-deoxysaccharide exclusively
(57%). Similarly, a competition experiment with glucose
sulfones containing two different silyl ethers provided no
evidence of cross-transfer between the anions.

In addition to the experimental studies, free energy profiles
were calculated (Scheme 5). First, we optimized individual
structures for the transfer (A−E) and elimination (F−G)
pathways in a tetrahydropyran (THP) model system. The
computed free energies indicate that the first step of the
transfer is favored over syn elimination by 4.0−4.6 kcal/mol.
Furthermore, all starting conformations except for the one with
the syn lone pair TMSO and the lone pair in the axial position
can proceed through a synclinal elimination transition state.
Conversely, cyclic chair intermediates C proceeded through
energy barriers of 2.6−3.3 kcal/mol to form the transfer
product E. The optimized geometries for transition state B
(the carbanion attack) in THP indicate that one of the silicon
methyl groups prefers an antiperiplanar orientation. However,
the cyclic intermediates C and the O−Si cleavage transition
states D were optimized to geometries with a methyl group
and the oxygen at Si in apical orientations. This prompted us
to investigate if a possible Berry pseudorotation of the trigonal
bipyramid intermediate may be operational in these steps.59,60

Scans indicated that a stereoretentive Berry pseudorotation is a
necessary step to achieve this configuration but proceeds
through a negligible barrier (0.7 kcal/mol). The computational
search for a stereoinvertive Berry pseudorotation at Si was also
performed but revealed a pathway that required a significantly
higher barrier of 27.4 kcal/mol. The computational studies
therefore support the notion that silicon transfer is a
stereoretentive process.

Scheme 4. Scope of 1,2-trans Anionic Opening with Silicon Anionsa

aReagents and conditions: 38 (1 equiv), silyl lithium (2.50 equiv, 1.00 M in THF), THF (0.10 M), 0 to 25 °C, 12 h. Only one diastereomer was
observed in unpurified reactions mixtures (NMR). Yields refer to homogeneous material isolated after chromatographic purification.
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In model glucose, galactose, and ribose systems, the energy
barriers for elimination are also higher than the carbanion
attack step by approximately 4.2−6.9 kcal/mol. Interestingly,
the elimination transition state for glucose and galactose could
only be achieved in a twist-boat conformation. The OMe
substituents limit the flexibility of the cyclic conformations,
and for the elimination to occur, the only possible
conformations to align the lone pair and TMSO group could
be achieved through a twist-boat. We also calculated a possible
transfer from the C5 position in ribose, but the 9.3 and 5.4
kcal/mol energy barriers for the carbanion attack and O−Si
cleavage transition states suggest that this reaction is not a
feasible pathway, consistent with the experimental data.
In conclusion, we have successfully demonstrated intra-

molecular umpolung aglycon delivery, producing 1,2-cis
substituted silaglycosides with high selectivity. By harnessing
the anionic character of the anomeric carbon and silicon
reagents, we developed methods for controlling glycosidic
linkage configurations, which is a significant advancement over
traditional carbon-centered approaches. This study not only
fills a gap in the synthetic strategy of glycomimetics but also
sets a precedent for the use of silicon in the design of
biologically relevant molecules.
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Scheme 5. Computed (DFT) Reaction Profiles for the Migration and Elimination Pathwaysa

aComputed free energy profiles for the proposed transfer and elimination pathways of glucose (IA-IG), galactose, ribose, and different
conformations of tetrahydropyran (THP). Optimization and frequency calculations were performed at the SMD-THF-wB97X-D/def2TZVPP level
at 1 atm and 298.15 K.
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