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Assessment of Upper-Body Movement Quality
in the Cartesian-Space is Feasible in
the Harmony Exoskeleton

Ana C. De Oliveira

Abstract—To determine the most effective interventions for post-
stroke patients, it is imperative to monitor the recovery process.
Robotic exoskeletons’ built-in sensing capabilities enable accurate
kinematic measurement with no additional setup time. Although
position sensors used in exoskeletons are accurate, a mismatch
between the robot’s and the human’s joints can lead to inaccurate
measurements. In addition, the robot’s residual dynamics can in-
terfere with human’s natural movements and the kinematic metrics
assessed in the robot would not be representative of the human’s
movement in free-motion. So far, the accuracy of robotic exoskele-
tons in assessing upper-body kinematics has not been verified. The
bilateral upper-body Harmony exoskeleton has features favorable
to minimize joint misalignments and the robot’s residual dynam-
ics. In this study, we examined Harmony’s ability to accurately
assess Cartesian-space kinematic parameters associated with the
wearer’s movement quality. We analyzed data collected from eight
healthy participants that executed point-to-point movements with
and without the presence of the robot and at fast and slow speeds.
Ground truth was acquired with an optical motion capture, and we
extracted the kinematic parameters from the measured data. The
results suggest that Harmony can accurately measure kinematic
parameters associated with movement quality, and these parame-
ters could appropriately reflect wearer’s natural movements at a
slow speed. Therefore, Harmony could aid the evaluation of the
effectiveness of different interventions, which is more sensitive and
efficient than currently adopted clinical outcomes. This allows for
individualization of a treatment plan and a detailed follow-up.

Index Terms—Kinematic assessment, motion capture, rehabi-
litation robotics, robotic exoskeleton.

I. INTRODUCTION

VERY year, around 800000 people suffer a stroke in the
United States [1]. Over 80% of stroke survivors suffer
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from hemiparesis (weakness of one side of the body). Sev-
eral motor deficits associated with hemiparesis [2] affect the
patient’s ability to carry through daily activities with arms and
shoulders [3], [4], [5], [6]. Rehabilitation aims to promote the
independence of stroke patients [7], but to determine the most
effective interventions for each individual, it is imperative to
monitor the recovery process [8], [9]. Outcome measures often
adopted in conventional practice to assess function [10],[11] and
impairment [12] are inherently subjective and highly variable.
Assessment of kinematic features associated with movement
quality [13], [14] has been increasingly adopted in research
settings due to its consistency and higher sensitivity to changes
compared to conventional measures [15]. For instance, a study
demonstrated that kinematic metrics can distinguish if func-
tional improvements are associated with compensatory strate-
gies or impairment mitigation [16]. Motion capture (mocap)
systems are an accurate and reliable sensing modality to capture
kinematics. However, they require a controlled environment and
a long setup time, being impractical for clinical use. Robotic
exoskeletons adopted for upper-body rehabilitation [17], [18],
[19], [20] are promising for clinical applications because they
can simultaneously deliver training at high dosage and intensity
while assessing motor abilities, thanks to their built-in sensing
capabilities.

While position sensors are prevalent and accurate in robotic
exoskeletons, a mismatch in the center of rotation of the ex-
oskeleton and anatomical joints could lead to inaccurate estima-
tion of body kinematics. So far, the accuracy of robotic exoskele-
tons in assessing body kinematics has not been verified [21].
Furthermore, the robot’s residual dynamics can interfere with a
human’s natural movements [22], [23], so the kinematic metrics
assessed in the robot would not be representative of the human’s
movement in free motion. High backdrivability can minimize
the robot’s interference with human’s movements, but most
of existing robotic exoskeletons [24] are powered via geared
motors [25], [26] or cable-driven actuators [27], which have
limited backdrivability. Kim and Deshpande [28] have devel-
oped the Harmony exoskeleton to address several limitations
previously identified in upper-body robotic exoskeletons. It is
a high-performance device that can safely accommodate the
natural coordination of the shoulder [29] and supports bilateral
training. Harmony is actuated with series elastic actuators, which
exhibit high-performance in torque control and optimize the
robot’s backdrivability. Therefore, we can exploit Harmony’s
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capabilities to accurately evaluate kinematic parameters in paral-
lel with the rehabilitation training. For quantitative accuracy, the
robot’s assessment must be equivalent to another reliable method
such as mocap. For an accurate qualitative representation of a
human’s natural and unassisted movement, the robot must not
physically interfere with their movement. Since it is unfeasible
to fully mitigate the robot’s interference in the human’s move-
ments, to maximize accuracy, we must determine the conditions
that minimize the robot’s physical interference to human-driven
motion.

In a previous work [30], we compared joint angles measured
by Harmony with joint angles simultaneously obtained from
mocap measurements. The results demonstrated that Harmony’s
measurements of distal joints (elbow flexion and forearm prona-
tion) are consistent with mocap’s measurements. However, we
identified systematic biases between the two sensing modalities
in measurements of shoulder plane and angle of elevation,
and inconsistencies in measurements of shoulder elevation—
depression and protraction—retraction. Results from this study
have demonstrated that a properly constrained trunk and a
well-adjusted, reasonably rigid interface are two factors that
affect the accuracy of joint angles measured by Harmony. Joint
angle is an important parameter that can inform clinicians of a
patient’s range of motion and abnormal coupling between joints.
However, several other metrics that are directly associated with
movement quality [13] were not investigated in the previous
work. In addition to that, we did not evaluate Harmony’s inter-
ference with the human’s natural movements in free motion. In
this work, we present a quantitative comparison of kinematic
metrics measured by Harmony and an optical mocap system
during reaching movements. Our goals are: 1) to investigate
whether kinematic metrics of movement quality measured by the
robot are equivalent to the ones measured with the current gold
standard; and 2) to determine if Harmony can accurately capture
the human’s natural movement (i.e., in free motion). We adopted
four well-established metrics [ 14] in Cartesian-space frequently
used in reaching tasks to assess movement planning, efficiency,
smoothness, and speed. These metrics may capture features
relevant to stroke recovery, from compensatory movements [14]
to motor impairment in specific characteristics of the movement
such as smoothness [31] and acceleration patterns [32]. In ad-
dition, the chosen metrics may have association with widely
adopted assessment methods, such as the Fugl-Meyer (FM)
scale [12]. Because movement ability might exhibit directional
dependence [33], we performed a direction-specific analysis
with targets distributed in the vertical and horizontal planes to
allow for investigation in 3-D movements under different grav-
itational effects. This work may lead to accurate and clinically
relevant assessments during poststroke rehabilitation.

II. METHODS

Our goal is to quantitatively compare Cartesian-space kine-
matic metrics measured by Harmony and an optical mocap
system during reaching movements. These metrics are associ-
ated with the movement quality of the hand motion and require
measurement of the hand-position during the entire assessment

TABLE I
STANDARD DENAVIT-HARTENBERG PARAMETERS FOR THE KINEMATIC MODEL
OF HARMONY’S RIGHT ARM

Joint a « d 0
1 L. —90° 0 07
2 0 0 0 03
2/ 0 90° 0 —05 +18°
3 0 —60° 0 035 — 30.75°
4 0  60° 0  6;+87.2°
5 Ly, 0 0 9; — 112.87°
6 0 0 0 0g +90°
6 0 90° 0 0
7 0 0 Ly 0%

task. The hand movement can be directly tracked using mocap
with markers placed on the hand. Harmony is equipped with
position encoders attached axially to each of the robot’s actuated
joints. To infer hand movement from these encoder readings, we
adopted the kinematic model defined by the Denavit—Hartenberg
parameters [34] presented in Table I. This model represents
Harmony’s kinematic chain with nine DOFs: seven actuated
joints, one passive joint to accommodate the 4-bar-mechanism
structure of the shoulder, and one passive joint to adjust the
end-point frame. Symbols 6 represent the angle measured in
the actuated joint 7. The quantities represented by L., L,
and Ly are the known lengths of the clavicle, humerus, and
forearm, respectively. The hand position can be inferred from
the end-effector frame.

A. Experimental Protocol

We carried out an experiment with able-bodied individuals,
where participants performed a series of 3-D reaching move-
ments with their right arm going from the initial position toward
a target (outbound) and back to the initial position (inbound).
We defined nine targets distributed in two semicircles of the
same radius. The semicircles, each containing five targets, were
centered at the initial position, oriented parallel to the sagittal
and transverse planes, and intercepting in the middle, as shown
in Figs. 1(b) and 2. To determine the location of the targets,
we defined the useful workspace length (€2), which is given
by a participant’s arm length (L,) subtracted by the estimated
position of a human’s useful workspace boundary, defined as
20 cm from the glenohumeral joint. The target distribution
was adjusted such that the initial position was aligned with the
participant’s right glenohumeral joint in the medial-lateral and
superior—inferior directions and located at 0.5 ). The radius of
the semicircles was set to 40% of €. This distribution was chosen
to ensure that all targets would be in the field of view at all
times and that all targets would be at a reachable yet far enough
distance to require significant arm movement.

Participants performed the movements at two different
speeds comparable with velocities performed in activities of
daily living [35], [36], referred as slow and fast speeds, de-
fined as 15 and 40 cm/s, respectively. They received visual
feedback of their current hand position and targets at all times in
3-D space in an immersive virtual reality environment (Oculus
VR, Menlo Park, CA, USA). Participants were instructed to
move as fast as possible in the fast speed once cued so that they
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Oculus Rift headset

Oculus Touch controller

(a) (b)

Fig. 1. Experimental setup, where free-motion condition is shown in (a) and
in-robot condition is shown in (b). Markers are highlighted in green and Oculus
headset and controller are highlighted in pink in (a). The target distribution as
seen by the participant is shown in (b), where home position is depicted in red,
targets are depicted in yellow, and active target reached by the participant is
depicted in green.

R
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(a) (b)

Fig.2. Targetsdistribution with respect to a participant’s location, where home
position is depicted in red and targets are depicted in yellow. The nine targets
are numbered as shown as a reference for the analysis. Views parallel to sagittal
and transverse planes are shown in (a) and (b), respectively. The quantity €2
represents the useful workspace length, given by the arm length (L) subtracted
by 20 cm.

would rely more heavily in their proprioception to achieve a
movement speed closer to the intended one because the reaction
time to the feedback could slow down the movement signifi-
cantly. Home position and target distribution were defined in
this virtual environment using the inertial frame of the robot,
fixed across participants, and the participant’s arm lengths as
guiding parameters. The experimental setup was the same as
described in our previous study [30], where we used the Oculus
Touch Controller (Oculus VR, Menlo Park, CA, USA) fixed
to the human-robot physical interface as shown in Fig. 1(a) to
provide visual feedback of the hand location.

We controlled movement speed using visual and auditory
cues. The visual cue consisted of a shrinking sphere surround-
ing the target and the auditory cue consisted of beeps from
a metronome, both programmed to follow the desired speed.
Participants were instructed to initiate movement toward the
target as soon as they were cued to start. They were asked
to control their speed following the pace of beeps to reach
the target at the same time as the shrinking sphere reaches

Sensing modality: Sensing modality:
MOCAP MOCAP, ROBOT
SLOW FAST || SLOW FAST SLOW FAST SLOW FAST
2x 9 targets| |2x 9 targets| |2x 9 targets| |2x 9 targets 2x 9 targets | |2x 9 targets| | 2x 9 targets| |2x 9 targets
L J L J
FREE-MOTION IN-ROBOT

Fig. 3. Order of experimental conditions in the protocol, showing the two
phases with four blocks in free motion and four blocks in in-robot condition.
Each phase consisted of alternated blocks, two in slow and two in fast speed,
and each block contained two instances of each of the nine targets.

the target’s standard size. Prior to the experiment, participants
practiced the task outside of the robot to get familiarized with
movement speed and range. They reached once to each target in
sequential order from target one to nine at both speeds. The
experimental protocol included two performance conditions:
One where a participant is outside of the robot, referred as
“free motion,” and another where a participant is wearing Har-
mony exoskeleton in transparent mode, referred as “in-robot.”
The transparent mode is achieved with a baseline controller
that provides compensation torques for the robot’s own weight
and friction, and scapulohumeral rhythm support [29]. Due to
Harmony’s high-performance torque-controlled actuators, the
compensation torques elicit low-impedance dynamics, resulting
in high-backdrivability with external torques effortlessly applied
by the human [28]. Harmony’s interfaces are easily detachable
from the robot and were kept attached to a participant’s arm dur-
ing the entire experiment to maximize consistency across condi-
tions. The hand interface requires a specific hand placement to
grip the hand thenar and hypothenar eminences along with the
wrist [37], reducing placement variability across participants.

Participants performed four blocks in each condition, two
at a fast speed and two at a slow speed in alternate order, as
shown in Fig. 3. The experiment started in the free-motion
condition followed by another set in the in-robot condition.
Participants rested for 1 min between blocks and 5 min between
conditions. Each block contained two instances of each target
in random order to minimize learning effects over practice and
make performance as homogeneous as possible. The order in
each particular block was fixed across participants.

B. Participants

The experimental procedure performed in this study as well as
the procedure followed in our previous work [30] were part of the
same protocol approved by the Internal Review Board organized
by the Office of Research Support in The University of Texas
at Austin (protocol number 2013-05-0126 approved on July 18,
2019). We enrolled nine right-handed able-bodied individuals
that had no known shoulder injury and body dimensions within
the limits of the Harmony exoskeleton (6 Male/3 Female, ages
27.84+5.9[20, 39] years, clavicle length 20.3£1 [18.5,21.5] cm,
upper-arm length 31.740.8 [30, 33] cm, and forearm length
26.3+1.63 [24, 28.5] cm). One of the participants was unable
to successfully complete the task, failing to reach the indicated
target or to follow the reference velocity in most of the trials, and
was excluded from the analysis. Participants provided written
informed consent that was reviewed by the Internal Review
Board.
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C. Data Acquisition and Analysis

We adopted the optical mocap system Optitrack Prime 17W
system (NaturalPoint Inc., Corvallis, OR, USA) with passive
markers as the benchmark sensing modality for comparison.
We used 10 cameras adjusted to overcome constraints and
limitations of the environment. Hand position and orientation are
directly tracked with markers attached to the back of the physical
human-robot interface on the hand, as shown in Fig. 1(a). We
tracked mocap data with a sampling rate of 120 fps. Upon manual
inspection, we verified that there were no missing markers for
more than a few milliseconds, and we performed interpolation
using cubic spline followed by a pattern-based interpolation
algorithm as necessary. We tracked robot joint angles with
built-in high-resolution magnetic rotary encoders (Contelec AG
Inc.) with a sampling rate of 100 Hz. We used a tape measure
to determine each participant’s body dimensions. We used a
fourth-order low-pass Butterworth filter with cut-off frequency
of 10 Hz to filter both mocap and robot data. We downsampled
mocap time-series data to 100 Hz to obtain a common sampling-
rate between the two sensing modalities and we synchronized
the data using the cross-correlation analysis. Furthermore, we
defined a minimum velocity threshold to determine the initial
time instant and duration of each reaching movement using
mocap data.

D. Outcome Measures

Several metrics have been reported in the literature, and the
most adopted constructs for evaluating 3-D point-to-point tasks
are spatial posture, efficiency, speed, smoothness, and movement
planning [14]. In this study, we adopted four established metrics
traditionally used in the literature [13], [14], [21] to repre-
sent the efficiency, speed, smoothness, and movement planning
constructs: 1) path length ratio (PLR); 2) peak speed (PS); 3)
spectral arc length (SAL); and 4) time to PS (TPS), respec-
tively. The efficiency measured by the PLR (PLR-efficiency)
is given by the ratio between the length of the actual path
traveled by the hand and the length of the straight line joining
initial and final hand positions [38]. The minimal value of the
PLR-efficiency is one, which indicates a perfectly straight path.
Schwarz et al. [14] have suggested that PLR-efficiency might
be appropriate to capture compensatory movements. The speed
measured by PS (PS-speed) is given by the highest instantaneous
velocity during the reaching movement [39]. The PS-speed is
linearly related to force generation and level of automaticity [32]
and a significant association between the PS-speed and the FM
Scale [12] has been reported [40]. The smoothness measured by
the SAL (SAL-smoothness) is a dimensionless representation
of movement smoothness given by the length of the Fourier
magnitude spectrum of a segmented velocity profile [31]. Quan-
tities for able-bodied individuals are generally in the [—2, —1]
range and, for individuals with motor impairments, it can exceed
—5. We used the Matlab code provided by Balasubramanian
etal. [31] to calculate SAL-smoothness with the default settings.
The planning measured by the TPS (TPS-planning) is a value
between zero and one representing the ratio between the elapsed
time from the start of the movement to the PS and the total

elapsed time for the entire movement. It is an indication of
the movement strategy adopted. Values of TPS-planning falling
within the range [0.33, 0.5] indicate preplanned movements [32].
Values falling below this interval indicate more time spent in
deceleration typical of a guided strategy, whereas values above
this interval indicate a ballistic strategy with a shorter decelera-
tion phase. Iwamuro et al. [41] reported that the TPS-planning
was able to capture planning changes under different movement
directions and dynamics. The association of the chosen metrics
with the efficiency, speed, smoothness, and movement planning
constructs is such that: 1) the greater the PLR-efficiency, the
lower the movement efficiency; 2) the greater the PS-speed, the
higher the speed and force generation ability; 3) the greater
the SAL-smoothness, the higher the movement smoothness;
and 4) TPS-planning values in the [0.33, 0.5] range indicate
preplanned movements, TPS-planning< 0.33 indicate a guided
strategy, and TPS-planning> 0.5 indicate a ballistic strategy.

E. Hypotheses

In this work, we have four hypotheses. First, the values of
the kinematic metrics derived from mocap and Harmony data
are expected to be equivalent when simultaneously captured
(in-robot condition) in both fast (H1) and slow (H2) speeds.
Furthermore, the metrics assessed in Harmony (in-robot condi-
tion) are expected to be equivalent to the ones assessed in free
motion in both slow (H3) and fast speed, except for PS-speed,
where we hypothesize that PS-speed measured in Harmony will
be lower than the free-motion value (H4). The reasoning for
hypothesis H4 is associated with Harmony’s residual friction
and noncompensated inertia. Although the residual dynamics is
assumed to be negligible for movements at the slow speed, they
are likely to alter the human’s movement speed in the fast speed
condition, where the effect of these components may become
significant enough to be perceived as additional load by the
human, slowing down movement speed.

F. Statistical Analysis

To test hypotheses H1, H2, H3, and H4 (for PLR-efficiency,
SAL-smoothness, and TPS-planning), we adopted an equiva-
lence test using two one-sided tests (TOST) [42], [43]. This
test allows us to investigate equivalence between two groups
using two one-sided hypothesis tests to verify whether the
groups’ difference falls within a specified interval. This interval
represents a practically important difference also referred as an
equivalence interval. We adopted the minimal detectable change
(MDC) as the equivalence interval calculated for each metric,
target, speed, and condition from the data points obtained with
mocap data of all subjects and repetitions pooled together. For
hypotheses H3 and H4, we chose the MDC values obtained in
free motion as the equivalence interval, which represents the
human natural movements. Outliers (i.e., a data point more than
1.5 interquartiles above the upper quartile or below the lower
quartile) were excluded from the data pool before the calculation
of the MDC but outliers were not excluded for the statistical
analysis. The MDC is given by 1.96 x SEM x +/2 [44], where
SEM is the standard error of measurement given by the root
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mean of the within-subjects variances. To perform the TOST, we
adopted repeated-measures ¢-tests and o = 0.05 to obtain a 90%
confidence interval of the difference. Due to the small sample
size, we also performed Wilcoxon Signed-Rank tests, which
are more conservative and do not require as many assumptions
about the samples distribution. In this work, we report the
t-test p-values but we only considered a result to be statistically
significant when both, the ¢-test and the Wilcoxon Signed-Rank
test give p-values< av. To test hypothesis H4 for PS-speed, we
adopted repeated-measures t-tests and o = 0.05. The effect size
for this test was calculated with Cohen’s d, where we consid-
ered d(0.01) = very small, d(0.2) = small, d(0.5) = medium,
d(0.8) = large, d(1.2) = very large, and d(2.0) = huge [45].
Considering that movement ability might exhibit directional
dependence [33], we performed a target-specific analysis. Since
aparticipant’s dataset includes four instances of each experimen-
tal case (target, speed, and condition), samples were obtained by
averaging the values across all repeated instances.

To evaluate consistency between the metrics simultaneously
assessed by the two sensing modalities (in-robot condition),
we used Bland—Altman plots [46]. These plots indicate average
error along with limits of agreement (LOA). The LOA indicate
the 95% confidence interval within which discrepancies between
the two measurement modalities fall. To generate Bland—Altman
plots for each metric individually, we pooled together data points
from all targets and all participants grouped by sensing modality
(mocap or robot), considering that metric values in repeated
targets are averaged for each participant.

The root-mean-squared error (RMSE) and the robot’s manip-
ulability will be adopted as supportive metrics in the analysis.
The manipulability is calculated from the robot’s Jacobian, and
the higher its value, the easier it is to impart forces into velocities.
The kinematic configuration of a robotic exoskeleton changes
its manipulability and influences how well a human can control
their arm in different areas of the workspace [47].

III. RESULTS

A qualitative representation of the outbound hand trajectories
measured by mocap of all subjects and the correspondent av-
erage trajectories are depicted in Fig. 4. The starting point of
all trajectories was offset to zero, and the targets represented in
the figure serve only as a reference since actual target locations
were adjusted for each subject.

The data points for each metric, target, speed, and condition
of all subjects and all four repetitions pooled together are repre-
sented in Fig. 5 by boxplots grouped by sensing modality. Across
all experimental cases, values for PLR (PLR-efficiency), SAL
(SAL-smoothness), TPS (TPS-planning), and PS (PS-speed) fell
within the ranges [1.02, 1.63], [-2.02, —1.41], [0.15, 0.8], and
[0.13,0.63] in respective order. The overall average values were
1.12, —1.62,0.47, and 0.27, respectively. Meaningful references
and ranges for each metric when existent are indicated in Fig. 5.

The data points excluded from the calculation of the MDC are
shown in diamond-shaped markers. The MDC values obtained
with data shown in Fig. 5 and adopted in the TOST are depicted
in Fig. 6 with green lines and can be inferred from Table II,
such that MDC = 2|EI|. Across all experimental cases, the
MDC fell within the ranges [0.05, 0.26], [0.16, 0.52], [0.20,
0.55], and [0.04, 0.34] for PLR-efficiency, SAL-smoothness,
TPS-planning, and PS-speed, respectively, with averages 0.14,
0.26, 0.34, and 0.12.

The p-values, confidence intervals, equivalence intervals (for
equivalence tests), and Cohen’s d effect size (for ¢-tests) are
shown in Table II. For equivalence tests, p = max(p1, p2), where
p1 and po correspond to p-values associated with the null hy-
potheses Hy, and Hy, of the TOST. Instances where the null
hypothesis could be rejected (p < 0.05) are shown in Table II
with bolded text and an asterisk next to the p-value. The effect
size of all the ¢-tests with statistical significance (PS-speed,
hypothesis H4) was huge, very large, or large. A comparison
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ballistic strategy ranges, respectively. For SAL-smoothness, the yellow shaded area indicates the typical range for able-bodied individuals.
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for all targets. Instances with statistical significance in the corresponding hypothesis tests are indicated with an asterisk next to the target number.
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TABLE II

DESCRIPTIVE STATISTICS FOR PLR-EFFICIENCY, SAL-SMOOTHNESS, TPS-PLANNING, AND PS-SPEED

2| 5 HI H2 H3 H4
5| &
| F ET P 90% CT EI P 90% CT EI P 90% CT EI P 90% CT
I | £0131 <001 [0.002,0.019] | £0.096 <.001*  [0.005,0.020] | +£0.034  0.604  [0.0130.062] | £0.130  <.001*  [-0.071,0.001]
2 | £0.103  <.001*  [0.023,0058] | £0.089  <.001*  [0.032,0.070] | £0.080  0.119  [0.012,0.093] | +0.113  0.015%  [-0.092,0.004]
Z| 3 | £0087 0033  [-0081-0014] | £0.069 0044  [-0.067.0.003] | £0.039  0.907 [0.025.0.149] | +£0.091 0056  [-0.021,0.094]
S| 4 | £0090 0356  [0123-0039] | £0052 0490  [-0.084-0.018] | £0.033  0.034*  [-0.011,0.031] | +0.063  0.137 [0.010,0.076]
105 | £0094  <.001%  [0.000,0.023] | £0023  <.001%  [-0.0030.008] | £0068 0765  [-0.2420.006] | £0.071  0.016*  [-0.023,0.055]
o| 6 | £0.056 <.001*  [-0.008,0.035] | +0.068 <.001*  [0.003,0.015] | +0.032 0440  [-0.012,0.068] | +£0.074  0.010*  [-0.048,0.039]
| 7 | £0081 <001  [-0.0100.023] | £0.054  0.006*  [-0.034,0.017] | +0.084  <.001*  [-0.000,0.054] | +£0.051 0482  [0.014,0.086]
8 | £0.056  0.002*  [-0.031,0013] | £0.050 <.001*  [-0.010,0.003] | £0.054 0080  [-0.011,0.060] | £0.059 0174  [-0.048,0.091]
9 | £0.046  <.001*  [0.006,0.013] | £0.029  0.017%  [-0.017,0.021] | +0.056 0367  [-0.0640.138] | +0.088  0.010%  [-0.067,0.006]
1 | +£0.086 <.001*  [0.000,0.010] | £0.162 <.001*  [0.011,0.042] | +£0.162  0.007*  [-0.048,0.106] | +0.095  0.005*  [-0.057,0.031]
2 | +0.081  0.010%  [-0.033,0.055] | £0.153  <.001*  [-0.009,0.049] | +£0.155  <.001*  [-0.025,0.124] | +0.135 <.001*  [-0.032,0.013]
§ 3] 0024 <.001%  [-0.014,0061] | +0122  <.001*  [-0.026,0.046] | +£0.231  0.001*  [-0.118,0.043] | +0.102  0.033*  [-0.092,0.028]
S| 4 | £0087 <001 [0.0060.036] | +£0.128  <.001*  [-0.0090.066] | +0258  0.001*  [-0.1150.096] | +£0.081  0.010%  [-0.060,0.012]
g 5 | £0.414  <.001*  [-0.0050.037] | +£0.168  <.001*  [0.004,0.029] | £0.141  0.003*  [-0.0520.077] | £0.123  0.002%  [-0.056,0.045]
2| 6 | £0082  <001F  [00200.060] | £0.106  <.001*  [-0.021,0038] | £0176  <.001*  [0.010,0.158] | £0.085  0.013*  [-0.059,0.050]
Z[ 7 | 0120 <001 [0.021,0.103] | £0.113 <001  [0.0350.103] | £0.143  <.001*  [-0.010,0.116] | £0.085  0.006*  [-0.062,-0.003]
8 | £0.135  <.001*  [-0.007,0.039] | +0.128 <.001*  [-0.026,0.025] | £0.173  <.001*  [-0.042,0.085] | +0.118  0.004*  [-0.064,0.056]
9 | £0.099 <.001*  [0.009,0.057] | £0.137  <.001*  [-0.027,0.055] | +0.115  0.110  [-0.057,0.144] | +0.103  0.026*  [-0.092,-0.003]
1 [ 20171 <.001%  [-0.0190.015] | £0.175 <.001*  [-0.063,0.007] | £0.276  0.003*  [-0.180,0.003] | +0.117 0027  [-0.024,0.104]
2 | £0123 <001 [-0.033,0.000] | £0.167  <.001%  [-0.034,0.012] | +0.174  0.006*  [-0.107,0.059] | +0.107 0088  [-0.122,0.024]
wl 3| £0022 <.001F  [0.002,0.024] | £0.222  <.001*  [0.010,0.097] | +0266  0.003*  [-0.187,0.048] | +£0.116 0228  [-0.159,:0012]
E| 4 | 20112 <.001%  [0.0080.030] | +0.151  <.001*  [0.001,0.024] | +£0.192 0086  [-0205-0073] | +0.125  0.143  [-0.137.-0.078]
2| 5 | £0.098 <001 [-0.0050.014] | £0.190  <.001*  [-0.0060.011] | +0.224  0.002*  [-0.132,0.008] | +0.162  0.060  [-0.165-0.069]
| 6 | £0124  <001%  [-0.002,0.035] | £0.201  <.001%  [-0.019,0.004] | £0.230  0.002%  [-0.150,-0.025] | +0.140  <.001*  [0.003,0.081]
E| 7 | £0102  0.004*  [-0.0650.012] | +0.192  <.001*  [-0.094,0.005] | +0.231  0.005%  [-0.159,0.013] | £0.103  0.009*  [-0.066,0.054]
8 | 0114  <.001*  [-0.012,0.038] | +0.255 <.001*  [0.028,0.107] | £0.210  <.001*  [-0.038,0.167] | +0.115  0.019*  [-0.087,0.071]
9 | £0.209  <.001*  [-0.029,0.038] | £0.200  <.001*  [-0.027,0.068] | +0.167  0.013*  [-0.117,0.086] | +0.140  <.001*  [-0.002,0.106]
EI p 90% CI ET p 90% C1 ET P 90% CT d P 95% C1T
1 [ £0.098 <.001* [-0.009,0.012] | £0.021 <.001*  [-0.002,0.007] | £0.040  0.011*  [-0.030,0.004] | 1416  0.003*  [-00,-0.038]
2 | £0.048 <001  [-0.0190.006] | £0.061  <.001*  [-0.007,0.002] | £0.033  0.009%  [-0.022,0.015] | 2280  <.001*  [-00,-0.058]
3 | +0.063 <.001*  [0.026,0.062] | £0.040  <.001*  [0.013,0.026] | +£0.040  0.002*  [-0.029,-0.009] | 2.066  <.001*  [-00,-0.049]
B 4 | £0105 <001 [0.0400.069] | £0.035 <.001*  [0.0180.026] | £0.060  0.003*  [-0.038,0.002] | 0484 0.107 [-00.0.007]
2 5 | £0.066 <.001*  [0.007,0.039] | +0.035  <.001*  [0.008,0.018] | +£0.097  0.010+  [-0.082,-0.031] | 0909  0.019%  [-00,-0.026]
2| 6 | 0043 0682 [0.032,0.062] | +0.044  <.001*  [0.020,0.036] | £0.043  <.001*  [-0.021,-0.003] | 1114  0.008*  [-00,0.027]
7 | £0053 0788 [0.042,0084] | £0.031 0650  [0.0220.045] | +0.034 <.001*  [-0.006,0.009] | 2488  <.001*  [-00,-0.056]
8 | £0.069  <.001*  [0.0060.034] | £0.045 <.001*  [0.007,0.014] | £0.035  0.011%  [-0.028-0.002] | 3.587  <.001%  [-00,0.065]
9 | £0.091  <.001*  [0.022,0.062] | £0.035  <.001*  [0.010,0.024] | 0037  0.004*  [-0.023,0.008] | 1331  0.004*  [-00,-0.030]

E1 - Equivalence Interval, C'I - Confidence interval, p - max p-value (TOST) or p-value (t-test), d - Cohen’s d
Hypotheses summary (alternative hypothesis H,) - Hl: =MDC/2 < (uppn — prgr) < MDC/2, H2: —MDC/2 < (ursp — prsr) < MDCO/2,
H3: —MDC/2 < (upsy — prsm) < MDC/2, and H4 (all but PS-speed): —MDC/2 < (prpnr — prpa) < MDC/2 or H4 (PS-speed): (prsns — prpa) < 0,
with I (in-robot), F (free-motion), f (fast-speed), s (slow-speed), M (mocap), R (robot).
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between the 90% confidence intervals and MDC (for equivalent
tests) or mean and standard deviation of each condition (for
t-tests) are illustrated in Fig. 6.

From Fig. 6 and Table II, we can infer that the differences
between the sensing modalities are smaller than the practically
important difference when simultaneously captured (i.e., in the
in-robot condition) in all targets for TPS-planning and SAL-
smoothness. The same applies for PLR-efficiency excluding
targets 3 and 4, and for PS-speed excluding targets 6 and 7 for
fast speed and target 7 for slow speed. As for the hypothesis
H3, we can infer that differences between values captured in the
in-robot and free-motion conditions are smaller than the practi-
cally important difference in most targets in all metrics, except
PLR-efficiency. We cannot infer that differences between the two
conditions are smaller than the practically important difference
in target 9 for SAL-smoothness and in target 4 in TPS-planning.
For PLR-efficiency, we can infer that the differences between
the two conditions are smaller than the practically important
difference only in targets 4 and 7. Regarding hypothesis H4,
we can infer that the differences between the two conditions are
smaller than the practically important difference in all targets for
SAL-smoothness, in targets 1, 2, 5, 6, and 9 for PLR-efficiency,
and in targets 6 through 9 for TPS-planning. Furthermore, we
can infer that PS-speed obtained in the free-motion condition is
larger than in the in-robot for all targets except 4.

The Bland—Altman plots indicating the LOA are shown in
Fig. 7. The data points are indicated with circle- or diamond-
shaped markers for fast and slow speeds, respectively, and are
shown in target-specific colors. From these plots, the discrep-
ancies between the two measurement modalities (mocap and
robot) for PLR-efficiency, PS-speed, TPS-planning, and SAL-
smoothness fall within the ranges [—0.09, 0.08], [—0.03, 0.07],
[—0.09, 0.10], and [—0.06, 0.11], respectively.

The RMSE between mocap and the robot’s hand-velocity
profiles are represented in Fig. 8 for each target. The highest
RMSE is observed in target 7, followed by targets 3, 4, and
6. Finally, the average manipulability from the initial position
toward each target is illustrated in Fig. 9. These values represent
the length of the manipulability ellipsoid in each direction. The
targets directions with the highest manipulabilities were 1, 5, 6,
and 9.

IV. DISCUSSION

In this work, we presented a quantitative comparison of
kinematic metrics measured by Harmony and an optical mocap
system during reaching movements. We previously presented
a similar quantitative comparison focused on joint angles [30].
Here, we extended the analysis to four Cartesian-space metrics
that are directly associated with movement quality. In addition,
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Fig. 7. Bland-Altman plots from data captured during the in-robot conditions. Each color is associated with one of the nine targets. Dotted lines represent LOA

with corresponding values indicated directly above or below the line.
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underlying motor behavior.

From the boxplots in Fig. 5, the PLR (PLR-efficiency) ex-
hibited higher medians and larger variability in the fast speed
than at the slow speed, but overall values are all close to the
minimal value of 1. The higher medians could be associated
with movement corrections due to overshoots, often present in
fast speeds [48]. These overshooting trajectories cause larger
variability across participants since each might choose different
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Fig. 8. RMSE of the hand-velocity profiles simultaneously captured by Har-

mony and mocap per target and speed.
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Fig. 9. Average manipulability of Harmony toward each of the nine targets.

we performed a novel analysis to investigate Harmony’s ability
to accurately capture the human movement in free motion.

A. Qualitative Observations

Based on a visual inspection of Fig. 4, Cartesian-space tra-
jectories executed in Harmony in both the fast and slow speeds
exhibited larger spatial distribution than in free motion. This
variability might be associated with changes in movement ex-
ecution caused by adaptation to a new dynamic environment.
Although the hand trajectories in the robot appear to exhibit
higher variability than those out of the robot, this difference was
not reflected in the metrics of movement quality (see Fig. 5).
This indicates that although hand trajectory might change in

movement corrections. The PS (PS-speed) also exhibited larger
variability at the fast speed compared to the slow speed, which
was expected since the participants were asked to move as fast
as possible during the fast speed condition. Furthermore, the
PS-speed medians demonstrate that the speeds executed were
consistent with the desired speeds.

In contrast to these observations, the TPS (TPS-planning) and
SAL (SAL-smoothness) exhibit higher variability at the slow
speed rather than at the fast speed. The higher variability in
TPS-planning indicates that participants might have changed
movement strategies more often during slow movements. In
addition, the medians for SAL-smoothness are lower in the slow
speed indicating lower smoothness. These results suggest that
more submovements are present at slow speeds, which is consis-
tent with observations in a different study [48]. The data points
for SAL-smoothness confirmed that the range [ -2, —1] is typical
for able-bodied individuals [21]. The results for TPS-planning
suggest that humans tend to choose a ballistic strategy for fast
movements and a preplanned strategy for slow movements.

B. Hypotheses HI and H2

Results in the first two columns of Table II and Fig. 6 demon-
strate that in most cases, both the sensing modalities give equiv-
alent observations when simultaneously captured in Harmony
(i.e., in the in-robot condition). These results indicate that Har-
mony is in most part sufficiently accurate to measure kinematic
parameters associated with movement quality. In the in-robot
condition, some instances such as PLR-efficiency targets 3 and
4, and PS-speed targets 6 and 7, did not present evidence for
equivalence between robot and mocap. We speculate that this
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is associated with discrepancies in the kinematic model used to
obtain the hand-position from Harmony’s joint angles. We used
a tape measure to determine each participant’s body dimensions
adopted in the kinematic model shown in Table I, and this method
is susceptible to human error. Inaccuracies in the kinematic
model could cause the hand-trajectory in Cartesian space to be
slightly different between robot and mocap. This can be observed
in Fig. 8, where the highest RMSE is observed in target 7,
followed by targets 3, 4, and 6. These are the same targets afore-
mentioned, where we did not find evidence of equivalence for
PLR-efficiency and PS-speed. The PLR-efficiency and PS-speed
are directly associated with Cartesian space positions, whereas
TPS-planning and SAL-smoothness are associated with time
and frequency features of the movement and less likely to be
affected by position discrepancies. Therefore, the results from
the equivalence tests are coherent with the deviations observed in
Fig. 8. A more accurate measurement of the human body dimen-
sions is a potentially trivial solution to minimize discrepancies
in the position-dependent metrics, but measurement errors can-
not be completely mitigated. Thus, target directions with low
kinematic discrepancies should be prioritized to obtain a more
accurate measure of the position-dependent metrics. From our
results, target 1 presented the lowest difference followed by 2,
5,8, and 9.

The LOA shown in the Bland-Altman plots in Fig. 7 all
fall within the ranges, or are lower than the minimal value,
of each respective MDC. This is a supporting result showing
that Harmony is comparable with mocap to measure kinematic
parameters associated with movement quality. The LOA for
PS-speed are centered around a positive value, which suggests
that PS-speed obtained from mocap are larger than the ones
obtained from Harmony, which is consistent with Fig. 8.

C. Hypotheses H3 and H4

Results in the third column of Table II and Fig. 6 demon-
strate that observations captured in and out of the robot in the
slow speed are equivalent in most targets for SAL-smoothness,
TPS-planning, and PS-speed. The same was not observed for
PLR-efficiency, except in rare occasions (targets 4 and 7). Re-
sults in the last column of Table II and Fig. 6 demonstrate
similar patterns for SAL-smoothness and PLR-efficiency, i.e.,
observations captured in and out of the robot in the fast speed
are equivalent in most targets for SAL-smoothness but not for
PLR-efficiency, except in a few occasions (targets 1, 2, 5, 6, and
9). These results suggest that in the most part, Harmony can ac-
curately capture the natural (i.e., free motion) movement speed,
planning, and smoothness of a human during the slow speed, and
the natural movement smoothness also during the fast speed.
Furthermore, movement efficiency (PLR-efficiency) captured
in Harmony may be lower than a human’s natural movement
efficiency, regardless of the speed. TPS-planning values demon-
strated that movement planning captured in Harmony during the
fast speed is only consistent with free motion for movements in
the horizontal but not in the vertical plane. Finally, PS-speed
values indicate that the speed captured in Harmony during the
fast speed is significantly lower than the free-motion movement

speed, which endorses our initial hypothesis that Harmony’s
residual friction and noncompensated inertia significantly alter
the human’s natural movement speed.

We suspect that the unexpected discrepancies found for PLR-
efficiency and TPS-planning are associated with two factors:
1) the robot’s residual gravity pull; and 2) manipulability. The
residual gravity pull stems from errors in the dynamics model,
which could lead to either over or undercompensating for the
robot’s weight. It is likely that the weight was undercompensated
and the residual gravity pull was perceived by the human as
an extra load pulling down. The results for PLR-efficiency at
the slow speed show that participants were surprisingly more
efficient in Harmony than in free motion for target 5 (see Fig. 6),
which was located right below the initial position. Furthermore,
the PS-speed shows that movements in Harmony were slightly
faster toward target 5 compared to free motion. In contrast, PLR-
efficiency values in the opposite direction, i.e., target 1, show that
participants were less efficient in Harmony than in free motion.
This is consistent with our speculation since the extra weight
would assist toward target 5 and resist toward target 1. Moreover,
the additional load would represent an external perturbation, but
in fast movements, the additional inertia may dampen the effects
of these perturbations in motor coordination. In contrast, the
perturbation from the additional load could affect the human’s
motor coordination at the slow speed, which could explain why
the movement efficiency measured in Harmony during the slow
speed is lower than in free motion. In addition to that, our results
for TPS-planning endorse the presence of an extra load when in
the robot since the values measured in Harmony were equivalent
to the free-motion values for the slow speed but not for the
fast speed on targets in the vertical direction (i.e., 1, 2, 4, 5).
This indicates that movement planning in the vertical direction
captured in Harmony was the same as free-motion planning at
a slow speed, but participants spent more time in deceleration
than in acceleration during the fast speed.

The other factor we speculate being related to discrepancies
in PLR-efficiency is the robot’s manipulability. The targets
directions with the highest levels of manipulability were 1, 5, 6,
and 9 (see Fig. 9), indicating that it is easier to impart forces into
velocities toward these targets directions. Results in Fig. 6 for
PLR-efficiency in fast speed show that the movement efficiency
in Harmony was equivalent to free-motion in all of these targets,
but not to most of the remaining ones. The values found indicate
that for targets 3, 4, 7, and 8, the movement efficiency measured
in Harmony are lower than free-motion. Both of these findings
support the idea that manipulability interferes with movement
efficiency at the fast speed. The slow speed requires less forces
from the human, and the interference from manipulability in this
case would be less significant.

D. Recommendations

In light of the findings of this study, we recommend assess-
ment of position-dependent metrics such as PLR-efficiency and
PS-speed to be performed in a plane parallel to the coronal,
preferably in the vertical direction. We suggest that informa-
tion of manipulability should be adopted to guide assessment
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of movement efficiency. Directions with higher manipulability
should be preferred since they are less likely to reduce efficiency
compared to free-motion. In addition to that, we recommend
velocities comparable with the ones in activities of daily living
(ADL) [35], [36] for the assessment of movement efficiency
since that minimizes the influence of residual gravity pull in
the human’s movements. In contrast, we suggest much lower
velocities (a half or a third of the ADL speeds) to assess move-
ment speed since that minimizes the effects of residual friction
and inertia in the robot. Furthermore, we recommend metrics
of movement planning such as TPS-planning to be measured in
the horizontal plane, where residual gravity pull is less likely to
influence the results. Finally, movement smoothness measured
by SAL-smoothness has demonstrated robustness across all
directions and movement speeds and can be adopted in a variety
of reaching tasks for the assessment.

E. Limitations

The results of this study suggest that Harmony is a robust
tool for the assessment of movement smoothness, but it has
limitations when measuring efficiency, speed, and planning.
When assessing these metrics, the robot might provide measure-
ments different than the ones obtained with mocap or it might
influence the human’s natural movement behavior in specific
conditions. However, as demonstrated in previous works [30],
mocap systems also present limitations and may not give exact
measurements of the human motion. Furthermore, although
Harmony may affect human’s natural movement behavior in
certain conditions, using Harmony as a tool is beneficial because
of its simultaneous capability to provide training and continuous
assessment. In summary, to determine whether Harmony is an
appropriate tool for the assessment in a specific investigation, it is
important to evaluate if the priority is to provide a highly accurate
measurement of the human’s movement behavior or to provide
continuous and efficient measurements without additional time.

This work has a limitation related to the specificity of the
assessment task adopted, which reduces choices of kinematic
metrics to ones associated with point-to-point reaching. How-
ever, this is a reasonable choice given that reaching is a fun-
damental component of various activities of daily living and is
extensively adopted in studies of upper-extremity movement for
the assessment of a variety of kinematic metrics [13], [49].

V. CONCLUSION

In this study, we compared kinematic metrics obtained using
the Harmony exoskeleton with an optical mocap system mea-
sured during a point-to-point task. We carried out an experi-
ment and analyzed the data collected from eight able-bodied
participants in and out of the robot and at fast and slow speeds.
The fast speed was comparable with ADLs and the slow speed
was about four times slower than the fast. Results suggest
that Harmony was sufficiently accurate to measure kinematic
parameters associated with movement quality since values as-
sessed by the robot were consistent with mocap. Harmony could
accurately capture the human’s natural movement smoothness
regardless of the speed and direction. The robot also captured the
human’s natural movement speed and planning during the slow

speed. Although these conclusions are based upon data acquired
from able-bodied individuals, they may be generalized to stroke
patients because the consistency between the robot and mocap is
independent of the human’s ability and the limitations associated
with movement impairments may be handled independently
from the robot. This work provided useful insights and guidance
for the use of Harmony for kinematic assessment. Our long-term
goal is to provide clinically relevant and accurate assessments
while delivering several rehabilitation training approaches. Such
an ability may help with the identification of key ingredients
for maximizing the effectiveness of robot-mediated training for
upper-body stroke recovery.
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