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Systems driven far from equilibrium often retain structural memories of their processing history. This
memory has, in some cases, been shown to dramatically alter the material response. For example, work
hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent
catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems,
where significantly larger changes in structure should be possible, remains poorly understood. Here, we
demonstrate a promising route to embedding such useful memories.We build onwork showing that exposing
a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the
sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon
removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the
maximum compressive and maximum extensive axes that reflect or “remember” the acoustic training.
Because the contributions from these twoorthogonal axes to the total shear stress are antagonistic, it is possible
to tune the resulting suspension response in surprising ways. For example, we show that differently trained
sheared suspensions exhibit (1) different susceptibility to the same acoustic perturbation, (2) orders of
magnitude changes in their instantaneous viscosities upon shear reversal, and (3) even a shear stress that
increases in magnitude upon shear cessation. We work through these examples to explain the underlying
mechanisms governing each behavior. Then, to illustrate the power of this approach for controlling suspension
properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed
via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense
suspensions to generate rapidly and widely tunable materials.
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I. INTRODUCTION

Dense nonequilibrium systems have a memory of their
history and can undergo large qualitative changes in their
material property depending on the protocol under which
they are prepared [1–18]. For instance, the yield stress of a
crystalline metal will increase under repeated deformation
(work hardening) [19–22]. As another example, a granular
material will densify when tapped and become harder to
shear [23–29]. In suspensions, numerous investigations

have shown that shear induced memory can give rise to
interesting behaviors including return point memory, cou-
pling between hysterons, and increased yield strains
[7,10,12,30–32]. Memory in these studies is typically
created through applying perturbations such as small
amplitude oscillatory shear, which provides a controlled
environment for studying the physics by limiting the
extent to which the microstructure is disrupted. The
downside of this controlled approach, however, is that
the changes induced in the bulk material properties are
often relatively modest in comparison to what should be
possible. In particular, theoretical studies have shown that
through reorganization of contact networks (tuning by
pruning) it should be possible to generate up to 13 orders
of magnitude change in the ratio of shear to bulk modulus
[33–40]. These studies suggest that if we can significantly
alter the suspension contact network in a controlled
fashion, we may be able to dial in or select dramatically
altered suspension properties.
Generating and retaining memory of large changes in

contact networks in flowing systems, however, is challeng-
ing since the shear flow often reorganizes the systems and
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erases any memory of the training protocols. A promising
but relatively unexplored system that could overcome this
limitation is a shear jamming suspension, which is char-
acterized by a rapid transition from a flowing state to a
jammed state when driven beyond a critical applied shear
stress [30,41–50]. Here, the suspension structure could be
significantly modified while it is flowing and signatures of
that structure could be remembered by rapidly shear
jamming the suspension. In such systems, it may be
possible to create a variety of shear jammed states with
dramatically different material responses through different
training protocols.
We demonstrate that this approach is indeed feasible by

applying acoustic perturbations to shear jamming suspen-
sions. Previous studies have demonstrated that acoustic
perturbations can significantly disrupt a suspension’s
microstructure to dethicken a shear thickened suspension
[51,52]. Memory of the dethickening, however, is rapidly
forgotten upon removal of the perturbation. By working
with shear jamming suspensions, we can retain memory of
this structural reorganization even after both shear and
acoustic perturbations have been removed. Specifically,
memory of the training induced by both shear and acoustic
is stored in force networks oriented along both the
maximum compressive and extensional axes. Signatures
of this memory are then preserved when the suspension is
jammed by the shear stress. We show that these antago-
nistic networks can be tuned to generate unexpected
behaviors and large changes in the material properties of
the suspensions.

II. EXPERIMENTAL METHODS

We carry out the measurements on charge-stabilized
silica (Angstrom Sphere) with a diameter of 2 μm sus-
pended in dipropylene glycol (Sigma Aldrich), with flow
curves for volume fractions of ϕv ¼ 0.565 and ϕ−

v ¼ 0.555
shown in Figs. 1(a) and 1(b), respectively. Unless otherwise
stated, the volume fraction used is ϕv ¼ 0.565 and the

applied shear stress is σapp ¼ 380 Pa [indicated by the “X”
marker in Fig. 1(a)], considerably lower than the incipient
stress for slip but still higher than the critical shear jamming
stress of ∼200 Pa. The sedimentation timescale of the
suspension is ∼1000 s, which is far longer than any
experimental time window in the work presented here.
Additional information on the suspension can be found in
the Supplemental Material [53].

Measurements were performed using a modified Anton
Paar MCR-702 stress-controlled rheometer with a piezo-
electric disk bonded to the lower plate, as illustrated in
Fig. 1(c). The piezoelectric disk was purchased from APC
International (material 841, 21-mm diameter and 1.80-mm
thickness) and bonded via epoxy to an aluminum (6061-
T6) bottom plate (19-mm diameter and 8.57-mm thick-
ness). The acoustic perturbations are generated by exciting
the piezoelectric disk using a sine waveform with a
frequency of 1.16 MHz, over a peak-to-peak voltage range
of 0–160 V corresponding to an expected amplitude range
of 0–24 nm, which is much smaller than the gap size of
0.64 mm. To minimize slip, we used sandblasted plates as
the shearing surfaces. The rheometer has a measurement
noise floor of ∼0.01 Pa and a strain rate resolution on the
order of 10−5 s−1. The suspension is considered shear
jammed when the shear rate oscillates around zero at a
rate comparable to the instrument sampling frequency. The
transition to the shear jammed state is visually striking on a
logarithmic plot of viscosity versus time where smooth
viscosity curves transition to abrupt large amplitude spikes
as seen in Fig. 2(a).
Careful sample preparation, loading, and a consistent

preshear protocol prior to and between measurements
yielded highly reproducible results (see Supplemental
Material for more details on sample preparation and
equipment characterization [53]). The data shown in this
paper were collected over 6 different samples with volume
fraction ϕv ¼ 0.565 for Figs. 2–4 and over 2 different
samples with volume fractions 0.555 and 0.565 for
Figs. 6(a) and 6(b), respectively. We note that the results

FIG. 1. Plots of shear stress versus shear rate for silica in dipropylene glycol at volume fractions of (a) 0.565 and (b) 0.555. For (a), the
“X”marker indicates a shear stress of 380 Pa, at which most of the experiments in the paper were performed. The circle corresponds to a
stress of 38 Pa, applied for the protocol in Fig. 6(b). The diamond corresponds to a stress of 3.8 Pa, applied for the protocol in Fig. S6 of
the Supplemental Material [53]. For (b), the triangle corresponds to a stress of 380 Pa, applied for the protocol in Fig. 6(a). (c) Schematic
of the customized geometry used to apply both shear and acoustic perturbation.
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FIG. 2. (a) Training (left) and probing (right) protocols plotted as shear stress (top), acoustic power (middle), and viscosity (bottom)
versus time. During training, different acoustic powers (Ptrain) are applied during the first 50 s (gray patch), as indicated by different
colors. During probing, a constant acoustic power Pprobe ¼ 4 W was applied for all Ptrain from 60 to 90 s (yellow patch). A constant
shear stress σ ¼ 380 Pa was applied for both training and probing. (b) Phase diagram of shear stress versus volume fraction (σ − ϕ)
based on our model framework. The fixed experimental stress, σapp ¼ 380 Pa, and volume fraction, ϕv ¼ 0.565, are indicated by the
vertical and horizontal gray lines. The isotropic jamming volume fraction is labeled as ϕ0. During training, larger Ptrain shifts the shear
jamming boundary farther away from the Ptrain ¼ 0 W shear jamming boundary (thick black solid line), as indicated by the hypothetical
dashed curves whose color follows the legend in (a). (c) Plot of the average probe viscosity ηprobe against Ptrain during the probing period
[red dashed region in (a)]. (d) Enlarged views of the phase diagram. For Ptrain < Pprobe (left), the suspension shear jams either at the
appropriately shifted shear jamming boundary (translucent black, blue crosses) or at σapp (brown cross) after training. During probing,
the shear jamming line is shifted above σapp, allowing states that were shear jammed below σapp to rearrange their microstructure and
flow toward σapp (white arrows). For Ptrain > Pprobe (right), we expect σapp to limit how deeply the system can probe the shear jammed
regime (translucent cross). Instead, we observe a much larger ηprobe and even jamming. indicating that the shear jammed state lies above
the 4W (Pprobe) shear jamming boundary and well above σapp (opaque cross). Thus, acoustic training must embed some sort of structural
memory which is not accounted for in a simple manner by the applied shear stress. We emphasize that the dashed SJ boundary and
arrows in (b) and (d) are not measurements but illustrations based on our hypothesis. (e),(f) Plots of ηprobe against (e) Ptrain and against
(f) Pprobe for a cornstarch in water suspension with mass fraction ϕm ¼ 0.57.
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shown here are highly reproducible and can be observed at
a different volume fraction (Fig. S7), using a different
geometry (Fig. S8) and even with a different suspension
(Figs. S9–S11), as discussed in the Supplemental Material.

III. MEASUREMENT PROTOCOLS
AND RESULTS

A. Training protocol

We systematically generate different shear jammed states
via a training protocol as shown in Fig. 2(a). The protocol
involves shearing the suspensions at a constant shear stress,
σ ¼ 380 Pa (top panel), and applying acoustic perturba-
tions with different amplitudes controlled by the acoustic
power Ptrain (middle panel) for 50 s (gray band). We find
that for low acoustic powers, Ptrain ¼ 0 and 0.25 W (black
and blue curves), the suspension viscosity (bottom panel)
increases and eventually jams. As the training power is
increased further, we find that the suspension remains fluid
with a viscosity that stabilizes at a lower and finite value.
Once the acoustic perturbations are switched off, all trained
suspensions rapidly shear jam.
Such behavior is reminiscent of a stress-volume fraction

phase diagram commonly used to describe transitions
between flow behaviors in sheared dense suspensions
[42,43,46,54], as shown in Fig. 2(b). Here, CST refers
to continuous shear thickening, DST to discontinuous shear
thickening, SJ to shear jamming, and J to isotropic
jamming. In the classical description, the suspension is
expected to isotropically jam at an infinitesimally small
shear stress beyond a volume fraction ϕ0 (gray shaded
region). Below ϕ0, a sufficiently strong shear stress can
induce an anisotropic jammed state (red shaded region) for
any volume fraction larger than ϕJ, as demarcated by the
solid black phase boundary. For our protocol, a similar
fluid-to-solid transition is observed, except here the shear
stress and volume fraction are kept fixed and the training
power now determines the final state of the suspension.
We focus on the shear jamming boundary (black curve)

between the flowing and rigid suspension states and its
dependence on the training power, as shown in the
schematic in Fig. 2(b). Since the Ptrain ¼ 0 W suspension
shear jams, we deduce that the applied stress must be set
above the shear jamming boundary. Since suspensions
trained at higher Ptrain flow, we deduce that the constant
applied shear stress of σapp ¼ 380 Pa is no longer sufficient
to shear jam the suspension at the same volume fraction,
and thus the shear jamming line must have shifted above
σapp, i.e., closer to the boundary of the isotropic frictionless
jamming phase, as indicated by the dashed lines. We note
that similar shifts in the shear jamming phase boundary
have been proposed for sheared dense suspensions under
orthogonal oscillations [55,56]. Since the suspension for
Ptrain¼0.25 and 1 Ware, respectively, jammed and flowing
during the application of acoustic perturbations, we deduce

that the applied stress σapp for our suspension volume
fraction ϕv must lie between the shifted shear jamming
boundaries for these powers (i.e., between the dashed blue
and dashed brown curves). When the acoustic perturbation
is switched off at t ¼ 50 s, the suspensions rapidly shear
jam, which we interpret as a rapid recovery of the shear
jamming boundary to its original state (black line).

B. Acoustic probing

To probe how memory of the acoustic training alters the
properties of the shear jammed states, we apply a constant
acoustic perturbation with Pprobe ¼ 4 W over t ¼ 60–90 s
[yellow band in Fig. 2(a)]. We find that under this acoustic
probing, suspensions trained at Ptrain < 4 W fluidize with a
viscosity that stabilizes at a finite value. In contrast,
suspensions trained at much higher acoustic powers remain
shear jammed. We quantify this behavior by plotting the
stabilized viscosity during probing ηprobe [averaged over red
dashed region in Fig. 2(a)] versus the training power Ptrain
in Fig. 2(c). Here, the horizontal dashed line indicates the
viscosity of the Ptrain ¼ 0 W suspension and the vertical
line indicates the power of the acoustic perturbation used to
probe all of the suspensions, Pprobe ¼ 4 W. These obser-
vations cannot be explained by simple shifting of the shear
jamming boundary and indicate that acoustic training
embeds structural memory in the sheared suspensions.
To understand why, we contextualize the data for the low

and high Ptrain regimes in Fig. 2(d) based on the framework
presented in Fig. 2(b). For flowing states, the suspension
microstructure is known to rearrange under shear to reach a
nonequilibrium steady state (defined by time independent
distributions of contact number and stress) determined by
the applied shear stress σapp [48,54,57]. When systems are
driven into the jammed state, they form solid structures
that balance the stress via nearly elastic deformations.
This transition from a flowing state to a solid shear jammed
state occurs when the applied stress is increased beyond
the critical jamming stress, which is determined by the
shear jamming boundary [41,43,45]. For Ptrain < Pprobe the
measurements conform to these expectations. Here, during
training, the suspension either shear jams at the appropri-
ately shifted shear jamming boundary or reaches the
applied stress σapp [translucent black, blue, and solid brown
crosses in Fig. 2(d), left]. Upon probing these systems at
Pprobe ¼ 4 W, the shear jamming line shifts above σapp,
which fluidizes the systems, enabling the suspension to
reach (white arrows) the nonequilibrium steady state
determined by σapp (gray horizontal line). Similarly, we
would expect that for suspensions trained at higher
Ptrain > Pprobe, the constant applied σapp would limit how
deeply the system is able to probe the shear jammed regime
[translucent purple cross in Fig. 2(d), right], and a similar
fluidization should be observed when Pprobe ¼ 4 W is
applied. However, in stark contrast, we observe a much
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larger ηprobe and even jamming. Given that σapp and the
volume fraction both remained constant, this inconsistency
indicates that some component of the suspension stress
must lie above the 4 W shear jamming boundary and well
above σapp [opaque purple cross on the right of Fig. 2(d)] to
drive the suspension into a shear jammed state post train-
ing. The effect of acoustic training is thus to embed some
sort of structural memory that results in a stress balance that
enables such a stress component to exist under a con-
stant σapp.
We note that the key aspects of acoustic training and

probing observed for the silica suspension can be repro-
duced using a suspension of cornstarch in water at a mass
fraction of 0.57 (see Figs. S9 and S10 in the Supplemental
Material for more suspension and experimental informa-
tion [53]), suggesting that acoustic training can be used as
a general method to tune the behavior of different types
of suspensions. The response of the cornstarch suspension
to two different probe powers, Pprobe ¼ 2.25 W and
Pprobe ¼ 9 W, is shown in Fig. 2(e). For both Pprobe

values, we find that the average probe viscosity is larger
for larger training power, with suspensions trained at
sufficiently high Ptrain remaining shear jammed after the
probing power is switched on. These findings are con-
sistent with what was observed for the silica suspension.
In addition, we find that the threshold Ptrain required for
the suspension to remain shear jammed is larger for higher
Pprobe, and the probe viscosity for unjammed states is
lower for higher Pprobe. These observations were again
reproduced when a sweep across Pprobe was conducted
while keeping Ptrain fixed, as shown in Fig. 2(f).
Our results demonstrate that the shear jammed state

remembers, or contains signatures of the acoustic training.
In particular, the choice of training power determines
whether the suspension will flow or shear jam under later
acoustic probing at some Pprobe. Since both the volume
fraction and applied stress remained constant across the
training and probing protocols, we hypothesize that the
acoustic training changes the stress balance of the suspen-
sion state such that for the shear jammed states, a stress
component lies above both σapp and the shifted shear
jamming boundary at Pprobe.

C. Shear reversal

To gain further insights into our trained shear jammed
states, the contact stress anisotropy of the suspension was
characterized via a stress reversal protocol. Previous
studies of continuously shear thickening and shear jam-
ming suspensions undergoing shear reversal have dem-
onstrated that the contact stresses responsible for
shear thickening and jamming go to zero upon shear
reversal as the particles which were initially compressed
by the shear are now pulled apart [58–62]. As such, the
viscosity after reversal ηmin was observed to become

significantly smaller (or finite) when compared to the
shear thickened (or shear jammed) viscosity. With the
contact stresses disappearing upon reversal, ηmin has been
shown to be representative of the remaining hydrody-
namic stresses and has been observed to remain nearly
constant across different applied stresses before and after
reversal.
The stress reversal protocol is shown in Fig. 3(a). Here,

after training, we apply a shear stress with the same
magnitude as the training stress, σapp ¼ 380 Pa, but in the
reverse direction. The evolution of the suspension vis-
cosity with strain after reversal is shown in Fig. 3(b),
where only a subset of the curves were included for
clarity. The figure shows that immediately after reversal
the suspension is unjammed and is characterized by a
finite viscosity, ηmin, that depends on Ptrain [e.g., dashed
gray line in Fig. 3(b) indicating ηmin ∼ 103 Pa s for
Ptrain ¼ 16 W]. Once a sufficiently large strain is built
up, the suspension viscosity increases dramatically
and eventually shear jams in the reverse direction at a
critical strain, γJ (e.g., vertical gray dashed line for
Ptrain ¼ 16 W). We find that both ηmin and γJ retain
signatures of the acoustic training.
To better visualize trends in these signatures, we plot

ηmin and γJ versus Ptrain in Figs. 3(c) and 3(d), respec-
tively. We find that ηmin increases by orders of magnitude
with increasing training power, in stark contrast to the
approximately constant ηmin found from typical shear
reversal experiments [58–62]. These measurements indi-
cate that for higher training powers there are many more
secondary force networks built up in the jammed sus-
pension that are aligned along the maximum extensional
axis (i.e., perpendicular to the compressive axis normally
responsible for shear jamming and DST). Upon reversal,
these secondary networks align with the maximum
compressive axis of the reversed shear direction and
inhibit the flow [Fig. 3(c)]. Consistent with this picture,
we find that after reversal much lower strains are
necessary to jam suspensions trained at higher powers
[Fig. 3(d)]. Our results suggest that larger Ptrain generates
shear jammed states that have significantly stronger
secondary force chains along the extensional axis of
shear prior to reversal.
These findings are summarized by the illustrations

shown in Fig. 3(e). Here, the primary force networks
responsible for shear thickening and jamming are depicted
in yellow and are oriented along the shear compressive axis.
Particles making up the secondary force networks along the
maximal extension axis are depicted in green. At low
training powers (top half), the suspension microstructure
prior to reversal is strongly asymmetric, consisting mainly
of primary force chains. Upon reversal, such force chains
rapidly break up and the viscosity drops to the suspension
viscosity prior to thickening. In addition, large strains are
necessary to rearrange the particles in order to generate a
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shear jammed state. For high Ptrain (bottom half), the
suspension microstructure prior to reversal consists of both
primary and secondary force networks (bottom left of
figure). Upon reversal, even if the primary force networks
break up, the secondary force networks can remain and
resist the shear. This resistance results in large increases to
the viscosity immediately after reversal. The presence of
these secondary force networks also seeds or promotes an
earlier transition to the shear jammed state after reversal.
This picture of the suspension microstructure is strongly
reminiscent of the “fixed principle axes” model, which
attributes the ability of a shear jammed state to bear loads
orthogonal to the compressive axis to a buildup of force
chains along these orthogonal axes [41,63].

In suspensions with a prominent secondary force net-
work, the applied shear stress is balanced by the combined
projection of the stresses from networks oriented along
both the compressive and extensional axes. Importantly, the
primary and secondary force networks contribute to the
shear stress in opposite directions—the primary force
networks resist the flow while the secondary force net-
works aid the flow. As such, the same applied shear stress
can be accommodated by different combinations of shear
stress projections from the competing force networks along
the compressive and extensional axes. Therefore, to under-
stand the behaviors of the differently trained jammed
suspensions, the individual shear stress contributions from
these competing force networks must be determined.

D. Shear cessation

We attempt to measure the shear stress contributions
from the primary and secondary force networks by study-
ing the suspension stress relaxation behavior via a rate
cessation protocol as shown in Fig. 4(a). Here, the shear
rate γ̇ is fixed at zero after training, and the stress acting on
the top plate while the suspension relaxes between its two
stationary confining boundaries is measured. Previous
studies of shear thickening and shear jamming suspensions
undergoing shear cessation have found that the shear stress
monotonically decreases after the shear rate has been set to
zero [64–67]. In addition, multiple timescales are required
to describe the purportedly exponential decay behavior for
larger volume fractions, and the exact origins of these
timescales remain an area of active research. For our study,
we are agnostic of the exact physical origin of these
timescales, but instead use shear cessation as a technique
to back out the individual contributions from the primary
and secondary stress networks, which is possible if the
networks relax at sufficiently different rates.
Figure 4(b) shows a plot of the normalized instantaneous

shear stress σ=σapp versus the time after cessation t̃, where
σapp ¼ 380 Pa corresponds to the constant stress applied
during training that is fixed across all cessation experi-
ments. For Ptrain ≤ 1 W, the stress decay is monotonic as
expected. Strikingly, for larger Ptrain, the stress increases
during cessation. Motivated by our stress reversal results,

(a) (b) (e)

(d)(c)

FIG. 3. (a) Protocol for the shear reversal experiment plotted as stress (top) and acoustic power (bottom) against time. The first 60 s
corresponds to training and the reversal occurs after 60 s. Colored plots correspond to different Ptrain. (b) Plot of the viscosity versus
shear strain after reversal. Larger Ptrain results in larger viscosities immediately after reversal (ηmin) and shear jamming at lower critical
strains (γJ). As an example, ηmin and γJ are indicated by the dashed horizontal and dotted vertical line for Ptrain ¼ 16 W. (c) Plot of ηmin
versus the training power. (d) Plot of γJ versus the training power. (e) Illustration of the deduced microstructures before and after reversal
for low (top) and high (bottom) Ptrain. Yellow spheres indicate particles in primary force chains while green spheres indicate those in
secondary force chains. For large Ptrain, significant secondary force chains exist prior to reversal which can resist the reversed shear flow
and require little rearrangement to shear jam in the reversal direction.
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we model the relaxation of the normalized stress as a
competition between the decay of the force networks
formed along the compressive and extensional axes. We
find that we are able to reasonably fit all the data by
modifying the typical sum of two exponential terms used in
literature to include an additional negative exponential
component that represents the relaxation of the antagonistic
secondary force chain:

σðt̃Þ=σapp ¼ Ae−t̃=11 þ Be−t̃=1000 − Ce−t̃=67; ð1Þ

with the constraint

Aþ B − C ¼ 1; ð2Þ

and A, B, C > 0. Here, the stress contributions from the
primary force networks are captured by the first two terms
[64–67], and the stress contributions of the secondary force
networks in the negative direction are captured by the third
term. We note that there is no reason a priori to assume that
the timescales for the decay should remain constant, and the
decision to fix these timescales in our paper was mainly to
minimize the total degree of freedom required to achieve a
reasonably good fit to all the cessation curves. Our fit

results reveal that for large Ptrain, where significant increase
in the stress is observed after cessation, A ≈ 0 and the
stress dynamics can be captured using only the B and
C terms. To illustrate how the competition between force
network relaxations can give rise to an increasing stress
upon cessation, we plot the stress contributions from the
Be−t̃=1000 and Ce−t̃=67 terms for Ptrain¼16 W in Fig. 4(c).
Since the stress decay dynamics are dominated by the faster
relaxation of the secondary stress network (green and lower
schematics), we observe a net gain in total stress (purple),
even as the primary stress network is also decaying (yellow
and upper schematics). Consistent with this picture, we
observe that at very long times the stress decays to zero.
The values for the stress amplitudes A, B, and C for all

Ptrain are potted in Fig. 4(d). We find that the coefficient B
that describes the main contribution of the primary force
networks increases with training power and dominates the
other terms. The coefficient C is initially negligible but
rapidly increases with Ptrain. This trend is consistent with
the results in Figs. 3(c)–3(e), which indicate an increased
contribution from the secondary force networks in suspen-
sions trained at larger Ptrain. Collectively, these cessation
measurements and the accompanying analysis enable us to
decompose the total stress into contributions from the

(a) (b)

(c) (d)

FIG. 4. (a) Protocol for the rate cessation experiment where the shear rate (top) and acoustic power (bottom) are plotted versus time.
The first 60 s corresponds to training and cessation occurs from 60 s onward. Colored curves correspond to different Ptrain as labeled in
(b). (b) Plot of the instantaneous stress normalized by the applied shear stress versus time after cessation for different Ptrain. Dashed silver
lines are fits to Ae−t̃=11 þ Be−t̃=1000 − Ce−t̃=67. (c) A decomposition of the stress contribution from the Be−t̃=1000 and−Ce−t̃=67 terms used
to fit the Ptrain ¼ 16W curve. The stress decays much more rapidly for the secondary force chains (−Ce−t̃=67 term, illustrated in green)
compared to the primary force chains (Be−t̃=1000 term, yellow), resulting in the short time decay dynamics to be dominated by the
relaxation of the secondary force chains. (d) Plot of the normalized stress amplitudes obtained as fit parameters for the fits in
(b) versus Ptrain.
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primary and secondary force networks to explain the
discrepancies described in Fig. 2(d).

E. Shear stress projections

Using the fits from the cessation measurements, we
extract the stress contributions from primary and secondary
force networks projected onto the shear axis, as shown in
Fig. 5(a). The projection from the primary stress onto the
shear direction, σP ¼ ðAþ BÞσapp, is represented by the
“þ” marker; the projection from the secondary stress
onto the shear direction, σS ¼ Cσapp, by the “−” marker;
and the (constant) applied stress, σapp ¼ σP þ σS, by the
“X” marker. We find that for low Ptrain, the stress con-
tribution from the secondary network is negligible, σS ∼ 0,
so that σP ∼ σapp. For large Ptrain, the contribution from the
secondary network in the negative direction becomes
significant. Consequently, the stress contribution from
the primary force network must be greater than the applied
stress, σP > σapp. The antagonistic relationship between the
stress contributions σP and σS, and how they sum up to
σapp, is represented vectorially (black arrows) for Ptrain ¼
16 W in Fig. 5(a). These results indicate that for systems
with sufficiently developed secondary force networks, the
contribution from the primary stress networks can be
substantially larger than the applied stress.
These large differences between σP and σapp account for

the behavior of suspensions trained at high Ptrain. We
schematically illustrate the contributions of the primary and
secondary force networks to the stress during the training
and probing sequences in Fig. 5(b). During training the
shear jamming boundary (solid black curve) shifts as
illustrated by the purple dashed curve. Here, the training
gives rise to a significant contribution from the secondary

force network. To accommodate the applied stress, the
contribution from the primary force network must be higher
than σapp so that the sum of the contributions from the
primary and secondary force networks matches the applied
stress (summation of purple arrows). Once the acoustic
perturbations are removed, the suspension jams, preserving
a memory of the force networks formed. During the
probing period, if σP is above the shear jamming boundary
associated with Ptest ¼ 4 W (dashed yellow line), the
primary force networks remain shear jammed.
We note that when compared to a shear jamming

suspension at the same applied stress but at a lower
volume fraction (ϕv ¼ 0.56; see Supplemental Material,
Fig. S7 [53]), the acoustically induced increases in the
magnitude of σP and σS are weaker for the same Ptrain.
This difference in memory of the same training manifests
as a larger threshold Ptrain required to observe an increase
in stress during shear cessation, alongside smaller changes
in ηmin and γJ for a given Ptrain for the less dense
suspension. As such, we expect σP and σS to be potentially
useful predictors of these behavioral changes induced by
acoustic training.

F. Inducing solidification in flowing states

These results raise the intriguing possibility of training
a flowing suspension that is well below the jamming line
to produce a jammed state. We demonstrate that this is
indeed possible by working with two suspensions: one at a
1% lower volume fraction (ϕ−

v ) sheared at σapp [triangle
marker in Fig. 1(b)] and a second at the same volume
fraction sheared at σapp=10 (σ−app) [circle marker in
Fig. 1(a)]. Here, we train the two systems as described
previously and probe their state by shearing with the same

(a) (b)

FIG. 5. (a) Shear stress projections from the primary and secondary force chains calculated from Fig. 4(d). The primary stress
projection σP is represented by the “þ” marker; the secondary stress projection σS by the “−” marker; and the (constant) applied stress
σapp by the “X”marker. The solid arrows are vectors indicating how the primary and secondary shear stress projections compete and sum
to result in the applied shear stress for Ptrain ¼ 16 W. (b) The same vector representation is shown on the σ − ϕ phase diagram,
illustrating how σP (purple þ marker) can be above the 4 W shear jamming boundary (yellow dashed line) even when the applied shear
stress (horizontal gray line) is below the boundary at a given volume fraction (vertical gray line). The jammed structure along the
primary direction and thus the suspension can remain shear jammed during probing under the 4 W perturbation even though the applied
shear stress remained unchanged. We note that the dashed SJ boundary and arrows in (b) are not drawn to scale and are qualitative
illustrations based on our hypothesis.

EDWARD Y. X. ONG et al. PHYS. REV. X 14, 021027 (2024)

021027-8



applied stress for an additional 60 s after training. The
viscosity versus time plots are shown in Fig. 6. In both
cases, when the suspensions are trained at Ptrain ¼ 0 W
[black lines in Figs. 6(a) and 6(b)], they are characterized
by a finite steady viscosity. In other words, they flow. As
Ptrain is increased, we see the typical monotonic decrease
in the viscosity when the acoustic perturbations are
applied (gray shaded regions). When the perturbation is
removed, however, clear viscosity overshoots are
observed. For weak Ptrain, these overshoots quickly decay
back to the Ptrain ¼ 0 W viscosity. This decay timescale
increases with Ptrain until the system enters a shear
jammed state as seen for Ptrain ¼ 25 W data in Fig. 6(a)
and for the Ptrain ¼ 16 W data in Fig. 6(b). We note that
the order of magnitude lower stress applied in Fig. 6(b)
may have resulted in the relatively faster relaxation from
the jammed state, as seen from the decrease in viscosity
shortly after large fluctuations (signature of the suspen-
sion jamming) are observed. Nonetheless, we note that the
transient behavior post training is consistent with Fig. 6(a)
prior to the viscosity relaxation. To further clarify the
effect of stress on the acoustically induced memory in our
suspensions, the same protocol was repeated for a sus-
pension farther away from the shear jamming line, with
the same volume fraction but at a stress 10 times smaller
than in Fig. 6(b) [i.e., ϕv ¼ 0.565, σ ¼ 3.8 Pa, diamond
marker in Fig. 1(a)], as shown in Fig. S6 in the
Supplemental Material [53]. There, we find a rapid
convergence of the viscosity to the Ptrain ¼ 0 W curve
after the acoustic perturbation is removed for all Ptrain
applied. As such, acoustic training can clearly embed
memory in flowing suspensions sufficiently near to the
shear jamming line, even inducing solidification as
demonstrated here. We find that for the (ϕ−

v ; σapp) state,
the induced shear jamming can be preserved for a period
at least 10 times longer than the training interval (see
Fig. S5 in the Supplemental Material). While this effect
does dissipate for systems driven sufficiently below the
shear jamming line, the ability to shear jam flowing

suspensions is nevertheless a remarkable demonstration
of the impact that acoustic training can have on flowing
suspensions.

IV. DISCUSSION

Our strategy for incorporating tunability in these net-
works involves two key steps: (1) the encoding of memory
during the flowing state and (2) the rapid freezing of these
network structures to preserve signatures of the encoding.
Since these steps can be implemented in a variety of shear
jamming materials using different memory encoding and
preservation mechanisms, our strategy opens up a large
material design landscape for exploration. For example, in
shear thickening suspensions different shear protocols and
perturbations, which can be multidirectional and/or time
dependent, may be utilized to generate a variety of force
networks during the fluid state that can be preserved via
jamming [52,55,68–75]. We expect that similar protocols
would work for preserving memories in magnetorheolog-
ical and electrorheological fluids. Additional mechanisms
to preserve the suspension memory such as photopolyme-
rization and rapid solidification can further extend our
strategy to less dense suspensions and even to different
systems such as foams and emulsion [76–78]. Our general
strategy for tuning the fluid state and leveraging a wide
range of memory preservation mechanisms should enable
us to generate a wide range of material properties.
In shear thickening suspensions, such as the system

studied here, the buildup of antagonistic force networks is a
particularly potent mechanism for controlling the resulting
material properties. Specifically, such antagonistic net-
works provide an additional degree of freedom for satisfy-
ing the applied force constraint and therefore greater
control over the emergent material properties. Similar
strategies are used in a variety of systems ranging from
sophisticated temperature control for regulating flowering
behavior in plants and homeostasis in human [79–81] to
muscular manipulation of limbs for rapid movement and
stabilization [82–86].

(a) (b)

FIG. 6. Viscosity against time plot for suspensions with (a) a volume fraction ϕ−
v where ϕ−

v ¼ ϕv − 1%, sheared at σapp [triangle
marker in Fig. 1(b)] and (b) a volume fraction of ϕv sheared at a stress σ−app ¼ σapp=10 [circle marker in Fig. 1(a)]. The suspensions were
trained for the first 60 s [as in Fig. 2(a)] and the applied shear stress of σapp for (a) and σ−app for (b) was left on for an additional 60 s. These
flowing states shear jam when trained at sufficiently large Ptrain.
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Our results also demonstrate that the applied shear stress
σapp is not sufficient to describe the state of the system. This
observation is consistent with simulations and theoretical
studies which find that a tensorial approach is required to
fully characterize and predict suspension properties espe-
cially at high volume fractions, where the stress distribu-
tions become more isotropic [54,87–90]. The importance of
antagonistic force chains also suggests a way to extend the
universal scaling framework [56,91] to memory-forming
suspensions. The lesson learned is that frictional contacts
along the compressive and dilational directions play very
different roles, and therefore impact the shear jamming
process differently. The results presented here show how
decomposition of the shear stress contributions into antago-
nistic components may be required to fully capture the
behavior of these very dense suspensions even under
simple shear. Such stress decomposition is likely to also
be necessary to fully capture and understand more com-
plicated flow behaviors induced by combinations of shear
and compression or other biaxial and even triaxial flow
manipulations.
We note that our results may also draw a deep con-

nection to studies on directed aging and memory encoding
in glasses, gels, and granular materials [7,10,11,92,93]. In
particular, the memory encoding and preservation proc-
esses presented here may be analogous to annealing,
quenching, and/or densification. Here, application of
larger acoustic power during training drives the system
into a more stable configuration with a larger part of the
network characterized by a longer relaxation timescale.
This training process is reminiscent of annealing, which
allows particles to explore their energy landscape and
settle in a more stable energy minima. Our experimental
nonthermal acoustic perturbation protocol, like numerical
Wolff cluster moves and swap Monte Carlo algorithms
[94–97], bypasses the usual relaxation barriers and allows
exploration of otherwise challenging or inaccessible
materials morphologies. One notable difference between
our approach and these previous training protocols is that
the training in our system is conducted while the suspen-
sion is sheared. This breaking of symmetry enables
training of tensorial components of the stress, which
are not as easily accessed in these previous protocols
[10–12,14,31,32,92,93].
While our current study is limited by a lack of imaging

data, we emphasize that this very difficulty in obtaining
useful imaging data for very dense suspensions further
highlights the importance of the characterization protocols
used in this paper. There is a growing number of studies
that demonstrate that shear thickening and shear jamming
in nondeformable particles are caused by a redistribution of
frictional interactions between particles without significant
rearrangement of the geometric topology [57–59,98]. As a
result, it remains extremely challenging, if not impossible,
for the spatial changes associated with these changes in

frictional interactions to be resolved optically [57,99,100],
even with advanced image reconstruction algorithms that
provide nanometer-scale resolution [101,102]. Given that
direct optical measurements are unlikely to yield results,
we have turned to alternative measurement techniques,
such as the protocols used in this study, to characterize the
suspension, and through these characterizations deduce
changes in the microstructure. Such deductions are possible
because the structural changes are directly associated with
frictional forces being redistributed [57,103], and so the
fact that we are able to dramatically change the response of
the jammed suspension indicates that there is something
different about the organization of the frictional interaction,
which indicates structural changes. In addition, as new
materials and tuning mechanisms continue to be introduced
into the field of dense suspension, alternative nonimaging
based methods to obtain additional information on the
suspension which do not impose additional constraints on
the setup or suspension (e.g., on refractive index matching,
transparency of surface etc), such as the protocols shown
here, will become increasingly important. As such, we
believe the striking results obtained from these protocols
are highly valuable even without, or perhaps exactly
because of, the lack of microscopic data available for
suspensions in this very dense regime. We note that a
recently demonstrated experimental protocol [104] that
involves carrying out shear reversal protocols at different
angles to the direction of shear may enable us to resolve the
contribution of the acoustic training to the full stress tensor,
and will be pursued in a future study.

V. CONCLUSION

Our strategy to jam memory of antagonistic force
networks into suspensions shows how flow protocols
can be used to engineer suspensions with dramatically
different material properties. While we have focused on
acoustic training and shear jamming in this study, our
strategy is broadly applicable to different flow tuning and
structure preservation mechanisms, which we expect to
be fertile ground for uncovering and engineering unique
material properties. In combination with more sophisti-
cated training, flow, and solidification protocols, it should
finally be possible to generate structured fluids that can
begin to take advantage of the predicted orders of
magnitude changes in materials properties that can
emerge from altering network connectivity and force
transmission.
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