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Abstract

In various biological systems, analyzing how cell behaviors are coordinated over time would
enable a deeper understanding of tissue-scale response to physiologic or superphysiologic
stimuli. Such data is necessary for establishing both normal tissue function and the
sequence of events after injury that lead to chronic disease. However, collecting and analyz-
ing these large datasets presents a challenge—such systems are time-consuming to pro-
cess, and the overwhelming scale of data makes it difficult to parse overall behaviors. This
problem calls for an analysis technique that can quickly provide an overview of the groups
present in the entire system and also produce meaningful categorization of cell behaviors.
Here, we demonstrate the application of an unsupervised method—the Variational Autoen-
coder (VAE)—to learn the features of cells in cartilage tissue after impact-induced injury and
identify meaningful clusters of chondrocyte behavior. This technique quickly generated new
insights into the spatial distribution of specific cell behavior phenotypes and connected spe-
cific peracute calcium signaling timeseries with long term cellular outcomes, demonstrating
the value of the VAE technique.

Introduction

Exploring how cells coordinate their behaviors in response to stimuli is important for under-
standing tissue function in health and disease. Tissues are complex systems where many fac-
tors such as spatial location and mechanical stimuli can affect mechanical and biochemical
signal transduction between cells and dictate the subsequent cellular response [1]. Methods
have been developed to approach this problem through imaging individual cell behaviors over
time [2-7] or taking snapshots of pooled cell populations [8-10]. However, fully addressing
this problem can be difficult. In order to make specific conclusions about how coordinated cel-
lular behaviors are affected by external factors, the spatial and temporal behaviors for each of
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thousands of cells within a tissue must be collected, processed, and interpreted for many itera-
tions of experiments. Experiments with different stimuli must then be compared in order to
determine how behaviors may change. This process amounts to an overwhelming amount of
data for analysis using well-established methods.

Recently, we developed a technique that combines real-time in situ imaging of cartilage tis-
sue during impact with supervised machine learning techniques to establish and probe specific
behaviors within the system, called STRAINS [11]. The STRAINS method enables a detailed
spatiotemporal analysis of individual cell behaviors and the classification of specific cell
responses and phenotypes. However, this process requires extensive manual classification,
which is initially time consuming for large datasets and may fail to distinguish subtle differ-
ences between cells due to human error.

To overcome these limitations, we propose using the variational autoencoder (VAE), an
unsupervised ML method, for simultaneous analysis of thousands of time series. The VAE, a
probabilistic generative neural network, iteratively learns to reproduce input data accurately
and map it to a latent space through an encoder, a decoder, and a loss function. The latent
space of the VAE is connected (two points in the space that are close together give similar
decoded results) and complete (all points in the latent space give meaningful information
upon decoding), preventing overfitting and enabling the generation of new data. VAEs, with
their ability to process large amounts of data, find applications in diverse fields, from recon-
structing complexities in many-body physics [12] to anomaly detection in industrial robots
[13].

In biomedical research, Variational Autoencoders (VAEs) have found widespread applica-
tion, particularly as a diagnostic tool for image classification in MRIs and other medical imag-
ing modalities [14]. They have demonstrated efficacy in tasks such as tumor classification,
image segmentation [15, 16], multi-omics data integration, and even in the design of molecules
and proteins [17]. The processing capability of VAEs led to its use in single-cell analysis tech-
niques, focusing on specific biomarkers in individual cells [18] and single-cell transcriptome
profiling [19]. Moreover, VAEs have proven instrumental in handling time-dependent biolog-
ical signals within spectrographic data. This is evident in their application to cluster and ana-
lyze the vocalizations of songbirds and mice, showcasing their versatility in understanding
complex biological phenomena [20-22].

This paper aims to demonstrate the utility of a VAE for analyzing large-scale cellular
response in articular cartilage to mechanical stimuli—a process traditionally requiring a time-
consuming analysis pipeline. We showcase the VAE’s ability to accurately reconstruct tempo-
ral features of cellular behavior and leverage latent features for phenotype identification imme-
diately after injury. Additionally, we highlight the VAE’s role in hypothesis generation and
validation, providing a comprehensive understanding of cell response post-injury.

Methods
Impacting articular cartilage tissue

Sterilely-dissected 6mm cylindrical explants of articular cartilage were cultured and stained for
calcium concentration (Calbryte 520AM), mitochondrial polarity (tetramethylrhodamine,
TMRM), and nuclear membrane permeability (Sytox Blue). Selected stains were chosen to
reflect relevant parameters for this study but can be readily modified. Following dissection,
samples were bisected and affixed to the back plate of a confocal-mounted impactor, sub-
merged in a bath of PBS (Dulbecco’s Phosphate Buffered Saline) and Sytox Blue stain. This
allowed for the tracking of cell death dynamics during the experiment. One-half of each sam-
ple served as the impacted group, while the other half acted as a control. The impactor delivers
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an energy-controlled impact using a spring-loaded piston, producing a peak stress of ~1MPa
over 5-10ms and replicating a superphysiologic loading rate known to induce tissue damage in
cartilage.

Throughout the experiment, the impactor remained mounted on the stage of an inverted
spinning disk confocal microscope (3i Marianas). Utilizing a 10x objective, imaging covered
the region of impact, the lateral and sub-impact regions, and two corresponding depth regions
on the control sample. Each imaged region measured 660pm x 660pum (512 x 512 pixels). Dur-
ing the impact and the subsequent minute, the region of impact was imaged at approximately
40 frames per second. For longer-term observation, continuous imaging was maintained at all
sites, with roughly 12 seconds between frames. The imaging depth was set at approximately
30 pum below the cartilage cut surface to avoid capturing chondrocytes damaged during sample
handling.

Extracting time series data of chondrocyte behavior

Cells in the images were tracked using a modified version of the Crocker and Grier algorithm
[23]. As described in previous work, the color channels were summed, and linear interpolation
and static extrapolation were used to obtain cell centroid locations [11]. These centroid values
served as the basis for defining small sub-cellular regions over which fluorescence values were
averaged, producing fluorescence traces for all three channels per cell. To mitigate high-fre-
quency noise, an additional moving-average smoothing step was incorporated, with a carefully
chosen window size that avoids affecting features within the time series.

During and after cartilage impact, cell-localized stains leaked into the extracellular matrix
and eventually dissipated. This led to a localized increase in background intensity for certain
video frames, resulting in a non-uniform background spatially and temporally. To address
this, additional background subtraction was implemented. A grid of 8x8 subsets was generated
within each image, and the mean of the twenty lowest non-zero pixel values within each subset
was subtracted. Subsequently, the time-series data for each cell was smoothed with a window
size of 10 and re-sampled to 750 time points to match the input dimension of a VAE.

VAE structure

The encoder is composed of three 1D convolution layers featuring a kernel size of 3, a stride of
2, and a padding size of 1. The input and output channels are configured as follows: i) (3, 4), ii)
(4, 8), and iii) (8, 16). Following the convolutional layers is a fully connected layer with input
and output channels set at (1504, 256). The resulting output is then directed into two branches
of fully connected layers, where each branch further comprises two fully connected layers with
input and output channels specified as i) (256, 128) and ii) (128, 32). These two branches are
responsible for generating the latent means and variance vectors. All encoder layers employ a
tanh activation function except for the final output layer. Additionally, batch normalization is
applied to the data as it passes through the convolutional layers.

The decoder is comprised of three fully connected layers, where the input and output chan-
nels are defined as i) (32, 128), ii) (128, 256), and iii) (256, 1504), respectively. The output from
the last fully connected layer is reshaped to attain dimensions of (B, 16, 94), with B represent-
ing the batch size. Subsequently, this reshaped output is passed through three transposed con-
volution layers, each featuring a kernel size of 3, a stride of 2, and a padding size of 1. The
output padding parameters are adjusted to ensure that the final output of the transposed con-
volutional layers restores the original time series dimension. Similar to the encoder architec-
ture, a tanh activation function is applied throughout, with the exception of the final output
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layer. Moreover, latent vectors undergo batch normalization as they pass through the trans-
posed convolutional layers.

To train the Variational Autoencoder (VAE), the time series data x is passed through the
encoder, yielding latent means y4(x) and latent diagonal covariance o,(x) vectors that define a
32-dimensional normal distribution, denoted as g, (z|x) = N (u,(x), o, (x)), where ¢ denotes
the weights and biases of the encoder. Subsequently, a sample z is drawn from the 32-dimen-
sional Gaussian and propagated through the decoder, parameterized by weights and biases 6,
to produce a reconstructed intensity profile. The optimization of the encoder and decoder’s
weights and biases ¢, 6 involves maximizing the log-likelihood of generating real data, log
Po(x), while simultaneously minimizing the information loss when the encoder distribution
gy(z|x) is used to approximate the true posterior distribution, pg(z|x). The information loss can
be quantified via the KL divergence, Dyy(q¢(2|x)|pe(z|x)). The VAE loss function, denoted as
Ly 5> 1s formulated as:

Lyxe = log py(x) = Dy (q,(2]%)|py(2]x))- (1)

In practice, this optimization is achieved by minimizing the evidence lower bound objective
(ELBO),

‘CELBO = _]EZNq@(z\x) logp()(xlz) + DKL(q(,b(Z‘x) ‘po(z)) (2)

which consists of two terms: 1) expected log-likelihood of the decoder distribution, which
minimizes the prediction error of the reconstruction, and 2) a regularization term that seeks to
minimize the difference between the encoder distribution gg(z|x) and the prior distribution, p
(2). Here, we assume the prior distribution over the latent features z to be unit Gaussian,

N(0,1).

Training details

The VAE was implemented using PyTorch (v1.1.0) [24], where we set the latent dimension d
to be 32. We randomly selected 80% of the data as our training set and the remaining 20% as
our validation set. We trained the VAE for a maximum of 100 epochs with a batch size of 32
using the Adam optimizer with a learning rate 0.001. To make the network learn robust repre-
sentations [25], we also injected a unit Gaussian noise A/(0, 0.011) into the cell data in our
training process.

Quantifying accuracy of reconstructed time series

To characterize VAE’s ability to reconstruct the time series, we performed Seasonal-Trend
decomposition using LOESS (STL) (statmodels package on Python [26]) on the reconstructed
cellular time series to examine its ability to learn temporal features of short and long time
scales. Here, we chose the length of the seasonal smoother to be 35, which we found sufficient
to isolate the transient cellular signals. We computed the normalized difference between the
original and reconstructed time series on the two time scales, whose distribution is as shown
in Fig 1.

Principal component analysis

To learn how cellular responses are encoded within the latent representation, we performed
principal component analysis (PCA) on the latent mean vectors /i, generated via the VAE
encoder. PCA reduces the dimensionality of our data by projecting the data onto a new set of
axes, with each subsequent axis capturing less variation. This allows us to determine the first
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Fig 1. Sample processing, imaging, tracking, and VAE structure. a) Biopsy punches of condylar articular cartilage were collected, bisected, and halved.
Hemicylinders were stained for calcium concentration, mitochondrial polarization, and nuclear membrane permeability (cell death) via Calbryte 520 AM,
Sytox Blue, and Tetramethylrhodamine, respectively. b) Paired hemicylinders were glued side-by-side to the back plate of a confocal-mounted impactor.
One hemicylinder was impacted (site 1), while the other served as control. Imaging occurred during impact at site 1 and after impact at sites 1-6. ¢)
Individual cells were tracked through all time points. Stain intensities were extracted and manually sorted (for one sample to provide a comparison baseline
for VAE analysis). d) Structure of the Variational Autoencoder (VAE). The encoder consists of three 1D convolution layers and three fully connected layers
that output the mean and diagonal covariance vectors for a given time series data, x. The decoder has the same architecture as the encoder, with the
exception that the 1D convolution layers are replaced with 1D transposed convolution layers. A sample z is drawn from the d-dimensional Gaussian and
sent through the decoder to obtain a reconstructed intensity profile, X e) Example reconstruction of cell intensity data. The left column represents the input
data, the middle column represents the reconstructed time series, and the right column shows the error distributions for the reconstructed stain intensities
for short and long time scales compared to a standard normal. Timescale decomposition was done with the STL technique (see Methods).

https://doi.org/10.1371/journal.pone.0297947.g001

few orthonormal axes €, within the latent space that captures the most variation of the cell’s
latent mean vectors,i.e i, =~ 0,€, + 0,6, + ..., where o, = (Z - €,) is the dot product between
i, and €,. We sampled along ¢i by adjusting o; while keeping the rest of the ¢; values at zero.
The cellular profile encoded along €, was then reconstructed by feeding these sampled latent
representations through the decoder.

Hierarchical clustering

We used the agglomerative hierarchical clustering technique to cluster the cell data in an unsu-
pervised manner. This technique works by treating each cell data as an individual cluster. Sim-
ilar clusters are merged at each iteration until predefined clusters are formed. We performed
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the clustering using the latent representation of cell data obtained from the VAE. As the clus-
tering technique requires a metric to quantify the differences between latent representations,
we thus took an information geometric approach in quantifying the dissimilarity between dis-
tributions. As the latent representation consisting of a pair of 32-dimensional vectors (mean
and diagonal variance) that describe a 32-dimensional Gaussian distribution, we used symme-
trized Kullback-Liebler divergence (sKL), a canonical distance measure that quantifies the dis-
similarity between two distributions that belongs to the exponential family [27-29].

Results

To generate training data for VAE, an articular cartilage sample was sterilely bisected and
stained for calcium concentration, mitochondrial polarity, and nuclear membrane permeabil-
ity, as shown in Fig la. The stained cartilage sample was loaded onto a confocal-mounted
impactor, side-by-side with a control (Fig 1b). The impact site was imaged at 40 frames per
second for one minute during and following impact to capture the peracute calcium signaling
response. The impact site and surrounding regions were imaged every 10 seconds for three
hours after impact for calcium concentration, mitochondrial polarity, and nuclear membrane
permeability to capture the longer-term cell behaviors following impact. All of the cells at mul-
tiple locations around the impact site and similar sites on the control sample were tracked over
time, and the calcium concentration, mitochondrial polarity, and nuclear membrane perme-
ability data were extracted as time series (Fig 1c). This process was repeated for three articular
cartilage samples, each of which contained more than 8000 tracked cells.

We then trained a VAE (Fig 1d) on these time series for 100 epochs to learn compressed
representations of the cell data. We found that the VAE can accurately reproduce long-time-
scale stain intensities (Fig 1le left-middle). However, due to the random temporal occurrence
of calcium transients, the VAE was unable to accurately reconstruct those features, as illus-
trated in the long tail error distribution (Fig le right). We then utilized the trained VAE to
obtain useful insights into the cell behaviors in the system. This was done in three ways: 1) we
explored the learned cellular behaviors by probing the variation of the cellular profile encoded
along the dominant components of the latent space, 2) we leveraged the learned latent features
in clustering cellular profiles to produce meaningful categorizations of cell behaviors, and 3)
we demonstrated the utility of VAE in generating and validating hypotheses from the grouped
cell behaviors.

Principal components of the VAE generate valuable insights

To understand how the VAE learned the cellular profiles, we performed Principal Component
Analysis (PCA) on the mean latent vectors generated by the VAE. PCA allows one to examine
the dominant directions—principal components (PCs)—of the latent space used in capturing
the variation of cellular behavior. For our data, 75% of the cumulative explained variance can
be accounted for in the first four PCs and 90% in the first eight PCs (Fig 2). Utilizing the VAE
decoder, we sampled the cellular profile encoded along the PCs by constructing a synthetic
latent feature z = ¥ o,PC; where ¢; is a coefficient emphasizing the PC,. Examples of Principal
Components (PCs) can be seen in Fig 3 for three different datasets. Fig 3a plots the first twelve
PCs as we varied one PC from o = -3 to a = + 3 while keeping all other PCs at & = 0. The corre-
sponding spatial maps for each of those PCs are shown on the right in Fig 3b, with each cell
represented by a colored dot varying from purple a = -3 to pink a =~ 0 to yellow a = + 3. To
assess the distribution of the latent features relative to the point of impact, we denoted the
impact site for each sample with a yellow arrow.
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Fig 2. Explained variance ratio for each principal component (PC). The 32 PCs in this system are plotted. Up to 90% of the variance can
be explained using only the first 8 PCs.

https://doi.org/10.1371/journal.pone.0297947.9002

PCO encodes cells that died right after impact (high nuclear membrane permeability, blue
curve) at a = -3 to cells with decaying but elevated calcium concentration (green curve) and
decaying mitochondrial polarity (red curve) at o = + 3. This PC covers the spectrum between
cell death due to impact and cells with slowly decaying function, as expected in an ex vivo
setup. The spatial distribution of cells that exhibit the two distinct cellular behaviors encoded
by PCO0’s extreme end can be clearly observed in the spatial map in Fig 3b. Notably, cells at the
exact impact location (shown with orange arrows in Fig 3b) and some cells below the impact
exhibit strongly negative values in this PC, whereas cells to the side of impact and on the con-
trol sample show strongly positive values in this PC.

PC1 encodes distinct cellular behaviors, associating negative values with a low calcium sig-
nal and high but diminishing mitochondrial polarity, while high values correlate with declin-
ing calcium signals and slightly elevated nuclear membrane permeability. Cells exhibiting high
PC1 values are predominantly located at or below the impact site, whereas cells with low PC1
values are dispersed away from the impact site. In contrast, PC2 captures a different type of
cell death/dysfunction at high values, characterized by a simultaneous decay in all three signals
over time. This pattern is particularly pronounced in the dataset on the right, centered at and
below the impact location, indicating a potential positive correlation between PC2 and strain,
considering this dataset experienced the highest strain. Notably, negative PC2 values encode a
subtle plateau within the calcium decay, a feature not captured in the preceding PCs. Moving
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to PC3, negative values capture a more rapid calcium decay, while positive values encode a
decaying calcium activity with a late rise in activity, representing a distinct cellular behavior
absent in previous PCs.

Successive PCs contributed progressively less to describing the explained variance ratio, evi-
dent in the more uniform colormaps (o = 0). Noteworthy features captured by the VAE
include increased calcium concentration followed by cell death at different time points for
PC5, PC9, and PC10, as well as late cell death at unique time points for PC6, PC7, and PCS8.
While these behaviors were less prevalent in the observed cell population, the VAE successfully
learned them. Examining the relative importance and spatial distributions of these PCs
revealed that, while the dominant behavior of cell death was apparent, the cell death process
could be broadly categorized into three distinct modes: 1) Instantaneous cell death—character-
ized by highly elevated nuclear membrane permeability signals with minimal other signals, 2)
high Ca®" cell death/dysfunction—marked by somewhat elevated nuclear membrane perme-
ability signals along with elevated calcium signals, and 3) cell death/dysfunction—featuring
highly elevated but decaying nuclear membrane permeability signals along with decaying
other signals. Importantly, these categories align with three of the most distinctive features
used in manual labeling in [11], swiftly distinguished by the VAE without necessitating time-
consuming analysis.

Clustering post-impact data into distinct behavior phenotypes

We next used the latent features to differentiate cells with different post-impact responses. As
each cell behavior is parameterized by 32-dimensional VAE latent features (mean vector, ji
and diagonal covariance vector, &) that describe a 32-dimensional Gaussian distribution, we
took an information geometric approach [29] in quantifying the dissimilarity between two dis-
tributions. In information geometry, divergences quantify differences between distributions.
Unlike conventional metrics, divergences need not be symmetric or satisfy the triangle inequal-
ity. Multivariate Gaussian distributions fall within the parametric set of distributions known as
the exponential family, encompassing widely used distributions like the Bernoulli and Chi-
square distributions [28]. The Kullback-Liebler divergence, also known as the relative entropy,

KL(PIQ) = [ p(x) log /gl ®)

where P and Q are continuous random variables, p and q are the probability densities of P and
Q, was shown to be the canonical divergence of the exponential family [28, 29]. In our analysis,
we utilized the symmetrized version D, = 1 (KL(P|Q) + KL(Q|P)) [27] to measure the simi-
larity between the cell’s latent probability distributions.

We performed agglomerative hierarchical clustering based on the Dk, between latent fea-
tures to cluster our cells, where similar cells are grouped together iteratively until a predefined
distance threshold is reached. As an illustration, Fig 4a shows a cell dataset’s dendrogram. A
predefined distance threshold is represented as a black line, whose intersection with the tree
produces fourteen clusters shown in Fig 5. To demonstrate the splitting process of the clusters,
the shaded gray box highlights one branch of the cluster tree and is expanded in Fig 4b.

At three clusters, cluster A largely comprises cells with decaying calcium concentration and
decaying mitochondrial polarity with lower overall intensity. As we decrease the cutoff thresh-
old, cluster A splits into cluster B, which has a higher mitochondrial polarity signal and a flat
calcium concentration, and cluster C, which looks largely similar to cluster A. As the cutoff
threshold is decreased again, cluster B split into D and C. Cluster C captures dead/damaged
cells with elevated and decaying nuclear membrane permeability and calcium concentration,
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Fig 4. Example branching of the hierarchical clustering tree. Left: Overall agglomerative hierarchical clustering, with example cutoff line for 14 clusters
shown in black. Each vertical line is a cluster. The x-axis shows cell counts and the y-axis represents distance between the clusters represented by the
symmetrized Kullback-Liebner (sKL) divergence. Right: Expanded view of gray shaded box. Clusters break down into smaller groups with more detail
when the total number of clusters is increased. Bolded lines represent cluster averages, and thin lines represent individual cells within a cluster. Red
represents mitochondrial polarity, green calcium concentration, and blue nuclear membrane permeability (cell death). Four levels are shown, showing the
specificity of clusters when there are 3, 5,9, and 14 total clusters. Letters are used to name clusters for ease of identification and have no specific meaning.

https://doi.org/10.1371/journal.pone.0297947.g004

whereas Cluster D again looks similar to its parent cluster. On the other hand, Cluster C splits

into clusters E and F. Cluster E pulls out cells with calcium transient at roughly two hours into
imaging, after which the cell dies, while Cluster F looks similar to its parent cluster. As the cut-
off threshold is decreased further, cluster F split into two clusters (H and G) where the calcium
concentration and mitochondrial polarity decay but have different overall intensity values.

To aid readers in interpreting these clusters, we have provided Table 1. Within our dataset,
cells within the predominant cluster, labeled as cluster 1, consistently exhibited low values in
both mitochondrial polarity decay and calcium levels, accompanied by minimal nuclear mem-
brane permeability signals. These cells were found throughout the sample. Cells within clusters
2 through 9, on the other hand, uniformly displayed low nuclear membrane permeability but
demonstrated varied patterns in terms of calcium levels and mitochondrial polarity decay. The
ability to differentiate between subtle differences in the decay profile allows us to more effec-
tively distinguish between groups of viable cells, which will help to further our understanding
of beneficial processes in subsequent experiments. This methodology safeguards against the
introduction of human biases when categorizing cell behaviors and has the potential to unveil
subtle cellular behaviors that could be overlooked through manual classification.
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Table 1. Descriptions of cell behaviors for each cluster in Fig 5.

Cluster Description #of
cells
1 Decaying MT polarity, low calcium concentration, low and medium nuclear membrane 5714
permeability
2 Decaying MT polarity, medium non-decaying calcium concentration, no nuclear membrane 364
permeability
3 Decaying MT polarity, medium decaying calcium concentration, no nuclear membrane 320
permeability
4 Decaying MT polarity, medium non-decaying calcium concentration, no nuclear membrane 288
permeability
5 High decaying MT polarity, medium non-decaying calcium concentration, no nuclear 248
membrane permeability
6 High decaying MT polarity, high decaying calcium concentration, no nuclear membrane 111
permeability
7 Decaying MT polarity, high decaying calcium concentration, no nuclear membrane 99
permeability
8 Decaying MT polarity, medium decaying calcium concentration, low nuclear membrane 897
permeability
9 Decaying MT polarity, medium decaying calcium concentration, no nuclear membrane 361
permeability
10 No MT polarity, no calcium concentration, high nuclear membrane permeability 109
11 No MT polarity, medium decaying calcium concentration, high nuclear membrane 75
permeability
12 No MT polarity, low decaying calcium concentration, high nuclear membrane permeability 67
13 No MT polarity, late calcium concentration rise and fall (~ 2 hrs), late rise in nuclear 53
membrane permeability
14 No MT polarity, calcium concentration fall (~ 1.5 hrs), late rise in nuclear membrane 7
permeability

https://doi.org/10.1371/journal.pone.0297947.t001

Cells in clusters 10 through 14 exhibited distinct patterns of increased nuclear membrane
permeability. In Cluster 10, cells were characterized by a significant initial spike in nuclear
membrane permeability at the onset of imaging, followed by a subsequent decay with no other
discernible signals. These cells were primarily located at and just below the impact site. Cluster
11 comprised cells with a similar initial peak in nuclear membrane permeability but also dis-
played an elevated but decaying calcium concentration and were more broadly distributed
around the impact site. Cluster 12 featured cells that underwent early death in the imaging
process, marked by a considerably faster decay in calcium levels and less pronounced nuclear
membrane permeability decay scattered around the impacted sample. Meanwhile, Clusters 13
and 14 presented a notably delayed cell death following a calcium transient, with Cluster 13
cells dying approximately 2 hours into the imaging session and Cluster 14 cells at around 1.3
hours.

Generating and validating hypotheses with VAE generated clusters

To illustrate the utility of our VAE in hypothesis generation and validation, we present three
examples that leverage the generated outputs. We first wondered about the potential predictive
power of immediate calcium signaling (1 minute post-impact) on late-stage cell behavior (3
hours post-impact). To elucidate whether immediate calcium signaling predicts late-stage cell
behavior, we examined the corresponding impact calcium signaling from the post-impact clus-
ters. As our experimental protocol only recorded immediate calcium signaling at the impact
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site, we conducted hierarchical clustering of the post-impact data in that specific region. We
found a distance threshold that yielded 9 clusters is effective in capturing distinct cellular
behaviors within each cluster, as shown in the long-term imaging cluster columns of Fig 6. We
observed that the long-term imaging clusters are associated with initial calcium signals that
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Fig 6. Impact calcium signatures associated with VAE-produced clusters. Differentiation between healthy cells and damaged or dying cells can be seen
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https://doi.org/10.1371/journal.pone.0297947.9006
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can broadly categorized into those exhibiting plateaus of calcium concentration after impact
and those with sharp peaks that decay over time. Notably, cells displaying higher overall cal-
cium intensity and faster decay of the calcium signal were associated with increased nuclear
membrane permeability in the hours following impact (Fig 6 right). These cells were predomi-
nantly localized directly below the impact site. Conversely, cells that demonstrated broad
peaks or plateaus of calcium concentration after impact (reaching lower overall intensity com-
pared to peaks in the previous categories) were more often associated with cells that did not
die after impact (Fig 6 left). This observation led us to hypothesize that the sharpness of the
Ca®* peak from impact-induced trauma contributes to cell death.

To test this hypothesis, we performed Principle Components Analysis (PCA) on the first
minute of the Ca®* time series data. We then extracted the first principle component, which
captures 80.33% variation of the data and can account for the range of observed peak shapes.
This procedure enables us to parameterize the Ca®* data with a single number reflecting the
sharpness measure (Fig 7a). We then utilized the clusters in Fig 5 to classify cells with high and
low nuclear membrane permeability, where a high value is representative of dead cells and a
low value is representative of viable cells. We found that the cells with high nuclear membrane
permeability are associated with high values of the sharpness measure and are distributionally
distinct from cells with low nuclear membrane permeability, as exemplified in Fig 7b.

Second, we tested whether late rises in nuclear membrane permeability, such as those
observed in Fig 5 Cluster 13 and 14, were correlated to the proximity to the impact site. Our
null hypothesis is that the timing of late cell death (where high nuclear membrane permeability
is taken to indicate cell death) is independent of total strain, implying no correlation between
the distance from the point of impact and the time at which cells die. To do this, we utilized
the clusters generated via the agglomerative clustering technique to identify clusters with
delayed rise in nuclear membrane permeability. We found cells exhibiting this characteristic
in two cartilage samples (Fig 8a) and computed the cells’ delayed rise time. We found no obvi-
ous relationship between the cell’s delayed rise time and their distance from the point of
impact (Fig 8b). Consequently, our findings failed to reject our null hypothesis. We observed a
significantly higher incidence of delayed cell death in impacted samples than in control

a. Range of Ca?* peak sharpness (normalized) b. Distribution of Ca?* peak sharpness
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Fig 7. Sharpness of the calcium peak is associated with different outcomes in cell fate. a) PCA performed on the
normalized calcium concentrations of cells at the impact site (position 1) for 1 minutes after impact. A range of
sharpness can be observed, from immediate sharp peaks and fast decay (high sharpness measure) to later broad peaks
with slow decay (low sharpness measure). b) Distribution of cells with high NMP (dead cell) or low NMP (viable cell).
The clusters were generated with a hierarchical clustering technique utilizing the symmetrized KL divergence between
the cell’s latent distribution. Clusters with dead cells (blue-shaded) have much higher sharpness than clusters with
viable cells (orange-shaded). Two sample Kolmogorov-Smirnov test was performed for statistical differences between
the two distributions, p = 2.22 x 107",

https://doi.org/10.1371/journal.pone.0297947.9007
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samples, indicative of the delayed cell death mechanism related to impact-induced biochemical
mechanism.

Finally, we investigated the relationship between cells with high mitochondrial polarity and
their proximity to the point of impact. Previous work has demonstrated that mitochondrial
depolarization precedes cell death and that higher local strain is associated with cell death [30,
31]. We made use of three articular cartilage samples experiencing different impact strengths.
We identified clusters with high and low mitochondrial polarity by utilizing clusters generated
from the agglomerative clustering technique described above. Clusters featuring cells exhibit-
ing high TMRM signals were categorized as indicative of polarized mitochondria, whereas
clusters housing cells displaying low TMRM signals were classified as representative of depo-
larized mitochondria. We found that clusters with high mitochondrial polarity were located
further away from the impact site than clusters with low mitochondrial polarity (Fig 9), reject-
ing the null hypothesis that high mitochondrial polarity is independent of its location from the
impact site. Future work involving strain measurement should enable the investigation of dif-
ferences in cell response in relation to compression and shear.

Discussion

The utilization of Variational Autoencoders (VAE) for analyzing spatiotemporal cellular
behavior data at the tissue scale showcases the effectiveness of this unsupervised learning
approach. The VAE framework enhances our analytical capabilities by efficiently processing
high-dimensional data in multi-channel fluorescence microscopy videos with minimal user
input. This accelerated processing enables rapid iteration through experimental inputs, allow-
ing us to test hypotheses by manipulating individual factors and observing changes to clusters
or identifying varying spatial distributions.

The VAE method exhibits numerous advantages over traditional manual labeling systems
or supervised machine learning. Notably, it excels in handling noisy data, eliminating the need
for extensive background correction. Additionally, once input parameters are configured, no
additional work is required to produce meaningful results. Furthermore, the VAE

a. Locations of cells in clusters of late cell death b. Onset time for the rise of nuclear membrane
permeability for cells in clusters of late cell death
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Fig 8. Late cell death is present in impacted regions of cartilage but not associated with distance from impact. a)
Locations of cells showing late cell death (> 1 hour after impact) for two different impacts. Few cells in the control
sample show late cell death, indicating that this behavior is likely related to impact. Colorbar illustrates the distance of
each cell to impact site. b) The time that a cell reaches its maximum nuclear membrane permeability (indication of cell
death) in these clusters is not associated with Euclidean distance from impact (F-test, top: p = 0.996, bottom:
p=0.285).

https://doi.org/10.1371/journal.pone.0297947.9008
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Fig 9. Mitochondria depolarization occurs in impact region. Distribution of cells with high TMRM (high polarized
mitochondria) or low TMRM (low polarized mitochondria). The clusters were generated with a hierarchical clustering
technique utilizing the symmetrized KL divergence between the cell’s latent distribution. Clusters with low-polarized
mitochondria (blue-shaded) are closer to the point of impact than clusters with high-polarized mitochondria (orange-
shaded). Two sample Kolmogorov-Smirnov test was performed for statistical differences between the two
distributions, p = 1.43 x 1072,

https://doi.org/10.1371/journal.pone.0297947.9009

accommodates multi-channel and non-normalized data, considering both absolute intensity
and relationships between channels in determining cellular behaviors.

This implementation of the VAE is readily adaptable to analyze any tissue system where
behaviors of cells are captured over time, not only from fluorescence microscopy. The method
is not confined to any specific geometry, has no limitations on dataset size, and can work with
time series data of any dimension. The VAE can be trained on any number of samples while
still producing unique clusters for individual samples, enabling us to quickly look at sample-
to-sample variation while simultaneously gaining a sense of the dominant, overarching behav-
ioral themes with the principal components.

Use of the VAE to understand temporal patterns of chondrocyte signaling yielded new
insights into the process of cartilage damage after injury. For example, the kinetics of calcium
transport into chondrocytes was shown to be strongly associated with an increase in nuclear
membrane permeability, an established indicator of cell death. Specifically, cells experiencing
very sharp calcium transients were far more likely to die than those experiencing slower cal-
cium transients. The connection between calcium influx and chondrocyte death is well estab-
lished [32]. Further, recent data suggest that stretch-activated calcium channels such as
TRPV4 and Piezol regulate calcium response to physiologic and non-physiologic loading,
respectively [33-35]. Despite the abundance of interest in this topic, prior to the current work,
there was no quantitative information on how the kinetics of calcium transients was related to
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ultimate cell fate. Notably, the distinct phenotypes identified by the VAE enabled the determi-
nation that the sharpness of calcium peaks was a strong predictor of cell death, demonstrating
the power of this technique to give important new insights into mechanisms of cell signaling.

One limitation of the current study is that in its present form, the VAE cannot capture
spontaneous spontaneous calcium spikes, as is evident from the long-tail error distribution
(Fig le right). There are a variety of computational techniques that could be used to analyze
the spiking activities. For example, one could construct two network modules that jointly learn
short-time scale spiking activities and long-timescale cellular profiles. From our observation,
the spiking activities are relatively sparse; one may need to construct relevant features describ-
ing the spontaneous calcium spike for training. Another interesting limitation is the interpret-
ability of the VAE latent features. For example, it is currently not obvious if each VAE
dimension captures a particular biological process. In part, this may reflect the fact that typi-
cally, such latent spaces may have intrinsic curvatures [36], making it difficult to interpret dis-
tances properly. We are currently working on differential geometry methods to address these
issues.

Finally, the VAE can be combined with other methods to comprehensively analyze cellular
data in a tissue system, specifically with recently developed techniques focusing on spatially-
resolved cell data [37-40]. Additionally, it is compatible with our previously published super-
vised learning/decision tree method [11], STRAINS, and works as a complementary technique
for high-throughput analysis of spatiotemporal cell data. Further, samples are preserved after
imaging, allowing for post-imaging analysis of gene expression, protein synthesis, cell meta-
bolic activity, etc. By combining our VAE method with these analyses, a fuller picture of tis-
sue-scale behaviors can be created.
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