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ABSTRACT
Small uncrewed aerial systems (sUAS) are growing in their use for
commercial, scienti�c, recreational, and emergency management
purposes. A critical part of a successful �ight is a correctly tuned
controller which manages the physics of the vehicle. If improperly
con�gured, it can lead to �ight instability, deviation, or crashes.
These types of miscon�gurations are often within the valid ranges
speci�ed in the documentation; hence, they are hard to identify. Re-
cent research has used fuzzing or explored only a small part of the
parameter space, providing little understanding of the con�gura-
tion landscape itself. In this work we leverage software product line
engineering to model a subset of the parameter space of a widely
used �ight control software, using it to guide a systematic explo-
ration of the controller space. Via simulation, we test over 20,000
con�gurations from a feature model with 50 features and 8.88⇥1034
products, covering all single parameter value changes and all pairs
of changes from their default values. Our results show that only a
small number of single con�guration changes fail (15%), however
almost 40% fail when we evaluate changes to two-parameters at
a time. We explore the interactions between parameters in more
detail, �nding what appear to be many dependencies and interac-
tions between parameters which are not well documented. We then
explore a smaller, exhaustive product line model, with eight of the
most important features (and 6,561 con�gurations) and uncover a
complex set of interactions; over 48% of all con�gurations fail.
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• Software and its engineering ! Software product lines;
Software testing and debugging; Feature interaction; • Com-
puter systems organization! Embedded and cyber-physical
systems.
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1 INTRODUCTION
Small uncrewed aerial systems (sUAS), or drones, are already widely
used in a variety of real-world scenarios, from surveillance to pack-
age delivery. They can play key roles in safety-critical scenarios,
such as emergency search and supply delivery in areas where natu-
ral disasters have occurred. Their usage is expected to only increase
in the future. For instance, the drone delivery company Wing per-
formed over 1,000 deliveries of food and groceries per day in Aus-
tralia in 2023, while another similar service, Zipline, revealed that
it had made over 600,000 deliveries of medical supplies in Africa
[33]. Major technology companies that deliver goods, like Amazon,
are also introducing drone delivery services in regions like the UK
and the US, promising one-hour delivery times [4, 30].

Regardless of their intended purpose, whether they are being
used to deliver emergency aid or groceries, one common require-
ment for sUAS is safe and stable �ight behavior. Stability refers to
the ability of the drone to maintain its intended �ight state with-
out experiencing excessive oscillation or movement and is a key
property of safe �ight behavior. If a drone system fails to maintain
stability, it is a danger to not only itself, but also to other vehicles in
the airspace and to the rest of the environment. A crash can cause
serious harm to people or property on the ground, which has led
sUAS to be described as safety-critical [9].

As drone technology rises in popularity and usage, �ight control
systems are becoming increasingly important. A �ight controller is a
circuit board that is carried on the drone and is primarily responsible
for monitoring sensor data and constantly making adjustments to
ensure stable �ight behavior. Flight control software must interface
with the on-board controller as well as a ground control station,
which allows the user to control the drone, either manually or
programmatically [12].

Flight control software like PX4 [24] and ArduPilot [1] allow
users to tune the values of control parameters to improve �ight
behavior. Each parameter can take one of a wide range of values,
and may be associated with stability, sensors, battery, or other im-
portant aspects of the drone’s behavior. There is a set of parameters
responsible for attitude (de�ned by the vehicle’s roll, pitch and
yaw) and rate control, which is part of the PID (Proportional, In-
tegral, Derivative) controller system used by the software [12, 34].
This controller continuously outputs the setpoint (target) and re-
sponse (observed) curves for the current �ight state, and the goal
of tuning these parameters is to match the response curve to the
setpoint curve as closely as possible. By tuning these parameters
correctly, users can help ensure safe and stable �ight behavior for
the required mission. Documentation of the parameter space is
limited, and valid value ranges provided in the documentation may
contain suboptimal or even failure-inducing values. As a result,
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the responsibility falls upon the drone operator to tune the sUAS
correctly before �ying. This requires an in-depth understanding of
both the software and hardware of the system which many users
do not have, and online forum posts indicate that failures caused
by miscon�guration are a serious issue [25, 26, 28].

As highlighted by Kim et al. [19], these parameter range speci�ca-
tion bugs can also be exploited by malicious actors to intentionally
trigger failures or crashes in subtle, di�cult-to-detect ways. This
underscores the need for systematic exploration to improve the
general understanding of the con�guration space. sUAS operators
can leverage this knowledge to tune their drones more safely and
easily, as well as to investigate problematic behavior and identify
unsafe con�gurations before deployment to prevent them from
causing damage to themselves or their environment. In follow on
work to Kim et al., we examined ways to recon�gure the controller
and automatically adapt when instabilities are detected [27]; how-
ever, we used simple approaches for recon�guration that were not
cognizant of the full con�guration space.

Given that controllers are complex, con�gurable software sys-
tems, it is not a straightforward task to determine the role of every
feature in the con�guration space. Modifying parameter values can
lead to unexpected consequences that are di�cult to trace back to
their source, and the vast number of possible con�gurations makes
the space impossible to cover in its entirety. At any point in time,
any number of features could be interfacing with one another in
unexpected ways, leading to unpredictable behavior. Furthermore,
documentation and general knowledge about interactions between
multiple parameters is more limited than information about indi-
vidual parameters. For these reasons, a systematic exploration of
this space is necessary and highly relevant to sUAS operators.

The use of software product line engineering has the potential
to help with both the exploration of the space of con�gurations
(for testing, debugging, and evolution), as well as in documenting
dependencies and constraints for the operators.

In this paper we use a product line engineering approach and
model the con�guration space for one popular controller, PX4 [24],
as a software product line. We use an iterative approach and begin
by exploring a con�guration space consisting of 50 parameters and
8.8 ⇥ 1034 con�gurations. We use a one-hop exploration (all single
parameter changes from the default values) to understand which
parameter values fail on their own and then examine interactions
using a two-hop exploration. We �nd that only 15% of the one-
hops fail, while nearly 40% of the two-hop explorations fail. We also
uncover interesting interactions that lead to passing tests in the two-
hop data for tests which failed with a single con�guration change,
demonstrating the complexity of this space. We then explore an
exhaustive region of eight controller parameters to understand the
overall landscape. Despite removing parameter values known to
cause failures in one-hop testing from the exhaustive feature model,
we still �nd that 48.7% (almost half) of the con�gurations fail.

The overall contributions of this paper are:

(1) A feature model (and artifacts) for a part of the parameter
space of PX4, a widely used �ight control system for sUAS;

(2) Experiments on more than 30,000 simulations to explore the
impact of 50 parameters related to attitude and rate control
for drones on �ight success and failure; and

(3) An investigation of positive and negative interactions be-
tween features (or parameters) in our product line.

The rest of this paper is laid out as follows. In the next section
we present a motivating example which argues for the need for this
exploration. In Sections 3 and 4 we present our study and results.
We present related work (Section 5) and end with conclusions and
future work in Section 6.

2 MOTIVATING EXAMPLE
To illustrate the impact of con�guration changes on �ight be-
havior and the importance of understanding them from the user
perspective, we consider a small product line with �ve features:
MC_PITCHRATE_K, MC_PITCHRATE_MAX, MC_PITCHRATE_P,
MC_ROLLRATE_P, and MC_ROLL_P as shown in Figure 1. Each of
these parameters control speci�c aspects of the drone’s behavior.
The documentation speci�es that two of them, MC_PITCHRATE_K
and MC_PITCHRATE_P, are related. They are used together by the
controller to calculate pitch rate gain. The documentation does not
describe any other relationships between any of the �ve parameters.
However, this does not guarantee that no such relationships exist.

Consider the con�guration in which MC_PITCHRATE_K,
MC_PITCHRATE_MAX, MC_PITCHRATE_P, MC_ROLLRATE_P and
MC_ROLL_P are set to 3.0, 110.0, 0.03, 0.08 and 0.1, respectively. Dur-
ing our exhaustive exploration using simulation (see RQ3) we saw
some interesting (and unexpected) behavior. We highlight this in
Figure 2, which shows screenshots of the �ight using two di�erent
con�gurations (discussed next).

First, each of these values falls within the corresponding valid
range speci�ed in the documentation. Second, we observed that
every individual parameter value in this con�guration results in a
successful mission if we change it while holding the other values
at their defaults.

Combining MC_PITCHRATE_P = 0.03, MC_ROLLRATE_P = 0.08,
and MC_ROLL_P = 0.1, which are all individually safe, however,
results in extremely unstable behavior with the drone crashing soon
after takeo� (left picture in Figure 2). There is nothing to connect
these three parameters in the documentation, so this could cause
problems for a user attempting pre-�ight parameter tuning without
this speci�c knowledge.

Interestingly, there are additional ways (higher order inter-
actions) that a�ect the behavior of the drone under the in�u-
ence of these parameters. Bringing the other two parameters,
MC_PITCHRATE_K and MC_PITCHRATE_MAX, into the picture,
we can mitigate the unsafe behavior caused by the interaction of the
other three parameters to a noticeable degree. We found that setting
the values of MC_PITCHRATE_K to 3.0 and MC_PITCHRATE_MAX
to 110.0, which are also within their valid ranges, we can prevent
the crashing behavior caused by the dangerous interaction. We
show this �ight on the right side of Figure 2. While the drone devi-
ates to some degree from its expected �ight path, the mission was
able to complete and the drone landed safely.

Although the �ight is still unstable, this mitigation may enable
mission success in many cases, and understanding interactions like
this may allow drone operators to tune their systems more easily
and reliably. However, it’s di�cult for most operators to discover
the e�ects of con�gurations like this organically in a safe manner
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Motivating Example

MC PITCHRATE K

0.505 1 3

MC PITCHRATE MAX

110 1800 220

MC PITCHRATE P

0.03 0.08 0.15

MC ROLLRATE P

0.08 0.15 0.5

MC ROLL P

0.1 12 6.5

Legend:

Feature

Mandatory

Alternative Group

Figure 1: Software Product Line for our motivating example. This product line has �ve controller parameters as features, each
of which can take one of three values.

MC_PITCHRATE_P	=	0.03,	MC_ROLL_P	=	0.1,	MC_ROLLRATE_P	=	0.08 Introduction	of	MC_PITCHRATE_K	= 3.0,	MC_PITCHRATE_MAX=110.0Figure 2: Left: crashing behavior caused by a con�guration consisting of MC_PITCHRATE_P = 0.03, MC_ROLLRATE_P = 0.08
and MC_ROLL_P = 0.1. Right: a �ight using the same con�guration as on the left but with the addition of two parameter values:
MC_PITCHRATE_K = 3.0 and MC_PITCHRATE_MAX=110.0.

without endangering their hardware. Therefore, there is a need
for more formal modeling and exploration of the con�guration
space to allow safer drone operation in the future. In this work,
we tackle this problem and try to better understand the controller
con�guration space using a systematic product line engineering
approach.

3 EXPERIMENTS
We aim to model and explore a large part of the controller con�g-
uration space systematically. We do this by asking three research
questions. We provide artifacts on an external artifact website.1

• RQ1: Which features in our product line cause problematic
�ight behavior? To answer this question we compare our
results with the existing (state of the art) research on sUAS
controllers.

• RQ2: How do interactions between features a�ect �ight
success? For this question we examine both the positive
and the negative changes in results between our one- and
two-hop data sets.

• RQ3:How complex are the interactions in an exhaustive data
set? For this experiment we try to understand the complexity
of interactions.

In order to explore the parameter space of PX4, we �rst build a
software product line that is broad and perform a series of trials

1https://github.com/LavaOps/splc2024

similar to the one-dimensional mutation in Kim et al. [19] and the
one-hop testing from our prior work [27]. We use the term one-hop
in this work. The objective of these experiments is to determine
which parameter values individually induce mission failures outside
of the in�uence of other parameters. For each trial, the value of
only one parameter is modi�ed to a non-default value within its
valid range as speci�ed by the feature model. All other parameters
are set to their default values. This allows us to determine the e�ect
of only the current parameter on the outcome of the mission.

We follow this with two-hop interaction testing. Previous re-
search has attempted a limited exploration of two-way interactions
with small sets of parameters [19] or has used pairwise interaction
testing [8, 11, 27]. The scope of these explorations was likely limited
by the exponentially increasing number of trials required to test
interactions between multiple parameters in the system. Moreover,
Purandare et al. [27] found that most of the con�gurations that used
pairwise interaction testing failed, likely due to the large distance
from any default value.

In order to gain a more in-depth understanding, we perform a
complete systematic set of two-hop trials that allows us to isolate
and analyze the impact of pairs of parameter values on �ight be-
havior. In these trials, we modify two parameters at a time, while
all other parameters are kept at their default values. For every two-
parameter pair from the set of parameters in the product line, we
perform a run with every possible combination of the non-default
values of the two parameters. The goal is to analyze the e�ects of
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interactions between parameters which may not manifest when
only one parameter is modi�ed at a time.

3.1 Modeling the Product Line
We include all of the existing PX4 parameters used by Kim et al.
[19], Han et al. [13], and Purandare et al. [27] in our product line.
Two parameters used in [19] have since been deprecated in modern
versions of PX4 and are thus no longer usable. We also incorporate
new attitude and rate control-related parameters based on their sim-
ilarity to the existing parameters in the documentation. This results
in a total of 50 parameters in our study, which are listed in Table
1. While we use the same parameters, we use di�erent partitions
(parameter values). We choose four values for each parameter: the
minimum allowed value, one value exactly halfway between the
minimum and the default values, the maximum allowed value, and
one value halfway between the default value and the maximum.
In cases where the maximum value is not speci�ed, we use the
maximum value of closely related parameters with similar ranges,
as in our prior work [27].

For each parameter in Table 1 we show the name, valid range, and
default value. We don’t show the other 4 values but have provided
the full feature model on our artifact website. This product line
has 550 or 8.8 ⇥ 1034 con�gurations (or products). There are no
constraints provided in the documentation, hence we assume that
all products are potentially valid. The one-hop sample has 200
con�gurations - one for each non-default value for each parameter
(4 ⇥ 50). The two-hop sample tests all pairs of non-default values
and has

�50
2
�
⇥ 4 ⇥ 4, or 19, 600 con�gurations.

3.2 Study Method
Di�erent studies have used di�erent approaches to determining
�ight success and failure for a given con�guration. Examples in-
clude deviation from the expected �ight state over a given threshold
[19] or machine learning predictions [13, 14]. We apply the method
described in our prior work [27], in which �ight success is based on
the outcome of the assigned mission. If the drone is able to reach
every waypoint in the mission successfully within the allotted time
with a given parameter con�guration, that con�guration is con-
sidered successful. If the con�guration prevents the drone from
completing the mission, it is classi�ed as failure-inducing. We also
keep track of whether or not the takeo� is successful in the case of
failure. We want to di�erentiate between cases where the sUAS fails
to �y (often due to the vehicle �ipping over) and when it fails during
�ight. For our �ight path, we simulate the same eight-waypoint
mission plan as used in our prior work [27].

Timing issues caused by external factors in the computing sys-
tem (e.g. heavy server loads causing processes to get suspended) can
occasionally lead to non-con�guration-related failures. To avoid
incorrectly labeling tests resulting from individual instances of
unexpected behavior as con�guration failures, we veri�ed failing
con�gurations by repeating multiple trials for every failing con-
�guration. This might lead to some over approximation of success
in the case of a �aky pass, however based on our experience, this
is not common and we re-ran all failures. For the one-hop data,
we ran each failure 4 additional times and for the two-hop data
we ran each failure 2 more times. Any con�guration that failed

Table 1: Complete list of all 50 parameters in our study with
valid ranges and default values. "?" indicates that no limit
has been speci�ed in the PX4 documentation. The full set of
parameter-values can be found on our artifact website.

Parameter Range Default
COM_ARM_IMU_ACC [0.1, 1.0] 0.7
COM_ARM_IMU_GYR [0.02, 0.3] 0.25
COM_POS_FS_EPH [-1, 400] 1
COM_VEL_FS_EVH [0, ?] 1
EKF2_ABL_LIM [0.0, 0.8] 0.4
MC_PITCH_P [0.0, 12] 6.5
MC_PITCHRATE_D [0.0, ?] 0.003
MC_PITCHRATE_FF [0.0, ?] 0
MC_PITCHRATE_I [0.0, ?] 0.2
MC_PITCHRATE_K [0.01, 5.0] 1
MC_PITCHRATE_MAX [0.0, 1800.0] 220
MC_PITCHRATE_P [0.01, 0.6] 0.15
MC_PR_INT_LIM [0.0, ?] 0.3
MC_ROLL_P [0.0, 12] 6.5
MC_ROLLRATE_D [0.0, 0.01] 0.003
MC_ROLLRATE_FF [0.0, ?] 0
MC_ROLLRATE_I [0.0, ?] 0.2
MC_ROLLRATE_K [0.01, 5.0] 1
MC_ROLLRATE_MAX [0.0, 1800.0] 220
MC_ROLLRATE_P [0.01, 0.5] 0.15
MC_YAW_P [0.0, 5] 2.8
MC_YAW_WEIGHT [0.0, 1.0] 0.4
MC_YAWRATE_D [0.0, ?] 0
MC_YAWRATE_FF [0.0, ?] 0
MC_YAWRATE_I [0.0, ?] 0.1
MC_YAWRATE_K [0.0, 5.0] 1
MC_YAWRATE_P [0.0, 0.6] 0.2
MIS_YAW_ERR [0, 90] 12
MOT_SLEW_MAX [0.0, ?] 0
MPC_ACC_HOR [2, 15] 3
MPC_ACC_HOR_MAX [2, 15] 5
MPC_ACC_UP_MAX [2, 15] 4
MPC_JERK_AUTO [1, 80] 4
MPC_JERK_MAX [0.5, 500] 8
MPC_LAND_SPEED [0.6, ?] 0.7
MPC_THR_MAX [0, 1] 1
MPC_THR_MIN [0.05, 0.5] 0.12
MPC_TILTMAX_AIR [20, 89] 45
MPC_TILTMAX_LND [10.0, 89.0] 12
MPC_TKO_SPEED [1, 5] 1.5
MPC_XY_CRUISE [3.0, 20.0] 5
MPC_XY_P [0.0, 2.0] 0.95
MPC_XY_VEL_I_ACC [0.0, 60.0] 0.4
MPC_XY_VEL_MAX [0.0, 20.0] 12
MPC_XY_VEL_P_ACC [1.2, 5.0] 1.8
MPC_Z_VEL_D_ACC [0.1, 2.0] 0.2
MPC_Z_P [0.0, 1.5] 1
MPC_Z_VEL_MAX_DN [0.5, 4.0] 1
MPC_Z_VEL_MAX_UP [0.5, 8.0] 3
MPC_Z_VEL_P_ACC [2.0, 15.0] 4

the majority of the time in the veri�cation runs was classi�ed as a
failure.

Each individual experiment takes 4-8 minutes of computational
time to run on our server (depending on the outcome), hence the
base data (without re-runs) represents from 55 to 110 days of ac-
tual computing time just for the simulations. We used 50 nodes in
parallel to run our experiments. We note that the actual time to
run these experiments was signi�cantly longer due to the use of a
shared computing platform.
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3.3 Implementation Details
All experiments were performed using PX4. PX4-Autopilot [24] is
a popular open source �ight control software. It interfaces with the
drone’s onboard hardware controller and the ground control station
(GCS) using the MAVLink messaging protocol. It is responsible for
carrying out the mission plan and controls de�ned by the user,
as well as sending �ight status and sensor data back to the user
through the GCS. We used the stable 1.12 version of PX4 and the
Iris multicopter airframe. We performed the simulations using the
widely used Gazebo simulator [20]. The test mission was de�ned
using Python and the mission details and commands were sent
to the sUAS using MavROS. ROS [32] is a popular open source
software platform which provides tools and libraries for robotics
applications. We used ROS Noetic for our implementation. The
missions were de�ned within a Singularity [22] container with 2
CPUs and 2GB of memory. The missions were managed by a Python
program using Python 3.9 on Ubuntu 20.04. All experiments were
performed with 8 CPUs and 16GB of memory.

3.4 Threats to Validity
All tests in our study were performed using the Gazebo simulator.
Although this is the most widely used simulator for sUAS, it cannot
model reality perfectly and there are likely to be some di�erences
in �ight behavior in real-world systems [20]. This gap between sim-
ulation and reality may be narrowed by future tests with physical
drone hardware, but due to the dangerous failure-inducing nature
of these experiments, as well as the number of total �ights required,
the current best evidence of the relevance of these results are forum
posts by users who encountered similar unstable behavior uninten-
tionally [25, 26]. We incorporated parameters from these reports
into our feature model.

The drone model used for all experiments was the Iris quad-
copter airframe. This is the same airframe used in other related
work using PX4 [13, 19, 27], which allowed us to compare the ob-
served e�ects of parameter changes with those reported by other
works fairly. However, ideal parameter value ranges di�er between
airframes, and these results are not necessarily generalizable to
other airframes, including various real-world drone models. The
mission used for all experiments was the same as the �ight path
described in our prior experiments [27], for fair comparison. This
mission is a basic but nontrivial task which is intended to emulate
a real-world drone mission. However, we acknowledge that it may
pose varying levels of di�culty for di�erent airframes, and other
missions may lead to di�erent outcomes for matching parameter
con�gurations.

In addition, we note that the parameter space of PX4 is much
larger than the subset we analyzed. We focused on impactful pa-
rameters related to attitude and rate control, which is an important
aspect of sUAS stability and safety. We incorporated parameters
tested by other research which are expected to have an impact on
�ight behavior, as well as related parameters from forum posts in or-
der to ensure we were studying features that were relevant to drone
operators for PID tuning. However, these are not the only parame-
ters capable of a�ecting �ight success, and there are likely other
instability-inducing parameters in the PX4 software that remain

to be studied. We cannot be sure that the results from our feature
model generalize to other parts of the PX4 con�guration-space.

Finally, as described in Section 3.2, unpredictable external factors
related to the environment of the physical server that the simula-
tions were performed on could have caused some incorrect failures.
In order to limit the extent to which they skewed our results, we per-
formed multiple trials of every initially failing test in our one- and
two-hop testing to ensure that each failure was truly con�guration-
induced and not random. We also validated interesting interactions
we observed during this study through additional repeated trials.

4 RESULTS
We now present the results of each of our research questions and
summarize our �ndings.

4.1 RQ1: Individual Feature Failures
For this research question we performed one-hop testing, in which a
single parameter was modi�ed at a time while all other parameters
in the product line were kept at their default value, with four values
for each parameter. In these trials, we found that 30 con�gurations
out of 200 that involved single-parameter changes were failure-
inducing. These were spread across 24, or approximately half, of
the parameters.

All runs with failure-inducing parameter values were repeated
four times, for a total of �ve trials. If the majority of runs failed, we
considered it a failure. A comparison of every failing value in our
one-hop trials with the result for the same value in the CICADA
[27] (blue star) and RVFuzzer [19] (red triangle) datasets, as well as
takeo� success data, is shown in Figure 3. The graph shows each
of the 30 failing con�gurations on the y-axis. The x-axis has
four columns. The �rst (fail) shows which of the other techniques
(CICADA and/or RVFuzzer) also failed on these parameters.

The n/a column indicates which technique did not test this pa-
rameter and the success column shows which techniques returned a
successful result. There was one parameter from RVFuzzer that we
were unable to determine the outcome for (this parameter was in
their dataset but the presentation of the outcome was inconclusive),
hence we put this in its own column.

The black triangle (Takeo�) is not a technique. Rather, a takeo�
in the success column indicates that the sUAS was able to complete
takeo� in our experiments, despite the overall mission failure. Pa-
rameters with a black triangle in the fail column mean the sUAS
failed to even complete takeo�.

These results indicate that a relatively small number of the fea-
tures are responsible for most, if not all, con�guration-related fail-
ures in the system. Many parameters simply don’t in�uence �ight
behavior in a noticeable way. There were, in contrast, some param-
eters that seemed especially relevant with respect to instability and
failure-causing behavior. The parameter that failed for the largest
range of its valid values was MPC_THR_MAX, which is responsible
for limiting the drone’s maximum thrust. This parameter triggered a
failure for every non-default value. The default value of this param-
eter is also its maximum allowed value, suggesting that at least for
the quadcopter airframe used in these experiments, the sUAS does
not support any values of this parameter far below its maximum.
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Figure 3: A comparison of the failure-inducing con�gurations in one-hop testing with the outcomes for the same value in
CICADA [27] (blue star) and RVFuzzer [19] (red triangle). Failures indicate that the associated technique failed. N/A means the
other technique did not test a particular con�guration. Inconclusive indicates we were unable to determine pass or fail in their
technique. The black triangle refers to the takeo� phase of our experiments. A failure indicates the sUAS never took o�. A
success indicates it took o� and failed during �ight.

Two other parameters which caused failures for multiple values
were MC_PITCHRATE_K and MC_ROLLRATE_K, which control
the pitch and roll rate controller gain respectively. However, for
both of these parameters, the values that were failing were the
minimum and the maximum value, while the values in between
the two extremes allowed successful mission completion. This is es-
pecially interesting because it appears to contradict the monotonic
property of control instability which has been reported in previ-
ous work in this area [19]. This property states that changing the
value of a parameter will cause a monotonic change in stability,
such that instability will increase or decrease in a single direction
for any given parameter. The one-hop testing of parameters like
MC_PITCHRATE_K and MC_ROLLRATE_K suggests that certain
features in the space may have greater complexity and cannot be
treated as monotonic.

The failure-inducing values tended to lie at extreme ends of
the range of valid values as speci�ed in the documentation. These
results generally agree with the observations made by CICADA
[27] and RVFuzzer [19]. However, there are some notable di�er-
ences in the results. For example, although we found in our one-
hop testing that both the minimum and maximum values for the
MC_PITCHRATE_K and MC_ROLLRATE_K were failure-inducing,
only the minimum value failed for each parameter in CICADA’s
one-hop tests. This may be due in part to di�erences in themachines
used for simulation.

12 of the 30 failures involved failing takeo�s. Con�gurations that
provoke takeo� failure errors are likely to crash and damage the
hardware, while con�gurations that fail later in the mission often
prevent the drone from being able to move to its intended target

without instantly crashing. Although mid-�ight failures are still
serious, recent work has indicated that it may be possible to take
advantage of the additional time spent in the air to detect anomalies
and recon�gure the drone or change its �ight plan to recover from
the miscon�guration [16, 27].

Summary of RQ1. Only 24 of the 50 features (30 out of 200
values) in this product line led to a failure when combined
with the rest of the feature’s default values. When compared
with state of the art techniques we saw similar patterns; how-
ever, we observed more nuanced behavior with respect to the
monotonic properties previously described. We also saw some
features which are more likely to fail than others.

4.2 RQ2: Interactions Between Features
While individual failure-causing parameter values are useful, one-
hop testing fails to capture the impact of interactions between
multiple parameters. In order to explore this aspect of our product
line, we followed up with two-hop testing. For every value of each
parameter in our model, we paired it with every value of all other
parameters in the model and tested the resulting con�guration.
This resulted in 19,600 total two-hop con�gurations, which we then
tested in the sameway as the one-hopmissions to determine failures
and successes. Of these, we found 7,814 that were failure inducing.
Similarly to the one-hops, we repeated trials for failure-causing
con�gurations, in this case running them a total of three times to
reduce the risk of random failures caused by external factors.
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Table 2: Comparison of one-hop, two-hop, and exhaustive results in terms of mission outcome and takeo� success. The
exhaustive set is based on a smaller feature model.

# Con�gs Failures Failure
Rate

Failing
Takeo�s

Takeo�
Failure Rate

One-hop 200 30 15.0% 12 6%
Two-hop 19,600 7,814 39.9% 2,576 13.1%
Exhaustive 6,561 3,194 48.7% 2,448 37.3%
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Figure 4: Negative interactions: two-hop failures and successes by parameter, considering only values that did not cause failures
in one-hop testing. The top line shows those parameters which pass, the bottom line indicates failures.

We note that the failure rate is considerably higher in two-hop
testing. The primary reason for this is interactions between pa-
rameters causing unstable �ight behavior. Although some inter-
actions and relationships are explicitly documented in PX4 [12],
it is evident that many more such interactions exist. We observed
2,530 instances in which two parameter values which were both
individually non-failure-inducing in one-hop testing triggered fail-
ures when set together. Therefore, out of the 7,814 total failures
observed in two-hop testing, 32.4% were caused by negative interac-
tions between otherwise stable parameters, suggesting that this is a
prevalent issue in drone parameter tuning. We show this data in the
�rst two rows of Table 2. This shows the number of con�gurations
and failures, followed by the failure rate, number of failing takeo�s
and the failing takeo� rate.

Interestingly, most parameter values that were not individu-
ally failure-inducing in one-hop testing ultimately led to a failure
when paired with some other individually harmless (non-failure-
inducing) parameter in the feature model. Figure 4 shows the fail-
ures and successes for all parameter values which did not fail indi-
vidually in one-hop testing. The graph groups features by parameter
(we exclude individual values to make this more readable). Failures
in this graph indicate what we term a negative interaction; the test
goes from passing to failing by the addition of a second parameter
that does not fail when changed in the 1-hop experiments.

We found thatMC_PITCH_P was the parameter with the highest
number of failures in this set. MC_PITCH_P, which controls pitch
proportional gain, is an attitude control parameter that is typically
not instability-inducing except when set to extremely low values,
but it appears to be prone to failure-causing interactions with other
parameters. One reason for this may be that many of the parameters
in our feature model are tied to the rate controller, which operates

closer to the hardware than the attitude controller. This means the
other controllers send commands through the rate controller and as
a result, the tuning of rate control parameters could interact with
attitude control parameters like MC_PITCH_P.

There were several parameters which experienced very few nega-
tive interactions, includingMPC_JERK_MAX,MPC_TILTMAX_LND,
MPC_XY_CRUISE, and MPC_Z_VEL_D_ACC. There are two likely
explanations for this behavior. First, the low failure rate of these
parameters in one-hop testing indicates that these are generally all
very stable parameters. Furthermore, many of these parameters are
only relevant at speci�c periods during the mission. For example,
MPC_TILTMAX_LND is engaged exclusively during landing, and
MPC_Z_VEL_D_ACC only impacts vertical movement, i.e., during
takeo� and landing. For the rest of the �ight, the other parameter
in the pair will be the only factor in determining the success of the
�ight, resulting in minimal interaction for most of the mission.

Some other parameters seem resistant to negative interactions:
MC_ROLLRATE_D, MC_ROLLRATE_I, and MC_YAWRATE_FF. This
may be due in part to their status as rate control parameters, i.e.
they are closest to the hardware and are not sending commands
through another controller. Additionally, these are generally stable
parameters across their value spectrum, as demonstrated in one-
hop testing, which increases their representation in the graph. We
repeated this analysis for a normalized set which included the same
number of values for every feature, and these parameters still had
some of the lowest failure rates.

Another direction of interest is positive parameter interactions,
in which the in�uence of a bene�cial parameter was able to mitigate
the failure-causing impacts of another parameter. We did not expect
many cases, since previous work in this area has not described this
phenomenon [19, 27]. During our two-hop testing, we identi�ed 168
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Figure 5: Positive interactions. Parameter values on the x-axis failed in one-hop testing, but succeeded when paired with some
other parameter value in two-hop testing. Failing bubbles indicate no change in two-hop testing. Success bubbles indicate the
mission succeeded when an additional parameter was changed. Sizes of bubbles indicate the number of successes or failures.

instances of con�gurations in which at least one parameter value
triggered failure individually during one-hop testing, but ultimately
succeededwhen paired with another parameter value in the product
line. These instances involved 12 distinct parameter values. Many
of these positive interactions were between two parameters that
had no apparent relationship based on the documentation of the
source code [12]. All positive interactions discovered in two-hop
testing are summarized in Figure 5. In this graph each of the 12
distinct parameters and their values are shown on the x-axis. We
show two bubbles for each parameter. The y-axis indicates the
number of times a succeed or fail occurs and the size of the bubble
provides a visual clue to the size as well. In most cases the two
bubbles are distinct. For one parameter ("%⇠_�⇢' _�*)$ = 1.0)
we see an even split of successes and failures.

We believe this knowledge of positive interactions can have
meaningful applications for sUAS operators. For example, some
drone adaptation frameworks [2, 27] attempt real-time con�guration-
basedmitigations to unstable �ight behavior. One of these, CICADA,
applies adaptation techniques to some of the parameters included
in our study. However, for some parameter values, for example,
MPC_Z_P = 0, the adaptation attempts were unsuccessful. Our two-
hop exploration identi�ed multiple parameters which have positive
interactions with MPC_Z_P, and setting one of these bene�cial pa-
rameters instead of trying to modify the value of the failure-causing
parameter itself could be an alternative adaptation strategy which
may be preferable in some scenarios.

Summary of RQ2. We observed a large number of interac-
tions and more failures when we explored the two-hop data.
We observed both negative and positive interactions. All pa-
rameters with individually succeeding one-hop values did ulti-
mately fail in combination with some other succeeding param-
eter value, while 12 parameters that failed during the one-hop
exploration passed when paired with another parameter.

4.3 RQ3: Exhaustive Exploration
As a �nal experiment, we created a smaller product line and ex-
haustively tested it. Since any attempt at exhaustive coverage of
the entire space is impossible, as it would require a number of trials
in the order of 1050, we chose to limit our focus to a subset of the
feature model which is most relevant to drone operators and which
we believed could yield useful complex interactions. We selected
eight parameters which were all related to pitch and roll behavior:
MC_PITCHRATE_P, MC_PITCH_P, MC_ROLLRATE_P, MC_ROLL_P,
MC_PITCHRATE_D, MC_PITCHRATE_K, MC_ROLLRATE_D, and
MC_PITCHRATE_MAX, based on their prevalence in forum reports
[25, 26, 28], as well as their behavior in individual and interac-
tion tests. In order to further optimize the number of runs that this
would entail, we limited the number of values each parameter could
take to three instead of �ve as in the previous runs. Importantly,
since our goal was to maximize our chances of discovering non-
trivial interactions, we decided against allowing parameter values
which were known to be individually failure-inducing based on
the one-hop tests. However, we did include values that were close
to failure-inducing values in order to facilitate interesting �ight
behavior. Our feature model for the exhaustive trials is included in
Figure 6. Most of the non-leaf features are collapsed for readability.
(the full feature model is on our supplemental website). It consists
of 38 or 6,561 total con�gurations. While still small, it is larger than
previous exhaustive analyses.

Figure 7 summarizes the interactions between this set of param-
eters. This is a tree created by the R rpart package [35]. It uses
recursive partitioning. We also ran this data through the Weka
J48 algorithm [29] and the two trees agree at the top level, how-
ever the J48 tree is more complex, hence we chose to show this
version for understanding. It suggests that MC_PITCHRATE_P,
MC_PITCHRATE_K, and MC_PITCHRATE_D are the most in-
�uential features in this set. Interestingly, MC_PITCHRATE_P,
which controls the pitch rate proportional gain, appears to have
the greatest impact on �ight outcome. This is surprising be-
cause the formula for the global gain of the controller is scaled
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Figure 6: Feature model for pitch and roll consisting of 6,561 products

by MC_PITCHRATE_K, so it might be expected to have an ef-
fect as large as the MC_PITCHRATE_P, MC_PITCHRATE_I, and
MC_PITCHRATE_D parameters combined. However, we �nd that
this is not the case, and that MC_PITCHRATE_P has a more mean-
ingful impact on �ight success. This may be due to the speci�c
values in our feature model for the exhaustive set. Although all of
the values were known to be individually non-failure-inducing, the
range selected for MC_PITCHRATE_P might have included more
provocative values than the range for MC_PITCHRATE_K. It is
worth noting that the most in�uential parameters are all operating
at the rate controller level. This is likely explained by the fact that
the rate controller is the closest controller in the system to the
hardware, and has potential to interact with most other controllers
[12]. Therefore, they may have a strong e�ect on attitude control
parameter and ultimately on �ight behavior.
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Figure 7: E�ects of interactions between parameters in the
exhaustive set, where 1 represents success and 0 represents
failure. Parameters higher in the tree have a greater impact
on �ight success.

Ultimately, we found that the pattern of increasing interactions
leading to increasing numbers of failures continued. Nearly half of
all runs in the exhaustive trials failed (48%) as shown in the last row
of Table 2, which is even more striking given that all individually
failure-causing values were removed from this model. Had all such
values been included, the number of failures would have been even
higher (we have observed similar behavior in smaller exhaustive
sets which retain those values).

Interestingly, the rise in the percentage of failing takeo�s in the
exhaustive tests compared to the one- and two- hops was higher
than the rise in the overall failure rate. This may indicate that more
complex interactions, those with more parameters involved, are
more likely to lead to severe and immediate �ight failures which
prevent the drone from even being able to reach �ying altitude.

Summary of RQ3. We found that the number of failures was
higher (48%) in the exhaustive data set despite having removed
known failing one-hop values, and the complexity of interac-
tions was also apparent. We could not �nd any parameters
which always failed or failed with a simple 2-way interaction,
leading to complicated trees describing the behavior.

4.4 Discussion
Throughout this exploration we have observed several interesting
phenomenon that we believe can bene�t from a tighter integration
with product line engineering. First, the use of a feature model al-
lows us to perform systematic exploration and has identi�ed poten-
tial dependencies (or interactions) among parameters (and parame-
ter values) in this work, such as those between MC_PITCHRATE_P,
MC_ROLLRATE_P, andMC_ROLL_P. We believe we can then utilize
the learned information and add constraints and attributes back
to the feature model for improved documentation. Complex in-
teractions are important for drone operators to understand prior
to parameter tuning. They can have unexpected and sometimes
non-intuitive e�ects on �ight behavior, including both negative and
positive interactions, as highlighted in Section 2. Additionally, they
may also have applications in adaptation and failure prevention.

Additionally, research on drone adaptation [16, 27] has high-
lighted the importance of speed in adapting to failure-inducing
parameters. Faster response times can make the di�erence between
a successful recovery and a disastrous outcome. Therefore, in situ-
ations where a complex interaction between multiple parameters
is causing dangerous �ight behavior, it may be advantageous to
attempt a lightweight adaptation with one or two positively in-
teracting parameters instead of correcting all of the negatively
interacting parameters.

Second, documentation can be helpful to both developers as
well as operators who need to con�gure before takeo�. A tighter
integration between the human and the feature model would be
bene�cial. For instance, if we provided the operator with a prompt
�lling in themissing documentation (as they selected one parameter
and con�gured it), this could prevent potential crashes.

Last, we believe we can leverage the feature model for more
sophisticated testing, such as by guiding prioritization and selection
based on the importance of various slices of the model. We plan to
explore some of these ideas in future work.

5 RELATEDWORK
There has been work on exploring controller parameters for sUAS
in the past few years. Kim et al. presented RVFuzzer [19], a sys-
tem for discovering range implementation and speci�cation bugs
in robotic vehicles. RVFuzzer uses a binary search to re�ne valid
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parameter value ranges beyond those de�ned in documentation
based on a metric of �ight state deviation. However, it considers
a limited section of the relevant con�guration space and focuses
on preventing malicious parameter changes by attackers rather
than investigating parameter behavior in-depth for the bene�t of
operators. Purandare et al. proposed CICADA [27], an adaptation
framework for sUAS which investigates the impact of parameter
changes on �ight stability and introduces adaptation mechanisms
to counteract unstable �ight behavior. Although this work investi-
gates the impact of parameter changes and interactions between
parameters to some extent, it does not focus primarily on the behav-
ior of speci�c parameters and uses sampling techniques to cover the
con�guration space which lose interaction-related information. We
have incorporated all existing PX4 parameters from both RVFuzzer
and CICADA into our feature model.

In recent work, Cleland-Huang et al. [7] performed an exhaus-
tive exploration of a small subset of PX4’s con�guration space
consisting of four �ight control parameters and built classi�cation
trees to show the potential interactions. However, their product
line consisted of only 625 products and they did not perform an
in-depth analysis of the interactions. This subset of parameters is
also included in our feature model.

Han et al. introduced LGDFuzzer [14] and ICSEARCHER [13],
which use genetic algorithms to search for problematic con�gura-
tions in sUAS. They leverage a machine learning-based instability
predictor and multi-objective optimization to search for incorrect
parameter value ranges. However, these works do not systemati-
cally explore the parameter space or focus on the impact of speci�c
parameters in the system. Furthermore, their dependence on the
instability prediction model means that many complex and un-
predictable interactions in the vast con�guration space may be
overlooked. Similarly, Chang et al. [5] use a genetic algorithm-
based approach called APFuzzer to search for con�gurations that
send drones into incorrect states. APFuzzer is simulation-based, but
it is designed to �nd a diverse set of bad con�gurations in an e�-
cient manner, rather than investigating the behavior of any features
or interactions between them in depth. It does not systematically
explore a large number of con�gurations, and uses the Ardupilot
�ight control software [1] rather than PX4 in its implementation,
which has an entirely di�erent set of parameters.

Cleland-Huang et al. [6] proposed a requirements-based ap-
proach for creating a software product line of con�gurable sce-
narios for sUAS, and Islam et al. [15] present a software product
line con�guring drone missions. These, however, are concerned
with mission plans as the features in their system, and do not deal
with �ight control parameters. Khatiri et al. presented SURREALIST
[17] and AERIALIST [18], simulation-based test case generation
tools for sUAS. Given a �ight log as input, these tools are able to
replicate the �ight in a simulator and generate slightly modi�ed
test cases. The modi�cations made are primarily to the external
environment, especially by introducing obstacles in the �ight path.
These works do not evaluate �ight control parameters.

Last, there has been research on software product line engi-
neering in cyberphysical systems [10, 21] and the robotics domain
[3, 23, 31, 36], however, none of this work focuses on controllers.
Rather, they model other aspects of their respective systems.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we modeled part of the con�guration space of a �ight
control software as a product line and systematically explored
the e�ects of the features on sUAS �ight behavior. We studied
a product line consisting of 50 �ight control parameters in the
widely used PX4 software leading to 8.8 ⇥ 1034 con�gurations. We
�rst investigated individual features by performing a series of one-
hop tests, consisting of 200 con�gurations. Using a simulated test
mission, we identi�ed a set of 30 parameter values that induced
mission failure by preventing the drone from �ying as intended, and
compared our results to those presented in recent related works.

We continued our exploration with two-hop testing, in order to
determine the e�ects of interactions between features. We tested
19,600 con�gurations with this approach and discovered 7,814 fail-
ing con�gurations. We further found 2,530 con�gurations that in-
duced failure speci�cally due to negative interactions between pa-
rameters, and found 168 instances of positive interactions in which
one parameter mitigated the failure-causing e�ects of another pa-
rameter. The majority of these interactions were not captured by
the existing documentation of the system.

Finally, we performed an exhaustive exploration of a subset of
our feature model consisting of eight parameters, with three values
each. This test set consisted of 6,561 con�gurations, of which 3,194,
or nearly half, were discovered to be failure-inducing. We allowed
only values that did not fail in one-hop testing, which meant that
every failure we encountered was due to a negative interaction
between otherwise harmless parameter values. We also discovered
that in some special cases, positively interacting parameters were
able to mitigate failure-inducing behavior caused by negative inter-
actions between other parameters.

We believe that this exploration of the sUAS control parameter
product line can meaningfully bene�t drone operators. Miscon�gu-
rations of �ight control parameters are a commonly reported issue,
and enabling users to gain a better understanding of the system
can help prevent the occurrence of dangerous behaviors like in-
stability and crashing. By modeling this space as a product line,
we can discover not only the behavior of individual parameters
but also interactions between multiple parameters, both positive
and negative, which may have applications for research in sUAS
stability and con�guration-based adaptation.

In future work, we plan to expand our exhaustive exploration to
cover more parameters. We also want to incorporate more complex
tests into our experiments, including multiple missions and air-
frames, and to measure the impact of complexity of interactions in
greater depth.We further plan to design methods for tighter integra-
tion of software product line engineering and con�guring the sUAS
controller, using the feature model for advanced test generation,
and incorporate learned constraints into our model. We also plan
to explore the use of the feature model to help in documentation
for operator parameter tuning.
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