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ABSTRACT

Small Unmanned Aerial Systems (sUAS) must meet rigorous safety
standards when deployed in high-stress emergency response sce-
narios; however many reported accidents have involved humans
in the loop. In this paper, we, therefore, present the HiFuzz testing
framework, which uses fuzz testing to identify system vulnerabil-
ities associated with human interactions. HiFuzz includes three
distinct levels that progress from a low-cost, limited-fidelity, large-
scale, no-hazard environment, using fully simulated Proxy Human
Agents, via an intermediate level, where proxy humans are replaced
with real humans, to a high-stakes, high-cost, real-world environ-
ment. Through applying HiFuzz to an autonomous multi-sUAS
system-under-test, we show that each test level serves a unique
purpose in revealing vulnerabilities and making the system more
robust with respect to human mistakes. While HiFuzz is designed
for testing SUAS systems, we further discuss its potential for use in
other Cyber-Physical Systems.
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1 INTRODUCTION AND MOTIVATION

Small Unmanned Aerial Systems (sUAS) need to meet rigorous
safety requirements when deployed in high-stress emergency re-
sponse scenarios [27, 31]. However, the continual growth in sUAS
deployment increases the risk of major incidents. Furthermore, sev-
eral studies have reported that human “errors” have contributed
to 65% to 85% of reported accidents in Cyber-Physical Systems
(CPS) such as sUAS [19, 34, 41, 61]. We observed this phenomenon
firsthand during a test flight in the Spring of 2023 (cf. Figure 1),
when one of our autonomous sUAS breached a geofence, flew off its
designated flight path, and ascended to an altitude of 734 feet above
ground level (AGL) - far above the legal limit of 400 feet AGL. A
post-mortem analysis revealed a series of factors, including human-
related missteps, that contributed to the incident. The remote pilot
in charge (RPIC), who plays only a supervisory role under normal
conditions, failed to set appropriate geofence-breach actions prior
to the mission, placed the throttle in an incorrect position, lost situ-
ational awareness of the sUAS’ trajectory following the geofence
breach, and failed to take timely action when the sUAS started to
fly off-course. However, blaming the operator for these accidents is
very shortsighted.

Human-Centered Design (HCD) focuses on creating and val-
idating intuitive interfaces that are tailored to human cognitive
capabilities [26, 46] and, therefore, are designed to reduce human
error. However, in the emergent area of sUAS, any failure to antici-
pate and address normal human “mistakes” [17, 18] can eventually
lead to potentially dangerous incidents at critical moments of a
flight. A more systematic approach is therefore urgently needed
to detect and mitigate design weaknesses that make the system
vulnerable to human mistakes. In this paper, we propose human
interaction testing techniques designed to reveal aspects of the sys-
tem for which incorrect and unexpected human actions and inputs
can result in potentially hazardous system behavior [15, 27, 37].

We present the Human-machine Interaction Fuzz testing frame-
work named “HIFuzz”, where “HI” represents both human inter-
actions and the fact that sUAS fly at height. Fuzz is analogous
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(b) Flight replay showed that
the sUAS flew north at increas-
ing altitude after the geofence
breach.

(a) The SW corner of the mis-
sion intersected with the ge-
ofence; however no geofence-
action was set.
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(c) The RPIC must position the
throttle correctly in case in-
flight problems require human
control.

(d) Flight replay revealed that
the RPIC had incorrectly set the
throttle above neutral.

Figure 1: Due to a combination of mistakes, including ‘oper-
ator error’ by the Remote Pilot in Command, the sUAS flew
off-route and ascended to 734 feet AGL. Note: All required
regulatory reports were filed describing the incident.

to traditional fuzz testing, where inputs are iteratively mutated
and tested against the system to cover a large part of the behavior
(and/or the code base) of an application, in order to reveal soft-
ware defects and vulnerabilities [64]. Fuzz testing, also known as
fuzzing, has been applied across various domains in software and
system testing due to its effectiveness in uncovering vulnerabilities
and defects [22, 60]; however, to the best of our knowledge, it has
not previously been leveraged to probe for undesirable outcomes
associated with human interactions.

Our HIFuzz framework includes three distinct levels (L1, L2, L3)
progressing from a low-cost, limited-fidelity, large-scale, no-hazard
environment, with fully simulated Proxy Human Agents (L1), via
an intermediate level, where proxy humans are replaced with real
humans (L2), to a high-stakes, high-cost, real-world environment
(L3). Replacing the human with a proxy in level L1 allows us to
achieve fuzz-testing goals of rapid test coverage which would be
impossible if a human were in the loop. At the same time, engaging
humans in a small number of carefully selected tests at L2, allows
us to investigate the human’s situational awareness of the sUAS
flight behavior [17]. We can leverage this knowledge to identify ap-
propriate design mitigations in the form of alerts, explanations, and
even automated failsafe actions. Finally, level L3 further increases
test fidelity by repeating tests that have successfully passed level
L2, whilst introducing additional real-life stressors such as physical
safety concerns and environmental detractors such as the glare of
the sun, that are an inevitable part of field deployments.
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The levels are separated by two dedicated gateways. G1 resides
between L1 and L2 and is responsible for down-selecting an ap-
propriate set of tests to be executed in L2; while G2 represents a
significant safety gateway in which standard safety assurance pro-
cesses are followed, and hard decisions are made about executing
HIFuzz tests in the real world. Our tests are supported by tools for
generating and executing the Fuzz Tests. For example, in the case
of levels L2 and L3, where real humans participate in the tests, we
have developed a mobile app to interactively guide users through
the actions they need to perform during test execution.

Our HIFuzz framework makes three key research contributions.
First, it presents a novel and systematic approach for human-interaction
testing, aimed at detecting, analyzing, and mitigating previously un-
known hazards associated with human-sUAS interactions. Second,
while Fuzz Testing has been commonly used for software and sys-
tems tests, to the best of our knowledge it has not previously been
used for human-interaction testing. HiFuzz, therefore, makes a novel
contribution, improving system robustness at the intersection of
Human-Computer Interaction and Software Testing. Third, we con-
duct an in-depth analysis of HIFuzz applied to our own multi-sUAS
system, and a preliminary analysis of its generalizability across
additional CPS. Results reported in this paper show that HIFuzz
reveals system vulnerabilities associated with human interactions,
potentially leading to their mitigation and improved design solu-
tions, and that all three test levels play a unique role in the testing
process.

The remainder of the paper is structured as follows. Section 2
describes related work. Section 3 explains how an individual fuzz
test is specified, and Section 4 describes the various test levels and
gateways. Sections 5 and 6 describe experiments we conducted by
applying HIFuzz to a multi-sUAS system and provide a comprehen-
sive discussion of the results. Finally, Section 7 discusses limitations
of our work, and Section 8 draws conclusions.

2 RELATED WORK

In this section we discuss related work associated with human-
centered design of CPS, fuzz-testing, human error and interaction
in sUAS operations, and human interaction testing methodologies.
Based on this prior work we argue that fuzz-testing can be an
effective strategy for uncovering human-interaction vulnerabilities
in the complex and dynamic CPS domains.

2.1 Human Error in sUAS Operations

Herdel et al. [27] conducted a comprehensive study focusing on
over 100 applications across 16 diverse domains including emer-
gency response and surveillance. They identified several research
challenges pertaining to human-drone interactions, including one
directly related to our work, addressing different ways in which
people interact with sUAS to perform complex tasks. We address
this issue through systematically testing outcomes of expected and
unexpected human inputs for diverse tasks.

Rakotonarivo et al. [54] conducted interviews with drone opera-
tors, safety consultants, and regulators to identify operational risks
and challenges when operating sUAS. One of their key recommen-
dations was to “Support exploration of operational parameters and
estimate their impact on mission safety” in order to allow “operators
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to explore options that could simplify their procedures”. Our multi-
level HIFuzz process is designed to identify and mitigate potential
safety issues before they arise in field testing, or worst-case, during
live mission execution. It supports the systematic testing of diverse
mission parameters and tasks and generates respective reports and
documentation as inputs for subsequent safety analysis.

Balot et al. [4] have collected a set of challenges associated with
sUAS operations, related to HMIs, command and control, and man-
agement of sUAS operations. They argue that SUAS HMIs “should
be designed to take best advantage of human performance capabili-
ties”, to “[...] promote safety of flight operations”. While efforts have
been taken to increase safety of SUAS operations [42], complex oper-
ational environments require thorough testing. This challenge was
further investigated by Mccarley and Wickens [39] who proposed
rules guiding levels of automation for different flight phases and
operations and investigated different forms of control interfaces.
With HIFuzz, we focus on this intersection in both simulated and
real-world environments, by providing a thorough and structured
multi-level testing framework.

2.2 Formal Methods for User Interaction Testing

Several researchers have used formal methods to make mathemati-
cal claims about the correctness of the system with respect to user
interactions, using a formal language such as temporal logic, a state
machine, or process algebra [7, 14]. Diverse aspects of the system
are modeled including expected outputs for given inputs, timing
constraints, error handling requirements, the sequence of user in-
teractions allowed by the UL underlying state transitions, data flow
and finally expected user behavior, including potential misuse or
unexpected interactions [45, 50]. Formal verification techniques,
such as model checking or theorem proving are then used to mathe-
matically prove that the Ul model satisfies the formal specifications,
and meets the initially stated requirements and intended use cases.
Formal models can also be used to generate test cases. For exam-
ple, Bolton et al. [8] conducted a review on formal approaches in
human-automation interaction. They showed that formal methods
help to uncover potential shortcomings in human automation inter-
faces, and are useful for diagnosing human-related system failures.
However, formal methods are only as good as the assumptions
made during the specification and modeling process. In particular
the models of expected user interactions including misuse cases,
in an emergent area, such as sUAS are unlikely to be complete or
correct. HIFuzz takes a somewhat orthogonal approach to formal
methods, in that it assumes that the system is flawed, and probes
the system to unearth these flaws.

2.3 Fuzz Testing in Software Engineering

In the more general area of systems engineering, fuzz testing has
emerged as an effective approach for testing large search spaces
exhibiting high degrees of uncertainty (e.g., environmental fac-
tors) [11, 62]. The majority of fuzzing techniques are greybox (us-
ing code-guided metrics to diversify coverage of program paths
in the code) [5, 6, 20, 47, 49]; however, scenario-based approaches, as

adopted by HIFuzz, represent an alternative approach for specification-

based fuzzing [11, 24, 58]. Fuzzing has been used effectively within
the CPS domain. For example, Kim et al. [33] developed RVFuzzer
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to detect input validation bugs in robotic vehicle control programs
including sUAS applications. However, they focused on detecting
low-level controller malfunctions by monitoring vehicle control
states. Similarly, Kim et al. [32] created PGFUZZ, a policy-based
fuzzing framework for robotic vehicles, and focused on safety and
functional policies with respect to user inputs, configuration pa-
rameters, and physical sUAS states. While they explicitly included
user inputs and commands, they did not provide a comprehensive
multi-level testing framework supported by safety analysis as used
in HIFuzz. Finally, Han et al. [25] proposed a grey-box-based fuzzing
framework for detecting incorrect configurations in sUAS flight
controllers. Their LGDFuzzer combined fuzzing with a genetic al-
gorithm to detect potentially incorrect configurations and to test
them in simulation, but did not consider human-related actions or
real-world physical testing.

3 DEFINING AN INDIVIDUAL HIFUZZ TEST

Each individual HIFuzz test focuses upon a human-interaction task
that is conducted within a specific context. In this section, we
therefore describe the elements and properties used to define an
individual test.

3.1 Test Setup: Actors, Props, and Environment

Roles: Each human enacted task is assigned to a specific role such
as a Remote Pilot in Command (RPIC), Observer (OBS), Mission Com-
mander (MC), or Safety Officer (SO). We define R as the set of roles
represented by R = {ry,ra,r3,...,ri}, and assumed by either a
human or proxy-human depending on the current test level.

Interaction Devices: Humans perform a task using an interface
device such as the radio control transmitter (RC), a GUI supported
by a keyboard, mouse, and/or joystick, or another type of haptic
device [10, 38, 43, 63]. We define Ul as the set of all available user
interfaces, represented as Ul = {uiy, uiz, uis, ..., uij}.

Drones and their Configurations: Tests can specify a specific
drone or set of drones. Note that we utilize the word “drone”, to
emphasize the actual vehicle and its onboard flight controller, ver-
sus the complete software system. Inconsistencies across drones
can cause accidents when their behavior fails to meet the human’s
current mental model [18]. We therefore define D as the set of
drones, represented as D = {d;,d2,ds, ..., d;}. Further, each drone
in D can be configured by the user prior to flight — for example,
by setting a geofence around the drone or assigning it a unique
RTL (return to launch) flight altitude. We define P as a set of con-
figurable parameters for an sUAS given by P = {p1, p2, p3,..., pm};
however, low-level parameter configuration, that normally occurs
when tuning the flight-controller [25] is out of scope of this paper,
and we assume that each drone has been adequately tuned and is
flight-worthy. Parameters of interest are therefore limited to those
exposed to the operator through interfaces (e.g., GUI screens) and
therefore accessible during pre-flight setup.

Simulation Environment: Finally, for Level L1 and L2 tests, de-
pending upon the simulation environment used, we can directly
configure elements such as wind. We define E as a set of config-
urable environmental parameters given by E = {e, ez, €3,...,en}.



CHI ’24, May 11-16, 2024, Honolulu, HI, USA

3.2 HIFuzz Scripts

Humans (serving in a specific role) enact a human-interaction task
(HIT) in the context of an sUAS mission. Further, they execute
the HIT when the sUAS and/or mission is in a specific state. For
example, the RPIC might be asked to perform the action of switching
to posITION mode when the drone is FLYING in OFFBOARD mode.
This leads to the following specifications.

Missions: A mission represents the flight plans and other tasks
that one or more sUAS will execute to provide context for the test.
We define MSN as the set of available missions, represented as
MSN = {mq,mz,ms, .. .,mq}.

Human Interaction Task (HIT): There are two types of HIT that a
human will perform during a test. First, the human could provide
input to an individual sUAS through a hardware device such as
the RC - for example, by increasing the throttle, holding down the
kill switch, or switching between modes. Second, the human could
send a command to one or more sUAS via a GUI - for example,
issuing a global RTL command. We define HIT as the ordered set
of interaction tasks performed by a user, represented as HIT =
{hity, hity, hits, .. ., hit, }.

However, CPS behavior is impacted by the current state of the
system. Therefore, each HIT has an associated set of preconditions
that also need to be defined. These preconditions are based on
MODES, FLIGHT LIFE-CYCLE STATES, and CONFIGURATIONS. Modes
are used by almost every flight controller to support common flight
tasks such as TAKE-OFF and LOITER, and to provide various degrees
of flight stability (e.g., STABILIZED and POSITION-HOLD) [3, 52]. We
define M as the set of flight modes, givenby M = {m1, mg, ms, ..., ms}
where each mode m; in M is reachable in the SuT. We also define
S as a set of flight life-cycle states such as taking-off, flying, and
landing, given by S = {s1, 2,3, ...,5¢}. A drone can only be in one
mode and one state at any time. Finally, we define configurations
as the value assigned to any underlying parameter defined earlier
as P. Each HIT includes a mode and life-cycle precondition, and
can optionally define a set of configuration parameters that serve
as preconditions. Further, the precondition state must be reachable
in at least one of the defined missions in order for any subsequent
HIFuzz test to be valid.

3.3 Defining the HIFuzz Test

Based on these definitions, we can now specify an individual HIFuzz
test in a way that is sufficiently formal for automating test execution,
but also readable to humans who serve as participants in the testing
process. We utilize JSON to represent each test as shown in Listing
1. The test definition includes the mission, environmental factors,
roles, the locally sequenced HITS, and preconditions performed by
each role using a specific interaction device and drone. The HIFuzz
fuzzing engine ultimately uses these specifications to generate
diverse combinations of properties, and the HIFuzz Test Runner
uses it to deploy the test, monitor its progress, and to generate test
prompts that are sent to the mobile app.

3.4 Test Outcome

Each fuzz test is ultimately executed within the HIFuzz platform,
and its outcome is evaluated across two different dimensions — first

5
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{
"Mission": "BASIC-WAYPOINTS",
"Environment": {
"Wind": {
"SPEED": "2@QKTS",
"DIRECTION": "NORTH"
}
3,
"Roles": [
{
"Role": "RPIC",
"HITS": [
{
"Ip":. "1",
"Drones": ["GREEN"],
"Task": "MOVE THROTTLE TO +1",
"Mode": "OFFBOARD",
"State": "TAKING-OFF"
3,
{
"Ip":. "2"
"Drones": ["GREEN"T,
"Task": "SET MODE TO STABILIZED",
"Mode": "OFFBOARD",
"State": "FLYING"
}
1,
"Interaction_Device": "RC TRANSMITTER"
3,
{
"Role": "MC",
"HITS": [
{
"Ip": "1"
"Drones": ["GREEN"T],
"Task": "PRESS RTL BUTTON",
"Mode": "STABILIZED",
"State": "FLYING"
3
1,
"Interaction_Device": "GUI"
}
1
3

Listing 1: In this example test, each of two roles is assigned
specific actions to perform.

to determine if the test was valid or invalid, and second to determine
if valid tests passed or failed. An invalid test fails to execute the full
sequence of HITS, typically because preconditions for one or more
of the HITS are never met. The outcome of valid tests is assessed as
passed or failed based on mission completion and mission adherence
criteria.

4 HIFUZZ TEST LEVELS AND GATEWAYS

The HIFuzz process involves three testing stages (L1-L3) separated
by two gateways (G1, G2), each of which serves a unique purpose
(cf. Figure 2). Individual tests are executed at each stage, however,
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Figure 2: The HIFuzz framework supports tests at all three levels. L1 operates fully in a simulated environment with support
from a fuzzer and a proxy human agent. L2 operates with real humans in an otherwise simulated environment, and L3 operates

in the physical world.

the way they are executed, the role of human stakeholders, and
the safety analysis that is performed prior to test execution differ
greatly across stages. In this section, we therefore describe each
stage and gateway.

4.1 Level L1: Large scale, simulated, fuzzing

The goal of L1 is to execute a large number of tests, as quickly
as possible, without any of the risks involved in real-world sUAS
flights. Therefore, L1 tests are run in the simulator using proxy
human agents instead of humans. In the physical world, humans in-
teract with sUAS via hardware devices, such as RC transmitters, and
their inputs are encoded into radio signals transmitted to the flight
controller and transformed into flight commands (e.g., throttle, yaw,
pitch, and roll adjustments, or mode changes). These inputs can
be simulated through software-based, low-level function calls to
the flight controller. Humans also interact with sUAS via GUIs, and
these interactions can be simulated if the SuT exposes its API func-
tion calls. Utilizing these techniques, L1 is able to simulate human
interactions (i.e., HITS) entirely in software, enabling thousands
of fuzz tests to be run in a low-cost, low-effort, non-hazardous
environment.

The L1 process starts with a planning task in which the HI-
Fuzz tester specifies the test features that constitute the fuzz space.
As described in 3, these include roles, interaction devices, drones,
environmental factors, missions, and HITs. The HIFuzz fuzzer then
uses this specification to automatically generate combinations of
the defined properties and input values constrained by specific sce-
narios of interest. The Test Runner iterates through the generated

tests, invoking the mission in the simulation environment, moni-
toring the runtime state of each drone, checking for precondition
states, and delegating HITs to the Proxy Human Agent when pre-
condition states have been reached. The proxy mimics human input
by replacing radio signals normally sent by the RC Transmitter,
with MavROS manual control messages to simulate various switch
changes and button presses for mode changes, throttle adjustments,
and the kill switch. Results from each individual test are evaluated
to determine if the test passed, failed, or was untested if the sUAS
completed its mission without the preconditions ever being met.
All passed and failed outcomes are passed to Gateway G1.

L1 requires a simulation environment that accepts and executes
a mission request — potentially involving multiple drones, reports
the progress of each drone throughout the mission, reports error
messages, and produces a readable flight log at the end of each
flight. Common examples of simulation environments that can be
used to meet these requirements are Gazebo [48], JMAVSim [51],
and AirSim [56].

4.2 Gateway G1: Downselecting for
Human-in-the-Loop Tests

G1 serves as a gateway between levels L1 and L2, and is responsible
for selecting tests to be passed to L2. Its inputs are the tests and
results from L1. It clusters these tests to identify groupings of similar
inputs and outcomes, in order to guide the L2 test selection process.
The number of clusters is based on budgeted L2 testing time or based
on a standard approach such as the “elbow-approach” which looks
for the sweet spot in terms of coupling and cohesion of clusters [59].
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Typically, one or two representative tests are selected from each
cluster for execution at level L2.

4.3 Level L2: Humans in Simulated
Environment

L2 tests are executed in the same simulation environment, how-
ever, humans replace the proxy agents, and interact with the sUAS
through hardware devices (e.g., RC transmitters) and GUIs used in
physical deployments. As explained earlier, Level L2 is designed to
provide higher degrees of fidelity than L1, while operating within a
completely safe testing environment; however, it introduces higher
testing costs with respect to human time and effort. By integrating
humans into the testing environment, L2 allows us to issue com-
mands directly from the RC transmitter used in the field, providing
increased fidelity of user inputs, and allowing direct observation
of the sUAS behavior by human operators. Intuitively, Level L2
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is needed to (1) execute a subset of interesting tests in a higher-
fidelity environment, (2) to elicit feedback from humans about any
failures that occurred in order to better understand their impact
upon human operators, and ultimately (3) to evaluate the efficacy
of user-facing mitigations, such as warnings or recommendations.

From a practical perspective, humans need help in determining
when to perform a HIT, as many of the HIT’s precondition states
are internal, and not readily visible to human observers. HIFuzz,
therefore, provides a mobile app responsible for generating timely
prompts. In order to minimize unnecessary mental overload of
processing and responding to prompts, the Mobile App is designed
with a simple GUI which gives the user planning time as well
as clear instructions on what actions to perform. We designed
and implemented the mobile app following principles of human-
centered design, and our two test participants reported that it was
intuitive and gave them clear and timely directions. However, a full
assessment of the mobile app is outside the scope of this paper, and
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Figure 3: HIFuzz Prompts are shared with human test participants via a mobile app. Here we show the design of the tester’s
precheck screen (1), followed by a series of prompts shared with the RPIC (2a-h), and MC (3) roles respectively. Figures represent
the design which was fully implemented and deployed using React-Native.
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we therefore present it as a supporting tool rather than a primary
contribution of this work.

A set of sample screens are depicted in Figure 3. The screens
include preflight instructions and preparation (1, 2a, 3), a sequence
of prompts that guide the RPIC (or other tester) through a sequence
of tasks (2b-2f), and a series of post-test questions concerning the
situational awareness of the operator (2g, 2h). We only engage
trained personnel in these tests, with the expectation (as required
by regulations) that all participants are fully trained in their roles
and know which switches and knobs to manipulate in order to
execute the intended task.

4.4 Gateway G2: Safety Assessment and
Mitigation

While Test levels L1 and L2 seek to safely explore mission-breaking
human-interaction faults that potentially cause erratic SUAS be-
havior, such as crashes and flight deviations, level L3’s real-world
deployment means that failures are potentially hazardous and costly.
Therefore, Gateway G2 serves as a safety gateway that ensures
that each failed test from L2 is carefully assessed to determine if
mitigations are needed, and that all tests deployed on the field with
physical sUAS have undergone a rigorous hazard analysis with all
identified hazards sufficiently mitigated. The aim is to (1) assess
human-interaction vulnerabilities and flaws identified in levels L1
and L2, (2) mitigate them, (3) repeat level L2 tests to demonstrate
that they have been successfully mitigated, and only then (4) pro-
ceed to level L3 tests. HIFuzz does not dictate how the safety assess-
ment should be performed as long as the process assesses hazards as-
sociated with each test case, e.g., using Fault-Tree Analysis (FTA) or
Failure Mode Effect Criticality Analysis (FMEA/FMECA) [36, 55, 57],
evaluates mitigations to determine whether the risk has been sat-
isfactorily addressed, and when needed, provides a semi-formal
safety case, e.g., a Safety Assurance Case (SAC) that includes guide-
lines targeted at the human participants describing how field tests
can be conducted safely.

4.5 Level L3: Field Testing with
humans-in-the-loop

The goal at level L3 is to validate that all tests that have previously
produced a failed L2 outcome have been demonstrably mitigated.
Intuitively, real-world tests are essential for two reasons. First,
certain types of failures (especially race conditions) may only occur
in the real world, and second, the human experience is different in
the physical world than in simulation. For example, our own sUAS
system was plagued for several months by a random take-off bug
that appeared approximately once in every seven take-offs in the
real world, but never in the simulator. Therefore, while simulations
reveal many potential failures, real-world testing is essential for
demonstrating that tests which executed successfully in simulation
will also perform safely and correctly in the physical world.

4.6 Assessing Test Outcomes

HIFuzz utilizes an ensemble of test oracles and techniques to deter-
mine whether each flight has been executed correctly. These include
analyzing runtime alerts generated by the flight controller and our
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own software system, reviewing mission logs, and considering hu-
man feedback received via the mobile app. For the log analysis,
we establish a “blueprint” representing an ideal mission outcome,
and then use it as a point of comparison to measure deviation in
the flight logs for each test. For each position timestamp in the
blueprint we compute the distance to the nearest sUAS position
in the current test log across the x, y, and z axes, and record the
largest distance as the maximum observed deviation of the current
log from the blueprint. We also extract other features from each
log, such as the maximum altitude, the duration of the flight, the
occurrence of free-falls, the final landing state, and the reported
mission status throughout each mission.

5 EXPERIMENTATION: HIFUZZ APPLIED TO
DRONERESPONSE SYSTEM

We evaluated HIFuzz using a multi-sUAS system that we have
developed and deployed in the real world as the System-under-
Test. Our evaluation focuses upon the outcomes of HIFuzz rather
than on the tools we have developed (i.e., the Mobile App), or the
safety assessment (i.e., based on standard FMECA). We address
three research questions.

RQ1: What kinds of human-interaction vulnerabilities were identi-
fied using the HIFuzz process?
This question investigates the types of vulnerabilities de-
tected using HIFuzz.

RQ2: Did each of the three test levels play a unique role in identifying
human-related systems vulnerabilities?
This question explores the efficacy of the three test levels
versus the additional costs of human-in-the-loop testing.

RQ3: Is HIFuzz generalizable across other human-intensive CPS ap-
plications?
This question takes a preliminary look at the generalizability
of HIFuzz to other domains.

The experiments described in this section were all executed in
our HIFuzz platform.

5.1 System under Test: DroneResponse

DroneResponse is a distributed multi-user, multi-sUAS system, de-
signed to support search-and-rescue, aerial data collection, and
surveillance activities [2, 12, 28]. Each sUAS is equipped with an
Onboard Autonomous Pilot (OAP) organized around a state machine
which is dynamically configured for each mission. States support
specific SUAS tasks such as takeoff, search, or fly-to-waypoint and
vary greatly in complexity. For example, in the takeoff state the
sUAS ascends to a predefined altitude and then transitions to a sub-
sequent state such as fly-to-waypoint; while a search state utilizes
Al-based computer vision capabilities to detect objects and make
intelligent decisions, such as to track a person. A Ground Control
Station (GCS) utilizes the MQTT message broker [40] to coordinate
system-level communication between sUAS, humans, and micro-
services by publishing messages over a mesh radio. Status data
(e.g., GPS location, battery, health) and task progress updates (e.g.,
current task, potential adaptations), are continually published by
sUAS to support monitoring, analysis, and planning. Under normal
operating conditions, humans set goals and send mission plans
via GUI-based front-end clients; however, they can also directly
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issue commands via RC Transmitters. A video of the DroneResponse
system is available online.!

5.2 Scenario-Based Fuzz Tests

We adopted a scenario-based approach to test specific parts of the
system. To select appropriate scenarios, we browsed through 272
issues (dated from 07/24/21 to 08/31/23) reported in the DroneRe-
sponse GitHub repository to identify incident reports associated
with human-related incidents at the field (e.g., see Figure 4). We
selected two incidents as depicted in Figure 5.

Github Issue #271: Posted by: murphym18, 08/03/2023

On August 3, during a flight test at peppermint field, a near-crash
incident occurred that exposed a safety issue in our current mission
format. Right now we specify the altitude as meters above sea level.
But due to several unlucky coincidences, on Aug 3rd the flight con-
troller ended up with an incorrect altitude reading.

When the drone was flying home, it ended up flying to a waypoint
that was alarmingly close to the ground. This required immediate
intervention by the Remote Pilot in Command (Jane). The incident
was not only intense and risky but could have resulted in significant
damage.

Figure 4: An issue posted to Github describing a human-
interaction incident, where the RPIC was forced to take con-
trol due to an altitude anomaly on the drone.

5.3 Modeling the test space

We defined relevant properties as described in Section 3. For exam-
ple, to test Scenario 1, we created a flight route that intersected a
geofence. We defined the search space as all reachable modes and
states, one drone (BLUE), one human role (RPIC), two types of wind,
several properties associated with geofence settings, and several
throttle settings. For all additional flight controller parameters, we
accepted values defined during the drone’s prior configuration pro-
cess. Finally, we included three human actions (HITs) to (a) change
mode, (b) adjust the throttle position, and (3) kill the motors (essen-
tial in case of dire emergencies or for failed takeoffs). This resulted
in a test space of approximately 160,524 test configurations. We
then systematically generated combinations of these properties and
human actions (as explained in 3) and fuzzed the exact timing at
which each action was to be executed once all test properties were
satisfied. Finally, we created a simple flight test involving one drone
taking off, flying to two waypoints, and returning home.

5.4 Applying HIFuzz to DroneResponse

We executed all levels (L1 - L3) and gateways (G1, G2) for the
planned scenario-based fuzzing of the DroneResponse system with
the following setup.

IDroneResponse demo: https://youtu.be/DyKqxkesgg0?si=2fVD1PNFpavYDI2y
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4. RPIC eventually
7 recalls drone via
— ~ | RTL Batteryis low,
but sufficient for the
long return to
launch.
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2. Throttle =
=® — manually set just
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1. Geofence breached.
Drone switched from
offboard to stabilized

mode. No geofence
action was set.

Stabilized

(a) The drone hit the geofence with no geofence actions set and
switched to stabilized mode. It then ascended rapidly and flew North.
The RPIC had accidentally set the throttle just above neutral at the
start of the flight. Fuzz tests explored various geofence breaches with
diverse geofence actions, sUAS modes, and throttle positions.

2. RPIC took control by switching to

STABILIZED mode with throttle left in
DOWN position.

1. Drone takes-off in
OFFBOARD mode and
commences its mission.

3. In stabilized mode with
no trajectory or external
forces (such as wind), the
drone will hold its position if
RC control sticks are in
central positions. However,
major oscillations eccur
when the RIPC switches to
STABILIZED with the drone
in motion.

(b) The RPIC took control of the drone by switching to STABILIZED
mode with the throttle down. The drone oscillated as it attempted
to stabilize and had a hard landing. Fuzz tests explored scenarios in
which control was ceded to the RPIC whilst the sUAS was in various
states and diverse throttle positions.

Figure 5: Two scenarios were selected in which human inter-
actions were associated with flight failures. These scenarios
were used in our experiments to drive scenario-based Fuzz
Testing,.

5.4.1 L1 Tests: We ran 700 L1 tests based on various combinations
of properties from Table 1. Each test result was flagged with out-
comes including the maximum altitude reached, flight duration,
landed state, and mission completion. Any test exhibiting excessive


https://youtu.be/DyKqxkesgg0?si=2fVD1PNFpavYDI2y

HIFuzz: Human Interaction Fuzzing for Small
Unmanned Aerial Vehicles

CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Table 1: Actual specification of the HIFuzz fuzzing space used for experimentation purposes. Legend: blue=initial states and
modes, yellow=configuration settings, orange=drones, green=human tasks. For Level L1 we only utilize the RPIC role and BLUE
drone. Further Geofence Pred = ‘On’ = Geofence_stat="On’ AND Geofence_  ACT = Geofence_Stat=‘On’. This combination of
features produced a test space of approximately 160,524 tests assuming no additional fuzzing around the precise timing of each

test.
Modes States Throttle POS Wind Geofence Act.|| Roles Human Tasks
ALTCTRL Pre-arm| | Maximum HIGH | |Medium Northerly 0: None RPIC CHANGE-MODE
POSCTRL Arm Medium HIGH High Northerly 1: Warning MOVE-THROTTLE
OFFBOARD | | Takeoff | | Just above neutral 2: Hold mode KILL-MOTORS
STABILIZED Fly Neutral Geofence Stat. | |3: Return mode
AUTO.LOITER | | Hover | |Just below neutral On/Off 4: Terminate Drones
AUTO.RTL Land Medium LOW 5: Land mode BLUE
AUTO.LAND Maximum LOW || Geofence Pred.
On/Off

altitudes, duration, excessively fast landing, or failure to complete
the mission with final disarm, was labeled as “Abnormal”.

5.4.2 G1 Gateway: All tests in the profile were clustered using
Within-Cluster Sum of Squares (WCSS), using the elbow method
to determine the number of clusters to be generated [35]. This ulti-
mately resulted in nine unique clusters which were used as a guide
to search for interesting test cases to pass to L2. For clusters contain-
ing at least one abnormal test outcome, we selected the abnormal
test case that was closest to the centroid. We then inspected the
profiles of tests close to the boundaries of each cluster in order to
identify interesting edge cases. This task took approximately one
hour and resulted in the selection of 29 tests to pass to L2.

54.3 L2 Tests: Two researchers from our team executed all of the
selected tests in the L2 simulation environment using a FrSky XD9
Plus Taranis Radio Handheld Controller [23]. The tester was respon-
sible for the test setup, including launching the test runner, while
the RPIC followed instructions displayed on the Mobile App, to
conduct the planned human task at the correct stage of the mission.
For each executed test, we preserved the flight logs, uploaded them
into the PX4 flight log evaluation platform [53], then inspected the
replayed flight log, logged messages, and graphs extracted from
flight log data to further evaluate the flight outcomes. Figure 6
shows (a) the intended flight path of each test, (b) an actual flight
path from one of the tests, and (c) one of the flight log data plots
used to analyze the outcomes of a specific test. In this case, the
RPIC switched modes to STABILIZED (as directed by the test runner)
whilst the sUAS was flying in oFFBOARD mode. Due to the current
trajectory and momentum of the sUAS, the sUAS continued its
upward trajectory, ultimately reaching a height of 377 meters and
a distance of over 550 meters. The tester ultimately issued a LAND
command to force an end to the mission.

544 G2Gateway: Two flight tests entered the G2 gateway during
the course of our study. We leveraged our existing safety analysis
process to assess safety risks associated with executing them in
the physical world, and constructed a safety case using the Goal
Structuring Notation (GSN) [30]. Once the tests were deemed safe
to deploy we placed them into the field-test backlog. Due to space
constraints, and the fact that the safety analysis process follows
standard assurance practices, a deeper discussion on this gateway

is out of scope of the paper. When necessary, additional tests were
written to validate specific mitigations.

5.4.5 L3 Tests: So far, we have only executed one L3 test in the field,
which successfully validated that a previously revealed vulnerability
from L1 and L2 had been successfully mitigated. We discuss this
particular L3 test in Section 6. Other identified mitigations are
currently backlogged in our development pipeline.

6 ANALYSIS OF RESULTS

We now discuss the results from our experiment with respect to
each of the research questions.

6.1 RQ1: What kinds of human-interaction
vulnerabilities were identified using the
HIFuzz process?

To address this question we conducted a systematic inductive analy-
sis of the L2 test results. As a first step, the four reviewers carefully
analyzed each test case outcome, and marked the test as acceptable
or problematic, where an acceptable test outcome was deemed to
be one in which no problems were observed, and a problematic
one included at least one undesirable outcome. All four reviewers
agreed that nine cases were problematic and eight were acceptable;
however, they held differing opinions on the remaining 12 and
therefore engaged in discussions in order to reach consensus. For
example, there were three tests in which the RPIC pressed the kill
switch to kill motors, but all three had different outcomes. In one
case, the sUAS landed immediately (desired behavior), in one case it
performed an RTL (return to launch), and in a final case, it entered
a tug-of-war with the sUAS’ autonomous pilot and had a rather
spectacular crash landing. Only the third test’s outcome might be
considered ‘bad’, but in fact, the second case also was problematic
as the observed behavior differed from expected. It was therefore
also labeled as problematic. These kinds of nuanced analyses are
a known issue in Fuzz Testing — where initial flags (passed/failed)
tend to be rather coarsely applied. Based on discussion between the
four researchers, 10 tests were ultimately classified as acceptable
(i.e., false positives selected at gateway G2), and 19 as problematic.
Each assessor also assigned a tag describing the problem from
the human-interaction perspective. One researcher performed an
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Figure 6: In this case the RPIC switched modes to sTABILIZED whilst the sUAS was flying in oFFBOARD mode. Due to the current
trajectory and momentum of the sUAS, it continued its upward trajectory, ultimately reaching a height of 377 meters and a
distance of over 550 meters. Ultimately, the TESTER issued a LAND command to force an end to the mission. To minimize
human errors caused by untimely mode-switches to sSTABILIZED, we can move the stabilized switch to a less prominent position,
and add monitors to recognize if the drone is in ’free flight’ due to a sudden switch to STABILIZE mode.

initial card-sorting exercise on these tags to create named clusters,
producing eight candidate groupings of human-interaction vulner-
ability types. All four researchers then reviewed these groupings
and discussed them in an online meeting. Following the discussion,
six of the candidate groupings were retained (labeled 1-6 in Table
2), two groupings (fly-away and failure to land) were removed as
they represented flight observations rather than human-interaction
behaviors, and two additional categories were added (labeled 7-8
in Table 2). Table 2 lists the number of failed tests by vulnerability
types.

Some of the most common user interface design problems in CPS
are related to poor Situational Awareness (SA), impacting the ability
of users to perceive, understand, and to make effective decisions
[18]. These problems are documented as SA demons by Endsley
[17] with three additional ones identified by Agrawal et al. [2], as
listed in Table 2. To gain deeper insights into the underlying design
flaws we mapped each vulnerability to one or more relevant SA
demon, and then leveraged these mappings as a useful resource for
identifying meaningful mitigations.

Here we describe one type of human-interaction vulnerability
associated with incorrect stick positioning (See Case #1 from Table
2) as observed in five of the 29 test outcomes. Two of these cases
involved incorrect throttle positions which is problematic if and
when a human operator assumes manual control of the drone dur-
ing flight. The problem originated from the default behavior of PX4
flight controllers, which requires the throttle to be fully down for
arming. This behavior conflicts with the need for the throttle to be
in the neutral position when the operator takes control so that the
drone doesn’t immediately crash land. We originally compensated
for this problem by requiring the RPIC to move the throttle to the
neutral position during takeoff in preparation for any later emer-
gency. However, this created a stressful burden on the RPIC during
a multi-sUAS takeoff. Our mappings to SA Demons associated the
vulnerability with WAFOS (Workload, Anxiety, Fatigue, and Other
Stressors) and MUI (transition failures across multiple interfaces)
design demons. After gaining an understanding of the problem,

we reprogrammed the takeoff routine to allow take-offs with the
throttle in the neutral position thereby eliminating the previously
required, error-prone human task. We also designed new alerts to
warn the RPIC when the throttle was placed or left in a non-neutral
position following takeoff.

Table 2 depicts several other types of vulnerabilities that we iden-
tified through the inductive analysis. HIE-1 and HIE-2 represented
cases in which failures repeatedly occurred due to expectations
placed upon the human operators at high-pressure points in the
timeline. Both were mitigated through automation thereby relieving
humans from these high-stress, error-prone activities. HIE-3 and
HIE-4 both revealed previously unknown vulnerabilities. In HIE-3,
the onboard autonomous pilot failed to recognize human interven-
tions, thereby creating a tug-of-war between the human and the
drone, leading to bizarre and unsafe flights; while in HIE-4, tests
showed that the RC transmitter mappings included the ability for
the operator to manually switch to offboard mode, meaning that
the vehicle would no longer respond to commands from the RC
transmitter. The remaining issues were all associated with loss of
situational awareness related to a mode change. Brief descriptions
are provided in Table 2.

6.1.1 Types of Vulnerabilities. Based on this analysis we can an-
swer RQ1. The types of human-interaction vulnerabilities identified
by HIFuzz covered diverse areas of the system design. They included
unrealistic expectations placed on operators to perform tasks under
time pressure, affordances that allowed human operators to per-
form actions that they should not be able to do, and missing alerts
that meant that operators often lost situational awareness. Further-
more, we found two cases (HIE-3 and HIE-4), which were entirely
unanticipated vulnerabilities associated with human actions. In the
case of HIE-3, the tug-of-war detected by HIFuzz was very similar
to the root cause of Lion Air Flight 610 and Ethiopian Airlines Flight
302 in which the MCAS (Maneuvering Characteristics Augmenta-
tion System) incorrectly perceived the angle of attack to exceed
predefined limits and therefore pushed the nose of the plane down,
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whilst pilots struggled to push it back up [21, 44]. This demonstrates
that the HIFuzz process is capable of identifying highly critical and
entirely unanticipated vulnerabilities. Furthermore, in other cases,
such as HIE-1, we had already observed related incidents in the
field but had previously not fully understood the behavior. HIFuzz
tests provided new insights into the problem, leading to meaningful
mitigations associated with automating prearming configurations
and understanding when and where to issue warnings.

6.2 ROQ2: Did each of the three test levels play a
unique role in identifying human-related
systems vulnerabilities?

To answer this question we take a retrospective look at whether Hi-
Fuzz’s three test levels all served a unique role. Level L1 tests were
fully automated, not requiring human intervention, and answered
questions such as “did the flight complete successfully?”, and “were
there unexpected divergences from the planned route?”. However,
we had to imagine how an actual user would have observed and
responded to the flight events that occurred. Therefore, even though
significant insights about potential human-interaction fail-
ures were gleaned from Level L1, the results were insufficient for
understanding users’ perceptions and reactions to the problems as
they occurred. Drawing upon our previous example of the incorrect
throttle position during takeoff, field tests showed that (1) the RPICs
almost always adjusted the throttle, but (2) frequently placed the
throttle in a slightly incorrect position, with large consequences.
Feedback from RPICs clearly showed that these ‘mistakes’ were due
to stress and workload of supervising multiple sUAS during takeoff.
A simple reminder would therefore be insufficient, and so we miti-
gated the problem through a complete redesign of the arming and
takeoff routines, thereby removing this responsibility entirely from
the operator. This type of insight is not obtainable with level L1
testing alone. Further, while we have not yet conducted a full user
study with the Mobile App we developed, in future work we will
ask deeper questions of test participants concerning the current
system and the efficacy of mitigations such as the use of specific
alerts and recommendations.

So far, this is one of only two tests that have been mitigated
at L3. However, based on these two data points we observed that
gateway G3 allowed us to take a deep dive into analyzing the safety
concerns associated with executing tests in the field. It provided a
safety net that helped us ensure that tests could be executed safely
at Level L3. Demonstrating that the problem had been fixed and
successfully deployed in the field built confidence that the system
had satisfactorily addressed this particular system vulnerability.
We conclude therefore that all three HIFuzz levels provide critical
support for human-interaction testing.

6.3 ROQ3:Is HIFuzz generalizable across other
human-intensive CPS applications?

While our HIFuzz framework has been designed to identify risks
related to human interactions in sUAS operations, its underlying
concepts are applicable to a much broader range of CPS includ-
ing other types of autonomous vehicles and ground-based robots.
HIFuzz operates by fuzzing key system properties including (a)
various modes in which a vehicle or robot operates, (b) different
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states it might transition into during the execution of a task or mis-
sion, and (c) potential human interactions with the system or robot.
These core properties are found in other CPS, allowing HIFuzz to
be applied in other domains and for other types of system appli-
cations. To investigate the potential use of HIFuzz across diverse
CPS, we conducted a preliminary exercise of mapping the modes,
states, and human interactions for systems from three different
domains into HIFuzz. These included a centrally controlled sUAS
system named Dronology, that used the Ardupilot Flight Controller
[13, 16], a small robotic system developed by students to control
a robot using a mobile phone, and a self-driving vehicle platform
which we discuss in further detail.

The open-source, self-driving vehicle platform Autoware [1, 29]
controls car operations and supports developers in creating au-
tonomous car software systems. Similar to the modes available for
our sUAS, Autoware manages different vehicle modes including
Stop, Autonomous, Local, and Remote. Each of these modes repre-
sents a distinct operational setting for the vehicle. The Stop mode
halts all autonomous functions, while the Autonomous mode en-
ables full self-driving capabilities. Local and Remote modes refer to
how humans interact with the car either with a steering wheel or
over a network using a web application. An Autoware system can
transition through multiple operational states such as Idle, where
the vehicle is not actively navigating; Active Navigation, where the
vehicle autonomously maneuvers through traffic or environments;
and Emergency, a state triggered during critical situations requiring
immediate action or human intervention. Other states include Lane
Following, Lane Changing, and Parking. Further, the Autoware sys-
tem also supports human intervention during vehicle operations,
such as steering adjustments or mode switching. Additionally, self-
driving vehicles operate in different environmental conditions, such
as rain, snow, and bad lighting, and hence require rigorous testing.
The concept of a HIFuzz test (as defined in Section 3) is therefore not
unique to sUAS applications and potentially could be extended to
other CPS that interact with humans and operate in a safety-critical,
real-world environment. While individual aspects of a system are
domain-specific (e.g., a role might be the backup driver instead
of an RPIC), its key elements (Roles, Interaction Devices, Tasks,
Modes, etc.) are applicable across very diverse contexts. For exam-
ple, CARLA [9] provides a high-fidelity simulation environment
for executing driving simulations with a multitude of configuration
options. Scenario-based tests, such as driving an autonomous car
on the road, under controlled conditions, can provide the context
for the HIFuzz fuzzing.

Having defined properties for each of these three systems ac-
cording to the types of properties used to define and execute HIFuzz
tests, we draw the preliminary conclusion that HIFuzz is well suited
to probing for human-interaction vulnerabilities across diverse
CPS systems. Further, many parts of the HIFuzz infrastructure are
entirely reusable including the test-runner, the mobile app, and
the G1 clustering analysis. However, other parts of the infrastruc-
ture will need to be customized to each application and/or domain.
These include adapters for interfacing with the simulation environ-
ments and metrics for evaluating acceptable versus problematic
test outcomes. Primary adopters of HIFuzz are therefore likely to be
domain experts with the technical skills needed to test a complex
safety-critical system.
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Table 2: Mapping to Situational Awareness Demons
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SA Demon
%8
HIE | Human Error Category Outcome El2 |23 == 8 olB LR
<|=|2|2 |3 = § Ol |RI|S
1 RC transmitter sticks set Unexpected flight behavior (e.g., ascends, descends,
. . : O ® ®
incorrectly or flies off course after control is ceded to user).
2 Missing failsafe Operator fails to configure failsafes for each drone in ° ° °
configurations the fleet in a consistent & standard way.
3 Human input ignored by The autonomous system ignores a human-issued com-
h . P » ([ ] ® ([ ]
autonomous pilot mand, creating a “tug-of-war”.
4 Inappropriate RC Switch The RC transmitter switches are mapped to modes
- [ ]
options that the operator should not use.
5 Autonomous mode changes Human is unaware that the sUAS has switched mode ° °
without notification and does not understand flight behavior.
6 Inappropriately timed mode Human changed to a mode that was inappropriate for ° °
change by operator current phase and state of the flight.
7 Failure to operate drone Operator lacked or failed to apply appropriate piloting °
according to its current skills for current mode.
mode
8 Human loses situational Complex series of events led to loss of situational ° ° ol e
awareness of SUAS behavior awareness and inability to recover from a failure.

Legend: AT=Attention tunneling, MS=Misplaced Salience, IOL=Information Overload, OLS=Out of the loop syndrome, EMM=Errant Mental Models, RMT=Requisite Memory Trap,
WAFOS=Workload, Anxiety, Fatigue, & other Stressors, CC=Complexity Creep, MUI=transition failures across Graphical & Physical Uls, STC=Socio-Technical CPS Communication
Failure, EAU=Enigmatic Autonomy. SG=Human Skill Gap. @=Caused by, O=Leads to.

7 LIMITATIONS AND FUTURE WORK

The research described in this paper is empirical in nature and is
subject to three primary threats to validity.

First, our tests were limited to the RPIC, which is potentially
the most challenging human role for operating sUAS; however, we
need to extend the study to include other roles such as the MC (Mis-
sion Commander) and SO (Safety Officer), assign a more extensive
set of human-interaction tasks, and study the perception of our
stakeholders to identify further points of perceived vulnerabilities.
In addition, we plan to allow humans to interact more freely with
the L2 simulation environment, and deal with a far broader set of
emergency tasks including deviant flight behaviors. Their success
at intervening could serve as an indicator of the robustness of the
design with respect to human interactions.

Second, while we conducted a preliminary investigation into
the generalizability of HIFuzz, due to time constraints, we have
not yet implemented HIFuzz in these systems. Instead, the experi-
ments reported here focused on our own multi-sUAS system as the
system-under-test. In future work, we plan to run experiments in
the application of HIFuzz to other sUAS and CPS systems.

Third, we claimed that human-in-the-loop tests are essential
for understanding how humans perceive problems and potential
mitigations. We built the mobile app to not only guide users through
the testing process but also to collect data from them describing
their experiences during the test. Future work is needed to conduct
user studies with the mobile app to evaluate its effectiveness.

Finally, as previously mentioned, the L2 level, while fully func-
tional, had less fidelity to the field than we had intended, primarily
because libraries used to interface the radio signals with software-
based PX4 simulations had some limitations. In future work, we

plan to augment, or ultimately entirely replace the L2 layer with a
Hardware-In-The-Loop layer in which a physical flight controller
is integrated closely into the simulated environment. This would
further increase test fidelity and allow the RC transmitter to commu-
nicate over radio signals directly with the PX4 controller. Overall,
increasing fidelity would allow more robust human-interaction
testing, and improve the overall fidelity of our HIFuzz pipeline.

8 CONCLUSIONS

In this paper, we have presented the HIFuzz testing framework for
probing a system for human interaction vulnerabilities. The multi-
level approach progresses from a low-cost, limited-fidelity, large-
scale, no-hazard environment, with fully simulated Proxy Human
Agents (L1), through an intermediate level, where proxy humans
are replaced with real humans (L2), to a high-stakes, high-cost,
real-world environment (L3). In this paper we have focused on the
systematic application of each part of the HIFuzz process, to identify
human-interaction hazards so that we can design, implement, and
validate mitigations. The end goal is to increase the robustness of
the system so that it is fault-tolerant to normal human errors.
HIFuzz can be beneficial in two different ways. First, for test-
ing individual systems, HiFuzz’s multi-level approach provides a
safe pathway for detecting vulnerabilities associated with human
interactions in the system under test. While deploying HIFuzz for
a new system is non-trivial, the return on investment in terms
of human-interaction safety can make it worthwhile. Second, the
lessons learned within a specific project can be documented and
reused across other projects from similar domains, in order to help
designers to avoid vulnerabilities in the first place. We therefore
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plan to extend the scope of our HIFuzz tests, and document results
in the form of a catalog.

In conclusion, results from applying HIFuzz to our own system
under test have shown it to be effective in identifying critical human-
interaction vulnerabilities, thereby directly addressing the need for
improved system safety and robustness.
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