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Abstract 15 

Nutrient enrichment and climate change promote algal blooms, leading to many lakes being 16 

characterized as eutrophic (i.e., green) worldwide. We examined recent eutrophication trends of 17 

freshwater lakes at a national scale by collating 32 years (1990-2021) of growing season (July-18 

September) in situ chlorophyll-a, nutrient, transparency, and climate data for 1,082 lakes across 19 

32 freshwater ecoregions in the United States. Based on chlorophyll-a, 78.2% (427/546) of lakes 20 

initially exhibited eutrophic conditions and have remained eutrophic. Moreover, non-eutrophic 21 

lakes converged toward a eutrophic state, with oligotrophic (i.e., clear) or mesotrophic (i.e., 22 

moderately clear) lakes becoming greener, and hypereutrophic (i.e., very green) becoming less 23 

green. Optimized Hot Spot Analysis suggests lakes in the Appalachian Piedmont and Apalachicola 24 

freshwater ecoregions eutrophied more rapidly than other locations. Results suggest nutrient 25 

management targeting eutrophic lakes has hindered further degradation, but poor preventative 26 

management of clear lakes has led to their eutrophication. 27 

 28 
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1. INTRODUCTION 30 

Cultural eutrophication, the acceleration of nutrient inputs from anthropogenic activities 31 

such as agriculture, industrial practices, atmospheric deposition, and sewage, has degraded aquatic 32 

ecosystems worldwide since the industrial revolution (Paerl and Huisman, 2008; Taranu et al., 33 

2015). Cultural eutrophication coupled with global climate variations promote freshwater algal 34 

blooms (Glibert, 2020; O’Neil et al., 2012; Paerl and Huisman, 2008; Taranu et al., 2015). While 35 

algal blooms are a natural phenomenon, some algae can produce toxins that threaten human, 36 

livestock, and ecosystem health (Carmichael, 2001). Due to the extensive and potentially severe 37 

ecologic, economic and public health impacts related to nutrient enrichment and algal blooms, 38 

legislation has been passed in several countries to improve research, monitoring, and management 39 

of blooms (Dodds et al., 2009; Hudnell, 2010; Zhou et al., 2017). However, how such management 40 

efforts have affected eutrophication, and consequently algal bloom trends, of lakes of various in 41 

recent decades at a national level is not well understood. This study examines whether 42 

eutrophication has continued to affect freshwater lakes in the contiguous United States (U.S.) since 43 

1990, by considering the initial trophic state of each lake at the beginning of sampling and focusing 44 

on the trajectory of eutrophication. Additionally, the study explores how chlorophyll-a trends are 45 

connected to various lake parameters, such as nutrient concentration, transparency, climate trends 46 

and region, freshwater (FW) ecoregion, and surface area.  47 

Eutrophication is determined by various water quality parameters. A common way to 48 

classify lakes is through Carlson's Trophic State Index (TSI) (Carlson, 1977; Fernandez‐Figueroa 49 

et al., 2021; Meyer et al., 2024), which categorizes lakes into four categories (Table 1) based on 50 

their algal biomass (measured as chlorophyll-a) or potential algal biomass (based on nutrient 51 

concentration, or transparency measured as Secchi disk depth). Oligotrophic (TSI <40, clear) lakes 52 
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have low nutrient concentrations, resulting in low productivity and clear water. Mesotrophic (TSI 53 

41-50) lakes have moderate nutrient and productivity levels. Eutrophic (TSI 51-70, green) lakes 54 

are productive and have high chlorophyll-a, giving them a green appearance. Hypereutrophic (TSI 55 

>70, very green) lakes have an overabundance of nutrients and algae, leading to hypoxic conditions 56 

and posing a threat to the health of the ecosystem. Eutrophic lakes tend to remain stable despite a 57 

decrease in nutrient input due to internal nutrient loading and other feedback mechanisms that 58 

maintain high nutrient availability (Jeppesen et al., 2005; Scheffer and van Nes, 2007; Solomon et 59 

al., 2015). 60 

Cultural eutrophication is a leading cause of waterbody impairment in the U.S. In 2012, 61 

the U.S. Environmental Protection Agency (U.S. EPA) reported 40% and 35% of U.S. lakes show 62 

excessive levels of phosphorus and nitrogen, respectively (U.S. Environmental Protection Agency, 63 

2016). The U.S. has invested significant money and resources into managing nutrient loading in 64 

lakes, particularly those exhibiting eutrophic and hypereutrophic conditions (U.S. Environmental 65 

Protection Agency, 2021). Such nutrient management efforts have largely targeted phosphorus, as 66 

phosphorus has historically been considered the limiting nutrient of algal bloom species growth 67 

when compared to nitrogen (Schindler, 1974; Smith and Schindler, 2009). Moreover, point-68 

sources of phosphorus can be targeted through remediation efforts such as improved wastewater 69 

treatment, development of phosphorus-free detergents, and agricultural run-off management. 70 

Despite these efforts, low phosphorus (<10 µg/L) lakes in the U.S. are becoming rarer (Stoddard 71 

et al., 2016). Nitrogen, however, can be more challenging to manage as it can also enter aquatic 72 

systems through atmospheric deposition or groundwater inputs, which cannot be regulated using 73 

point-source management techniques (Elser et al., 2009; Paerl et al., 2016). Moreover, national-74 

level annual agricultural phosphorus fertilizer use has remained stable since 1990, whereas 75 



5 
 

 

nitrogen fertilizer application has continued to increase nationwide (USDA, 2019). There is 76 

evidence that phosphorus management has led to recovery from eutrophication in many lakes 77 

(Smith and Schindler, 2009), but Quinlan et al. (2021) highlight the difficulties associated with 78 

simply decreasing nutrient inputs to manage eutrophication in lakes worldwide. However, others 79 

contend that reducing both phosphorus and nitrogen inputs is necessary to prevent algal bloom 80 

intensification in lentic systems (Finlay et al., 2013; Paerl et al., 2016). 81 

Previous water quality syntheses have focused on creating databases to study correlations 82 

between commonly measured parameters (Filazzola et al., 2020; Quinlan et al., 2021) or the 83 

eutrophication trends of large (>100 km2) (Fang et al., 2022; Ho et al., 2019; Wagner et al., 2008) 84 

and/or temperate lakes (Oliver et al., 2017; Taranu et al., 2015; Wilkinson et al., 2021), which 85 

respond differently to climate variations and eutrophication than shallow and smaller lakes 86 

(Downing et al., 2006; Scheffer and van Nes, 2007) and sub-tropical lakes (Sarmento, 2012), 87 

respectively. This study aims to examine recent national-level eutrophication trends of lakes and 88 

reservoirs by collating open-source surface water quality data (Table S1) from lakes of various 89 

surface areas and FW ecoregions. The outcomes of this study have important implications for 90 

enhancing our understanding of the impacts of nutrient management on lake ecosystems and for 91 

informing future research efforts. 92 

 93 

2. METHODS 94 

To explore recent eutrophication trends across a wide geographic region, a 32-year time 95 

series (1990-2021) was collated from median growing season (July-September) in situ 96 

chlorophyll-a (µg/L), total nitrogen (TN, µg/L), and total phosphorus concentrations (TP, µg/L), 97 

as well as Secchi disk depth (i.e., transparency, m) of 1,082 natural lakes and artificial reservoirs 98 
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throughout 32 FW ecoregions in the contiguous U.S. (Figure 1-3). All data used in this study were 99 

collated from the open-access sources described in Table S1. Data collation was finalized in 100 

September 2021, therefore no additional data published after this time were included in this study. 101 

Whereas phytoplankton and cyanobacterial biovolume, phytoplankton toxin (i.e., microcystins), 102 

and nitrogen and phosphorus forms are important parameters of eutrophication, these data were 103 

beyond the scope of this study due to limited availability.  104 

 Lakes were included in the study if the lake was sampled: 1) for at least 10 years (Kendall, 105 

1975), 2) had less than a three-year gap between samples for the first 10 years of sampling, and 3) 106 

the most recent sample was collected in or after 2016. Long-term consistent sampling was required 107 

to ensure the lakes were being sampled regularly, rather than only when visible discoloration and 108 

scum was present, or illnesses were reported. Water samples collected before 1990 were not 109 

included, as sampling was inconsistent and sporadic before this time. Additionally, chlorophyll 110 

data had to be reported as concentrations based on in situ samples, rather than raw fluorescence 111 

units or remote sensing chlorophyll estimates. A total of 1,082 lakes met such criteria, with an 112 

average of 19 (7.0 SD) sample years (Table S2). Fifty-four percent (54%) of study lakes (585) had 113 

in situ data from 1990-2021; forty-six percent (46%) of study lakes (497) met the three inclusion 114 

criteria specified above and had temporally variable in situ measurements (e.g., CAN WE GIVE 115 

AN EXAMPLE HERE?), but were deemed essential to the study as they increased the spatial 116 

distribution of the study lakes. Lake surface area ranged from 0.003 to 82,000 km2 (mean=248.6, 117 

S.D. = 3,769.9) and lakes were further classified into five lake size categories for statistical analysis 118 

(Figure S4) (Kalff, 2001). The five lake size categories were: small (<1 km2), medium (1-100 119 

km2), large (101-10,000 km2), and great lakes (>10,000 km2). 120 

Edna Fernandez-Figueroa
Not sure what else to say about this?

Stephanie Rogers
These don’t seem to be “additional lakes” if they fit all of the inclusion criteria? 
Please make sure what I wrote is correct?
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 Carlson's TSI values were calculated to standardize and normalize the water quality 121 

parameters, which were non-normally distributed and measured in different units, and categorize 122 

the lakes based on initial trophic status (T0, average first 3 years of sampling). Chl (1), TP (2), TN 123 

(3), and Secchi disk depth (4) measurements were converted to TSI values based on the following 124 

formulas(Carlson, 1977; Kratzer and Brezonik, 1981): 125 

(1) Chl TSI = 9.81 ln(Chl) + 30.6 126 

(2) TP TSI = 14.42 ln(TP) + 4.15 127 

(3) TN TSI = 54.45 + 14.43 ln(TN) 128 

(4) Secchi TSI = 60 – 14.41 ln(SD) 129 

where Chl = chlorophyll pigment concentration (μg/L), TP = total phosphorus concentration 130 

(μg/L), TN = total nitrogen concentration (mg/L), and SD = Secchi disk depth (m).  131 

FW ecoregions were used in this study to identify watershed-level trends, as FW 132 

ecoregions largely correspond to major watersheds and are designed to spatially divide areas based 133 

on freshwater biodiversity (Abell et al., 2008). FW ecoregion percent land cover calculations were 134 

based on 30 m land cover data provided by the North American Land Change Monitoring System 135 

(The North American Land Change Monitoring System, 2020). Climate division (n=138) scale 136 

annual mean and maximum growing season (July-September) air temperature (°C), growing 137 

season precipitation (mm), and annual drought (Palmer Z Index) data were accessed through the 138 

Climate at a Glance National Oceanic and Atmospheric Administration (NOAA) application 139 

(NOAA, 2021). Mean and maximum summer air temperature values were used in place of lake 140 

surface temperatures, as these values were not available for most lakes and summer air 141 

temperatures are a significant predictor of surface water temperatures (O’Reilly et al., 2015).  142 
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The Mann-Kendall (M-K) statistics were calculated to test for the presence of monotonic 143 

time trends, as this non-parametric test does not require data to be normally distributed and has 144 

low sensitivity to missing values (Gilbert, 1987; Kendall, 1975; Mann, 1945). The test provided 145 

information about trend direction (M-K S), significance (M-K z, p <0.05), and rate of change 146 

(Sen’s slope β). When lakes had multiple observations per year, annual growing season medians 147 

were calculated and used as the representative annual value, which is standard practice to reduce 148 

the effects of autocorrelation and conform to the required single observation per time period for 149 

the M-K test (Gilbert, 1987). M-K trend statistics were also generated from 1990-2021 growing 150 

season climate data (i.e., mean and maximum temperature, precipitation, and drought) for the 183 151 

climate subdivisions in which the lakes were located, to determine if there was a relationship 152 

between water quality and climate trends. For climate parameters, the M-K values were calculated 153 

based on the average 5-year increments rather than annual median values, to better represent long-154 

term changes in climate rather than modest annual variations. Statistical analyses were executed 155 

utilizing the trend and Kendall packages of R version 4.1.2 (Supplemental Information 1) 156 

(McLeod, 2011; Pohlert, 2020; R Core Team, 2021). 157 

Spearman rank correlations were used to determine the relationship between observed 158 

water quality and climate trends, as the data were not normally distributed and contained outliers 159 

(Schober et al., 2018). The non-parametric Kruskal-Wallis test was used to identify between M-K 160 

trend significance classification, initial trophic state, and FW ecoregion differences, as the data 161 

were non-normally distributed and contained outliers. Post hoc analysis was conducted using the 162 

Dunn test for multiple comparisons, as this test is not sensitive to groups with different numbers 163 

of observations (Dunn, 1964).   164 
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An Optimized Hot Spot Analysis (OHSA) was performed in ArcGIS Pro 2.9 to determine 165 

if there were statistically significant clusters of lakes displaying increasing or decreasing median 166 

growing season chlorophyll concentrations anywhere across the study area.  The OHSA tool uses 167 

the Getis-Ord Gi* statistic (Ord and Getis, 1995) to measure spatial autocorrelation between values 168 

across space and provides information about if and where high or low values cluster spatially. 169 

3. RESULTS 170 

 Results from this study demonstrated that most study lakes remained in, or converged to, 171 

a eutrophic (i.e., green) state in the past 32 years. Hypereutrophic and eutrophic lakes were 172 

significantly less green, but remained green throughout the study period, whereas oligotrophic and 173 

mesotrophic lakes were significantly greener toward the end of the study (Figure 1, Figure S1, 174 

Table 1). Chlorophyll-a trends were closely correlated to phosphorus and nitrogen trends, as well 175 

as transparency (i.e., Secchi disk depth) trends (Figure S2, Table 1 and S2). There was no clear 176 

relationship between chlorophyll-a trends and lake surface area, climate region, climate trends 177 

(i.e., precipitation, temperature), or lake impairment status (Supplementary Information Section 2, 178 

Figure S4, Tables S2-3).  179 

 Lakes that were classified as hypereutrophic at the beginning of the study period (i.e., first 180 

three sample years) showed significant decreases in summertime chlorophyll-a (Chl TSI, -0.31 ± 181 

0.14 95% C.I.; p <0.0001; Figure 1, Table 1), total phosphorus concentration (TP TSI, -0.50 ± 0.13 182 

95% C.I., p <0.0001), and total nitrogen concentration (TN TSI, -0.33 ± 0. 95% C.I., p <0.0001), 183 

while also becoming significantly clearer (Secchi TSI, 0.30 ± 0.11 CI, p <0.0001). Notably, 48.1% 184 

(n = 25) of lakes that were initially classified as hypereutrophic based on total phosphorus became 185 

eutrophic by the conclusion of the study period. Of those 25 lakes, seven were identified as nutrient 186 

impaired in 2002 by the Clean Water Act (CWA) Section 303(d) Program (U.S. Environmental 187 
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Protection Agency, 2021) (Figure S4). This program identifies systems impaired by pollutants and 188 

establishes pollutant Total Maximum Daily Loads values to guide management and monitoring 189 

efforts.  190 

Half (n = 546) of the study lakes were eutrophic based on chlorophyll-a at the beginning 191 

of the study period. Eutrophic lakes significantly decreased in chlorophyll-a (Chl TSI, -0.08 ± 0.05 192 

95% C.I.; p =0.0004; Figure 1, Table 1), phosphorus concentration (TP TSI, -0.28 ± 0.06 95% C.I., 193 

p <0.0001), and nitrogen concentration (TN TSI, -0.10 ±0.04 95% C.I., p <0.0001) by the 194 

conclusion of the study period. While the observed decreases were statistically significant, they 195 

were generally not sufficient to cause a trophic state shift from green to clear, with 78.2% of lakes 196 

remaining in a eutrophic state based on chlorophyll-a throughout the study.  197 

 Mesotrophic lakes were significantly greener (Chl TSI, 0.11 ± 0.06 95% C.I.; p = 0.0003; 198 

Figure 1, Table 1) and marginally more transparent (Secchi TSI, 0.06 ± 0.07 95% C.I.; p = 0.05) 199 

at the end of the study. Although phosphorus concentrations have not significantly changed in 200 

mesotrophic lakes (TP TSI, -0.06 ± 0.08 95% C.I.; p = 0.15), there is an optimistic decreasing 201 

trend after 2015 (Figure 1).  202 

Lakes initially classified as oligotrophic significantly increased in summertime 203 

chlorophyll-a (Chl TSI, 0.23 ± 0.09 95% C.I.; p <0.0001), total phosphorus concentrations (TP 204 

TSI, 0.22 ± 0.09 95% C.I., p <0.0001), and total nitrogen concentrations (TN TSI, 0.29 ±0.09 95% 205 

C.I., p < 0.0001; Figure 1, Table 1). Oligotrophic lakes remained clear throughout the study period 206 

(Secchi TSI, 0.02 ± 0.07 95% C.I.; p = 0.64), suggesting that increasing productivity and nutrients 207 

did not significantly affect transparency. 208 

Chlorophyll-a (Chl) trends were significantly correlated with TN (rho = 0.53, p < 0.0001), 209 

TP (rho = 0.40, p < 0.0001), and TN:TP (rho = -0.13, p = 0.007) trends (Sen’s Slope, Table S3). 210 
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Chlorophyll-a was also associated with transparency (Secchi TSI) trends (rho = 0.51, p < 0.0001, 211 

Figure S2, Table S2). 212 

 Lakes exhibiting significant increasing (n = 170, 15.7%) and decreasing (n = 129, 11.9%) 213 

chlorophyll-a (Chl TSI) trends were comparable in number and spatial distribution in this study 214 

(Figure 2, Table S2). An Optimized Hot Spot Analysis was utilized to identify clusters of lakes 215 

that were largely increasing or decreasing in chlorophyll-a (Figure 3). Lakes within the northern 216 

portion of Middle Missouri (ID=15) and Upper Mississippi (ID = 27) were generally decreasing 217 

in chlorophyll-a. These results agree with findings of static or decreasing trends in north temperate 218 

U.S. lakes (Oliver et al., 2017; Wilkinson et al., 2021). Lakes within the Appalachian Piedmont 219 

(ID = 2) FW ecoregion, as well as the northern portion of the Apalachicola (ID = 1) and Mobile 220 

Bay (ID = 16) FW ecoregions, are not commonly considered high-risk areas for algal blooms. 221 

However, we found that most lakes (67%, n = 34) within Appalachian Piedmont are becoming 222 

greener, regardless of initial TSI status (Figure S4, Table S4). This suggests that lakes in this area 223 

are exhibiting eutrophication trends that should be addressed to prevent further degradation and 224 

ultimately trophic state shifts. Notably, arid and semi-arid climate regions, such as the southwest 225 

of the United States, were not well-represented in the dataset because monitoring effort duration 226 

or frequency did not satisfy the study's criteria. 227 

 228 

4. DISCUSSION  229 

 Considering the initial trophic state is critical to identify eutrophication trends, as recent 230 

(>1980 CE) observations do not provide context of the pre-industrial prevalence of algal blooms 231 

in these lakes (Taranu et al., 2015; Waters et al., 2021). This study addresses these research needs 232 

by analyzing eutrophication trends in lakes of various surface areas across 32 FW ecoregions in 233 
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the U.S. based on initial trophic state. Our findings suggest that most lakes exhibited eutrophic 234 

conditions at the start of the sampling period (~1990 CE, n = 546, 50%) and have remained 235 

eutrophic in recent decades (Figure 1).  236 

There has been a growing interest in the creation of water quality databases from diverse 237 

systems around the world, especially those related to algal blooms (Filazzola et al., 2020; Meyer 238 

et al., 2024; Oliver et al., 2017; Quinlan et al., 2021). For example, freshwater lake eutrophication 239 

studies conducted at the regional scale based on in situ data (Oliver et al., 2017; Taranu et al., 240 

2015; Wilkinson et al., 2021) or global satellite observations of large lakes (Fang et al., 2022; Ho 241 

et al., 2019; Topp et al., 2021; Wagner et al., 2008) report decreasing, static, and increasing 242 

eutrophication trends. A global 28-year (1984 - 2012) satellite-based study of 71 large lakes (> 243 

100 km2) found surface algal blooms have become more intense since the 1980’s (Ho et al., 2019). 244 

Conversely, a satellite-based study of 344 globally-distributed large lakes found 56% of lakes 245 

show no change in chlorophyll-a from 1997 to 2020 (Kraemer et al., 2022). Similarly, regional 246 

surveys of 323 temperate lakes in the Northeast and Midwest U.S. (Wilkinson et al., 2021), 527 247 

lakes in the U.S. Rocky Mountains  from 1984 to 2020 (Oleksy et al., 2022), and 2,913 temperate 248 

lakes in the Northeast U.S. from 1990 to 2013 (Oliver et al., 2017) show stable or decreasing 249 

chlorophyll, nutrient, or lake color trends. While such reports provide crucial insight of recent lake 250 

trophic trends, they often lack initial lake trophic state data, hindering assessment of reported 251 

changes and trophic state trajectories. New databases (e.g., Filazzola et al. 2020; Meyer et al. 2024; 252 

this study) create exciting opportunities for exploring trends and drivers of water quality changes 253 

over time (e.g., Stoddard et al. 2021; Topp et al., 2021). 254 

Lake morphology has been shown to significantly affect how lakes respond and recover from 255 

eutrophication and climate variations (Finlay et al., 2013; Scheffer and van Nes, 2007). The surface 256 

Edna Fernandez-Figueroa
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area distribution of the 1,082 study lakes was representative of global lake surface area 257 

distributions (Downing et al., 2006; Kalff, 2001): overwhelmingly skewed towards small (<1 km2, 258 

n=539) and medium (1-100 km2, n=420) sized lakes, with relatively few large (101-10,000 km2, 259 

n=38) and great lakes (>10,000 km2, n=4; Figure S4). Large lakes account for more total surface 260 

area, but small and medium lakes are far more abundant in number and spatial range (Downing et 261 

al., 2006; Kalff, 2001). While lake size influences multiple drivers of trophic state and algal 262 

dynamics, such as internal loading, residence time, and lake turnover, the high variation in small 263 

and medium lake size categories was problematic for the analysis conducted in this study. 264 

However, it was evident that the systems categorized as great lakes (>10,000 km2, n=4) became 265 

significantly greener throughout the study period (Figure S4). Of the four Laurentian great lakes 266 

included in this study, algal abundances increased in Lake Michigan (0.02 ug/L Sen’s Slope, p 267 

=0.09) and Lake Huron (0.01 ug/L Sen’s Slope, p =0.6), and significantly increased in Lake Erie 268 

(0.18 ug/L Sen’s Slope, p <0.0001) and Lake Superior (0.03 ug/L Sen’s Slope, p =0.0001; Figure 269 

S4). Although few in number, the five Laurentian Great Lakes hold 84% of North America's 270 

surface water and serve as the main source of drinking water for over 40 million people (Kalff, 271 

2001). Finlay et al. (Finlay et al., 2013) noted that systems with high residence times, such as the 272 

Great Lakes, promote algal growth through nutrient sequestration thus furthering the importance 273 

of dual nutrient management.  Additional lake characteristics, such as lake volume, depth, 274 

residence time, and lake type (i.e., natural lakes, reservoirs) can also significantly affect algal 275 

bloom trends. However, limited data availability or skewed data distributions prevented statistical 276 

analysis of the effect of these parameters on algal abundance trends. Moreover, the Global 277 

Positioning System (GPS) coordinates for the sample collection location were not available for 278 

most datasets, therefore it was not possible to determine within-lake trophic state heterogeneity.  279 

Stephanie Rogers
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Chlorophyll-a and transparency were closely related, although brownification likely 280 

caused some of the discrepancies observed between TSI values calculated based on chlorophyll-a 281 

and Secchi disk depth  (Figure S2, Table S2) (Leech et al., 2018). Chlorophyll-a can affect and be 282 

affected by transparency. High chlorophyll-a as well as brownification associated with high 283 

chromophoric, or colored, dissolved organic matter (CDOM) inputs from terrestrial systems can 284 

decrease transparency. CDOM is known to both promote algal growth due to increased nutrient 285 

input from run-off, as well as prevent algal proliferation due to reduced light attenuation, oxygen 286 

depletion, and decreased mixing depth (Jeppesen et al., 2005; Solomon et al., 2015).  287 

Research and management efforts often focus on eutrophic and hypereutrophic lakes due 288 

to the potential ecological, economic, and health risks associated with elevated nutrients and algal 289 

blooms (U.S. Environmental Protection Agency, 2021). Such management efforts appear to have 290 

led to the observed decrease in chlorophyll-a and phosphorus concentrations of initially eutrophic 291 

or hypereutrophic study lakes. However, lake re-oligotrophication was rare, likely due to non-point 292 

nutrient sources and internal loading from sediments (Jeppesen et al., 2005; Scheffer and van Nes, 293 

2007; Solomon et al., 2015). Moreover, limited nitrogen management efforts are reflected in the 294 

results of this study, with TN values remaining stable in 57% (n=235) of study lakes and a similar 295 

number of lakes exhibiting significantly increasing (20%, n = 83) and decreasing (22%, n = 92) 296 

TN trends (Sen’s Slope, Table S2).  297 

A decrease in phosphorus, when not accompanied by a reduction in nitrogen, can lead to 298 

elevated TN:TP ratios commonly associated with less efficient denitrification processes that may 299 

exacerbate nitrogen loading within the system (Elser et al., 2022; Finlay et al., 2013). Potential 300 

ecological and management implications of high TN:TP ratios include changes in phytoplankton, 301 

and ultimately consumer, growth and diversity (Elser et al., 2022), elevated risk of nitrate polluted 302 
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drinking water sources, and downstream nitrogen transport to coastal systems (Finlay et al., 2013; 303 

Paerl et al., 2016). Most lakes (68%, n = 274) did not exhibit statistically significant changes in 304 

TN:TP, but more lakes were significantly increasing in TN:TP values (22%, n = 90), than those 305 

significantly decreasing (10%, n = 39, Table S2). Increasing TN:TP trends indicate nitrogen 306 

loading is occurring in some study lakes and highlights the importance of researching and 307 

implementing dual nutrient management (Finlay et al., 2013; Paerl et al., 2016).  308 

Many of the study lakes that were initially classified as oligotrophic and mesotrophic are 309 

experiencing significant increases in chlorophyll-a and phosphorus concentrations, potentially due 310 

to limited nutrient management efforts being focused on less impaired lakes. Notably, initially 311 

oligotrophic lakes such as the Laurentian Great Lakes (>10,000 km2 surface area) and those within 312 

the Appalachian Piedmont and Apalachicola FW ecoregions (Figure 3, Figure S3-S4) 313 

demonstrated concerning increases in growing season chlorophyll-a. Increasing algal bloom trends 314 

in these FW ecoregions are not reported in other large-scale algal bloom trend studies (Ho et al., 315 

2019; Oliver et al., 2017; Wilkinson et al., 2021), which highlights the importance of considering 316 

trends based on initial lake conditions at high spatiotemporal resolutions.  317 

 318 

5. CONCLUSION 319 

This study provides important insights into the eutrophication trends and trajectories of 320 

freshwater lakes in the United States over the past three decades by considering the initial trophic 321 

state. The results suggest that nutrient management efforts may have prevented further degradation 322 

of eutrophic lakes, but limited preventative management may have led to the eutrophication of 323 

previously clear lakes. While identification of the specific management strategies or potential 324 

regional drivers of the observed trends was beyond the scope of this study, our goal is to provide 325 
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national scale trends to inform future research that explores the underlying drivers of regional 326 

trends. Particularly, identifying the regional drivers of eutrophication observed in Appalachian 327 

Piedmont lakes should be prioritized to identify targeted management strategies. 328 

 329 
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Table 1. Lake eutrophication trends by initial trophic status. Number of lakes classified as each 335 

trophic state (TSI) at the beginning (T0 n) and end (TF n) of the study period (1990-2021), based 336 

on chlorophyll (Chl), total phosphorus (TP), total nitrogen (TN), and Secchi disk depth (Secchi) 337 

surface samples, and TSI rate of change (Sen’s Slope) from year to year,  grouped by  T0 TSI 338 

Status. 339 

 TSI description TSI status change Sen’s Slope TSI 
T0 TSI 
status 

Variable Variable 
range 

T0 
n 

TF 
n 

% 
Change 

Mean 
(±95% CI) 

p-value 

Hypereutrophic 
(very green lake) 

Chl >56 µg/L 66 67 1.5 -0.31 (0.14) <0.0001 
TP >96 µg/L 52 38 -26.9 -0.50 (0.13) <0.0001 
TN >2,940 µg/L 10 2 -80.0 -0.33 (0.20) 0.001 
Secchi <0.5 m 37 40 8.1 -0.30 (0.11) <0.0001 

Eutrophic 
(green lake) 

Chl 6.41-56 µg/L 546 559 2.4 -0.08 (0.05) 0.0004 
TP 24.1-96 µg/L 204 169 -17.2 -0.28 (0.06) <0.0001 
TN 740.1-2,940 µg/L 215 214 -0.47 -0.10 (0.04) <0.0001 
Secchi 0.5-2.9 m 262 261 -0.4 -0.04 (0.04) 0.06 

Mesotrophic 
(moderately 
clear lake) 

Chl 2.61-6.4 µg/L 330 312 -5.5 0.11 (0.06) 0.0003 
TP 12.1-24 µg/L 118 154 30.5 -0.06 (0.08) 0.15 
TN 370.1-740 µg/L 136 161 18.38 0.03 (0.05) 0.23 
Secchi 2-3.9 m 105 101 -3.8 0.06 (0.07) 0.05 

Oligotrophic 
(clear lakes) 

Chl ≤2.6 µg/L 140 144 2.9 0.23 (0.09) <0.0001 
TP ≤12 µg/L 109 122 11.9 0.22 (0.09) <0.0001 
TN ≤370 µg/L 49 33 32.65 0.29 (0.09) <0.0001 
Secchi ≥4 m 101 103 2 0.02 (0.07) 0.64 

  340 
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Figure 1. Average annual median growing season chlorophyll (a), total phosphorus (b), total 341 

nitrogen (c), and Secchi depth (d) trophic state index (TSI) values based on surface samples 342 

collected from 1,082 lakes between 1990 and 2021, grouped by initial (average of first 3 sampling 343 

years) TSI status. Dashed horizontal lines indicate TSI value categories: Oligotrophic (clear, TSI 344 

0-40), mesotrophic (moderately clear, TSI 40-50), eutrophic (green, TSI 50-70), hypereutrophic 345 

(very green, TSI >70). Gray shading represents 95% confidence intervals and trends are displayed 346 

using LOWESS smoothing.  347 
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 348 

Figure 2. Spatial distribution of the 1,082 study lakes. Fill colors indicate median growing season 349 

chlorophyll trophic state index trend significance (M-K z, significance level 0.05) from 1990 to 350 

2021, with lakes showing increasing trends in the left panel (a) and lakes showing decreasing 351 

trends in the right panel (b). Sig.: significant.  352 
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Figure 3. Clusters of lakes that are increasing (hot spot) and decreasing (cold spot) in growing 353 

season chlorophyll-a, based on Optimized Hot Spot Analysis, overlaid over freshwater ecoregions 354 

(n=32). Hot and cold spot color gradients represent confidence intervals at 90% (p = 0.10), 95% 355 

(p = 0.05) and 99% (p = 0.01), respectively.  356 
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