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Abstract

Outside of the laboratory, animals behave in spaces where they can transition between
open areas and coverage as they interact with others. Replicating these conditions in the
laboratory can be difficult to control and record. This has led to a dominance of relatively
simple, static behavioral paradigms that reduce the ethological relevance of behaviors and
may alter the engagement of cognitive processes such as planning and decision making.
Therefore, we developed a method for controllable, repeatable interactions with others in
a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as
they interact with an autonomous robot coupled to their actions. We illustrate the system
using the robot as a pseudo-predator, delivering airpuffs to the mice. The combination
of obstacles and mobile threat elicits a diverse set of behaviors—such as increased path
diversity, peeking, and baiting—providing the foundations to explore ethologically relevant
behaviors in the laboratory.

Introduction tion or cooperation with other animals oc-

curs. Such environmental variability and
The rich emergent behaviors that neuro- interactivity is absent from most laboratory
science seeks to understand occur in natural 1, paradigms for rodents, even though the neu-
environments in which there is variability in ral circuits driving behavior likely evolved
cover, for example, from open areas to more for survival in these conditions. Here we
cluttered spaces 2, and in which competi- describe an experimental system which at-

tempts to encourage more ethological be-
“Fqual contribution author 15 haviors by combining two rarely combined
**Corresponding author features: a spatially complex arena and an
Lead contact: Malcolm A. Maclver interactive agent.
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With some recent exceptions >4 % 6, tra-
ditional laboratory arenas are static and
non-interactive, with appetitive or aversive
inanimate stimuli provided at fixed times or
locations, reducing task complexity. These
studies have revealed a rich array of cogni-
tive representations of the latent variables
describing behavior in such environments,
such as place, heading direction and grid
cells, and neurons storing choice or value
information ” & %1% 11 However, it is pos-
sible that cognitive representations such as
these are engaged differently in more etho-
logically relevant conditions. For example,
recent research has begun to address the
question of how the brain encodes the lo-
cation and behavioral tendencies of others,
but these studies were largely performed in
conditions where the other was not task rel-
evant 213, Few if any place cells of oth-
ers were identified, possibly because of the
lack of task relevance of the other. More
recent experiments increasing the task rel-
evance of the other % have shown that
self-place cell firing can be modulated by
the location of conspecifics in the environ-
ment. Since these circuits likely evolved to
encode ethologically relevant interactions, a
greater understanding of their function is
likely to emerge as experiments approach
more natural conditions, highlighting the
need for new, more ethologically relevant
laboratory paradigms for studying interac-
tions with others.

Of course, a major advantage of the
sparse and simple spatial layout of tradi-
tional laboratory arenas, such as open field,
linear tracks and T-mazes %1718 is the
ability to perform highly repeatable, con-
trolled experiments which maximize statis-
tical power. Intuitively, the spatial com-
plexity of these spaces differs considerably
from that of natural environments. We pro-
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vide quantitative evidence for this difference
below. It is possible that the simplicity
of traditional experimental paradigms alters
cognitive processing in animals behaving in
these spaces, or make particular processes
difficult to study. For example, the neural
substrates of planning have not been clearly
established. Many studies have investigated
this question 1% 2% 2L though largely in tra-
ditional simple mazes. Omne of the most
likely substrates are the “preplay” events
in the hippocampus during sharp wave rip-
ples, which lead to rapid sequential activa-
tion of remote place cells. But large debates
persist about whether these neural signals
represent recall of past trajectories or are
in fact thoughts about the future 2. This
problem is exacerbated by what could be
called the ’Groundhog Day effect’ of highly
simplified spatial layouts: If the space an
animal has experienced in the past is un-
changed from the one that it will experience
in the future, then it is difficult or impos-
sible to disentangle memory from foresight.
Notably, using a task which increased trial-
to-trial path diversity provided some of the
best evidence for planning, with prospective
replay events often seemingly predicting fu-
ture navigation paths 9.

A task logic analog of the Groundhog Day
effect is that current task designs result in
the test subjects quickly learning the task
contingencies, leading to habituation and a
reduction of behavioral indicators of plan-
ning such as VTE 23, Thus, the statistical
consistency of an animal’s path through a
typical laboratory test environment, or the
repetitious nature of the task itself, appears
to be important variables in the study of
cognitive processes such as planning. Yet,
it is rarely varied systematically in exper-
iments, particularly to the level found in
more natural contexts. Given these con-
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siderations and broader calls for new labo-
ratory paradigms to probe animal behavior
in complex, ethologically relevant scenarios
24,25, 26 there is an opportunity to bring
some of the complexity of natural scenarios
into the laboratory without compromising
on the control of the experiment’s variables
and statistical power.

To address these issues, we designed a
system which provides the control and re-
peatability of previous paradigms, yet fa-
cilitates more naturalistic behavioral tasks
through two key innovations: rapidly re-
configurable obstacles and a mobile robotic
agent (Fig. 1). The physical basis of the sys-
tem is an arena with removable obstacles in
a honeycomb lattice: this allows the experi-
menter to vary spatial complexity, enabling
configuration in naturalistic partially clut-
tered arrangements, and facilitates rapid
switching between spatial layouts. Multiple
high speed cameras ensure reliable tracking
of mice throughout the space despite these
obstacles. Controllable interaction with an
“other” is provided by a mobile, wireless
robot that is coupled to the behavior of the
mouse with negligible latency. Finally, au-
tomation allows multiple hours of operation
without human intervention beyond animal
subject and robot battery replacement.

Here, we provide details on the design and
implementation of this system, termed cell-
world for brevity, and discuss results from
one particular implementation which emu-
lates naturalistic predator-prey encounters
by pitting the mouse against an airpuff-
equipped predator-like variant of the robot.
Several other possible configurations, such
as using the robot as prey or for phonotac-
tic localization, are described in Supplemen-
tary Table 1.

With the robot-predator configuration,
we found evidence of a rich array of behav-
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iors, spanning from highly variable trajecto-
ries (occurring at a rate of ~1 trial/min or
slower) to trajectories that are used repeat-
edly with little variation (occurring at a rate
of ~2 trial/min or faster). High variability
trajectories included peeking at and seem-
ingly luring or baiting the robot predator
away from the location the mouse needed to
reach for its reward, not unlike the broken-
wing display found in birds ?”.  Peeking
in rodents appears to emerge in the con-
text of more complex naturalistic conditions
28,29,30,31 " and we are not aware of prior
observations of baiting in rodents. These
behaviors and the path diversity that we
observed across trials may be specifically
useful for future studies into the cognitive
representation of others or mechanisms of
planning; and cellworld may be generally
useful for enriching task designs for research
into decision making, navigation, learning,
memory, fear, and anxiety, among other do-
mains (Supplementary Table 1).

Results

Creating naturally inspired spaces with a re-
configurable arena

The hexagonal arena, shown in Figure 2,
is 2.34 m at its widest length (2.56 m?), and
is comprised of 331 hexagonal cells, with a
center-to-center distance of ~11 cm, slightly
more than one standard adult mouse body
length. Each cell has a pair of magnets
for securing of obstacles above a thin vinyl
membrane (for removal of odor cues be-
tween subjects) that lies on top of the
magnetized floor.  This design allowed
us to rapidly reconfigure the arrangement
of obstacles for each experimental session
(Fig. 2b-d).

With the goal of studying behavior in a
more ethological context, we used a genera-



190

195

200

210

215

220

225

230

tive algorithm to create arenas that more
closely resembled the spatial statistics of
natural landscapes. To accomplish this,
we used a single parameter, entropy', to
create random arrangements of obstacles
(Fig. 2e). In the simplest terms, entropy
describes the degree of clutter in a space,
such that a space with very few obstacles
has low entropy and a space that is half-
filled with obstacles has maximum entropy.
Next we measured how these more natural-
istic spaces compared to classical laboratory
setups for studying rodent behavior. To ac-
complish this, we recreated classical mazes
from prior studies, including linear tracks,
T-mazes and radial arm mazes (Fig. 2d).

We hypothesized that the complexity of
the experimental space might be useful for
natural behaviors, and therefore considered
the visual connectedness of various arena
layouts. To do so, we computed the net-
work degree complexity (hereafter spatial
complexity!) of generated arenas, our ver-
sions of classical mazes, and other spaces
such as natural landscapes. Spatial com-
plexity summarizes the visual connected-
ness of a space: high complexity arenas
contain a mix of short and long sightlines,
while low complexity arenas contain primar-
ily short or primarily long sightlines. Intu-
itively, this measure relates to the behav-
ioral utility of a space: high complexity
spaces provide a mix of hiding spots and
long sightlines to gather information, fea-
tures which may be useful for evading a
predator or planning.

We generated 500 random arena configu-
rations at 14 different entropy levels (Meth-
ods) and then computed spatial complexity
for each of these arenas. We found that the
spatial complexity of the arenas peaked at
mid-range levels of entropy (0.4-0.5) with a
complexity of 0.80 + 0.02 (Fig. 2e). This
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value is similar to the most prevalent spa-
tial complexity value found by repeatedly
sampling satellite images of a savanna land-
scape (0.80, see Methods; Fig. 2e, right
panel). Spatial complexity analyses of other
savanna samples and key terrestrial habitats
have similar results (Mugan & Maclver!,
Supplementary Fig. 11 and Supplementary
Table 1). In comparison, some complexi-
ties of our renderings of classical mazes were
found to be much lower than these natu-
ral landscapes, ranging between 0.00-0.17.
These results suggest that by controlling the
entropy level of randomly generated obsta-
cles, we can control the complexity of the
cellworld arena. Furthermore, arenas gen-
erated with mid-level entropy are more sim-
ilar to natural landscapes than to classical
maze designs. Based on these results, we
hypothesized that a subset of the generated
arenas are ideal for planning and evasion,
and therefore focused our later behavioral
experiments on the two extremes of spatial
complexity: an open arena (entropy: 0.0,
spatial complexity: 0.0) and an obstacle
configuration with mid-level entropy (en-
tropy: 0.5, spatial complexity: 0.74; Fig. 2c,
middle panel). However, these spatially
complex environments contain a large num-
ber of occlusions, requiring a multi-view
tracking system for consistent behavioral
monitoring, which we describe next.

A multi-view camera system for continuous
tracking in occluded spaces

We designed the camera system in cell-
world to meet two experimental goals: 1)
to consistently observe the mouse’s posi-
tion in spatially complex arenas, and 2) to
control the behavior of a mechanical agent
with negligible latency after automatically
detected changes in mouse position and ori-
entation (which we describe in the next sec-
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tion). To meet these goals, the system uses
four high frame rate and low-latency in-
frared cameras. The cameras are suspended
200 cm above the arena floor and each cover
a specific quadrant (Fig 3a), capturing 2040
x 2040 pixel images at a rate of 120 frames
per second (fps). This layout is designed
to minimize blind spots created by obsta-
cles within the arena—a crucial aspect as
important behaviors could occur near these
obstacles (Fig 3b). Additionally, the high
frame rate and low latency of these cam-
eras enabled real-time monitoring of animal
movements, allowing us to couple the be-
havior of an autonomous robot to that of
the mouse.

To perform mouse tracking, we acquired
perspective-corrected, stitched images from
the four cameras (Methods), then removed
all static elements using background sub-
traction. The remaining features (mouse,
robot) were identified using color-connected
components. Robot tracking was simplified
through three LEDs on the top of the robot
(Fig 3f). This enabled us to perform real-
time monitoring of robot and mouse move-
ments with an average latency of 3.2 ms and
facilitated swift response to changes in an-
imal behavior. For the current study, the
frame rate and throughput of the system
was capped at 90 Hz as that was found to
be sufficient for updating the robot’s head-
ing when moving quickly through obstacle
fields, but cellworld’s tracking system can
process a maximum of 206 fps (Supplemen-
tary Fig. 2b). In summary, this tracking
system allowed continuous behavioral mon-
itoring of a mouse in a densely occluded,
ethologically-inspired space, while also fa-
cilitating low latency control of a robotic
agent.
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An autonomous mobile agent coupled to an-
imal behavior

A crucial aspect of natural behavior in
many species is interaction with others, but
these behaviors can be difficult to control in
the lab. To that end, we engineered a fully
autonomous robot (Fig. 3c-e) whose behav-
ior is tied to that of the mouse with no more
than 11 ms of latency. The robot itself has
no vision system, but we synthesized an om-
nidirectional visual sensory volume based
on images from the camera system, the lo-
cation of the robot, and the location of the
obstacles. We then controlled the robot in
closed-loop to pursue the mouse when it was
in “view” and to otherwise search unseen
locations when the mouse was out of view
(Fig. 4a). (Note that this means freezing
responses on the part of the rodent have no
effect on the robot’s ability to perceive; it
would be simple to modify this such that
the robot only “sees” the mouse upon move-
ment.) Next, we took advantage of this low-
latency coupling between the robot and the
mouse’s behavior to simulate predator-prey
interactions in the lab.

To do so, we outfitted the robot with an
airpuff module, which consisted of a CO,
tank and valve actuated via a motor to re-
lease a sequence of two brief, powerful blasts
of air when the mouse came within 32 cm of
the robot (Fig. 4a, Supplementary Movies 1,
2). We term this aversive airpuff sequence
an “attack” event, but note that due to the
modular design of the robot, other stimulus
modes (such as appetitive rewards, visual,
or auditory stimuli) may be used.

To test whether the ability to attack
made the robot more behaviorally relevant
to the mouse, we performed a pilot study
where mice first interacted with a stationary
or pursuing robot with the airpuff disabled,
then enabled the airpuff for the following ex-
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perimental sessions. Consistent with prior
airpuff results 3% 33, we found that the mice
significantly increased the distance between
their location and the robot after entering
the attack threshold (n=2 mice; airpuff en-
abled: 93.0 4 36.1 cm, airpuff disabled me-
dian + IQR distance: 25.5 + 10.7 cm, p =
8.16 x 10~ "®; Supplementary Fig. 3, Supple-
mentary Movies 3, 4). From this we con-
cluded that the airpuff-equipped robot was
behaviorally relevant to the mouse, and in-
duced escape or avoidance behaviors, which
allowed us to leverage cellworld to create a
task inspired by predator-prey dynamics.

A predator-prey inspired behavioral task dis-
rupts stereotyped navigation

With the capability of creating a spa-
tially complex arena patrolled by an aver-
sive robot, we devised a behavioral task
modeled on predator-prey interactions. In
this task, mice start on one side of the arena,
and must navigate to the other side of the
arena while evading a pursuing robot to
reach a water reward (the robot evade task,
or BotEvade hereafter for brevity, Fig. 4).

In order to facilitate multiple mouse
traversals within a single 30 minute exper-
imental session, we engineered several ad-
ditional components for the cellworld sys-
tem: chambers containing water lick ports
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and automated doors at the start and end of 230

the arena, and an external return chute that
connects the chambers to allow the mouse
to return to the start and reset the system
for another trial. Both the doors and the
water feeders were controlled and monitored
by software that coordinates events between
the robot, rodent, and components of the
arena, termed the “experiment controller,”
which used lick events detected by the water
feeders to determine when to start and end
trials. Mice were guided through the task
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by specific sequences of door events (Fig 4b,
c), allowing them to initiate and complete
many trials per experiment (the maximum
completion rate for n=8 mice was 83 £ 10
trials per 30 minute session). With these
systems in place, we developed a training
protocol to encourage repeated interaction
between the mouse and the robot within a
spatially complex arrangement of obstacles.

To do so, we trained mice in the Bot-
Evade task with the following steps. First,
8 mice were acclimated to the reward zones
and return chute using a gutter-like corri-
dor directly linking the entrance and exit of
the arena (CT: corridor training). Next, the
corridor was removed, and obstacles were
placed in a mid-entropy arena (the Ran-
dom 0.5 arena of Fig. 2¢) to allow the mice
to learn the spatial layout (T: arena train-
ing phase). Once the mouse behavior stabi-
lized, the robot was introduced to the envi-
ronment (R: robot phase). Then, once be-
havior in the presence of the robot stabi-
lized, we removed the robot from the arena
to measure extinction of the behavioral re-
sponse to the autonomous predator (PR:
post-robot phase; Fig. 5b). Mice learned
the task rapidly, taking 4.0 £+ 2.1 days to
plateau during the T phase (Fig. 5¢). We
also found that the airpuff equipped robot
was an effective aversive stimulus, elicit-
ing fleeing behaviors in 74.7% airpuff events
when compared to shuffled data (n = 178 at-
tack events; Fig. bd, Supplementary Movie
2). Thus, we found that our training proto-
col encouraged mice to repeatedly traverse a
spatially complex environment, creating nu-
merous interactions with the aversive robot
over the course of the experiments.

We predicted that the combination of
a spatially complex layout and predatory
agent would elicit a richer set of behaviors
compared to a simple spatial layout with-
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out a predatory agent. To directly assess
the effect of these two variables, we com-
pared the cohort of mice in the mid-entropy
arena to an additional cohort of mice which
was trained in an open field (in these exper-
iments, the PR phase was omitted). During
training (T phase), mice had highly variable
trajectories with (n=8) or without obsta-
cles (n=2) as they explored the environment
and learned the task (Fig. 6a, left column,
Supplementary Movie 5). When the robot
was introduced (R phase), different behav-
ioral patterns emerged in the two environ-
ments: in the occluded arena, routes be-
came more variable and slower, while in the
open arena, mice reverted to thigmotaxis—
running along either the north or south
wall at high speeds (Fig. 6a, middle col-
umn, Supplementary Movie 6). Interest-
ingly, when the robot was removed from the
occluded arena (PR phase), mice largely re-
verted to two thigmotactic routes along the
north and south walls of the arena (Fig. 6a,
right column, Supplementary Movie 7).

The highly variable routes in the pres-
ence of the robot in the spatially complex
arena suggested that mice engaged in more
sophisticated evasion strategies in compli-
cated environments, therefore, we focused
our subsequent analyses on these experi-
ments. We found that mice completed sig-
nificantly fewer trials per 30 minute ses-
sion in the R phase (27.0 + 14.6 trials)
than in the PR phase (57.6 £ 20.5 trials,
p = 1.44 x 10~%; Fig. 6b), taking signifi-
cantly longer routes to reach the goal dur-
ing the R phase (420 4 33 cm; 1.8 times the
shortest path length of 234 cm) compared to
the PR phase (340 £ 19 cm; 1.4 times the
shortest length, p = 0.002; Fig. 6¢).

We suspected this increase in route length
occurred because, 1) the mice chose new
routes after being exposed to the robot

485

490

495

500

505

510

515

520

525

and, 2) when encountering the robot along
a preferred route, mice changed course to
evade it. To test these two hypotheses we
used QuickBundles®* to cluster the trajecto-
ries from each mouse in each experimental
phase. To quantify the tendency to choose
new routes, we counted the number of clus-
ters found in each phase, and to quantify
the tendency to deviate from a route, we
calculated the average distance of each tra-
jectory from the center of the nearest cluster
(Fig. 6d). We found that there were signif-
icantly more clusters in the R phase (4.0 +
0.5 clusters) than in the PR phase (1.0 £ 1.0
clusters, p = 2.61 x 107%; Fig. 6e), and that
trajectories tended to be further away from
the nearest cluster in the R phase (17.6 +
3.1 cm) compared to the PR phase (8.1 +
3.3 cm, p = 6.63 x 107°; Fig. 6f). Taken to-
gether, these results suggest that mice chose
novel routes and deviated from preferred
routes in order to evade the robotic threat.

Finally, we observed that mouse traver-
sals were significantly slower in the R phase
(68.2 £ 26.8 cm/s) compared to the PR
phase (114.8 + 26.2 cm/s, p = 0.002;
Fig. 6g). This could reflect deceleration
during rerouting, suggested by previous re-
sults (Fig. 6e-f), or it could reflect slow
downs and stops. To test this, we quantified
periods of time when mice paused during
the experiments (Methods). We observed
that mice paused more frequently near the
entrance during the R phase (2.8 £ 1.8
pauses per trial) compared to the PR phase
(1.2 £ 0.7 pauses per trial, p,q; = 0.004;
Fig. 6h). Upon entering the arena, mice
paused for longer durations in the R phase
(1.5 £ 0.3 s) compared to the PR phase (1.1
+ 0.3 s; pagj = 0.017; Fig. 6i). We also ex-
amined the frequency of pauses longer than
2 s in duration (Fig. 6i, inset), and found
that longer pauses were more prevalent dur-
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ing the R phase (0.3 £ 0.1 pauses per trial)
compared to the PR phase (0.1 + 0.1 pauses
per trial, p = 0.014; Fig. 6j). Together,
these results indicate that mouse behavior is
significantly changed in the presence of the
robot. Mice paused more at the arena en-
trance, suggesting they are more hesitant to
enter, and they paused more frequently and
for longer durations once inside the arena,
possibly in order to hide or gather informa-
tion about the robot location.

In summary, we used cellworld to assess
mouse behavior in a spatially complex arena
while interacting with an aversive “other”
agent in the form of an airpuffing robot.
We found that this combination of experi-
mental features resulted in the disruption of
habitual behavioral strategies, such as thig-
motaxis and route stereotypy, and also re-
sulted in increased pauses within the arena.
Previous work has shown that such features
may indicate planning 23, and we suspected
that mice were using sequences of pauses
to evade the robot. To assess this, we more
closely examine examples of complex behav-
iors that we observed during the BotEvade
task in the following section.

Presence of a robot in a spatially complex
environment elicits complex behaviors

Above we established that mice took
longer, more diverse paths at lower speeds
when the robot was present and paused
more often when engaging with the robot
in the arena (Fig. 5). We hypothesized
that these changes might reflect delibera-
tion, such as monitoring the robot’s move-
ments to predict its future location, or plan-
ning new routes to evade the robot and
reach the exit. We found several examples
of behaviors consistent with this hypothe-
sis. For instance, we found that mice en-
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gaged in apparent “baiting” behaviors, in
which the mouse made visual contact with
the robot, returned to a safe location (typ-
ically near the entrance), and then waited
for the robot to approach. Once the robot
approached the mouse, the mouse escaped
along an open path opposite the robot’s
location (typically along the north wall)
towards the exit (Fig 7a, Supplementary
Movie 8), effectively leveraging their higher
speed over that of the robot (speed of robot:
24.1 £ 1.2 cm/s, mouse: 68 £ 26.8 cm/s).

We also observed many instances of what
appeared to be “peeking” behaviors. In
one example (supplementary Movie 9), the
mouse ran along a familiar path, then en-
countered the robot blocking the exit door
(Fig 7b, left panel). After retreating to a
safe location, the mouse then paused be-
tween two obstacles and centered the robot
within its binocular zone while concealing
its body behind a nearby obstacle (Fig. 7c).
After seeming to confirm the robot’s new
location, the mouse then rerouted to a safe
path avoiding the area near the robot and
reached the arena exit and water reward
(Fig 7b, right panel).

Instances of both baiting and peeking be-
haviors were found in all 8 out of 8 mice.
While baiting is specific to the presence of
the robot, we observed peeking in both the
presence and absence of the robot (R and
PR phases). In support of this, we manu-
ally identified 15 trajectories across R and
PR phases where peeking events occurred
and 10 trajectories from the R phase where
baiting occurred. Movies of these trajec-
tories can be accessed through the zenodo
link found in the Key Resource Table un-
der ” Additional movies”. Though these are
only a subset of the many occurrences of
these behaviors that we observed, they are
a representative sample. Trajectories with
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peeking events exhibited higher levels of
deviation from typical trajectories, slower
moving speed in the PR phase, and higher
episode trajectory lengths and cluster dis-
tances in both the R and PR phases (Sup-
plementary Fig. 4). Similarly, trajectories
with baiting events had higher episode tra-
jectory lengths and distances to the nearest
cluster (Supplementary Fig. 4). All trajec-
tories for each of the 10 baiting and 15 peek-
ing trajectories are shown in Supplementary
Figure 5 and 6. In addition, we have taken
some initial steps to quantify these behav-
iors, plotting distances and visual contact
between the prey and robot during the R
phase “peeking” and “baiting” trajectories
(Supplementary Fig. 5 and 6).

Taken together, these results show that
the combination of a spatially complex
arena and aversive robotic agent resulted in
a rich set of behaviors, eliciting complex be-
haviors that are atypical in traditional task
structures. Furthermore, the automation
provided in cellworld allowed for many tri-
als within the BotEvade task, demonstrat-
ing the effectiveness of the system for mod-
eling ethological behaviors with the control
and repeatability needed for laboratory ex-
periments.

Discussion

In this study, we describe a system that
allows researchers to study animal interac-
tions with a robotic agent, enabling a rich
set of task designs set within an arena with
adjustable spatial complexity. The physi-
cal basis of the system is a modular arena
which allows flexible configurations of ob-
stacles within a 2.56 m? open field, sup-
plemented with automated doors and feed-
ers. The entire arena is monitored by a
high speed tracking system, allowing the
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robot to react to the behavior of an ani-
mal with a lag of a hundredth of a second.
Here, we leveraged this system to create a
predator-prey-like task, in which we trained
mice to evade a robot equipped with an
aversive airpuff mechanism as it traversed
a complex arena. We found that mouse be-
havior was strongly modulated by both the
complexity of the arena and the presence
of the robotic predator, finding that mice
took more varied paths when compared to
predator-free open fields, and observing ex-
amples of more complex behaviors, such as
baiting and peeking.

While cellworld is capable of replicat-
ing previously published behavioral tasks
(Fig. 2d), we argue that this system also
introduces some distinct advantages over
prior approaches. The two key innovations
deployed here are 1), a mobile agent whose
behavior is coupled to that of the experi-
mental subject and, 2) a large, rapidly re-
configurable arena. Below, we detail how
these two experimental features allow ex-
periments that are challenging, if possible
at all, using current methods.

Previous studies have utilized robotic
agents to study rodent behavior, most of
which fall into two main approaches: a
robot that moves but is non-reactive to the
animal or robots that are mostly station-
ary, but react when the animal comes within
range. In the studies that implemented non-
reactive control, the robot either moved ran-
domly until it hit the arena wall 3% 3637 or
was supplied with a set of predefined des-
tinations to navigate towards 3% 3. In the
studies that implemented mostly stationary,
reactive robots, the robot remained station-
ary until the rodent came within a specified
range, after which the robot “surged” to-
wards the mouse 4% 414243 Finally, most
similar to the present work, there are several
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studies that implemented reactive mobile
robots. This includes a robot that chases
the animal but is otherwise neutral 44, and
a “robotic-rat” which is capable of aversive,
neutral, and friendly reactions to the behav-
ior of real rats 4% 46

The autonomous robot within cellworld
improves over these previous approaches in
several respects. First, robotic control is
fully reactive to the position of the mouse.
This is in contrast to previous studies in
which the robot did not react to the ro-
dent at all 3% 3% or in which the rodent re-
ceived foot-shocks when in the proximity of
the robot, but the robot’s behavior was oth-
erwise unaffected by the animal’s position
35,36, 37 Additionally, other studies which
did use real-time sensing to react to the ro-
dent provided very simple reaction modes,
limited to a forward lunge followed by a
retreat to the original position® 41 4243
In the current study, we improved over
these previous implementations by using
closed-loop control of the robot’s behav-
ior. This enabled the robot to chase the
mouse with high accuracy over large dis-
tances, while still deploying aversive stim-
ulation (airpuffs) to create negative-valence
interactions.

Second, while we focused on an aver-
sive stimulus mode in the current study, we
found that without the airpuff, the robot
was not inherently threatening to the mice
(some possible alternatives: Supplementary
Fig. 3) as indicated by previous studies
39,44,46  When the airpuff was disabled,
we found occasions where mice would climb
onto and stay on the moving robot (Supple-
mentary Movie 4), suggesting that the fear
response was specific to the airpuff stimu-
lus. With the airpuff module being eas-
ily removed, we can interchange the top
half of the robot to any feasible mecha-
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nism as long as it does not interfere with
robot navigation. This provides a wide va-
riety of possible interaction models ranging
from aversive to appetitive stimuli, in con-
trast to previous studies using robotic stim-
uli, which were only capable of inducing fear
responses 40> 42, 41,43, 35,36, 37 ' Ntably, some
previous studies manipulated the valence of
the robot, either by baiting it with food
39 or by engaging in “friendly” biomimicry
(ie. when the real rat grooms the robotic
“rat” grooms) or stressful attacks 4>6. In
line with this previous work, the system de-
scribed here will be useful to study social
interactions within large, complex environ-
ments. Supplementary Table 1 lists some
alternative experiment paradigms including
appetitive and social modes.

Finally, the robot in this study was ca-
pable of navigating a large, occluded en-
vironment, creating a two-dimensional in-
teraction space between the mouse and the
robot. Many previous studies used in-
teraction spaces that were effectively one-
dimensional, limiting the mice to a nar-
row corridor with the robot at one end
40,41,42,43 = This resulted in very stereo-
typed escape and freeze behaviors that were
only characterized in one of the studies
mentioned *'. By creating a large, oc-
cluded, two-dimensional interaction space,
we found evidence for complex behavioral
sequences of evasion and information gath-
ering between the mouse and robot (Fig-
ures 6, 7) in addition to more stereotypical
instances of thigmotactic escapes and freez-
ing. The long sight lines and many route
options through the occluded arena will be
of great utility in the study of planning in
the presence of a dynamic threat, which we
believe to be a significant advance of the
cellworld system over prior work.

Another key feature of cellworld is the
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reconfigurability of the obstacles within
the arena. This allows the experimenter
to recreate traditional experimental se-
tups (Fig. 2d), or create other desired
layouts.  Existing experiments studying
memory, navigation, decision-making, and
planning typically take place in an open
field 47> 16:48 or in highly simplified mazes
18,49, 50 " Tntuitively, these arenas have lit-
tle in common with natural spaces, where
occluded and open areas are commonly
intermingled, providing locations to hide
and gather information, for instance, while
evading a predator. It is possible that
the simple layouts and tasks commonly fa-
vored in neuroscience may alter the cogni-
tive processing of animals behaving in these
spaces compared to the natural contexts
in which they evolved, which largely mo-
tivated the creation of cellworld as an al-
ternative platform for studying behavior.
As such, how spatial complexity affects be-
haviors and neural representations within a
given space remains an underexplored ques-
tion. We have demonstrated that cellworld
may be used to tackle these questions by
leveraging its reconfigurability during an
ethologically-inspired predator evasion task.

We took a two-pronged approach to un-
derstand the impact of spatial complexity:
we used a generative procedure to create
random arenas with a desired level of en-
tropy (Fig. 2c and d) and developed meth-
ods for quantifying the spatial complex-
ity of any arbitrary arena layout. Using
these methods, we found that, 1) the ran-
domly generated arenas were more spatially
complex than traditional arenas, and, 2)
the complexity of the random arenas was
similar to the statistics of a natural land-
scape (Fig. 2e, additional landscapes ana-
lyzed elsewhere!). However, it should be
noted that while we focused on one measure
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of spatial complexity (network degree com-
plexity), it is likely that this metric does not
capture all of the elements of a space that
might be relevant for behavior (for instance,
a hairpin maze is more complex than many
high entropy worlds despite having fewer
routes). A promising alternative for fur-
ther exploration is lacunarity, a metric used
by landscape ecologists which is sensitive to
the spatial scale of environmental features
and can distinguish between repeating ver-
sus random occlusion arrangements ®1 52 93,
We applied this method to the mid-entropy
arena used in this study, and found that this
configuration closely resembled the lacunar-
ity profile of a natural landscape (Supple-
mentary Fig. 1g). Furthermore, our previ-
ous work suggested that mid-entropy are-
nas (such as the one used in this study) had
the greatest utility for planning in simula-
tions of the BotEvade task !'®*. These re-
sults suggested that mice evading a predator
within more natural (i.e. high complexity)
spaces are more likely to use planning.
Therefore, we leveraged the features of
cellworld to emulate interactions with a
predatory “other” within the ethologically-
inspired arena. We found that the spatial
complexity of the arena, paired with a mo-
bile threat, strongly modulated mouse be-
havior. In the open arena, mice reverted
to thigmotactic routes to evade the robot,
while in the occluded arena, mice engaged
in long sequences of evasion, taking longer
and more diverse paths in the presence of
the robot. This suggests that in the pres-
ence of threat, low complexity configura-
tions can lead to more stereotyped behav-
iors while high complexity configurations
can lead to more flexible behaviors, as sup-
ported by prior computational studies %4,
In addition, we observed many examples of
“peeking” and “baiting”, actions which are
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rarely observed in conventional mazes (but
see 28,29, 31),

For example, in a trial where the robot
remained stationary, the mouse repeatedly
peeked, approached, and retreated from the
now immobile threat, as if in response to
a violation of its internal model (Supple-
mentary Movie 10). Based on this and
our previous observations, we hypothesize
that these complex behaviors arose through
the implementation of an internal model
to predict the location of the robot and
subsequent planning of routes through the
complex space to avoid it. While a large
amount of future research will be required
to test this hypothesis, cellworld and BotE-
vade now provide a lab-based method to do
SO.

Indeed, the instances of “baiting” and
“peeking” we observe resemble previous re-
ports of deliberative behaviors, such as vi-
carious trial and error (VTE 23), which co-
incide with neuronal activity believed to re-
flect planning °% 5% % However, it is un-
clear whether behaviors such as “baiting”
and “peeking” represent planning or sim-
ply a freezing response upon sensory con-
tact with the threatening stimulus. As with
other examples of distraction displays, such
as the broken-wing display of birds 27, it
is possible to interpret these results with-
out a mechanism for planning: the mouse
embarks on a route towards the goal, en-
counters the threatening stimulus, freezes
in fear, and then reroutes to escape as the
threat “looms” towards it (there is evidence
for neural mechanisms supporting this in-
terpretation of the behavior®”). While it is
unclear whether these behaviors are based
on explicit plans, it is clear that the in-
terplay between the robot and environment
caused these behaviors to arise. It should
be noted that the “peeks” and “baits”
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shown are purely from hand-picked exam-
ples. However, with the large presence of
them consistent across all mice, we are con-
fident that the cellworld system allows us
to repeatably capture these complex behav-
iors. This provides the opportunity to de-
fine more detailed methods to identify, char-
acterize, and assess under what conditions
they emerge, again establishing future av-
enues to study planning during ethologically
inspired tasks.

Finally, we note that the inherent dis-
cretization of the honeycomb lattice of cell-
world eases synergy with computational
ethology as common frameworks for re-
inforcement learning and partially observ-
able Markov decision process-based plan-
ning algorithms®® ! are in discretized rather
than continuous space. Supplementary Fig-
ure 7 shows a simulation of mouse behav-
ior based on prior work! ®*, showing good
agreement with trials from a subset of the
mice. Similar simulations are underway for
comparison to the measured behavior of
people performing BotEvade within a scaled
cellworld in virtual reality, where the robot
has been replaced with a predator avatar.
This simulation environment is being read-
ied for release along with a future publica-
tion.

Traditionally, neuroscience has favored
behaviors and stimulus modes that are eas-
ily repeatable and measurable in the lab-
oratory 1849, 47,59,16,48,60,61  \[ore re-
cently, advances in recording methodolo-
gies have allowed neuroscientists to record
from increasingly large numbers of neurons
62,63,64,65  and the rise of machine learn-
ing has provided many tools for quantify-
ing natural behaviors %67 With these
advances, there is a push to leverage be-
havior to study the brain 242526 but it
is unclear how neuroscientists can balance
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the repeatability of traditional experimen-
tal setups with the need to elicit and quan-
tify natural behaviors. Here we provide a
solution to this problem through a mod- 10
ular system that allows flexible behavioral
task design, closed-loop control of a me-
chanical agent, and detailed video monitor-
ing. We show that we can reliably train ro-
dents to perform hundreds of trials per hour io0s
in the presence of an aversive robot, and
found that mice performed complex behav-
iors that are typically not observed or not
quantified in prior studies. Furthermore,
we provide a generative method for creating o
random arenas, and spatial complexity met-
rics to assess how similar the experimental
space is to more naturalistic habitats. Com-
bined, the features of this system represent

a key step towards discovering and studying s
ethologically-relevant behaviors in a labora-
tory setting.

Limitations of the Study

There are several limitations to our ap-ioo
proach. The speed of our robot is on average
about 1/3 that of the mouse. This limita-
tion is a combination of the increased robot
size and mass needed with the aversive mod-
ule, and consequent challenges with obsta- 10
cle gaps that are near the width of the
robot. Predators are often larger than prey
and therefore can at times match or sur-
pass the speed—if not the agility—of their
quarry; the effects of this regime would beioso
interesting to explore. In past tests with
faster robots, we have seen a tendency to
elicit more reactive responses such as thig-
motaxis, but a more thorough investigation
is needed once maneuvering and mass issues 103s
have been addressed.

There are several differences between a
natural predator and our robot that could
affect the mouse’s behavior. While natural
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predators are sources of sound and odor-
ants, these experiments feature frequent
cleaning with ethanol and the presence of
masking white noise to prevent the mouse
from hearing the robot (confirmed by many
encounters where the mouse startled to see
a robot after rounding an obstacle). Ad-
ditionally, the movement capabilities and
search patterns of the robot used in this
study were limited, comprised of a simple
chasing strategy. However, programming
the robot with more advanced strategies is
perfectly feasible within the current system,
and will merit further research.
Nonetheless, we suggest that BotEvade
approximates predator-prey interactions.
The use of a robot versus a natural predator
is not itself necessarily a problem, since mice
have no reason to think an unknown pursu-
ing agent is anything other than a preda-
tor. One key difference between experi-
mental encounters with the robot and an
encounter with an actual predator is that
real predator-prey interactions may result
in injury or death. However, as we demon-
strate here, the airpuff was sufficiently aver-
sive to elicit escape behaviors on nearly ev-
ery encounter (Fig. 5d). Therefore, even if
we were to outfit our robot with a lethal
mechanical bite, mice would rarely dwell
within striking distance; therefore, for all
the mouse knows, the robot does have a
lethal bite. Based on these results, our ap-
paratus is sufficient to elicit naturalistic eva-
sion behaviors, just as the use of expand-
ing black disk stimuli have been used in
prior studies to study escape from ”loom-
ing” stimuli * . While we expect the mouse
is engaged in a predator-prey dynamic with
the robot, it is the case that most preda-
tors of mice are likely to be faster, as we
addressed above. This gap between the ap-
paratus and natural behavior is likely to be
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more important than the fact that the robot
does not look like a natural threat and is ab-
sent a lethal bite.

Another aspect of natural predator prey
interactions is that mice will often freeze s
when it knows it is in view of the predator
in order to avoid being seen by the preda-
tor. Our robot pursues the mouse whether
or not it has executed a freeze. However,
altering this so that the robot only pursues oo
moving mice needs only a very minor con-
trol code change. Whether this is appropri-
ate likely varies between how much a preda-
tor’s visual search relies on motion versus
other factors such as contrast, which will
in turn vary with the type of predator be- s
ing considered. Here we stayed agnostic to
this choice as some predators are less re-
liant on motion. We do permit the mouse
to briefly peek around obstacles without be-
ing detected (Section d below). 1100

Finally, we have not attempted to match
natural scene statistics in cellworld, out-
side of the light spectrum. We made the
robot black to contrast the otherwise white
cellworld features and have landmarks oniioes
walls of the space (Fig. 3a). Future work
should explore whether contrasting obsta-
cle/wall /robot shapes or colors are impor-
tant, and whether occlusion arrangements
reminiscent of other types of natural land- 1110
scapes (eg. denser or sparser arrange-
ments akin to forest or desert environments,
respectively) result in different behavioral
strategies than the environments explored
here. 1115

Figure Legends

Fig. 1: Overview of the cellworld system.
Magnetized movable obstacles breakiizo
the rodent’s line of sight to the robot
and the robot’s line of sight to the ro-
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dent and facilitate diverse rodent be-
haviors amidst mobile threats or oppor-
tunities. Multiple high speed cameras
ensure continuous tracking, and high
speed custom processing of the images
ensures low latency between changes in
the rodent’s behavior and changes in
the autonomous robot’s behavior. Au-
tomated doors open and close to se-
quence the rodent through the rewards
of the task under control of the exper-
iment controller.

Fig. 2: The reconfigurable behavior arena.

a. Exploded computer-aided design
view, with the front walls removed
for illustrative purposes. There are
331 magnetized hexagonal cells over
an area of 2.56 m?, with a long di-
agonal length of 2.34 m. Inset be-
low shows magnetic attachment sys-
tem. Not shown is a seamless acrylic
and vinyl membrane between the ob-
stacles and floor for cleaning and re-
moval of odor cues. b. Photos of
three configurations of obstacles (cor-
responding to 0.1, 0.5, and 0.9 en-
tropy, see Methods). c¢. Top down
view diagram of the obstacle configu-
ration corresponding to the photos in
panel b. The 0.5 arena matches the
occluded condition for behavioral ex-
periments with mice in this study. d.
Configurations of cellworld to match
some commonly used laboratory assays
of learning and memory. Greyed out
areas of the habitat represent areas
not accessible to mice that were fully
filled in with obstacles for spatial anal-
ysis. e. Left: Spatial complexity ver-
sus entropy. Line plot shows 500 re-
peats for each of 14 different entropy
levels of cellworld, along with other
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configurations. The dashed line repre- s
sents the mode of spatial complexities
in the natural landscape. Right: Il-
lustration of the random sampling pro-
cess used to select 1162 hexagonal cell-
worlds of the natural landscape. Theun
worlds are scaled such that each cell

is 2 m in size, the approximate size of
small herbivorous prey animal common

in this habitat, for a total world size of
50 m. 162 samples that did not include s
any coverage (spatial complexity of 0)
were removed for the calculation of the
mode. The natural landscape is a bi-
narized Google Earth image represent-
ing a 1941 m x 1139 m portion of the
Okavango Delta in Botswana. The full i1
color image and details of the natural
landscape can be seen in Supplemen-
tary Figure 1. f. Histogram of spatial
complexity of the worlds generated for
the line plot in e including the spatialss
complexity of other configurations and
patterns from c and d.

Fig. 3: The camera system and an au-

tonomous interacting agent. a. Rawiwo
video from the four cameras. Note
landmarks on top and bottom walls.
b. Main outputs of the camera sys-
tem including a summary of the mouse
detection pipeline. Left: Stitched im-1s
age processed from the four raw camera
views. The robot predator is present,
and the circle around it shows the at-
tack threshold. Muiddle: Mouse detec-
tion process utilizing background sub- 120
traction and color-connected compo-
nents. Right: Zoomed-in view of a
mouse peeking around an obstacle at
the predator robot from the four cam-
era views. Were the video taken with 120s
the upper-right camera alone, the peek-
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ing behavior would not be registered
and automated tracking would fail. c.
Exploded view of the robot showing
main components, with the aversive
stimulus module used for the experi-
ments described here. d. Image of the
robot configured with a CO4 canister
for airpuff delivery. e. Front and side
views of the CAD model of the robot.
f. Top view of the robot in the arena.
Inset shows a magenta circle used to de-
pict the airpuff attack threshold (left)
and background subtraction for track-
ing (right).

Fig. 4: The BotEvade task, modeled after
predator-prey interactions. a. State
flow diagram. The two processes that
comprise the Main Process (black rect-
angle), for when mice are over 32 cm
away from the robot, are “Pursue” and
“Search”. Below the Pursue Behavior
node is an illustration of a typical pur-
suit scenario: the mouse is in view of
the robot, and while in view, the robot
will pursue. Below the Search Behav-
ior node is an illustration of a typical
search scenario: the mouse is out of
view, and the robot randomly selects
a cell out of view to go to (purple line
and cell). When the mouse is less than
32 cm away from the robot, the “At-
tack” process (red rectangle) is trig-
gered for releasing the sequence of two
airpuffs. b & c. Experiment events
shown alongside door events for the
four automated doors (two at the start
port, two at the end port). d. A single
trial of rodent-robot interaction during
the BotEvade task. A loud white noise
generator prevents mice from hearing
the position of the robot when it is out
of view, and the arena is cleaned with
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ethanol between subjects to remove ol-
factory cues. e. Composite image of 1o
the arena, with experiment lighting on
the left and overhead lighting on the
right for clarity.

Fig. 5: Learning the BotEvade task andiss

aversive airpuff. a. Route pattern en-
forced by the BotEvade task. b. For
experiments with obstacles, over a pe-
riod of up to 22 days for 8 mice, there
is a sequence of four phases: 1) one
day of corridor training (CT) whereizo
a channel connects the start and end
doors; 2) arena training (T), wherein
mice run through the task at their own
pace, with no robot present, until tri-
als/min plateaus and the mouse runsizes
greater than 15 trials per 30 minute
session; 3) robot (R), where mice now
are challenged with the robot predator
until trials/min plateaus, followed by
an additional 2 days of trials; 4) fiveo
days where mice experience the same
conditions as the prior phase but with-
out the robot (PR). For the R phase,
we show the robot as configured with
360° vision for the shown position. Inis
this and other typical robot locations,
the obstacles provide many locations
for the mice to avoid being seen by the
robot. The total number of trials col-
lected across all phases and mice is nizso
= 6678. c. Trial count during arena
training (T) for 8 mice (individual col-
ored lines; average trace £ STD indi-
cated by black dashed line and grey
shading). Vertical dashed line showsizss
the start of the plateau phase. d.
Change in distance between the robot
and mouse over 2 seconds following an
attack (two sequential airpuffs, n = 178
attacks). Red/orange lines represent i
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distance traces after individual attack
events, while the grey distribution rep-
resents the 97.5th percentile of the dis-
tances when randomly sampling tra-
jectories without attack events 19,430
times. If an individual trace fell out-
side of the 97.5th percentile of the ran-
dom distribution after 1 s it was consid-
ered significant (red traces), otherwise
it was colored in orange.

Fig. 6: Measurements of mouse and
robot dynamics during BotEvade. a.
Mouse trajectories from individual tri-
als across experiments with obstacles
and no obstacles. Color indicates the
mouse’s speed. For the with-obstacle
cellworld experiments (top row), tra-
jectories are shown for the plateau
phase of the training (T) phase (n =
1615), the plateau phase + 2 days for
robot (R) phase (n = 1248), and for 5
days of the post-robot (PR) phase (n
= 2238) for n = 8 mice. For the no-
obstacle cellworld experiments (bottom
row), trajectories are shown for 2 days
of the T (n = 182) and the R phase (n =
220) for n = 2 mice. b. Average num-
ber of trials per 30 minute session per
mouse across each experiment phase (n
= 8 mice). In this plot and all other
box plots, the horizontal line is the me-
dian; box is interquartile range (IQR);
whiskers are 1.5 times the IQR. Data
points beyond the whiskers are denoted
by circles. Two-tailed Kruskal-Wallis
(KW) test: H(2) = 16.88, p = 2.16 X
107%; post-hoc Dunn test: R vs. PR:
Dadj = 1.23 X 10~4.  Asterisks indi-
cate significant pairwise Dunn’s tests
between corresponding phases. c. Av-
erage trajectory length per trial, per
mouse in each experiment phase. Two-
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tailed KW test: H(2) = 12.44, p =
1.99 x 1073; post-hoc Dunn tests: R vs. 133
PR: pag; = 1.39 x 107%). d. Example
clustering results for one mouse in all
of the robot experiments (left) and all
of the post-robot experiments (right).
Trajectories are colored by their clus-1340
ter assignment, while the average tra-
jectory for each cluster is indicated by
the solid lines outlined in white. The
average trajectory thickness was pro-
portional to the number of trajectories
included in the cluster. Inset: clus-ius
ter distance was determined by aver-
aging the distance between each indi-
vidual trajectory and the closest clus-
ter. e. Average number of clusters
per mouse in each experiment phase. s
H(2) = 15.54, p = 4.22 x 107%; post-
hoc Dunn test: R vs. PR: p.q =
2.61 x 107*. f. Average distance from
the nearest cluster per mouse in each
experiment phase. H(2) = 18.02, p =135
1.22 x 107*; post-hoc Dunn test: R vs.
PR: pagj = 6.63 x 107°. g. Average
moving speed per mouse in each ex-
periment phase. Two-tailed KW test:
H(2) = 8.34, p = 0.015; post-hoc Dunn s
test: R vs. PR: pag; = 0.027. h. Dis-
tribution of pause duration at the en-
trance in each experiment phase (col-
ors as in b). Two-tailed KW test on
pause frequency for each phase: H(2) s
= 1239, p = 2.03 x 1073; post-hoc
Dunn tests: T vs. R: p.q; = 0.016, R
vs. PR: pagj = 3.43 X 1073. i. Distri-
bution of pause duration in the arena
in each experiment phase (colors as inispo
b). Two-tailed KW test on pause fre-
quency for each phase: H(2) = 10.14,
p = 6.28 x 1073; post-hoc Dunn tests:
T vs. R: pagy = 0.017, R vs. PR:
Paqj = 0.017. Inset: duration distri-iss
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bution of long pauses (>2 s). j. Av-
erage number of long pauses per trial
in the arena. Two-tailed KW test on
pause frequency for each phase: H(2) =
10.03, p = 6.62 x 10~3; post-hoc Dunn
test: R vs. PR: pag; = 894 x 1073, T
vs PR: paqg; = 0.044.

Fig. 7: Behaviors we term “baiting the
robot” and “peeking”. a. An exam-
ple of “baiting behavior”. Moments
of “baiting” are highlighted with the
blue numbered circle. The trajectory
of the mouse and robot is color coded
by speed. Here, (1) the mouse comes to
a point where it is seen by the robot,
which is typically at a random loca-
tion near to the goal at the start of a
trial. The mouse (2) then retreats, pro-
voking the robot to pursue (3). This
retreat-pursue cycle repeats (4-5) until
the robot is close to the start gate (6),
at which point the mouse uses its su-
perior speed to outmaneuver the robot
by running along the north wall. This
trial is shown in Supplementary Movie
8. b. An example of “peeking” be-
havior, where the mouse (cyan dot)
makes initial contact with the robot,
retreats, and then appears to reconfirm
the robot’s location (magenta dot) by
making visual contact with the robot
while hiding its body. The peeking
event is highlighted with the red num-
bered circle. The trajectory of the
mouse and robot is color coded by
speed. Left: The mouse encounters the
robot, then retreats behind obstacles.
Maiddle: From the concealed location,
the mouse peeks and makes line of sight
with the robot at 10.28s (magenta rect-
angle indicates the robot hull). Right:
The mouse reroutes and escapes. The
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legend indicates the speed of the two
agents. c. Still frames of the mouseias
pose at the time of the peek (10.28s).
Left: Mouse and robot locations in the
experiment frame. Dashed lines and
open area indicates the binocular field
of the mouse (head direction £20°), 120
which was calculated using DeepLab-
Cut annotations of the mouse pose .
Middle: The corresponding frame of
stitched video with tracking annota-
tions. Right: The zoomed-in view of
the mouse during the peek, indicated
by the black square in the middle panel.
The mouse’s stretch attend posture 2°
is evident. This trial is shown in Sup-
plementary Movie 9.
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STAR Methods

Resource availability 1430

Lead contact

Further information and requests for re-
sources should be directed to and will be
fulfilled by the lead contact, Dr. Malcolm
Maclver (maciver@northwestern.edu)

1435

Materials availability
Instructions to develop the specialized
hardware of this study, including the cell-
world arena and robot, are shown on the fol-
lowing website: https://cellworld.gith
ub.io/. Otherwise, any other requests for
materials can be directed to the lead con-
tact. 1445
Code and data availability
e All the data used in this study has
been uploaded to Github and can be
accessed using the link in the resource iaso
table or from the following website:
https://cellworld.github.io/.
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e Premade software packages utilized in
this study are listed in the resource ta-
ble. Custom code used for data analy-
sis can be accessed from the following
website: https://cellworld.gith
ub.io/. Code developed for the cell-
world system, such as those used for the
robot, camera system, and doors, were
added to Github and can be accessed
using the link in the resource table.

e Any additional information required to
reanalyze the data reported in this
work paper is available from the Lead
Contact upon request.

Ezperimental model and study participant
details

In this study, we used a cohort of eight
adult Mus musculus (C57BL/6, Charles
Rivers Laboratories, 8-10 weeks of age at
the start of experiments) mice containing
four females (labeled as FMM9, FMM10,
FMM13, and FMM14) and four males (la-
beled as MMM10, MMM11, MMM13, and
MMM14). All mice were single-housed dur-
ing experiments, at 28 degrees Celsius on a
12-h light:dark cycle with food provided ad
libitum. All mice underwent water schedul-
ing before the start of the training such that
they were restricted to 75% of their initial
weight. Initial weight was determined by
taking the average weight across 3 consec-
utive days under normal water and food
supplies. Once at the correct weight per-
centage, all mice ran one 30 minute experi-
ment every weekday following the same ex-
perimental phase sequence. All experimen-
tal procedures were in accordance with NITH
guidelines and approved by the Northwest-
ern Animal Care and Use Committee.
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Method details
The cellworld

Cellworld is approximately 2.34 m long
at its widest section, consisting of a large
open field labeled as the “arena” (Fig. 2).1s0
The arena is surrounded by 1.06 m tall
walls (Fig. 2a-b). The entire structure
of cellworld is made primarily of laser-cut
white acrylic. The arena itself consists of
10 acrylic pieces engraved with a hexago- s
nal grid consisting of 331 magnetic hexagon
cells each roughly 11 cm apart from center
to center (Fig. 2a, inset). Two 11.11 mm
diameter neodymium magnets (D74-N52,
K&J Magnetics, Pipersville, PA, USA) areisio
placed into each cell. A thin 3.175 mm layer
of clear acrylic followed by a 3.175 mm layer
of clear vinyl cover the arena floor. Sili-
cone sealant is applied to all corners and
joining structures that the mice may in-1ss
teract with, containing debris and allowing
for more thorough cleaning. Obstacles are
17.7 cm tall and made out of white acrylic.
The base of the obstacle is the size of a cell
and has two neodymium magnets that areis
identical in size, type, and location to the
cells of the arena floor. This attracts the
obstacle to the cells in the arena and lets us
freely place and change the configuration of
cellworld’s environment (Fig. 2a).

There are two “chambers” at the start
and end of the arena, and an external
“mouse return chute” connects these cham-
bers (Fig. 2a). This forms a loop where
mice are introduced to the start chamber, s
traverse the arena, enter the end cham-
ber, and traverse back to the start through
the return chute. Water rewards are lo-
cated at each chamber as motivation for the
water-scheduled mice. Doors connected toisss
a Raspberry Pi system (3B+, Raspberry
Pi, Cambridge, England, UK) are placed
at the entrances and exits of the cham-
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bers. Both the doors and water feeder are
fully autonomous. The doors are primar-
ily built out of laser cut white acrylic and
3D-printed polylactic acid (PLA) parts and
use micro DC motors (50:1 6V micro metal
gearmotor, Pololu, Las Vegas, NV, USA)
in combination with limit switches to set
and detect the open and closed states of
the door. The base of the door that in-
teracts with mice is made out of neoprene
rubber material, which we have found to
be strong enough to not be damaged by
mouse manipulation but pliable enough to
not harm mice if the door were to close on
them. Each water dispenser is controlled
by a metal lick port connected to a capaci-
tive sensor (AT42QT1011, SparkFun, Boul-
der, CO, USA) and Raspberry Pi. When
a mouse licks the spout, a capacitive signal
is sent to the Pis, opening a solenoid valve
for a fixed amount of time. The time was
calibrated so that 2 pL. of water was given
per reward during a lick—a total of 4 pL. of
water is given per trial.

Lighting in cellworld was tuned to match
crepuscular light conditions and provide
the mice a more naturalistic environment
(Fig. 4e). This involved using a combina-
tion of a LED full spectrum bulb (9-Watt
LED Grow Light Bulb, General Electric,
Boston, MA, USA) with a purple gel light
filter attached, a LED UV bulb (UV LED
Black lights Bulb, SHGPODA, Shenzhen,
Guangdong, China), and lighting soft boxes
for light diffusion. This lighting configura-
tion emulated the spectrum and illuminance
of real-world measurements during twilight
with an energy peak around 400 nm and an
overall illuminance of 2 lux % % Two addi-
tional red lights (660 and 850 nm; LED Red
light therapy bulb, Wolezek LED, China)
in soft boxes were added to improve cam-
era visibility, but are likely to be far enough
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outside the visual range of mice vision tousso

not interfere with the crepuscular lighting
70, 71

Camera system hardware
The computer vision system employsisss

four advanced cameras (three Basler
axA2040-180km and one Sentech STC-
CMB401PCL), comprising high-speed,

low-latency, high-definition, and infrared
CMOS sensors, which interface with theiso
central computer via a PIXCI CL1 frame
grabber PCI cards (Epix, Inc., IL, USA)
using Cameralink interface. Video frames
were acquired as 10-bit grayscale images at

a resolution of 2040x2040 pixels at 120 fps, 1505
generating a dataset of approximately
(4 cameras x 10 bit x 2040 x 2040 x
120 fps) 2.3 Gb/s. The central computer
used to process the data stream from the
cameras is equipped with the Ubuntu 22.04 1600
operating system and features an Intel
i9-10920X CPU, an NVIDIA GTX 3090
GPU, and 64GB of DDR4 RAM.

Unified field of view

The use of multiple cameras provides
comprehensive coverage of the arena, cap-
turing scenes that may otherwise be ob-
scured. However, this necessitates the real-
time amalgamation of individual camerazsio
feeds into a unified view with minimal la-
tency. Moreover, the system must accu-
rately correlate pixels to physical locations.
This precision is critical to safeguard inter-
actions with animal subjects during trialsies
and to maintain the integrity of the exper-
iment outcomes, given that the computer
vision system is the primary data source.
Any error in this translation could poten-
tially skew results and their interpretation. o

In conventional image stitching, the ac-
quisition order or arrangement of source im-
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ages is typically unspecified. Consequently,
the stitching algorithm must identify the
overlapping regions between individual im-
ages. This task is commonly achieved
through the use of Scale-invariant feature
transform (SIFT)—a technique that oper-
ates on the gradient of the raw image and
generates a series of normalized Keypoint
descriptors. Following the processing of all
images, the lists of descriptors that exhibit
the best correspondence in a given image
pair can be utilized to ascertain the degree
of image overlap. An undesirable side ef-
fect of this approach is that the plane into
which images are merged is computed on
the fly to optimize the overlapping surface,
thereby precluding the determination of the
correlation between a pixel and its physical
location.

Achieving  high-performance, pixel-
accurate image stitching necessitated the
development of a custom stitching process
that conforms to the system’s accuracy and
performance requirements. The new pro-
cess employs a predefined destination plane
that matches a scaled version of the arena.
Instead of matching features between raw
images, it uses known locations which were
annotated in the raw camera images, a
process called homography. We then used
those locations in the predefined plane
and the annotated pixels corresponding to
those locations to enforce their merging
into the specified Field of View (FOV). In
contrast to the default blending method,
the cameras’ locations determine the arena
section best covered by each camera. These
modifications enable the pre-computation
and reuse of homographic information for
all cameras, simplify the merging process,
and ensure a high-quality match between
pixels in the composite image and their
physical locations.  Performance testing
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results indicate that the new stitchingiess
process merges images in an average time
of 8.3 ms without optimizations, which re-
duces to 1.8 ms with CUDA optimizations.
The homographic information is configured
prior to the experiment execution and it issno
only updated if the cameras undergo any
displacement or rotation. The configura-
tion process consists of the identification of

a group of five known locations from the
arena in the captured images from eachers
camera.

To verify the accuracy of the stitched,
composite image, we took advantage of the
physical features of the arena: all the cells
in the arena have 2 magnets, separated ieso
3 cm apart and oriented vertically. These
magnets are visible in the stitched image
and their location can be computed in the
physical space. To verify that the perspec-
tive correction procedure during the stitch-iess
ing process did not distort the true image,
we manually annotated the locations of the
magnets for every obstacle in the uncor-
rected images from the cameras (indicated
by the blue x in Supplementary Figure 2a). 160
We then used the transformation calculated
from the camera calibration process to gen-
erate the expected locations of the magnets
based on our knowledge of their spacing
and positioning. We found that the recon- iess
struction error from the pixel plane to the
laboratory coordinate frame was on average
0.15% with a max of 0.45% (Supplementary
Fig. 2a-b).

1700
Animal tracking

Prior to the introduction of the mouse to
be used as background, a stitched image of
the arena is captured and stored. Every
time a new frame is produced by the cam-
eras, the stored background is subtracted irs
from the current image to eliminate all the
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static features. Upon completion, the re-
sulting matrix is converted to binary by
applying a threshold followed by two con-
secutive cycles of dilation-erosion. The re-
sult is a binary matrix containing 0 val-
ues for static background pixels and 1 for
dynamic features. Next, Color Connected
Components (CCC) ™ is employed to group
the islets of positive values and identify all
the dynamic elements present in the image,
which are then individualized. This set of
dynamic elements is referred to as “detec-
tion candidates”. Finally, the system en-
deavors to match the candidates with a col-
lection of profiles. The list of profiles is sup-
plied as a configuration and is characterized
by a lower and upper bound limit for the
pixel area of the candidate to be compared
against. During trials, this parameter has
been fine-tuned to match different species of
mice. Four distinct species were successfully
tested: Mus musculus, Peromyscus man-
tculatus, Peromyscus polionotus, and Ony-
chomys torridus.

We estimated the latency and throughput
of the tracking system by supplying a static
image for mouse and robot detection, effec-
tively isolating processing time by remov-
ing image acquisition from the pipeline. Us-
ing standard computing hardware, we found
that our system reached a throughput of
120 fps, with a latency of less than 15 ms
(measured as the time elapsed from im-
age acquisition to detection of both agents).
We were able to improve performance using
CUDA optimizations, reaching throughputs
of 206 fps with an average latency of 3.2 ms
(Supplementary Fig. 2c).

Robot tracking

To enable real-time location and orienta-
tion tracking of the robot, three LEDs were
added to its top, arranged in an isosceles
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triangle configuration with the shortest side
situated at the back as it is shown in Fig-
ure 3f. During the experiments, every timeizso
a new frame is produced by the camera sys-
tem, a brightness threshold is applied re-
sulting in a binary matrix with values of

1 for brighter pixels and 0 for darker pix-
els. As done for tracking the mouse, CCC s
was used to identify triangular pattern sig-
nals. If a signal consistent with the speci-
fication is found, the middle point between
the shortest side (back) and the opposite
vertex (front) is selected as the robot center 1o
location. Then, the orientation is computed

as the vector defined by this location and
the front LED.

Video post-processing

For each experimental trial, cellworld
produces three types of video. The pri-
mary video log presents the unified field ofi7es
view, superimposes tracking markers of the
robot and mouse, and incorporates all per-
tinent experimental information. The sys-
tem also generates raw video that includes
the unprocessed images from each of theirmo
four cameras. Additionally, a multi-view,
subject-centered video is produced, offering
a cropped perspective of the mouse as cap-
tured from all four camera angles. This
subject-centered video mitigates arena ge-irs
ometry interference during post-processing.
Finally, raw video of the unprocessed im-
ages from all four cameras is also saved. We
used the multi-view, mouse-centered video
data to train DeepLabCut for offline analy- 170
sis of the mouse pose %. This allowed us to
measure the gaze angle and head location
for analysis of peeks (Fig. 7b, c).

Robot hardware

The predator robot utilized in the ex-
periments was custom-built.  The skid-
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steer drive robot is powered by the
(ESP32-WROOM-32D, Espressif Systems,
Shanghia, Shanghai, China) and is driven
by two geared DC motors with magnetic
encoders (Geared DC Motor with Mag-
netic Encoder Outputs - 7 VDC 1:20 Ratio,
Adafruit, New York, New York, USA). The
robot was equipped with three LEDs for de-
tection and localization via the camera sen-
sors. The robot housed two custom printed
circuit boards: one provided the support-
ing circuitry for the microcontroller and the
motor drivers (DRV8833PW, Texas Instru-
ments, Dallas, Texas, USA), while the other
powers the LEDs and the driver used for the
motor component of the puff mechanism.

Robot tracking perspective correction

An unexpected issue arising from the
robot tracking setup pertains to the optical
perspective of the cameras. Since the cam-
eras are affixed to the ceiling and the LED
triangle is located at the height of the robot
rather than at ground level, the triangle po-
sition in the captured image shifts further
away from the actual robot location the fur-
ther the robot is located from the center of
the image. This introduces deviations of up
to 3 cm in measurements, sufficient to pre-
vent successful navigation through gaps of
9 ¢m given the 12 mm side clearance around
the robot. To address this challenge, it was
necessary to compute the real-world physi-
cal point corresponding to the center of the
image captured by each camera at ground
level using the previously described homog-
raphy and the known height of the robots
and cameras. Based on the distance from
the center of the camera plane, we calcu-
lated and accounted for the perspective drift
as a function of the robot’s position.
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Robot controller

To control the robot in the complex envi-
ronment, we established a hierarchical con-
trol system comprised of three levels: be-
havior, path planning, and low-level mo-1sss
tor control. During a trial, the high-level
behavior controller selected robot destina-
tions based on tracking information from
the camera system and the current state of
the experiment (Fig. 4a, b). Before eachiswo
trial started, the robot navigated to a spawn
cell (a cell not visible to the mouse, in a
region of the arena furthest from the start
gate) and stopped. These spawn constraints
were implemented to ensure that the robot iss
was not visible to the mouse from the start
port with the gate open, which was found
to lead to long delays before the start of
the trial. Then, once the mouse entered the
arena the Main process of autonomous mo-
tion began, during which the robot observed %
all regions in the arena that were not ob-
structed by obstacles relative to its current
location.

Its behavior switched between aggres-
sive pursuit or random search depending !
on whether the mouse was visible or hid-
den to the robot, respectively. The robot
only entered pursuit mode if the visual ray
between the mouse and robot passed out-
side of a buffer zone around each obstacle
that was 125% the standard obstacle size or
after 0.5 seconds if the ray passed within
the buffer zone. This allowed the mousesso
to “peek” at the robot without being im-
mediately pursued. This motion was inter-
rupted by the Attack process if the mouse
was within 32 cm of the robot, during which
the airpuff mechanism was triggered and re- 1sss
leased two aversive airpuffs in rapid succes-
sion. To deter excessive anxiety in the mice
and enable evasion post-attack, the time be-
tween attacks was regulated to be at least
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0.5 seconds apart, regardless of the distance
between the mouse and robot.

The middle-level path planning controller
was a hybrid proportional (P) and propor-
tional integral derivative (PID) controller
that followed intermediate waypoints on
trajectories created by a standard shortest-
path algorithm (A* ™) to reach the destina-
tions the behavior controller assigned. Fi-
nally, the low-level embedded controller re-
ceived attack and speed commands via Wi-
Fi. It utilized encoder feedback for motor
speed control and included a state machine
to manage the airpuff mechanism. For the
results shown in this study, the robot au-
tonomously navigated the task environment
for 1,941 trials with no human intervention.

Robot path planning controller

The tracking system provided robot state
(position and orientation) feedback for the
path planning controller. During the con-
trol process, the path planner selects the
furthest visible cell to the robot on the
robot’s desired path as an intermediate tar-
get. Then, a hybrid P- and PID- controller:

1

ult) = (g at) * PAs(t) + PID(AV(1))

is used to correct along-track error As
(distance from target) and heading error
A (difference between desired and ac-
tual heading), respectively (Supplementary
Fig. 2). To avoid collisions in cluttered en-
vironments with tight spaces, the W
term prevents the robot from translating
too quickly if the A is large, where a is
an arbitrary design parameter.

Additionally, to augment obstacle avoid-
ance, a type of potential field-based obsta-
cle avoidance algorithm works to repel the
robot from occlusions by perturbing the de-
sired heading angle of the robot, where the
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distance between the objects largely influ-
ences the magnitude of the perturbation.
This algorithm is of the form

1910

— © weight

Foerturs = * direction

— distancede

where O represents all obstacles in front **
of and within 0.35 m of the robot. weight
and decay are design parameters and dis-
tance is the Euclidean distance between the
robot and a given obstacle. The direction is
a unit vector orthogonal to the robot’s head-'9*°
ing direction, pointing either left or right
(from the robot’s perspective) depending on
which side of the robot the obstacle is lo-
cated. Ultimately, this perturbation force
works to repel the robot away from nearby
obstacles by slightly offsetting the target lo-
cation. This perturbation value is updated
at 50 Hz; which means it is constantly ad-
justed based on the location of the robot in
the map during the path-following process.
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Aversive airpuff

To accurately simulate the predatory
behavior during the BotEvade task (Re-
sults section), we added a stimulus mod-
ule (Fig. 3c) to the robot’s chassis. Theisss
module is comprised of a 16 g CO5 can-
ister and inflator (Ultraflate, Genuine In-
novations, San Luis Obispo, CA, USA), an
air nozzle, a brushed DC motor (120:1 Mini
Plastic Gearmotor HP, Pololu, Las Vegas, 1940
Nevada, USA), a motor shaft adapter, and
3D printed PLA parts. The custom PLA
parts consist of a lever arm, a cam, and a ro-
bust framework that facilitates efficient CO,
canister replacement and simple integration ioss
with the robot.

The airpuff mechanism of the stimulus
module is triggered when the camera sen-
sors detect that a mouse has crossed the
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attack threshold (Fig. 4a). For each at-
tack event, the mechanism releases two suc-
cessive airpuffs, each lasting approximately
100 ms, with a 200 ms interval between
them.

During each attack (sequence of two air-
puffs), the motor rotates approximately 350
degrees in one direction, is halted by a me-
chanical stop, and then rotates the opposite
direction back to its start position. Each
COg canister is able to produce at least 30
strong airpuffs (generally 15 attacks, assum-
ing one attack per encounter; Supplemen-
tary Video 1), which is more than enough
to complete a 30 minute session without re-
placement. The canister is replaced at the
end of each 30 minute session to ensure con-
sistency in puff strength across trials.

Spatial complexity metrics

A key aspect of the design of cellworld
is reconfigurability guided by measures re-
lated to spatial complexity.

Cellworld entropy. The first and most
basic measure of spatial complexity used in
this and earlier work ! is Shannon entropy.
This is computed with the formula for the
Shannon entropy ™ of a binarized version of
an arena, where each open cell is 0 and each
cell with an occlusion is 1. The resulting
binary matrix is turned into a vector.

Entropy is determined by the following
formula:

e = — (Glog, (3) + 5% logz (5°))

where O is the number of occlusions,
and C' is the total number of cells in the
arena.

Shannon entropy is an effective complex-
ity measure in the context of our ran-
dom generative algorithm for cellworlds, as
it presupposes no interdependence between
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individual elements. It is therefore insen-
sitive to structured patterns such as the
checkerboard illustration in Supplementary ios
Figure 1: the probability of the checker-
board pattern occurring is the same as any
other pattern: 1/2(29%20) Despite its seem-
ing simplicity and intuitive orderliness, in
the context of our generative algorithm and 200
as measured by Shannon entropy, each cell
in the checkerboard is equally likely to be
occluded or open, implying the checker-
board’s maximal entropy. In this case, our
intuition of the entropy of the checkerboard 20s
(low because orderly) comports better with

a different concept of entropy, known as
causally conditioned entropy ™, which is not
utilized in this study. Causally conditioned
entropy considers the effect that the valuesaoo
of prior elements have on the probabilities
of subsequent ones. In the context of the
checkerboard example, this approach would
yield a conditional entropy value of 0, as the
probability of a square being occupied is de- 205
termined entirely by the preceding square’s
state.

Occupancy. The percentage of the
space with obstacles to sensory perception
( O/C x 100, where O and C' are as defined
above ). Supplementary Fig. la plots Shan-
non entropy versus occupancy and maps
where the various spaces we have consid-
ered fall on the curve. Similar to entropy,
occupancy places no demands on where the
obstacles are. This measure is similar to the
informal notion of how cluttered a space is.

Network Degree Complexity. The
network degree complexity ! provides a suc-
cinct description of the uncertainty associ- 202
ated with the sensory connection distance
between two agents in a space, based on any
two randomly chosen locations within that
space. For this study, we solely consider vi-
sion.
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To compute the vision-based network de-
gree complexity for a given configuration
of cellworld, we translate it into a corre-
sponding graph. Each hexagonal cell rep-
resents a graph node. An edge exists be-
tween two nodes unless an obstacle blocks
the line of sight connecting the centers of
the associated hexagonal cells in cellworld,
implying the visual connection is disrupted.
For instance, in an obstacle-free cellworld
configuration, every node connects to ev-
ery other node. Consequently, the degree
of each node, representing the number of
its connecting edges, stands at 331, which
matches the total cell count in cellworld.

To determine the Network Degree Com-
plexity for a particular cellworld configura-
tion, we first form a vector containing the
relative frequencies for each feasible degree
value greater than zero, ranging from 1 to
the total number of non-obstructed cells.
Then, this vector is used to compute the
Network Degree Entropy. Finally, we nor-
malize this value by the system’s maximum
possible entropy, which is achieved when all
distinct degrees have equal probabilities.

Network Degree Relative Frequency:

fd) =
Network Degree Entropy:

H =~ f(d)log(f(d))
Network Degree Complexity:

ng
D

_ _H
log(35)

In these formulas, ng represents the num-
ber of nodes with degree d in the graph. D
is the maximum degree possible, equivalent
to the node count in the graph. The term
—log(5) signifies the entropy when assum-
ing a uniform frequency across all feasible



2035

2040

2045

2050

2055

2060

2065

2070

degrees (— Y2, 1/Dlog(h) = ~log(})

). In the earlier discussed fully connected s
scenario, the Network Degree Complexity is
zero. However, as we introduce occlusions,
the system exhibits a diverse combination
of high-degree (large fields of view) and low-
degree (small fields of view) nodes, leadingzos
to an increase in complexity.

To compute the complexity of the natu-
ral environment presented in the main text,
we utilized projections of the scaled-up cell-
world arena on a satellite photo of a nat-ass
ural setting. We randomly placed these
projections within the image. The projec-
tion size was determined based on the ob-
served cell-animal body ratio from the phys-
ical setup and measurements of mice (body 200
size ~80 mm) and cell size (12 cm) and the
impala, a prey animal native to the habitat
(body size ~130 c¢m) and cell size (=2 m).

The original color satellite photo, sourced
from Google Maps, was first converted into 2ws
8-bit grayscale. Subsequently, it was bi-
narized using a midpoint threshold. This
image, originally sized 8192 x 5067 pix-
els and representing a real-world area of
1836.77m x 1136.1 m, was resized to 2730 X 2100
1689 pixels. At this scale, every 3 pixels
corresponds to &~ 2m, matching our chosen
graph node scale.

For each projection, we selected a random
center, ensuring it was at least 200 pixels2ios
away from any image edge to avoid over-
flow. The center of each cell in the arena
projection was then calculated. The imme-
diate 9 pixels (a 3 x 3 pixel grid, equivalent
to 2 x 2 meters) around each cell center were o
inspected to check for occlusion. A cell was
deemed occluded if [0.5 x 9] = 5 or more of
these pixels were black. We continued this
process until we identified 1000 projections
with at least one occluded cell.

After obtaining the 1000 non-empty pro-
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jections and transforming them into cell-
world configurations, we applied the same
tools and methods used for analyzing the
complexity of maps generated by the gener-
ative model. This ensured a consistent and
equitable comparison.

Note that in our experimental work, we
have manipulated the environment to min-
imize the contribution of other sensory
modalities besides vision. For example, we
use a loud white noise generator to mask
the sound of the robot, and frequently clean
with 70% ethanol to remove all odor cues.
Nonetheless, it is worth considering the
likely effect of adding sensory modalities on
network degree complexity. To a first ap-
proximation, adding modalities will create
additional edges in the graph. For exam-
ple, imagine an owl with precise auditory
localization using vision and sound to at-
tack a rodent. Portions of the environment
blocking vision will be transparent to the
auditory system. This will create edges be-
tween nodes where there is no visual connec-
tivity (and effectively reduce the number of
obstacles). In an initial situation of high
clutter and low complexity, the addition of
audition seems likely to increase complex-
ity. In an initial situation of medium clutter
and high complexity, adding auditory per-
ception could decrease complexity.

Lacunarity. Lacunarity (from the
latin for lacuna = gap) was devised by
Mandelbrot™ (p. 310) after he observed
that two fractals with identical fractal di-
mension could look very different. It has
been applied as a multi-scale measure of
spatial texture associated with patterns of
dispersal on landscapes °!'?2. Lacunarity
(A) measures the deviation of a pattern at
a given spatial scale from translational in-
variance °1. If A is large at a given scale,
then the pattern deviates a lot from trans-
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lational invariance—the pattern would look
different if a block of the pattern at that o
spatial scale were shifted to a different loca-
tion; similarly, if A is small, then the pattern
will look similar even if that block of space
is shifted. Supplementary Fig. 1 provides
plots of the lacunarity values of several cell- 2165
worlds and other cases, along with summary
statistics for Shannon entropy, network de-
gree complexity, and a summary statistic for
lacunarity, L-value, described further be-

IOW. 2170

While chiefly used by landscape ecolo-
gists, as in our case it has also been ap-
plied for analyzing movement patterns of
animals 7". To our knowledge we are the
first to apply it with specific reference to™"
the physics of a given sensory modality, here
vision, in the analysis of behavioral spaces.
The gaps that we analyze using lacunarity
are assumed/designed to be transparent to
vision, and the obstacles between the gaps
are assumed /designed to be opaque.

2180

To compute the two-dimensional (2D)
vision-based lacunarity for our samples, we
take a top down view of a space and bi-ouss
narize the image: cells occupied by obsta-
cles to vision are '1’, and other cells are 0.
Over a set of boxes varying in size, we com-
pute the ratio of the variance to the squared
mean of the sum of the elements within thezi
box. Because lacunarity is usually plotted
on a In—In scale, one is added to this ra-
tio so that In(A) goes to zero as A goes to
zero, giving A(r) = \ng(]”Z) + 1, where r is
the box size and S is the occupied sites by 2
the variable of interest—visually occlusive
objects in our case. The lacunarity curves
that arise (Supplemental Figure 1b) gives
information as to what spatial scale a given
landscape transitions from being inhomoge- 2200
neous to homogeneous, where homogeneous
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means In(A) ~ 0, and that the space would
be invariant to the corresponding box size of
space being translated to another location.

For example, for the checkerboard pat-
tern of Supplemental Figure 1, the space is
inhomogeneous up to the scale where the
pattern repeats (at a box size encompassing
2 x 2 squares, 183 x 183 pixels for our im-
age); after that, the space is homogeneous.
The lacunarity curve therefore transitions
from In(1/P) at the smallest box size, where
P is the percentage of the cells occupied
(or 50% in this case, In(A) = In(2) ~ 0.69)
to close to zero the size pattern repetition
(In(A) = In(183) ~ 5.2). What lacunar-
ity compactly communicates is how sparse
the space is at the finest scale of analy-
sis (the curve starts at In(1/P)), and the
evolution of the curve as the box size in-
creases to the full extent being analyzed
(and therefore mathematically the lacunar-
ity must be unity so the In(A) plot goes to
zero). Between these two limits, the de-
scent of the curve shows the spatial scale
where the pattern of the space repeats, and
how quickly that transition occurs. For self-
similar patterns, the lacunarity curve is a
straight line on a log-log plot, with a slope
equal to the fractal dimension minus the Eu-
clidean dimension. Our natural landscape
sample has a near straight line slope, and its
fractal dimension is ~1.7 (intercept ~2.6:
y ~ (1.7 — 2)x + 2.6). Other landscape
samples, and a survey of the lacunarity val-
ues found in different types of aquatic and
terrestrial biomes, are provided in earlier
work®.

The integral of the lacunarity curve, the
L-value 3, provides a quick index into the
magnitude of the heterogeneous space. For
two spaces with similar occupancy (and
thus starting near the same value of A at
the smallest box size), if the space tran-
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sitions quickly to invariance under trans-zas
lation, then the L-value will be small; if
the transition occurs at larger spatial scales
then the L-value will be large.

For example, consider the lacunarity
curves for the natural landscape sample and 22s0
the 0.5 Random configuration used in our
experiments, Supplementary Figure lc. As
shown in the legend, the L-value for the nat-
ural landscape (8.1) is larger than Random
0.5 (7.3), with comparable initial A values, 2ss
since the natural landscape has a shallow
straight-line-like decline whereas the Ran-
dom cellworld declines more rapidly. These
two L-value are close, and so is the corre-
sponding network degree complexity of the 2o
two cases. In contrast, the the L-value
of the checkerboard pattern and hairpin
maze are similar despite very different net-
work degree complexities (checkerboard at
0.0 and hairpin at 0.72), grouping them into ass
the same relatively homogeneous space cat-
egory.

Limitations: There are several limita-
tions to the sensory oriented lacunarity
analysis as presented here. One is the as-20
sumption that the profile of an obstacle
from above properly represents how vision
interacts with the object over its height.
While true by design for the obstacles in
cellworld, this is not generally the case for s
natural obstacles as trees with their nar-
row bases and wide tops. Some of the lim-
itations of performing a lacunarity analy-
sis of 3D landscapes using 2D projections
can be circumvented by computing 3D la- 220
cunarity 78, but 3D scans of space are rarely
available. Further, the metric has its roots
in computational geometry and landscape
analysis, and the application to analyzing
how a landscape is sensed and processed 22ss
by an animal is challenged by the difficulty
of deciding on the relevant spatial scales,
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and the multiplicity of ways a landscape is
sensed. Finally, the relevant perspective on
the space for the calculation is not always
obvious. It can be argued that for an ap-
plication where spatial complexity is being
examined through the lens of cognitive map
formation, a top-down perspective such as
used here may be appropriate !; for other
forms of spatial processing, other options
may be considered.

Summary. To recap, we have discussed
the use of cellworld entropy, occupancy,
network degree complexity, and lacunarity.
Each of these quantities has different roles.
The Shannon entropy is a practical mea-
sure that serves as a target in our gen-
erative model to produce cellworlds. The
occupancy is easily understood as some-
thing akin to how cluttered an environment
is, and also gives us one point on the la-
cunarity curve for the space, as it will be
In(A) = In(1/P) at the smallest spatial
scale (termed grain), where P is occupancy.
Network degree complexity tells us how
uncertain the distance of sensory connec-
tion will be for any two randomly chosen lo-
cations within the corresponding cellworld.
But high uncertainty can arise within a rela-
tively homogeneous space as well, as it does
for the hairpin maze. Finally, lacunarity
gives us a multi-scale view of the invariance
of a pattern to translation across spatial
scales of interest. If you've been in a space
where you feel it looks the same in all di-
rections, and the same when you move to a
different location, then at that spatial scale,
the In(A) value of the space is nearing zero.
One could speculate that animals that use
cognitive maps will be challenged, and need
external landmarks to navigate succesfully
in such spaces. The area under the lacu-
narity curve, or L-value, is useful when a
single value to represent a space’s lacunar-
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ity is desired and can help group spaces with 233
different network degree complexity values
but similar levels of spatial homogeneity.

Arena configurations

Leveraging the flexibility of cellworld, the
system can emulate a wide range of estab-2sss
lished experimental designs. Furthermore,
cellworld can effectively reproduce environ-
ments that have ethological relevance with
varying levels of visibility.

The creation of these diverse environ-aso
ments is realized through the use of auto-
mated tools specifically developed for this
system. The model for generating these en-
vironments relies on one primary variable:
the target entropy level of the cellworld. s
This variable can be manipulated through
two parameters which include the number
of occlusions within the arena, or the de-
sired level of entropy. The method starts
with zero occlusions (O = 0) and incremen- 25
tally adds occlusions until the specified en-
tropy level is achieved. Conversely, if the
number of occlusions is explicitly given, this
step can be bypassed. Finally, the process
selects O cells randomly and marks them as2sss
occluded.

To guarantee reproducibility, the algo-
rithm accepts an optional seed parame-
ter.  When provided, this parameter se-
cures a consistent occlusion configuration 2seo
across runs. However, in the absence of
this parameter, the procedure will generate
a unique occlusion configuration for each ex-
ecution.

Validation Criteria. A configuration of2sss
obstacles is considered valid when it meets
two essential conditions: First, all non-
occluded or open cells should be connected
by an open path, ensuring no open cells are
left in isolation. Second, the cells represent- 237
ing the entry and exit points must be open,
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and at least one viable path between the en-
try and exit cells exists. The configuration
generation process repeats until the result-
ing arrangement passes the validation crite-
ria.

Mouse experiments

Experimental conditions were determined
by one of four sequential experimen-
tal phases—corridor training (CT), arena
training (T), robot (R), and post-robot
(PR) phase—which the mice were assigned
based on a combination of standardized and
individualized progress quotas. All mice
followed the same phase sequence. Dur-
ing corridor training, a channel made from
modified vinyl gutters was placed across the
length of the arena connecting the start and
end doors entering and exiting the arena.
The CT phase lasted for only one day, but
two mice (FMM9 and FMM10) were given
a second day in the corridor due to the lack
of trials. The corridor was removed and
obstacles were introduced to match a spec-
ified mid-entropy configuration (named as
“21.05”; Random 0.5 in Fig. 2c¢) for the T
phase. Mice roamed freely and progressed
at their own rate. Once trial count was >
15 over a 30 minute session and the trial
count plateaued, they transitioned to the R
phase where they performed the same task
in the presence of the robot. Progressing
past this phase also required a plateau of
their trial count; however, we added an ad-
ditional two days of experiments with the
robot after this stabilization occurred. Sta-
bilization was determined when, across a
three-day window, the trial count each day
did not exceed more than 20% of the three-
day trial count mean. As a result, mice
needed to run a minimum of three days
in the T phase before we could determine
if a plateau was occurring and mice could
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progress. In addition, during the R phase,
mice always had five days (three used foraus
the plateau check plus two additional days)
where they were considered “acclimated” to
the robot to match the required number
of days for the final phase (PR) where the
robot was not present as a control.

The cohort of mice which experienced the
no-obstacle condition (n=2, Fig. 6) under-
went slightly modified training procedures
consisting of previous exposure to a mid-
range entropy world with and without the s
robot before being exposed to the open-field
arena. Experiments in the open-field arena
consisted of two days of self motivated ex-
ploration without the robot and then two
days with the robot.

Between each mouse, all obstacles were
removed from the arena, and the arena was
fully wiped down using 100% ethanol. At
the end of each day, the arena, the six inches
of the wall closest to the ground, and allass
the obstacles were wiped down with 100%
ethanol. The return chute and chambers
were also cleaned using damp paper towel
sprayed with Labsan C-Dox. During ex-
periments, white noise was played from azao
white noise generator (LectroFan Classic,
Campbell, CA, USA) along a nearby wall
at max volume settings. Both the cleaning
and white noise were applied to limit pos-
sible confounding effects from other sensory s
modalities such as auditory and olfactory
cues.

2420

2430

BotEvade task

Cellworld automation is dictated by az2aso
centralized script labeled as “experiment
controller”, which is able to receive and
broadcast experimental events from any de-
vice connected to it. In this case, the cam-
era system, robot, and both chambers areasss
connected to this system. As an example
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of how the experiment controller connects
devices when a mouse licks the lick port
in the start chamber, the main experiment
controller receives a message from the start
chamber’s Raspberry Pi. Subsequently, the
experiment controller broadcasts the “start
trial” event to all connected components,
signaling the camera system to begin sav-
ing video recordings, and for all doors to
initialize to the proper state.

BotEvade utilizes a sequence of these
specified experiment events to dictate the
logic and progression of the task (Fig. 4a—
¢). To begin the task, a researcher will place
a mouse in the start chamber and manu-
ally send out the “start experiment” event
via a terminal connected to the experiment
controller. Using this terminal, any com-
mand can be manually sent to override or
alter the progression of the task. In re-
sponse to the experiment starting, all doors
in cellworld will close, keeping the mouse
contained in the start chamber. After the
“start trial” event is sent, the Raspberry Pi
of the start chamber waits until the robot
has reached its spawn location before the
door connecting the start chamber to the
arena opens. Once the mouse past a 12.7 cm
radius (one cell) from the start as detected
by the camera system, a “prey enters arena”
event is triggered where the door behind
the mouse closes and the robot begins mov-
ing. A “finish trial” event is then broad-
casted once the mouse traverses the arena
and reaches the lick port at the end cham-
ber, closing/opening doors to guide it into
the return chute. Simultaneously, the cam-
era system stops recording and saves the
video recording of the trial, and the robot
begins to move to a spawn point for the next
trial. The task will restart via the broadcast
of the “start trial” once the mouse reaches
the lick port in the start chamber unless the



2460

2465

2470

2475

2480

2485

2490

2495

experiment has progressed past 30 minutes.

In this case, the “finish experiment” event is2s00
sent and all the doors in the start chamber
will close for mouse extraction.

Behavioral analysis

We performed all behavioral analysis in 2sos
Python using a custom-built library (http
s://pypi.org/project/cellworld/).
Trials with tracking errors were automati-
cally detected and removed, while a small
number of trials with robot malfunctionszsio
or experimenter intervention were removed
through manual inspection of the video logs.
The remaining trials were counted towards
the trial count for each 30 minute experi-
ment.

Mouse and robot positions from online
tracking were logged and used to perform
all behavioral analyses. From the positional
coordinates of the logs, we computed in-
stantaneous speed by calculating the dis-2s20
tance over time between adjacent frames,
then smoothed the speed trace with a mov-
ing average of 10 frames (11 ms). Path
length was computed as the sum of the
distance between adjacent frames. To as-2ss
sess fear responses, we calculated the change
in the distance between the robot and the
mouse in a window starting at the time of
the airpuff and ending after 2 seconds. To
determine whether any given distance tra-2sso
jectory was significantly different than ex-
pected by chance, we employed a permuta-
tion procedure, where we randomly sampled
n = 19,340 time points across non-airpuff
trajectories and computed the mouse-robot »ss3s
distance. We then computed the 97.5th per-
centiles of the random samples, and any
true distance trajectory which fell above
these percentiles after 1 s post-attack was
considered significant.

To determine whether mice varied their
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paths throughout various stages of the
task, we used a clustering algorithm
(QuickBundles®!) to identify stereotyped
path choices. First, we interpolated the
mouse path locations along the x-axis of the
arena into 100 segments of equal lengths.
The interpolated paths were then clustered
using QuickBundles with the following pa-
rameters: minimum number of clusters =
1, distance threshold from cluster centroid
= 23.4 cm, and minimum number of paths
in a cluster = 10% of total trajectories be-
ing considered. During the clustering pro-
cess, the distance of each interpolated path
is compared to each existing cluster’s cen-
troids to identify the minimum distance. If
the distance to the closest cluster is less
than the distance threshold, the path is
added to that cluster and updates the clus-
ter’s centroid. If the distance exceeds the
threshold, a new cluster is created for that
path. Clusters that contain fewer paths
than the minimum allowed (10% of trajec-
tories in analysis set) are discarded at the
end of the process, and those paths are con-
sidered unclustered. For this analysis, we
pooled all paths for each mouse within each
phase of the task (T, R, and PR phases) and
clustered them separately. We then quanti-
fied path diversity in each phase by consid-
ering the number of clusters and the aver-
age distance to the nearest cluster for each
mouse.

To detect when the mouse paused, we de-
veloped a simple algorithm which required
two parameters: a distance threshold and
pause duration. A pause was defined as the
frames where the mouse’s location remains
within a given radius (distance threshold),
for a given number of frames (pause dura-
tion parameter). For this analysis, the dis-
tance threshold was set to a radius of 2.5 cm
and pause duration was set to 0.5 seconds.
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Airpuff aversion control experiment

For analysis of fear response to the airpuffsss
stimuli on a moving robot, we ran two naive
mice in an independent control experiment
where the airpuff on the robot was disabled.
Both mice went through three experimen-
tal phases within an open-field arena with s
no obstacles. The arena doors remained
closed, containing the mice inside the arena,
and the mice were allowed to freely roam
the arena for the duration of each daily 30
minute experiment. The cleaning procedure 2ses
and white noise were identical to the main
cohort experiments. The first phase served
to acclimate the naive mouse to the robot
and the open field environment. The robot
was stationary throughout the entirety of2so
this phase which only lasted for one day.
In the next two sessions, the robot began
to move and pursue the mouse as in pre-
vious experiments, but the robot’s puffing
mechanism was disabled. For the last phase, 260
the robot’s puffing mechanism was enabled
again while the robot pursued the mouse.
The no puff phase lasted for 2 days while
the puffing phase lasted for 1 day.

We quantified the change in response be-2s10
tween the puff disabled and puff enabled
session by measuring the distance between
the robot and the mouse 1-2 seconds af-
ter the mouse entered the attack threshold
(32 cm). These data were then averaged
over that time window for each puff event
to calculate statistical significance (Supple-,;
mentary Fig. 3b).

Quantification and statistical analysis

To calculate significance across the differ-
ent experimental phases we first averaged
each statistic per mouse per experimentalaso
phase. Due to the small sample size (n=8)
and skewed distribution of many of the
outcome measures, we used non-parametric
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Kruskal-Wallis (KW) tests followed by post-
hoc Dunn’s tests between experimental con-
ditions for each mouse. In all post-hoc tests,
the p-values were adjusted using Bonfer-
onni correction (p,q;). To calculate signif-
icant differences between puff and no-puff
conditions in the control experiment (Sup-
plementary Fig. 3), we used a Wilcoxon
ranksum test on the distributions distance
from the robot at the time of the puff after
puff-disabled and puff-enabled attacks. The
statistical details of all experiments are re-
ported in the Results section or in the leg-
end of the associated figure, where appro-
priate. To indicate the results of statisti-
cal tests in figure panels, asterisks indicate
the following significance levels: *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. No
significance is indicated by n.s.

To account for potential gender dif-
ferences we performed non-parametric
Wilcoxon rank-sum tests to determine
whether male and female mice differed on
the task performance metrics considered in
Figure 6. We found that gender did not
significantly affect the number of trials per-
formed (p = 0.39), path length (p = 0.08),
average moving speed (p = 0.56), or the
number of pauses per trial while in the
arena (p = 0.56).

Supplementary Movies

e SM1: Movie of the aversive airpuff se-
quence, termed “attack” event, deliv-
ered by the airpuff module. Green
timer in background to illustrate event
duration.

e SM2: Movie of FMM13 fleeing from the
robot following an “attack” event. Ma-
genta circle indicates the robot’s attack
threshold. Magenta dot and arrow in-
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dicate the robot’s location and head-
ing, respectively. When the magenta
circle switches to red this indicatesees
that an attack was triggered. Cyan
arc indicates the entrance threshold.
Upon initial cross of the entrance the
“prey enters arena” experiment event

is triggered and the robot begins au- 2670
tonomous motion. Cyan dot indicates
the mouse’s location.

SM3: Movie of FMM16 during pilot
study where mice first interacted with

a pursuing robot with airpuff disabled 2675
for two sessions. This movie shows the
mouse’s first experimental session with
the puff enabled.

SM4: Movie of a trial with the airpuffes
disabled. Here the mouse climbed onto
and stayed on the moving robot.

SMb5: Movie showing an example of

a stereotypical trajectory without the
robot (T phase) and in the presencesss
(first clip) and absence of obstacles
(second clip).

SM6: Movie showing an example tra-
jectory with the robot (R phase) in
the presence and absence of obstacles.
First clip: Movie of FMM10 during 26
its seventh day of the R phase. The
mouse’s first line of sight with the
robot occurs at frame 590. Second clip:
Movie of trial in the open field arena
with the robot (R phase). The robot 26
shown is not the robot used during the
BotEvade task, it is an earlier iteration
of the robot.

SMT7: Movie of FMM9 during its first
experiment session after the robot was 270
removed (PR phase).
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e SMS8: Movie showing an example bait-
ing sequence. Following the sequence
described in Fig. 7a, (1, frames 1-
329) the mouse comes to a point where
it is seen by the robot. (2, frames
330-462) The mouse then retreats, (3,
frames 463-801) provoking the robot to
pursue. (4—5, frames 802-1006) This
retreat-pursue cycle repeats until (6,
frames 1007-1190) the robot is close to
the start gate, allowing the mouse to
outmaneuver the robot.

e SM9: Movie showing an example peek-
ing event. Following the sequence de-
scribed in Fig. 7b, (1, frames 1-525)
the mouse makes initial contact with
the robot, retreats and then (2, frames
526-579) peeks before (3, frames 580-
576) rerouting and escaping the robot.

e SM10: To determine the effect on the
mouse of suddenly changing the robot’s
behavior, this is a movie of a trial where
the robot was turned off in the middle.
In this trial, the mouse engages an ex-
tended sequence of peeks and reroutes
as it surveys the now stationary robot.
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