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Abstract

Outside of the laboratory, animals behave in spaces where they can transition between
open areas and coverage as they interact with others. Replicating these conditions in the
laboratory can be difficult to control and record. This has led to a dominance of relatively
simple, static behavioral paradigms that reduce the ethological relevance of behaviors and
may alter the engagement of cognitive processes such as planning and decision making.
Therefore, we developed a method for controllable, repeatable interactions with others in
a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as
they interact with an autonomous robot coupled to their actions. We illustrate the system
using the robot as a pseudo-predator, delivering airpuffs to the mice. The combination
of obstacles and mobile threat elicits a diverse set of behaviors—such as increased path
diversity, peeking, and baiting—providing the foundations to explore ethologically relevant
behaviors in the laboratory.

Introduction

The rich emergent behaviors that neuro-
science seeks to understand occur in natural
environments in which there is variability in
cover, for example, from open areas to more5

cluttered spaces 1, 2, and in which competi-
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tion or cooperation with other animals oc-
curs. Such environmental variability and
interactivity is absent from most laboratory
paradigms for rodents, even though the neu-10

ral circuits driving behavior likely evolved
for survival in these conditions. Here we
describe an experimental system which at-
tempts to encourage more ethological be-
haviors by combining two rarely combined15

features: a spatially complex arena and an
interactive agent.
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With some recent exceptions 3, 4, 5, 6, tra-
ditional laboratory arenas are static and
non-interactive, with appetitive or aversive20

inanimate stimuli provided at fixed times or
locations, reducing task complexity. These
studies have revealed a rich array of cogni-
tive representations of the latent variables
describing behavior in such environments,25

such as place, heading direction and grid
cells, and neurons storing choice or value
information 7, 8, 9, 10, 11. However, it is pos-
sible that cognitive representations such as
these are engaged differently in more etho-30

logically relevant conditions. For example,
recent research has begun to address the
question of how the brain encodes the lo-
cation and behavioral tendencies of others,
but these studies were largely performed in35

conditions where the other was not task rel-
evant 12, 13. Few if any place cells of oth-
ers were identified, possibly because of the
lack of task relevance of the other. More
recent experiments increasing the task rel-40

evance of the other 14, 15 have shown that
self-place cell firing can be modulated by
the location of conspecifics in the environ-
ment. Since these circuits likely evolved to
encode ethologically relevant interactions, a45

greater understanding of their function is
likely to emerge as experiments approach
more natural conditions, highlighting the
need for new, more ethologically relevant
laboratory paradigms for studying interac-50

tions with others.

Of course, a major advantage of the
sparse and simple spatial layout of tradi-
tional laboratory arenas, such as open field,
linear tracks and T-mazes 16, 17, 18, is the55

ability to perform highly repeatable, con-
trolled experiments which maximize statis-
tical power. Intuitively, the spatial com-
plexity of these spaces differs considerably
from that of natural environments. We pro-60

vide quantitative evidence for this difference
below. It is possible that the simplicity
of traditional experimental paradigms alters
cognitive processing in animals behaving in
these spaces, or make particular processes65

difficult to study. For example, the neural
substrates of planning have not been clearly
established. Many studies have investigated
this question 19, 20, 21, though largely in tra-
ditional simple mazes. One of the most70

likely substrates are the “preplay” events
in the hippocampus during sharp wave rip-
ples, which lead to rapid sequential activa-
tion of remote place cells. But large debates
persist about whether these neural signals75

represent recall of past trajectories or are
in fact thoughts about the future 22. This
problem is exacerbated by what could be
called the ’Groundhog Day effect’ of highly
simplified spatial layouts: If the space an80

animal has experienced in the past is un-
changed from the one that it will experience
in the future, then it is difficult or impos-
sible to disentangle memory from foresight.
Notably, using a task which increased trial-85

to-trial path diversity provided some of the
best evidence for planning, with prospective
replay events often seemingly predicting fu-
ture navigation paths 19.

A task logic analog of the Groundhog Day90

effect is that current task designs result in
the test subjects quickly learning the task
contingencies, leading to habituation and a
reduction of behavioral indicators of plan-
ning such as VTE 23. Thus, the statistical95

consistency of an animal’s path through a
typical laboratory test environment, or the
repetitious nature of the task itself, appears
to be important variables in the study of
cognitive processes such as planning. Yet,100

it is rarely varied systematically in exper-
iments, particularly to the level found in
more natural contexts. Given these con-
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siderations and broader calls for new labo-
ratory paradigms to probe animal behavior105

in complex, ethologically relevant scenarios
24, 25, 26, there is an opportunity to bring
some of the complexity of natural scenarios
into the laboratory without compromising
on the control of the experiment’s variables110

and statistical power.
To address these issues, we designed a

system which provides the control and re-
peatability of previous paradigms, yet fa-
cilitates more naturalistic behavioral tasks115

through two key innovations: rapidly re-
configurable obstacles and a mobile robotic
agent (Fig. 1). The physical basis of the sys-
tem is an arena with removable obstacles in
a honeycomb lattice: this allows the experi-120

menter to vary spatial complexity, enabling
configuration in naturalistic partially clut-
tered arrangements, and facilitates rapid
switching between spatial layouts. Multiple
high speed cameras ensure reliable tracking125

of mice throughout the space despite these
obstacles. Controllable interaction with an
“other” is provided by a mobile, wireless
robot that is coupled to the behavior of the
mouse with negligible latency. Finally, au-130

tomation allows multiple hours of operation
without human intervention beyond animal
subject and robot battery replacement.
Here, we provide details on the design and

implementation of this system, termed cell-135

world for brevity, and discuss results from
one particular implementation which emu-
lates naturalistic predator-prey encounters
by pitting the mouse against an airpuff-
equipped predator-like variant of the robot.140

Several other possible configurations, such
as using the robot as prey or for phonotac-
tic localization, are described in Supplemen-
tary Table 1.
With the robot-predator configuration,145

we found evidence of a rich array of behav-

iors, spanning from highly variable trajecto-
ries (occurring at a rate of ≈1 trial/min or
slower) to trajectories that are used repeat-
edly with little variation (occurring at a rate150

of ≈2 trial/min or faster). High variability
trajectories included peeking at and seem-
ingly luring or baiting the robot predator
away from the location the mouse needed to
reach for its reward, not unlike the broken-155

wing display found in birds 27. Peeking
in rodents appears to emerge in the con-
text of more complex naturalistic conditions
28, 29, 30, 31, and we are not aware of prior
observations of baiting in rodents. These160

behaviors and the path diversity that we
observed across trials may be specifically
useful for future studies into the cognitive
representation of others or mechanisms of
planning; and cellworld may be generally165

useful for enriching task designs for research
into decision making, navigation, learning,
memory, fear, and anxiety, among other do-
mains (Supplementary Table 1).

Results170

Creating naturally inspired spaces with a re-
configurable arena

The hexagonal arena, shown in Figure 2,
is 2.34 m at its widest length (2.56 m2), and
is comprised of 331 hexagonal cells, with a175

center-to-center distance of ≈11 cm, slightly
more than one standard adult mouse body
length. Each cell has a pair of magnets
for securing of obstacles above a thin vinyl
membrane (for removal of odor cues be-180

tween subjects) that lies on top of the
magnetized floor. This design allowed
us to rapidly reconfigure the arrangement
of obstacles for each experimental session
(Fig. 2b-d).185

With the goal of studying behavior in a
more ethological context, we used a genera-
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tive algorithm to create arenas that more
closely resembled the spatial statistics of
natural landscapes. To accomplish this,190

we used a single parameter, entropy1, to
create random arrangements of obstacles
(Fig. 2e). In the simplest terms, entropy
describes the degree of clutter in a space,
such that a space with very few obstacles195

has low entropy and a space that is half-
filled with obstacles has maximum entropy.
Next we measured how these more natural-
istic spaces compared to classical laboratory
setups for studying rodent behavior. To ac-200

complish this, we recreated classical mazes
from prior studies, including linear tracks,
T-mazes and radial arm mazes (Fig. 2d).
We hypothesized that the complexity of

the experimental space might be useful for205

natural behaviors, and therefore considered
the visual connectedness of various arena
layouts. To do so, we computed the net-
work degree complexity (hereafter spatial
complexity1) of generated arenas, our ver-210

sions of classical mazes, and other spaces
such as natural landscapes. Spatial com-
plexity summarizes the visual connected-
ness of a space: high complexity arenas
contain a mix of short and long sightlines,215

while low complexity arenas contain primar-
ily short or primarily long sightlines. Intu-
itively, this measure relates to the behav-
ioral utility of a space: high complexity
spaces provide a mix of hiding spots and220

long sightlines to gather information, fea-
tures which may be useful for evading a
predator or planning.
We generated 500 random arena configu-

rations at 14 different entropy levels (Meth-225

ods) and then computed spatial complexity
for each of these arenas. We found that the
spatial complexity of the arenas peaked at
mid-range levels of entropy (0.4–0.5) with a
complexity of 0.80 ± 0.02 (Fig. 2e). This230

value is similar to the most prevalent spa-
tial complexity value found by repeatedly
sampling satellite images of a savanna land-
scape (0.80, see Methods ; Fig. 2e, right
panel). Spatial complexity analyses of other235

savanna samples and key terrestrial habitats
have similar results (Mugan & MacIver1,
Supplementary Fig. 11 and Supplementary
Table 1). In comparison, some complexi-
ties of our renderings of classical mazes were240

found to be much lower than these natu-
ral landscapes, ranging between 0.00–0.17.
These results suggest that by controlling the
entropy level of randomly generated obsta-
cles, we can control the complexity of the245

cellworld arena. Furthermore, arenas gen-
erated with mid-level entropy are more sim-
ilar to natural landscapes than to classical
maze designs. Based on these results, we
hypothesized that a subset of the generated250

arenas are ideal for planning and evasion,
and therefore focused our later behavioral
experiments on the two extremes of spatial
complexity: an open arena (entropy: 0.0,
spatial complexity: 0.0) and an obstacle255

configuration with mid-level entropy (en-
tropy: 0.5, spatial complexity: 0.74; Fig. 2c,
middle panel). However, these spatially
complex environments contain a large num-
ber of occlusions, requiring a multi-view260

tracking system for consistent behavioral
monitoring, which we describe next.

A multi-view camera system for continuous
tracking in occluded spaces

We designed the camera system in cell-265

world to meet two experimental goals: 1)
to consistently observe the mouse’s posi-
tion in spatially complex arenas, and 2) to
control the behavior of a mechanical agent
with negligible latency after automatically270

detected changes in mouse position and ori-
entation (which we describe in the next sec-
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tion). To meet these goals, the system uses
four high frame rate and low-latency in-
frared cameras. The cameras are suspended275

200 cm above the arena floor and each cover
a specific quadrant (Fig 3a), capturing 2040
x 2040 pixel images at a rate of 120 frames
per second (fps). This layout is designed
to minimize blind spots created by obsta-280

cles within the arena—a crucial aspect as
important behaviors could occur near these
obstacles (Fig 3b). Additionally, the high
frame rate and low latency of these cam-
eras enabled real-time monitoring of animal285

movements, allowing us to couple the be-
havior of an autonomous robot to that of
the mouse.

To perform mouse tracking, we acquired
perspective-corrected, stitched images from290

the four cameras (Methods), then removed
all static elements using background sub-
traction. The remaining features (mouse,
robot) were identified using color-connected
components. Robot tracking was simplified295

through three LEDs on the top of the robot
(Fig 3f). This enabled us to perform real-
time monitoring of robot and mouse move-
ments with an average latency of 3.2 ms and
facilitated swift response to changes in an-300

imal behavior. For the current study, the
frame rate and throughput of the system
was capped at 90 Hz as that was found to
be sufficient for updating the robot’s head-
ing when moving quickly through obstacle305

fields, but cellworld’s tracking system can
process a maximum of 206 fps (Supplemen-
tary Fig. 2b). In summary, this tracking
system allowed continuous behavioral mon-
itoring of a mouse in a densely occluded,310

ethologically-inspired space, while also fa-
cilitating low latency control of a robotic
agent.

An autonomous mobile agent coupled to an-
imal behavior315

A crucial aspect of natural behavior in
many species is interaction with others, but
these behaviors can be difficult to control in
the lab. To that end, we engineered a fully
autonomous robot (Fig. 3c-e) whose behav-320

ior is tied to that of the mouse with no more
than 11 ms of latency. The robot itself has
no vision system, but we synthesized an om-
nidirectional visual sensory volume based
on images from the camera system, the lo-325

cation of the robot, and the location of the
obstacles. We then controlled the robot in
closed-loop to pursue the mouse when it was
in “view” and to otherwise search unseen
locations when the mouse was out of view330

(Fig. 4a). (Note that this means freezing
responses on the part of the rodent have no
effect on the robot’s ability to perceive; it
would be simple to modify this such that
the robot only “sees” the mouse upon move-335

ment.) Next, we took advantage of this low-
latency coupling between the robot and the
mouse’s behavior to simulate predator-prey
interactions in the lab.
To do so, we outfitted the robot with an340

airpuff module, which consisted of a CO2

tank and valve actuated via a motor to re-
lease a sequence of two brief, powerful blasts
of air when the mouse came within 32 cm of
the robot (Fig. 4a, Supplementary Movies 1,345

2). We term this aversive airpuff sequence
an “attack” event, but note that due to the
modular design of the robot, other stimulus
modes (such as appetitive rewards, visual,
or auditory stimuli) may be used.350

To test whether the ability to attack
made the robot more behaviorally relevant
to the mouse, we performed a pilot study
where mice first interacted with a stationary
or pursuing robot with the airpuff disabled,355

then enabled the airpuff for the following ex-
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perimental sessions. Consistent with prior
airpuff results 32, 33, we found that the mice
significantly increased the distance between
their location and the robot after entering360

the attack threshold (n=2 mice; airpuff en-
abled: 93.0 ± 36.1 cm, airpuff disabled me-
dian ± IQR distance: 25.5 ± 10.7 cm, p =
8.16×10−78; Supplementary Fig. 3, Supple-
mentary Movies 3, 4). From this we con-365

cluded that the airpuff-equipped robot was
behaviorally relevant to the mouse, and in-
duced escape or avoidance behaviors, which
allowed us to leverage cellworld to create a
task inspired by predator-prey dynamics.370

A predator-prey inspired behavioral task dis-
rupts stereotyped navigation

With the capability of creating a spa-
tially complex arena patrolled by an aver-
sive robot, we devised a behavioral task375

modeled on predator-prey interactions. In
this task, mice start on one side of the arena,
and must navigate to the other side of the
arena while evading a pursuing robot to
reach a water reward (the robot evade task,380

or BotEvade hereafter for brevity, Fig. 4).
In order to facilitate multiple mouse

traversals within a single 30 minute exper-
imental session, we engineered several ad-
ditional components for the cellworld sys-385

tem: chambers containing water lick ports
and automated doors at the start and end of
the arena, and an external return chute that
connects the chambers to allow the mouse
to return to the start and reset the system390

for another trial. Both the doors and the
water feeders were controlled and monitored
by software that coordinates events between
the robot, rodent, and components of the
arena, termed the “experiment controller,”395

which used lick events detected by the water
feeders to determine when to start and end
trials. Mice were guided through the task

by specific sequences of door events (Fig 4b,
c), allowing them to initiate and complete400

many trials per experiment (the maximum
completion rate for n=8 mice was 83 ± 10
trials per 30 minute session). With these
systems in place, we developed a training
protocol to encourage repeated interaction405

between the mouse and the robot within a
spatially complex arrangement of obstacles.
To do so, we trained mice in the Bot-

Evade task with the following steps. First,
8 mice were acclimated to the reward zones410

and return chute using a gutter-like corri-
dor directly linking the entrance and exit of
the arena (CT: corridor training). Next, the
corridor was removed, and obstacles were
placed in a mid-entropy arena (the Ran-415

dom 0.5 arena of Fig. 2c) to allow the mice
to learn the spatial layout (T: arena train-
ing phase). Once the mouse behavior stabi-
lized, the robot was introduced to the envi-
ronment (R: robot phase). Then, once be-420

havior in the presence of the robot stabi-
lized, we removed the robot from the arena
to measure extinction of the behavioral re-
sponse to the autonomous predator (PR:
post-robot phase; Fig. 5b). Mice learned425

the task rapidly, taking 4.0 ± 2.1 days to
plateau during the T phase (Fig. 5c). We
also found that the airpuff equipped robot
was an effective aversive stimulus, elicit-
ing fleeing behaviors in 74.7% airpuff events430

when compared to shuffled data (n = 178 at-
tack events; Fig. 5d, Supplementary Movie
2). Thus, we found that our training proto-
col encouraged mice to repeatedly traverse a
spatially complex environment, creating nu-435

merous interactions with the aversive robot
over the course of the experiments.
We predicted that the combination of

a spatially complex layout and predatory
agent would elicit a richer set of behaviors440

compared to a simple spatial layout with-
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out a predatory agent. To directly assess
the effect of these two variables, we com-
pared the cohort of mice in the mid-entropy
arena to an additional cohort of mice which445

was trained in an open field (in these exper-
iments, the PR phase was omitted). During
training (T phase), mice had highly variable
trajectories with (n=8) or without obsta-
cles (n=2) as they explored the environment450

and learned the task (Fig. 6a, left column,
Supplementary Movie 5). When the robot
was introduced (R phase), different behav-
ioral patterns emerged in the two environ-
ments: in the occluded arena, routes be-455

came more variable and slower, while in the
open arena, mice reverted to thigmotaxis—
running along either the north or south
wall at high speeds (Fig. 6a, middle col-
umn, Supplementary Movie 6). Interest-460

ingly, when the robot was removed from the
occluded arena (PR phase), mice largely re-
verted to two thigmotactic routes along the
north and south walls of the arena (Fig. 6a,
right column, Supplementary Movie 7).465

The highly variable routes in the pres-
ence of the robot in the spatially complex
arena suggested that mice engaged in more
sophisticated evasion strategies in compli-
cated environments, therefore, we focused470

our subsequent analyses on these experi-
ments. We found that mice completed sig-
nificantly fewer trials per 30 minute ses-
sion in the R phase (27.0 ± 14.6 trials)
than in the PR phase (57.6 ± 20.5 trials,475

p = 1.44 × 10−4; Fig. 6b), taking signifi-
cantly longer routes to reach the goal dur-
ing the R phase (420 ± 33 cm; 1.8 times the
shortest path length of 234 cm) compared to
the PR phase (340 ± 19 cm; 1.4 times the480

shortest length, p = 0.002; Fig. 6c).
We suspected this increase in route length

occurred because, 1) the mice chose new
routes after being exposed to the robot

and, 2) when encountering the robot along485

a preferred route, mice changed course to
evade it. To test these two hypotheses we
used QuickBundles34 to cluster the trajecto-
ries from each mouse in each experimental
phase. To quantify the tendency to choose490

new routes, we counted the number of clus-
ters found in each phase, and to quantify
the tendency to deviate from a route, we
calculated the average distance of each tra-
jectory from the center of the nearest cluster495

(Fig. 6d). We found that there were signif-
icantly more clusters in the R phase (4.0 ±
0.5 clusters) than in the PR phase (1.0 ± 1.0
clusters, p = 2.61× 10−4; Fig. 6e), and that
trajectories tended to be further away from500

the nearest cluster in the R phase (17.6 ±
3.1 cm) compared to the PR phase (8.1 ±
3.3 cm, p = 6.63× 10−5; Fig. 6f). Taken to-
gether, these results suggest that mice chose
novel routes and deviated from preferred505

routes in order to evade the robotic threat.

Finally, we observed that mouse traver-
sals were significantly slower in the R phase
(68.2 ± 26.8 cm/s) compared to the PR
phase (114.8 ± 26.2 cm/s, p = 0.002;510

Fig. 6g). This could reflect deceleration
during rerouting, suggested by previous re-
sults (Fig. 6e-f), or it could reflect slow
downs and stops. To test this, we quantified
periods of time when mice paused during515

the experiments (Methods). We observed
that mice paused more frequently near the
entrance during the R phase (2.8 ± 1.8
pauses per trial) compared to the PR phase
(1.2 ± 0.7 pauses per trial, padj = 0.004;520

Fig. 6h). Upon entering the arena, mice
paused for longer durations in the R phase
(1.5 ± 0.3 s) compared to the PR phase (1.1
± 0.3 s; padj = 0.017; Fig. 6i). We also ex-
amined the frequency of pauses longer than525

2 s in duration (Fig. 6i, inset), and found
that longer pauses were more prevalent dur-
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ing the R phase (0.3 ± 0.1 pauses per trial)
compared to the PR phase (0.1 ± 0.1 pauses
per trial, p = 0.014; Fig. 6j). Together,530

these results indicate that mouse behavior is
significantly changed in the presence of the
robot. Mice paused more at the arena en-
trance, suggesting they are more hesitant to
enter, and they paused more frequently and535

for longer durations once inside the arena,
possibly in order to hide or gather informa-
tion about the robot location.
In summary, we used cellworld to assess

mouse behavior in a spatially complex arena540

while interacting with an aversive “other”
agent in the form of an airpuffing robot.
We found that this combination of experi-
mental features resulted in the disruption of
habitual behavioral strategies, such as thig-545

motaxis and route stereotypy, and also re-
sulted in increased pauses within the arena.
Previous work has shown that such features
may indicate planning 23, and we suspected
that mice were using sequences of pauses550

to evade the robot. To assess this, we more
closely examine examples of complex behav-
iors that we observed during the BotEvade
task in the following section.

555

Presence of a robot in a spatially complex
environment elicits complex behaviors

Above we established that mice took
longer, more diverse paths at lower speeds
when the robot was present and paused560

more often when engaging with the robot
in the arena (Fig. 5). We hypothesized
that these changes might reflect delibera-
tion, such as monitoring the robot’s move-
ments to predict its future location, or plan-565

ning new routes to evade the robot and
reach the exit. We found several examples
of behaviors consistent with this hypothe-
sis. For instance, we found that mice en-

gaged in apparent “baiting” behaviors, in570

which the mouse made visual contact with
the robot, returned to a safe location (typ-
ically near the entrance), and then waited
for the robot to approach. Once the robot
approached the mouse, the mouse escaped575

along an open path opposite the robot’s
location (typically along the north wall)
towards the exit (Fig 7a, Supplementary
Movie 8), effectively leveraging their higher
speed over that of the robot (speed of robot:580

24.1 ± 1.2 cm/s, mouse: 68 ± 26.8 cm/s).
We also observed many instances of what

appeared to be “peeking” behaviors. In
one example (supplementary Movie 9), the
mouse ran along a familiar path, then en-585

countered the robot blocking the exit door
(Fig 7b, left panel). After retreating to a
safe location, the mouse then paused be-
tween two obstacles and centered the robot
within its binocular zone while concealing590

its body behind a nearby obstacle (Fig. 7c).
After seeming to confirm the robot’s new
location, the mouse then rerouted to a safe
path avoiding the area near the robot and
reached the arena exit and water reward595

(Fig 7b, right panel).
Instances of both baiting and peeking be-

haviors were found in all 8 out of 8 mice.
While baiting is specific to the presence of
the robot, we observed peeking in both the600

presence and absence of the robot (R and
PR phases). In support of this, we manu-
ally identified 15 trajectories across R and
PR phases where peeking events occurred
and 10 trajectories from the R phase where605

baiting occurred. Movies of these trajec-
tories can be accessed through the zenodo
link found in the Key Resource Table un-
der ”Additional movies”. Though these are
only a subset of the many occurrences of610

these behaviors that we observed, they are
a representative sample. Trajectories with
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peeking events exhibited higher levels of
deviation from typical trajectories, slower
moving speed in the PR phase, and higher615

episode trajectory lengths and cluster dis-
tances in both the R and PR phases (Sup-
plementary Fig. 4). Similarly, trajectories
with baiting events had higher episode tra-
jectory lengths and distances to the nearest620

cluster (Supplementary Fig. 4). All trajec-
tories for each of the 10 baiting and 15 peek-
ing trajectories are shown in Supplementary
Figure 5 and 6. In addition, we have taken
some initial steps to quantify these behav-625

iors, plotting distances and visual contact
between the prey and robot during the R
phase “peeking” and “baiting” trajectories
(Supplementary Fig. 5 and 6).
Taken together, these results show that630

the combination of a spatially complex
arena and aversive robotic agent resulted in
a rich set of behaviors, eliciting complex be-
haviors that are atypical in traditional task
structures. Furthermore, the automation635

provided in cellworld allowed for many tri-
als within the BotEvade task, demonstrat-
ing the effectiveness of the system for mod-
eling ethological behaviors with the control
and repeatability needed for laboratory ex-640

periments.

Discussion

In this study, we describe a system that
allows researchers to study animal interac-
tions with a robotic agent, enabling a rich645

set of task designs set within an arena with
adjustable spatial complexity. The physi-
cal basis of the system is a modular arena
which allows flexible configurations of ob-
stacles within a 2.56 m2 open field, sup-650

plemented with automated doors and feed-
ers. The entire arena is monitored by a
high speed tracking system, allowing the

robot to react to the behavior of an ani-
mal with a lag of a hundredth of a second.655

Here, we leveraged this system to create a
predator-prey-like task, in which we trained
mice to evade a robot equipped with an
aversive airpuff mechanism as it traversed
a complex arena. We found that mouse be-660

havior was strongly modulated by both the
complexity of the arena and the presence
of the robotic predator, finding that mice
took more varied paths when compared to
predator-free open fields, and observing ex-665

amples of more complex behaviors, such as
baiting and peeking.
While cellworld is capable of replicat-

ing previously published behavioral tasks
(Fig. 2d), we argue that this system also670

introduces some distinct advantages over
prior approaches. The two key innovations
deployed here are 1), a mobile agent whose
behavior is coupled to that of the experi-
mental subject and, 2) a large, rapidly re-675

configurable arena. Below, we detail how
these two experimental features allow ex-
periments that are challenging, if possible
at all, using current methods.
Previous studies have utilized robotic680

agents to study rodent behavior, most of
which fall into two main approaches: a
robot that moves but is non-reactive to the
animal or robots that are mostly station-
ary, but react when the animal comes within685

range. In the studies that implemented non-
reactive control, the robot either moved ran-
domly until it hit the arena wall 35, 36, 37 or
was supplied with a set of predefined des-
tinations to navigate towards 38, 39. In the690

studies that implemented mostly stationary,
reactive robots, the robot remained station-
ary until the rodent came within a specified
range, after which the robot “surged” to-
wards the mouse 40, 41, 42, 43. Finally, most695

similar to the present work, there are several
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studies that implemented reactive mobile
robots. This includes a robot that chases
the animal but is otherwise neutral 44, and
a “robotic-rat” which is capable of aversive,700

neutral, and friendly reactions to the behav-
ior of real rats 45, 46.
The autonomous robot within cellworld

improves over these previous approaches in
several respects. First, robotic control is705

fully reactive to the position of the mouse.
This is in contrast to previous studies in
which the robot did not react to the ro-
dent at all 38, 39 or in which the rodent re-
ceived foot-shocks when in the proximity of710

the robot, but the robot’s behavior was oth-
erwise unaffected by the animal’s position
35, 36, 37. Additionally, other studies which
did use real-time sensing to react to the ro-
dent provided very simple reaction modes,715

limited to a forward lunge followed by a
retreat to the original position40, 41, 42, 43.
In the current study, we improved over
these previous implementations by using
closed-loop control of the robot’s behav-720

ior. This enabled the robot to chase the
mouse with high accuracy over large dis-
tances, while still deploying aversive stim-
ulation (airpuffs) to create negative-valence
interactions.725

Second, while we focused on an aver-
sive stimulus mode in the current study, we
found that without the airpuff, the robot
was not inherently threatening to the mice
(some possible alternatives: Supplementary730

Fig. 3) as indicated by previous studies
39, 44, 46. When the airpuff was disabled,
we found occasions where mice would climb
onto and stay on the moving robot (Supple-
mentary Movie 4), suggesting that the fear735

response was specific to the airpuff stimu-
lus. With the airpuff module being eas-
ily removed, we can interchange the top
half of the robot to any feasible mecha-

nism as long as it does not interfere with740

robot navigation. This provides a wide va-
riety of possible interaction models ranging
from aversive to appetitive stimuli, in con-
trast to previous studies using robotic stim-
uli, which were only capable of inducing fear745

responses 40, 42, 41, 43, 35, 36, 37. Notably, some
previous studies manipulated the valence of
the robot, either by baiting it with food
39 or by engaging in “friendly” biomimicry
(ie. when the real rat grooms the robotic750

“rat” grooms) or stressful attacks 45, 46. In
line with this previous work, the system de-
scribed here will be useful to study social
interactions within large, complex environ-
ments. Supplementary Table 1 lists some755

alternative experiment paradigms including
appetitive and social modes.
Finally, the robot in this study was ca-

pable of navigating a large, occluded en-
vironment, creating a two-dimensional in-760

teraction space between the mouse and the
robot. Many previous studies used in-
teraction spaces that were effectively one-
dimensional, limiting the mice to a nar-
row corridor with the robot at one end765

40, 41, 42, 43. This resulted in very stereo-
typed escape and freeze behaviors that were
only characterized in one of the studies
mentioned 41. By creating a large, oc-
cluded, two-dimensional interaction space,770

we found evidence for complex behavioral
sequences of evasion and information gath-
ering between the mouse and robot (Fig-
ures 6, 7) in addition to more stereotypical
instances of thigmotactic escapes and freez-775

ing. The long sight lines and many route
options through the occluded arena will be
of great utility in the study of planning in
the presence of a dynamic threat, which we
believe to be a significant advance of the780

cellworld system over prior work.
Another key feature of cellworld is the
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reconfigurability of the obstacles within
the arena. This allows the experimenter
to recreate traditional experimental se-785

tups (Fig. 2d), or create other desired
layouts. Existing experiments studying
memory, navigation, decision-making, and
planning typically take place in an open
field 47, 16, 48, or in highly simplified mazes790

18, 49, 50. Intuitively, these arenas have lit-
tle in common with natural spaces, where
occluded and open areas are commonly
intermingled, providing locations to hide
and gather information, for instance, while795

evading a predator. It is possible that
the simple layouts and tasks commonly fa-
vored in neuroscience may alter the cogni-
tive processing of animals behaving in these
spaces compared to the natural contexts800

in which they evolved, which largely mo-
tivated the creation of cellworld as an al-
ternative platform for studying behavior.
As such, how spatial complexity affects be-
haviors and neural representations within a805

given space remains an underexplored ques-
tion. We have demonstrated that cellworld
may be used to tackle these questions by
leveraging its reconfigurability during an
ethologically-inspired predator evasion task.810

We took a two-pronged approach to un-
derstand the impact of spatial complexity:
we used a generative procedure to create
random arenas with a desired level of en-
tropy (Fig. 2c and d) and developed meth-815

ods for quantifying the spatial complex-
ity of any arbitrary arena layout. Using
these methods, we found that, 1) the ran-
domly generated arenas were more spatially
complex than traditional arenas, and, 2)820

the complexity of the random arenas was
similar to the statistics of a natural land-
scape (Fig. 2e, additional landscapes ana-
lyzed elsewhere1). However, it should be
noted that while we focused on one measure825

of spatial complexity (network degree com-
plexity), it is likely that this metric does not
capture all of the elements of a space that
might be relevant for behavior (for instance,
a hairpin maze is more complex than many830

high entropy worlds despite having fewer
routes). A promising alternative for fur-
ther exploration is lacunarity, a metric used
by landscape ecologists which is sensitive to
the spatial scale of environmental features835

and can distinguish between repeating ver-
sus random occlusion arrangements 51, 52, 53.
We applied this method to the mid-entropy
arena used in this study, and found that this
configuration closely resembled the lacunar-840

ity profile of a natural landscape (Supple-
mentary Fig. 1g). Furthermore, our previ-
ous work suggested that mid-entropy are-
nas (such as the one used in this study) had
the greatest utility for planning in simula-845

tions of the BotEvade task 1, 54. These re-
sults suggested that mice evading a predator
within more natural (i.e. high complexity)
spaces are more likely to use planning.

Therefore, we leveraged the features of850

cellworld to emulate interactions with a
predatory “other” within the ethologically-
inspired arena. We found that the spatial
complexity of the arena, paired with a mo-
bile threat, strongly modulated mouse be-855

havior. In the open arena, mice reverted
to thigmotactic routes to evade the robot,
while in the occluded arena, mice engaged
in long sequences of evasion, taking longer
and more diverse paths in the presence of860

the robot. This suggests that in the pres-
ence of threat, low complexity configura-
tions can lead to more stereotyped behav-
iors while high complexity configurations
can lead to more flexible behaviors, as sup-865

ported by prior computational studies 1, 54.
In addition, we observed many examples of
“peeking” and “baiting”, actions which are
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rarely observed in conventional mazes (but
see 28, 29, 31).870

For example, in a trial where the robot
remained stationary, the mouse repeatedly
peeked, approached, and retreated from the
now immobile threat, as if in response to
a violation of its internal model (Supple-875

mentary Movie 10). Based on this and
our previous observations, we hypothesize
that these complex behaviors arose through
the implementation of an internal model
to predict the location of the robot and880

subsequent planning of routes through the
complex space to avoid it. While a large
amount of future research will be required
to test this hypothesis, cellworld and BotE-
vade now provide a lab-based method to do885

so.
Indeed, the instances of “baiting” and

“peeking” we observe resemble previous re-
ports of deliberative behaviors, such as vi-
carious trial and error (VTE 23), which co-890

incide with neuronal activity believed to re-
flect planning 50, 55, 56. However, it is un-
clear whether behaviors such as “baiting”
and “peeking” represent planning or sim-
ply a freezing response upon sensory con-895

tact with the threatening stimulus. As with
other examples of distraction displays, such
as the broken-wing display of birds 27, it
is possible to interpret these results with-
out a mechanism for planning: the mouse900

embarks on a route towards the goal, en-
counters the threatening stimulus, freezes
in fear, and then reroutes to escape as the
threat “looms” towards it (there is evidence
for neural mechanisms supporting this in-905

terpretation of the behavior57). While it is
unclear whether these behaviors are based
on explicit plans, it is clear that the in-
terplay between the robot and environment
caused these behaviors to arise. It should910

be noted that the “peeks” and “baits”

shown are purely from hand-picked exam-
ples. However, with the large presence of
them consistent across all mice, we are con-
fident that the cellworld system allows us915

to repeatably capture these complex behav-
iors. This provides the opportunity to de-
fine more detailed methods to identify, char-
acterize, and assess under what conditions
they emerge, again establishing future av-920

enues to study planning during ethologically
inspired tasks.

Finally, we note that the inherent dis-
cretization of the honeycomb lattice of cell-
world eases synergy with computational925

ethology as common frameworks for re-
inforcement learning and partially observ-
able Markov decision process-based plan-
ning algorithms58, 1 are in discretized rather
than continuous space. Supplementary Fig-930

ure 7 shows a simulation of mouse behav-
ior based on prior work1, 54, showing good
agreement with trials from a subset of the
mice. Similar simulations are underway for
comparison to the measured behavior of935

people performing BotEvade within a scaled
cellworld in virtual reality, where the robot
has been replaced with a predator avatar.
This simulation environment is being read-
ied for release along with a future publica-940

tion.
Traditionally, neuroscience has favored

behaviors and stimulus modes that are eas-
ily repeatable and measurable in the lab-
oratory 18, 49, 47, 59, 16, 48, 60, 61. More re-945

cently, advances in recording methodolo-
gies have allowed neuroscientists to record
from increasingly large numbers of neurons
62, 63, 64, 65, and the rise of machine learn-
ing has provided many tools for quantify-950

ing natural behaviors 66, 67. With these
advances, there is a push to leverage be-
havior to study the brain 24, 25, 26, but it
is unclear how neuroscientists can balance
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the repeatability of traditional experimen-955

tal setups with the need to elicit and quan-
tify natural behaviors. Here we provide a
solution to this problem through a mod-
ular system that allows flexible behavioral
task design, closed-loop control of a me-960

chanical agent, and detailed video monitor-
ing. We show that we can reliably train ro-
dents to perform hundreds of trials per hour
in the presence of an aversive robot, and
found that mice performed complex behav-965

iors that are typically not observed or not
quantified in prior studies. Furthermore,
we provide a generative method for creating
random arenas, and spatial complexity met-
rics to assess how similar the experimental970

space is to more naturalistic habitats. Com-
bined, the features of this system represent
a key step towards discovering and studying
ethologically-relevant behaviors in a labora-
tory setting.975

Limitations of the Study

There are several limitations to our ap-
proach. The speed of our robot is on average
about 1/3 that of the mouse. This limita-
tion is a combination of the increased robot980

size and mass needed with the aversive mod-
ule, and consequent challenges with obsta-
cle gaps that are near the width of the
robot. Predators are often larger than prey
and therefore can at times match or sur-985

pass the speed—if not the agility—of their
quarry; the effects of this regime would be
interesting to explore. In past tests with
faster robots, we have seen a tendency to
elicit more reactive responses such as thig-990

motaxis, but a more thorough investigation
is needed once maneuvering and mass issues
have been addressed.
There are several differences between a

natural predator and our robot that could995

affect the mouse’s behavior. While natural

predators are sources of sound and odor-
ants, these experiments feature frequent
cleaning with ethanol and the presence of
masking white noise to prevent the mouse1000

from hearing the robot (confirmed by many
encounters where the mouse startled to see
a robot after rounding an obstacle). Ad-
ditionally, the movement capabilities and
search patterns of the robot used in this1005

study were limited, comprised of a simple
chasing strategy. However, programming
the robot with more advanced strategies is
perfectly feasible within the current system,
and will merit further research.1010

Nonetheless, we suggest that BotEvade
approximates predator-prey interactions.
The use of a robot versus a natural predator
is not itself necessarily a problem, since mice
have no reason to think an unknown pursu-1015

ing agent is anything other than a preda-
tor. One key difference between experi-
mental encounters with the robot and an
encounter with an actual predator is that
real predator-prey interactions may result1020

in injury or death. However, as we demon-
strate here, the airpuff was sufficiently aver-
sive to elicit escape behaviors on nearly ev-
ery encounter (Fig. 5d). Therefore, even if
we were to outfit our robot with a lethal1025

mechanical bite, mice would rarely dwell
within striking distance; therefore, for all
the mouse knows, the robot does have a
lethal bite. Based on these results, our ap-
paratus is sufficient to elicit naturalistic eva-1030

sion behaviors, just as the use of expand-
ing black disk stimuli have been used in
prior studies to study escape from ”loom-
ing” stimuli ? . While we expect the mouse
is engaged in a predator-prey dynamic with1035

the robot, it is the case that most preda-
tors of mice are likely to be faster, as we
addressed above. This gap between the ap-
paratus and natural behavior is likely to be
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more important than the fact that the robot1040

does not look like a natural threat and is ab-
sent a lethal bite.
Another aspect of natural predator prey

interactions is that mice will often freeze
when it knows it is in view of the predator1045

in order to avoid being seen by the preda-
tor. Our robot pursues the mouse whether
or not it has executed a freeze. However,
altering this so that the robot only pursues
moving mice needs only a very minor con-1050

trol code change. Whether this is appropri-
ate likely varies between how much a preda-
tor’s visual search relies on motion versus
other factors such as contrast, which will
in turn vary with the type of predator be-1055

ing considered. Here we stayed agnostic to
this choice as some predators are less re-
liant on motion. We do permit the mouse
to briefly peek around obstacles without be-
ing detected (Section d below).1060

Finally, we have not attempted to match
natural scene statistics in cellworld, out-
side of the light spectrum. We made the
robot black to contrast the otherwise white
cellworld features and have landmarks on1065

walls of the space (Fig. 3a). Future work
should explore whether contrasting obsta-
cle/wall/robot shapes or colors are impor-
tant, and whether occlusion arrangements
reminiscent of other types of natural land-1070

scapes (eg. denser or sparser arrange-
ments akin to forest or desert environments,
respectively) result in different behavioral
strategies than the environments explored
here.1075

Figure Legends

Fig. 1: Overview of the cellworld system.
Magnetized movable obstacles break
the rodent’s line of sight to the robot
and the robot’s line of sight to the ro-1080

dent and facilitate diverse rodent be-
haviors amidst mobile threats or oppor-
tunities. Multiple high speed cameras
ensure continuous tracking, and high
speed custom processing of the images1085

ensures low latency between changes in
the rodent’s behavior and changes in
the autonomous robot’s behavior. Au-
tomated doors open and close to se-
quence the rodent through the rewards1090

of the task under control of the exper-
iment controller.

Fig. 2: The reconfigurable behavior arena.
a. Exploded computer-aided design
view, with the front walls removed1095

for illustrative purposes. There are
331 magnetized hexagonal cells over
an area of 2.56 m2, with a long di-
agonal length of 2.34 m. Inset be-
low shows magnetic attachment sys-1100

tem. Not shown is a seamless acrylic
and vinyl membrane between the ob-
stacles and floor for cleaning and re-
moval of odor cues. b. Photos of
three configurations of obstacles (cor-1105

responding to 0.1, 0.5, and 0.9 en-
tropy, see Methods). c. Top down
view diagram of the obstacle configu-
ration corresponding to the photos in
panel b. The 0.5 arena matches the1110

occluded condition for behavioral ex-
periments with mice in this study. d.
Configurations of cellworld to match
some commonly used laboratory assays
of learning and memory. Greyed out1115

areas of the habitat represent areas
not accessible to mice that were fully
filled in with obstacles for spatial anal-
ysis. e. Left : Spatial complexity ver-
sus entropy. Line plot shows 500 re-1120

peats for each of 14 different entropy
levels of cellworld, along with other
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configurations. The dashed line repre-
sents the mode of spatial complexities
in the natural landscape. Right : Il-1125

lustration of the random sampling pro-
cess used to select 1162 hexagonal cell-
worlds of the natural landscape. The
worlds are scaled such that each cell
is 2 m in size, the approximate size of1130

small herbivorous prey animal common
in this habitat, for a total world size of
50 m. 162 samples that did not include
any coverage (spatial complexity of 0)
were removed for the calculation of the1135

mode. The natural landscape is a bi-
narized Google Earth image represent-
ing a 1941 m × 1139 m portion of the
Okavango Delta in Botswana. The full
color image and details of the natural1140

landscape can be seen in Supplemen-
tary Figure 1. f. Histogram of spatial
complexity of the worlds generated for
the line plot in e including the spatial
complexity of other configurations and1145

patterns from c and d.

Fig. 3: The camera system and an au-
tonomous interacting agent. a. Raw
video from the four cameras. Note
landmarks on top and bottom walls.1150

b. Main outputs of the camera sys-
tem including a summary of the mouse
detection pipeline. Left : Stitched im-
age processed from the four raw camera
views. The robot predator is present,1155

and the circle around it shows the at-
tack threshold. Middle: Mouse detec-
tion process utilizing background sub-
traction and color-connected compo-
nents. Right : Zoomed-in view of a1160

mouse peeking around an obstacle at
the predator robot from the four cam-
era views. Were the video taken with
the upper-right camera alone, the peek-

ing behavior would not be registered1165

and automated tracking would fail. c.
Exploded view of the robot showing
main components, with the aversive
stimulus module used for the experi-
ments described here. d. Image of the1170

robot configured with a CO2 canister
for airpuff delivery. e. Front and side
views of the CAD model of the robot.
f. Top view of the robot in the arena.
Inset shows a magenta circle used to de-1175

pict the airpuff attack threshold (left)
and background subtraction for track-
ing (right).

Fig. 4: The BotEvade task, modeled after
predator-prey interactions. a. State1180

flow diagram. The two processes that
comprise the Main Process (black rect-
angle), for when mice are over 32 cm
away from the robot, are “Pursue” and
“Search”. Below the Pursue Behavior1185

node is an illustration of a typical pur-
suit scenario: the mouse is in view of
the robot, and while in view, the robot
will pursue. Below the Search Behav-
ior node is an illustration of a typical1190

search scenario: the mouse is out of
view, and the robot randomly selects
a cell out of view to go to (purple line
and cell). When the mouse is less than
32 cm away from the robot, the “At-1195

tack” process (red rectangle) is trig-
gered for releasing the sequence of two
airpuffs. b & c. Experiment events
shown alongside door events for the
four automated doors (two at the start1200

port, two at the end port). d. A single
trial of rodent-robot interaction during
the BotEvade task. A loud white noise
generator prevents mice from hearing
the position of the robot when it is out1205

of view, and the arena is cleaned with
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ethanol between subjects to remove ol-
factory cues. e. Composite image of
the arena, with experiment lighting on
the left and overhead lighting on the1210

right for clarity.

Fig. 5: Learning the BotEvade task and
aversive airpuff. a. Route pattern en-
forced by the BotEvade task. b. For
experiments with obstacles, over a pe-1215

riod of up to 22 days for 8 mice, there
is a sequence of four phases: 1) one
day of corridor training (CT) where
a channel connects the start and end
doors; 2) arena training (T), wherein1220

mice run through the task at their own
pace, with no robot present, until tri-
als/min plateaus and the mouse runs
greater than 15 trials per 30 minute
session; 3) robot (R), where mice now1225

are challenged with the robot predator
until trials/min plateaus, followed by
an additional 2 days of trials; 4) five
days where mice experience the same
conditions as the prior phase but with-1230

out the robot (PR). For the R phase,
we show the robot as configured with
360◦ vision for the shown position. In
this and other typical robot locations,
the obstacles provide many locations1235

for the mice to avoid being seen by the
robot. The total number of trials col-
lected across all phases and mice is n
= 6678. c. Trial count during arena
training (T) for 8 mice (individual col-1240

ored lines; average trace ± STD indi-
cated by black dashed line and grey
shading). Vertical dashed line shows
the start of the plateau phase. d.
Change in distance between the robot1245

and mouse over 2 seconds following an
attack (two sequential airpuffs, n = 178
attacks). Red/orange lines represent

distance traces after individual attack
events, while the grey distribution rep-1250

resents the 97.5th percentile of the dis-
tances when randomly sampling tra-
jectories without attack events 19,430
times. If an individual trace fell out-
side of the 97.5th percentile of the ran-1255

dom distribution after 1 s it was consid-
ered significant (red traces), otherwise
it was colored in orange.

Fig. 6: Measurements of mouse and
robot dynamics during BotEvade. a.1260

Mouse trajectories from individual tri-
als across experiments with obstacles
and no obstacles. Color indicates the
mouse’s speed. For the with-obstacle
cellworld experiments (top row), tra-1265

jectories are shown for the plateau
phase of the training (T) phase (n =
1615), the plateau phase + 2 days for
robot (R) phase (n = 1248), and for 5
days of the post-robot (PR) phase (n1270

= 2238) for n = 8 mice. For the no-
obstacle cellworld experiments (bottom
row), trajectories are shown for 2 days
of the T (n = 182) and the R phase (n =
220) for n = 2 mice. b. Average num-1275

ber of trials per 30 minute session per
mouse across each experiment phase (n
= 8 mice). In this plot and all other
box plots, the horizontal line is the me-
dian; box is interquartile range (IQR);1280

whiskers are 1.5 times the IQR. Data
points beyond the whiskers are denoted
by circles. Two-tailed Kruskal-Wallis
(KW) test: H(2) = 16.88, p = 2.16 ×
10−4; post-hoc Dunn test: R vs. PR:1285

padj = 1.23 × 10−4. Asterisks indi-
cate significant pairwise Dunn’s tests
between corresponding phases. c. Av-
erage trajectory length per trial, per
mouse in each experiment phase. Two-1290
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tailed KW test: H(2) = 12.44, p =
1.99×10−3; post-hoc Dunn tests: R vs.
PR: padj = 1.39 × 10−3). d. Example
clustering results for one mouse in all
of the robot experiments (left) and all1295

of the post-robot experiments (right).
Trajectories are colored by their clus-
ter assignment, while the average tra-
jectory for each cluster is indicated by
the solid lines outlined in white. The1300

average trajectory thickness was pro-
portional to the number of trajectories
included in the cluster. Inset : clus-
ter distance was determined by aver-
aging the distance between each indi-1305

vidual trajectory and the closest clus-
ter. e. Average number of clusters
per mouse in each experiment phase.
H(2) = 15.54, p = 4.22 × 10−4; post-
hoc Dunn test: R vs. PR: padj =1310

2.61 × 10−4. f. Average distance from
the nearest cluster per mouse in each
experiment phase. H(2) = 18.02, p =
1.22× 10−4; post-hoc Dunn test: R vs.
PR: padj = 6.63 × 10−5. g. Average1315

moving speed per mouse in each ex-
periment phase. Two-tailed KW test:
H(2) = 8.34, p = 0.015; post-hoc Dunn
test: R vs. PR: padj = 0.027. h. Dis-
tribution of pause duration at the en-1320

trance in each experiment phase (col-
ors as in b). Two-tailed KW test on
pause frequency for each phase: H(2)
= 12.39, p = 2.03 × 10−3; post-hoc
Dunn tests: T vs. R: padj = 0.016, R1325

vs. PR: padj = 3.43 × 10−3. i. Distri-
bution of pause duration in the arena
in each experiment phase (colors as in
b). Two-tailed KW test on pause fre-
quency for each phase: H(2) = 10.14,1330

p = 6.28 × 10−3; post-hoc Dunn tests:
T vs. R: padj = 0.017, R vs. PR:
padj = 0.017. Inset : duration distri-

bution of long pauses (>2 s). j. Av-
erage number of long pauses per trial1335

in the arena. Two-tailed KW test on
pause frequency for each phase: H(2) =
10.03, p = 6.62× 10−3; post-hoc Dunn
test: R vs. PR: padj = 8.94 × 10−3, T
vs PR: padj = 0.044.1340

Fig. 7: Behaviors we term “baiting the
robot” and “peeking”. a. An exam-
ple of “baiting behavior”. Moments
of “baiting” are highlighted with the
blue numbered circle. The trajectory1345

of the mouse and robot is color coded
by speed. Here, (1) the mouse comes to
a point where it is seen by the robot,
which is typically at a random loca-
tion near to the goal at the start of a1350

trial. The mouse (2) then retreats, pro-
voking the robot to pursue (3). This
retreat-pursue cycle repeats (4–5) until
the robot is close to the start gate (6),
at which point the mouse uses its su-1355

perior speed to outmaneuver the robot
by running along the north wall. This
trial is shown in Supplementary Movie
8. b. An example of “peeking” be-
havior, where the mouse (cyan dot)1360

makes initial contact with the robot,
retreats, and then appears to reconfirm
the robot’s location (magenta dot) by
making visual contact with the robot
while hiding its body. The peeking1365

event is highlighted with the red num-
bered circle. The trajectory of the
mouse and robot is color coded by
speed. Left : The mouse encounters the
robot, then retreats behind obstacles.1370

Middle: From the concealed location,
the mouse peeks and makes line of sight
with the robot at 10.28s (magenta rect-
angle indicates the robot hull). Right :
The mouse reroutes and escapes. The1375
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legend indicates the speed of the two
agents. c. Still frames of the mouse
pose at the time of the peek (10.28s).
Left : Mouse and robot locations in the
experiment frame. Dashed lines and1380

open area indicates the binocular field
of the mouse (head direction ±20◦),
which was calculated using DeepLab-
Cut annotations of the mouse pose 66.
Middle: The corresponding frame of1385

stitched video with tracking annota-
tions. Right : The zoomed-in view of
the mouse during the peek, indicated
by the black square in the middle panel.
The mouse’s stretch attend posture 29

1390

is evident. This trial is shown in Sup-
plementary Movie 9.

STAR Methods

Resource availability

Lead contact1395

Further information and requests for re-
sources should be directed to and will be
fulfilled by the lead contact, Dr. Malcolm
MacIver (maciver@northwestern.edu)

Materials availability1400

Instructions to develop the specialized
hardware of this study, including the cell-
world arena and robot, are shown on the fol-
lowing website: https://cellworld.gith
ub.io/. Otherwise, any other requests for1405

materials can be directed to the lead con-
tact.

Code and data availability

• All the data used in this study has
been uploaded to Github and can be1410

accessed using the link in the resource
table or from the following website:
https://cellworld.github.io/.

• Premade software packages utilized in
this study are listed in the resource ta-1415

ble. Custom code used for data analy-
sis can be accessed from the following
website: https://cellworld.gith

ub.io/. Code developed for the cell-
world system, such as those used for the1420

robot, camera system, and doors, were
added to Github and can be accessed
using the link in the resource table.

• Any additional information required to
reanalyze the data reported in this1425

work paper is available from the Lead
Contact upon request.

Experimental model and study participant
details

In this study, we used a cohort of eight1430

adult Mus musculus (C57BL/6, Charles
Rivers Laboratories, 8-10 weeks of age at
the start of experiments) mice containing
four females (labeled as FMM9, FMM10,
FMM13, and FMM14) and four males (la-1435

beled as MMM10, MMM11, MMM13, and
MMM14). All mice were single-housed dur-
ing experiments, at 28 degrees Celsius on a
12-h light:dark cycle with food provided ad
libitum. All mice underwent water schedul-1440

ing before the start of the training such that
they were restricted to 75% of their initial
weight. Initial weight was determined by
taking the average weight across 3 consec-
utive days under normal water and food1445

supplies. Once at the correct weight per-
centage, all mice ran one 30 minute experi-
ment every weekday following the same ex-
perimental phase sequence. All experimen-
tal procedures were in accordance with NIH1450

guidelines and approved by the Northwest-
ern Animal Care and Use Committee.
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Method details
The cellworld

Cellworld is approximately 2.34 m long1455

at its widest section, consisting of a large
open field labeled as the “arena” (Fig. 2).
The arena is surrounded by 1.06 m tall
walls (Fig. 2a-b). The entire structure
of cellworld is made primarily of laser-cut1460

white acrylic. The arena itself consists of
10 acrylic pieces engraved with a hexago-
nal grid consisting of 331 magnetic hexagon
cells each roughly 11 cm apart from center
to center (Fig. 2a, inset). Two 11.11 mm1465

diameter neodymium magnets (D74-N52,
K&J Magnetics, Pipersville, PA, USA) are
placed into each cell. A thin 3.175 mm layer
of clear acrylic followed by a 3.175 mm layer
of clear vinyl cover the arena floor. Sili-1470

cone sealant is applied to all corners and
joining structures that the mice may in-
teract with, containing debris and allowing
for more thorough cleaning. Obstacles are
17.7 cm tall and made out of white acrylic.1475

The base of the obstacle is the size of a cell
and has two neodymium magnets that are
identical in size, type, and location to the
cells of the arena floor. This attracts the
obstacle to the cells in the arena and lets us1480

freely place and change the configuration of
cellworld’s environment (Fig. 2a).
There are two “chambers” at the start

and end of the arena, and an external
“mouse return chute” connects these cham-1485

bers (Fig. 2a). This forms a loop where
mice are introduced to the start chamber,
traverse the arena, enter the end cham-
ber, and traverse back to the start through
the return chute. Water rewards are lo-1490

cated at each chamber as motivation for the
water-scheduled mice. Doors connected to
a Raspberry Pi system (3B+, Raspberry
Pi, Cambridge, England, UK) are placed
at the entrances and exits of the cham-1495

bers. Both the doors and water feeder are
fully autonomous. The doors are primar-
ily built out of laser cut white acrylic and
3D-printed polylactic acid (PLA) parts and
use micro DC motors (50:1 6V micro metal1500

gearmotor, Pololu, Las Vegas, NV, USA)
in combination with limit switches to set
and detect the open and closed states of
the door. The base of the door that in-
teracts with mice is made out of neoprene1505

rubber material, which we have found to
be strong enough to not be damaged by
mouse manipulation but pliable enough to
not harm mice if the door were to close on
them. Each water dispenser is controlled1510

by a metal lick port connected to a capaci-
tive sensor (AT42QT1011, SparkFun, Boul-
der, CO, USA) and Raspberry Pi. When
a mouse licks the spout, a capacitive signal
is sent to the Pis, opening a solenoid valve1515

for a fixed amount of time. The time was
calibrated so that 2 µL of water was given
per reward during a lick—a total of 4 µL of
water is given per trial.

Lighting in cellworld was tuned to match1520

crepuscular light conditions and provide
the mice a more naturalistic environment
(Fig. 4e). This involved using a combina-
tion of a LED full spectrum bulb (9-Watt
LED Grow Light Bulb, General Electric,1525

Boston, MA, USA) with a purple gel light
filter attached, a LED UV bulb (UV LED
Black lights Bulb, SHGPODA, Shenzhen,
Guangdong, China), and lighting soft boxes
for light diffusion. This lighting configura-1530

tion emulated the spectrum and illuminance
of real-world measurements during twilight
with an energy peak around 400 nm and an
overall illuminance of 2 lux 68, 69. Two addi-
tional red lights (660 and 850 nm; LED Red1535

light therapy bulb, Wolezek LED, China)
in soft boxes were added to improve cam-
era visibility, but are likely to be far enough
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outside the visual range of mice vision to
not interfere with the crepuscular lighting1540

70, 71.

Camera system hardware

The computer vision system employs
four advanced cameras (three Basler
axA2040-180km and one Sentech STC-1545

CMB401PCL), comprising high-speed,
low-latency, high-definition, and infrared
CMOS sensors, which interface with the
central computer via a PIXCI CL1 frame
grabber PCI cards (Epix, Inc., IL, USA)1550

using CameraLink interface. Video frames
were acquired as 10-bit grayscale images at
a resolution of 2040×2040 pixels at 120 fps,
generating a dataset of approximately
(4 cameras × 10 bit × 2040 × 2040 ×1555

120 fps) 2.3 Gb/s. The central computer
used to process the data stream from the
cameras is equipped with the Ubuntu 22.04
operating system and features an Intel
i9-10920X CPU, an NVIDIA GTX 30901560

GPU, and 64GB of DDR4 RAM.

Unified field of view

The use of multiple cameras provides
comprehensive coverage of the arena, cap-
turing scenes that may otherwise be ob-1565

scured. However, this necessitates the real-
time amalgamation of individual camera
feeds into a unified view with minimal la-
tency. Moreover, the system must accu-
rately correlate pixels to physical locations.1570

This precision is critical to safeguard inter-
actions with animal subjects during trials
and to maintain the integrity of the exper-
iment outcomes, given that the computer
vision system is the primary data source.1575

Any error in this translation could poten-
tially skew results and their interpretation.
In conventional image stitching, the ac-

quisition order or arrangement of source im-

ages is typically unspecified. Consequently,1580

the stitching algorithm must identify the
overlapping regions between individual im-
ages. This task is commonly achieved
through the use of Scale-invariant feature
transform (SIFT)—a technique that oper-1585

ates on the gradient of the raw image and
generates a series of normalized Keypoint
descriptors. Following the processing of all
images, the lists of descriptors that exhibit
the best correspondence in a given image1590

pair can be utilized to ascertain the degree
of image overlap. An undesirable side ef-
fect of this approach is that the plane into
which images are merged is computed on
the fly to optimize the overlapping surface,1595

thereby precluding the determination of the
correlation between a pixel and its physical
location.

Achieving high-performance, pixel-
accurate image stitching necessitated the1600

development of a custom stitching process
that conforms to the system’s accuracy and
performance requirements. The new pro-
cess employs a predefined destination plane
that matches a scaled version of the arena.1605

Instead of matching features between raw
images, it uses known locations which were
annotated in the raw camera images, a
process called homography. We then used
those locations in the predefined plane1610

and the annotated pixels corresponding to
those locations to enforce their merging
into the specified Field of View (FOV). In
contrast to the default blending method,
the cameras’ locations determine the arena1615

section best covered by each camera. These
modifications enable the pre-computation
and reuse of homographic information for
all cameras, simplify the merging process,
and ensure a high-quality match between1620

pixels in the composite image and their
physical locations. Performance testing
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results indicate that the new stitching
process merges images in an average time
of 8.3 ms without optimizations, which re-1625

duces to 1.8 ms with CUDA optimizations.
The homographic information is configured
prior to the experiment execution and it is
only updated if the cameras undergo any
displacement or rotation. The configura-1630

tion process consists of the identification of
a group of five known locations from the
arena in the captured images from each
camera.
To verify the accuracy of the stitched,1635

composite image, we took advantage of the
physical features of the arena: all the cells
in the arena have 2 magnets, separated
3 cm apart and oriented vertically. These
magnets are visible in the stitched image1640

and their location can be computed in the
physical space. To verify that the perspec-
tive correction procedure during the stitch-
ing process did not distort the true image,
we manually annotated the locations of the1645

magnets for every obstacle in the uncor-
rected images from the cameras (indicated
by the blue x in Supplementary Figure 2a).
We then used the transformation calculated
from the camera calibration process to gen-1650

erate the expected locations of the magnets
based on our knowledge of their spacing
and positioning. We found that the recon-
struction error from the pixel plane to the
laboratory coordinate frame was on average1655

0.15% with a max of 0.45% (Supplementary
Fig. 2a–b).

Animal tracking

Prior to the introduction of the mouse to
be used as background, a stitched image of1660

the arena is captured and stored. Every
time a new frame is produced by the cam-
eras, the stored background is subtracted
from the current image to eliminate all the

static features. Upon completion, the re-1665

sulting matrix is converted to binary by
applying a threshold followed by two con-
secutive cycles of dilation-erosion. The re-
sult is a binary matrix containing 0 val-
ues for static background pixels and 1 for1670

dynamic features. Next, Color Connected
Components (CCC) 72 is employed to group
the islets of positive values and identify all
the dynamic elements present in the image,
which are then individualized. This set of1675

dynamic elements is referred to as “detec-
tion candidates”. Finally, the system en-
deavors to match the candidates with a col-
lection of profiles. The list of profiles is sup-
plied as a configuration and is characterized1680

by a lower and upper bound limit for the
pixel area of the candidate to be compared
against. During trials, this parameter has
been fine-tuned to match different species of
mice. Four distinct species were successfully1685

tested: Mus musculus, Peromyscus man-
iculatus, Peromyscus polionotus, and Ony-
chomys torridus.
We estimated the latency and throughput

of the tracking system by supplying a static1690

image for mouse and robot detection, effec-
tively isolating processing time by remov-
ing image acquisition from the pipeline. Us-
ing standard computing hardware, we found
that our system reached a throughput of1695

120 fps, with a latency of less than 15 ms
(measured as the time elapsed from im-
age acquisition to detection of both agents).
We were able to improve performance using
CUDA optimizations, reaching throughputs1700

of 206 fps with an average latency of 3.2 ms
(Supplementary Fig. 2c).

Robot tracking

To enable real-time location and orienta-
tion tracking of the robot, three LEDs were1705

added to its top, arranged in an isosceles
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triangle configuration with the shortest side
situated at the back as it is shown in Fig-
ure 3f. During the experiments, every time
a new frame is produced by the camera sys-1710

tem, a brightness threshold is applied re-
sulting in a binary matrix with values of
1 for brighter pixels and 0 for darker pix-
els. As done for tracking the mouse, CCC
was used to identify triangular pattern sig-1715

nals. If a signal consistent with the speci-
fication is found, the middle point between
the shortest side (back) and the opposite
vertex (front) is selected as the robot center
location. Then, the orientation is computed1720

as the vector defined by this location and
the front LED.

Video post-processing

For each experimental trial, cellworld
produces three types of video. The pri-1725

mary video log presents the unified field of
view, superimposes tracking markers of the
robot and mouse, and incorporates all per-
tinent experimental information. The sys-
tem also generates raw video that includes1730

the unprocessed images from each of the
four cameras. Additionally, a multi-view,
subject-centered video is produced, offering
a cropped perspective of the mouse as cap-
tured from all four camera angles. This1735

subject-centered video mitigates arena ge-
ometry interference during post-processing.
Finally, raw video of the unprocessed im-
ages from all four cameras is also saved. We
used the multi-view, mouse-centered video1740

data to train DeepLabCut for offline analy-
sis of the mouse pose 66. This allowed us to
measure the gaze angle and head location
for analysis of peeks (Fig. 7b, c).

Robot hardware1745

The predator robot utilized in the ex-
periments was custom-built. The skid-

steer drive robot is powered by the
(ESP32-WROOM-32D, Espressif Systems,
Shanghia, Shanghai, China) and is driven1750

by two geared DC motors with magnetic
encoders (Geared DC Motor with Mag-
netic Encoder Outputs - 7 VDC 1:20 Ratio,
Adafruit, New York, New York, USA). The
robot was equipped with three LEDs for de-1755

tection and localization via the camera sen-
sors. The robot housed two custom printed
circuit boards: one provided the support-
ing circuitry for the microcontroller and the
motor drivers (DRV8833PW, Texas Instru-1760

ments, Dallas, Texas, USA), while the other
powers the LEDs and the driver used for the
motor component of the puff mechanism.

Robot tracking perspective correction

An unexpected issue arising from the1765

robot tracking setup pertains to the optical
perspective of the cameras. Since the cam-
eras are affixed to the ceiling and the LED
triangle is located at the height of the robot
rather than at ground level, the triangle po-1770

sition in the captured image shifts further
away from the actual robot location the fur-
ther the robot is located from the center of
the image. This introduces deviations of up
to 3 cm in measurements, sufficient to pre-1775

vent successful navigation through gaps of
9 cm given the 12 mm side clearance around
the robot. To address this challenge, it was
necessary to compute the real-world physi-
cal point corresponding to the center of the1780

image captured by each camera at ground
level using the previously described homog-
raphy and the known height of the robots
and cameras. Based on the distance from
the center of the camera plane, we calcu-1785

lated and accounted for the perspective drift
as a function of the robot’s position.
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Robot controller

To control the robot in the complex envi-
ronment, we established a hierarchical con-1790

trol system comprised of three levels: be-
havior, path planning, and low-level mo-
tor control. During a trial, the high-level
behavior controller selected robot destina-
tions based on tracking information from1795

the camera system and the current state of
the experiment (Fig. 4a, b). Before each
trial started, the robot navigated to a spawn
cell (a cell not visible to the mouse, in a
region of the arena furthest from the start1800

gate) and stopped. These spawn constraints
were implemented to ensure that the robot
was not visible to the mouse from the start
port with the gate open, which was found
to lead to long delays before the start of1805

the trial. Then, once the mouse entered the
arena the Main process of autonomous mo-
tion began, during which the robot observed
all regions in the arena that were not ob-
structed by obstacles relative to its current1810

location.
Its behavior switched between aggres-

sive pursuit or random search depending
on whether the mouse was visible or hid-
den to the robot, respectively. The robot1815

only entered pursuit mode if the visual ray
between the mouse and robot passed out-
side of a buffer zone around each obstacle
that was 125% the standard obstacle size or
after 0.5 seconds if the ray passed within1820

the buffer zone. This allowed the mouse
to “peek” at the robot without being im-
mediately pursued. This motion was inter-
rupted by the Attack process if the mouse
was within 32 cm of the robot, during which1825

the airpuff mechanism was triggered and re-
leased two aversive airpuffs in rapid succes-
sion. To deter excessive anxiety in the mice
and enable evasion post-attack, the time be-
tween attacks was regulated to be at least1830

0.5 seconds apart, regardless of the distance
between the mouse and robot.
The middle-level path planning controller

was a hybrid proportional (P) and propor-
tional integral derivative (PID) controller1835

that followed intermediate waypoints on
trajectories created by a standard shortest-
path algorithm (A* 73) to reach the destina-
tions the behavior controller assigned. Fi-
nally, the low-level embedded controller re-1840

ceived attack and speed commands via Wi-
Fi. It utilized encoder feedback for motor
speed control and included a state machine
to manage the airpuff mechanism. For the
results shown in this study, the robot au-1845

tonomously navigated the task environment
for 1,941 trials with no human intervention.

Robot path planning controller

The tracking system provided robot state
(position and orientation) feedback for the1850

path planning controller. During the con-
trol process, the path planner selects the
furthest visible cell to the robot on the
robot’s desired path as an intermediate tar-
get. Then, a hybrid P- and PID- controller:1855

u(t) = (
1

(a∆θ(t))2 + 1
) ∗ P (∆s(t))± PID(∆θ(t)))

is used to correct along-track error ∆s
(distance from target) and heading error
∆θ (difference between desired and ac-
tual heading), respectively (Supplementary
Fig. 2). To avoid collisions in cluttered en-1860

vironments with tight spaces, the 1
(a∆θ(t))2+1

term prevents the robot from translating
too quickly if the ∆θ is large, where a is
an arbitrary design parameter.
Additionally, to augment obstacle avoid-1865

ance, a type of potential field-based obsta-
cle avoidance algorithm works to repel the
robot from occlusions by perturbing the de-
sired heading angle of the robot, where the
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distance between the objects largely influ-1870

ences the magnitude of the perturbation.
This algorithm is of the form

F⃗perturb =
O∑

n=1

weight

distancedecay
∗ direction

where O represents all obstacles in front
of and within 0.35 m of the robot. weight
and decay are design parameters and dis-1875

tance is the Euclidean distance between the
robot and a given obstacle. The direction is
a unit vector orthogonal to the robot’s head-
ing direction, pointing either left or right
(from the robot’s perspective) depending on1880

which side of the robot the obstacle is lo-
cated. Ultimately, this perturbation force
works to repel the robot away from nearby
obstacles by slightly offsetting the target lo-
cation. This perturbation value is updated1885

at 50 Hz; which means it is constantly ad-
justed based on the location of the robot in
the map during the path-following process.

Aversive airpuff

To accurately simulate the predatory1890

behavior during the BotEvade task (Re-
sults section), we added a stimulus mod-
ule (Fig. 3c) to the robot’s chassis. The
module is comprised of a 16 g CO2 can-
ister and inflator (Ultraflate, Genuine In-1895

novations, San Luis Obispo, CA, USA), an
air nozzle, a brushed DC motor (120:1 Mini
Plastic Gearmotor HP, Pololu, Las Vegas,
Nevada, USA), a motor shaft adapter, and
3D printed PLA parts. The custom PLA1900

parts consist of a lever arm, a cam, and a ro-
bust framework that facilitates efficient CO2

canister replacement and simple integration
with the robot.
The airpuff mechanism of the stimulus1905

module is triggered when the camera sen-
sors detect that a mouse has crossed the

attack threshold (Fig. 4a). For each at-
tack event, the mechanism releases two suc-
cessive airpuffs, each lasting approximately1910

100 ms, with a 200 ms interval between
them.
During each attack (sequence of two air-

puffs), the motor rotates approximately 350
degrees in one direction, is halted by a me-1915

chanical stop, and then rotates the opposite
direction back to its start position. Each
CO2 canister is able to produce at least 30
strong airpuffs (generally 15 attacks, assum-
ing one attack per encounter; Supplemen-1920

tary Video 1), which is more than enough
to complete a 30 minute session without re-
placement. The canister is replaced at the
end of each 30 minute session to ensure con-
sistency in puff strength across trials.1925

Spatial complexity metrics

A key aspect of the design of cellworld
is reconfigurability guided by measures re-
lated to spatial complexity.
Cellworld entropy. The first and most1930

basic measure of spatial complexity used in
this and earlier work 1 is Shannon entropy.
This is computed with the formula for the
Shannon entropy 74 of a binarized version of
an arena, where each open cell is 0 and each1935

cell with an occlusion is 1. The resulting
binary matrix is turned into a vector.
Entropy is determined by the following

formula:
1940

e = −
(
O
C
log2

(
O
C

)
+ C−O

C
log2

(
C−O
C

))
where O is the number of occlusions,
and C is the total number of cells in the
arena.1945

Shannon entropy is an effective complex-
ity measure in the context of our ran-
dom generative algorithm for cellworlds, as
it presupposes no interdependence between

24



individual elements. It is therefore insen-1950

sitive to structured patterns such as the
checkerboard illustration in Supplementary
Figure 1: the probability of the checker-
board pattern occurring is the same as any
other pattern: 1/2(20×20). Despite its seem-1955

ing simplicity and intuitive orderliness, in
the context of our generative algorithm and
as measured by Shannon entropy, each cell
in the checkerboard is equally likely to be
occluded or open, implying the checker-1960

board’s maximal entropy. In this case, our
intuition of the entropy of the checkerboard
(low because orderly) comports better with
a different concept of entropy, known as
causally conditioned entropy 75, which is not1965

utilized in this study. Causally conditioned
entropy considers the effect that the values
of prior elements have on the probabilities
of subsequent ones. In the context of the
checkerboard example, this approach would1970

yield a conditional entropy value of 0, as the
probability of a square being occupied is de-
termined entirely by the preceding square’s
state.
Occupancy. The percentage of the1975

space with obstacles to sensory perception
( O/C × 100, where O and C are as defined
above ). Supplementary Fig. 1a plots Shan-
non entropy versus occupancy and maps
where the various spaces we have consid-1980

ered fall on the curve. Similar to entropy,
occupancy places no demands on where the
obstacles are. This measure is similar to the
informal notion of how cluttered a space is.
Network Degree Complexity. The1985

network degree complexity 1 provides a suc-
cinct description of the uncertainty associ-
ated with the sensory connection distance
between two agents in a space, based on any
two randomly chosen locations within that1990

space. For this study, we solely consider vi-
sion.

To compute the vision-based network de-
gree complexity for a given configuration
of cellworld, we translate it into a corre-1995

sponding graph. Each hexagonal cell rep-
resents a graph node. An edge exists be-
tween two nodes unless an obstacle blocks
the line of sight connecting the centers of
the associated hexagonal cells in cellworld,2000

implying the visual connection is disrupted.
For instance, in an obstacle-free cellworld
configuration, every node connects to ev-
ery other node. Consequently, the degree
of each node, representing the number of2005

its connecting edges, stands at 331, which
matches the total cell count in cellworld.
To determine the Network Degree Com-

plexity for a particular cellworld configura-
tion, we first form a vector containing the2010

relative frequencies for each feasible degree
value greater than zero, ranging from 1 to
the total number of non-obstructed cells.
Then, this vector is used to compute the
Network Degree Entropy. Finally, we nor-2015

malize this value by the system’s maximum
possible entropy, which is achieved when all
distinct degrees have equal probabilities.

Network Degree Relative Frequency:

f(d) = nd

D
2020

Network Degree Entropy:

H = −
∑D

d=1 f(d) log(f(d))

Network Degree Complexity:

C = H
log( 1

D
)

In these formulas, nd represents the num-2025

ber of nodes with degree d in the graph. D
is the maximum degree possible, equivalent
to the node count in the graph. The term
− log( 1

D
) signifies the entropy when assum-

ing a uniform frequency across all feasible2030
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degrees ( −
∑D

d=1 1/D log( 1
D
) = − log( 1

D
)

). In the earlier discussed fully connected
scenario, the Network Degree Complexity is
zero. However, as we introduce occlusions,
the system exhibits a diverse combination2035

of high-degree (large fields of view) and low-
degree (small fields of view) nodes, leading
to an increase in complexity.
To compute the complexity of the natu-

ral environment presented in the main text,2040

we utilized projections of the scaled-up cell-
world arena on a satellite photo of a nat-
ural setting. We randomly placed these
projections within the image. The projec-
tion size was determined based on the ob-2045

served cell-animal body ratio from the phys-
ical setup and measurements of mice (body
size≈80 mm) and cell size (≈12 cm) and the
impala, a prey animal native to the habitat
(body size ≈130 cm) and cell size (≈2 m).2050

The original color satellite photo, sourced
from Google Maps, was first converted into
8-bit grayscale. Subsequently, it was bi-
narized using a midpoint threshold. This
image, originally sized 8192 × 5067 pix-2055

els and representing a real-world area of
1836.77m×1136.1m, was resized to 2730×
1689 pixels. At this scale, every 3 pixels
corresponds to ≈ 2m, matching our chosen
graph node scale.2060

For each projection, we selected a random
center, ensuring it was at least 200 pixels
away from any image edge to avoid over-
flow. The center of each cell in the arena
projection was then calculated. The imme-2065

diate 9 pixels (a 3× 3 pixel grid, equivalent
to 2×2 meters) around each cell center were
inspected to check for occlusion. A cell was
deemed occluded if ⌈0.5×9⌉ = 5 or more of
these pixels were black. We continued this2070

process until we identified 1000 projections
with at least one occluded cell.
After obtaining the 1000 non-empty pro-

jections and transforming them into cell-
world configurations, we applied the same2075

tools and methods used for analyzing the
complexity of maps generated by the gener-
ative model. This ensured a consistent and
equitable comparison.
Note that in our experimental work, we2080

have manipulated the environment to min-
imize the contribution of other sensory
modalities besides vision. For example, we
use a loud white noise generator to mask
the sound of the robot, and frequently clean2085

with 70% ethanol to remove all odor cues.
Nonetheless, it is worth considering the
likely effect of adding sensory modalities on
network degree complexity. To a first ap-
proximation, adding modalities will create2090

additional edges in the graph. For exam-
ple, imagine an owl with precise auditory
localization using vision and sound to at-
tack a rodent. Portions of the environment
blocking vision will be transparent to the2095

auditory system. This will create edges be-
tween nodes where there is no visual connec-
tivity (and effectively reduce the number of
obstacles). In an initial situation of high
clutter and low complexity, the addition of2100

audition seems likely to increase complex-
ity. In an initial situation of medium clutter
and high complexity, adding auditory per-
ception could decrease complexity.
Lacunarity. Lacunarity (from the2105

latin for lacuna = gap) was devised by
Mandelbrot76 (p. 310) after he observed
that two fractals with identical fractal di-
mension could look very different. It has
been applied as a multi-scale measure of2110

spatial texture associated with patterns of
dispersal on landscapes 51, 52. Lacunarity
(Λ) measures the deviation of a pattern at
a given spatial scale from translational in-
variance 51. If Λ is large at a given scale,2115

then the pattern deviates a lot from trans-
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lational invariance—the pattern would look
different if a block of the pattern at that
spatial scale were shifted to a different loca-
tion; similarly, if Λ is small, then the pattern2120

will look similar even if that block of space
is shifted. Supplementary Fig. 1 provides
plots of the lacunarity values of several cell-
worlds and other cases, along with summary
statistics for Shannon entropy, network de-2125

gree complexity, and a summary statistic for
lacunarity, L-value, described further be-
low.

While chiefly used by landscape ecolo-
gists, as in our case it has also been ap-2130

plied for analyzing movement patterns of
animals 77. To our knowledge we are the
first to apply it with specific reference to
the physics of a given sensory modality, here
vision, in the analysis of behavioral spaces.2135

The gaps that we analyze using lacunarity
are assumed/designed to be transparent to
vision, and the obstacles between the gaps
are assumed/designed to be opaque.

To compute the two-dimensional (2D)2140

vision-based lacunarity for our samples, we
take a top down view of a space and bi-
narize the image: cells occupied by obsta-
cles to vision are ’1’, and other cells are ’0’.
Over a set of boxes varying in size, we com-2145

pute the ratio of the variance to the squared
mean of the sum of the elements within the
box. Because lacunarity is usually plotted
on a ln–ln scale, one is added to this ra-
tio so that ln(Λ) goes to zero as Λ goes to2150

zero, giving Λ(r) = Var(S)
E[S]2 + 1, where r is

the box size and S is the occupied sites by
the variable of interest—visually occlusive
objects in our case. The lacunarity curves
that arise (Supplemental Figure 1b) gives2155

information as to what spatial scale a given
landscape transitions from being inhomoge-
neous to homogeneous, where homogeneous

means ln(Λ) ≈ 0, and that the space would
be invariant to the corresponding box size of2160

space being translated to another location.
For example, for the checkerboard pat-

tern of Supplemental Figure 1, the space is
inhomogeneous up to the scale where the
pattern repeats (at a box size encompassing2165

2 x 2 squares, 183 x 183 pixels for our im-
age); after that, the space is homogeneous.
The lacunarity curve therefore transitions
from ln(1/P ) at the smallest box size, where
P is the percentage of the cells occupied2170

(or 50% in this case, ln(Λ) = ln(2) ≈ 0.69)
to close to zero the size pattern repetition
(ln(Λ) = ln(183) ≈ 5.2). What lacunar-
ity compactly communicates is how sparse
the space is at the finest scale of analy-2175

sis (the curve starts at ln(1/P )), and the
evolution of the curve as the box size in-
creases to the full extent being analyzed
(and therefore mathematically the lacunar-
ity must be unity so the ln(Λ) plot goes to2180

zero). Between these two limits, the de-
scent of the curve shows the spatial scale
where the pattern of the space repeats, and
how quickly that transition occurs. For self-
similar patterns, the lacunarity curve is a2185

straight line on a log-log plot, with a slope
equal to the fractal dimension minus the Eu-
clidean dimension. Our natural landscape
sample has a near straight line slope, and its
fractal dimension is ≈1.7 (intercept ≈2.6:2190

y ≈ (1.7 − 2)x + 2.6). Other landscape
samples, and a survey of the lacunarity val-
ues found in different types of aquatic and
terrestrial biomes, are provided in earlier
work1.2195

The integral of the lacunarity curve, the
L-value 53, provides a quick index into the
magnitude of the heterogeneous space. For
two spaces with similar occupancy (and
thus starting near the same value of Λ at2200

the smallest box size), if the space tran-
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sitions quickly to invariance under trans-
lation, then the L-value will be small; if
the transition occurs at larger spatial scales
then the L-value will be large.2205

For example, consider the lacunarity
curves for the natural landscape sample and
the 0.5 Random configuration used in our
experiments, Supplementary Figure 1c. As
shown in the legend, the L-value for the nat-2210

ural landscape (8.1) is larger than Random
0.5 (7.3), with comparable initial Λ values,
since the natural landscape has a shallow
straight-line-like decline whereas the Ran-
dom cellworld declines more rapidly. These2215

two L-value are close, and so is the corre-
sponding network degree complexity of the
two cases. In contrast, the the L-value
of the checkerboard pattern and hairpin
maze are similar despite very different net-2220

work degree complexities (checkerboard at
0.0 and hairpin at 0.72), grouping them into
the same relatively homogeneous space cat-
egory.
Limitations: There are several limita-2225

tions to the sensory oriented lacunarity
analysis as presented here. One is the as-
sumption that the profile of an obstacle
from above properly represents how vision
interacts with the object over its height.2230

While true by design for the obstacles in
cellworld, this is not generally the case for
natural obstacles as trees with their nar-
row bases and wide tops. Some of the lim-
itations of performing a lacunarity analy-2235

sis of 3D landscapes using 2D projections
can be circumvented by computing 3D la-
cunarity 78, but 3D scans of space are rarely
available. Further, the metric has its roots
in computational geometry and landscape2240

analysis, and the application to analyzing
how a landscape is sensed and processed
by an animal is challenged by the difficulty
of deciding on the relevant spatial scales,

and the multiplicity of ways a landscape is2245

sensed. Finally, the relevant perspective on
the space for the calculation is not always
obvious. It can be argued that for an ap-
plication where spatial complexity is being
examined through the lens of cognitive map2250

formation, a top-down perspective such as
used here may be appropriate 1; for other
forms of spatial processing, other options
may be considered.

Summary. To recap, we have discussed2255

the use of cellworld entropy, occupancy,
network degree complexity, and lacunarity.
Each of these quantities has different roles.
The Shannon entropy is a practical mea-
sure that serves as a target in our gen-2260

erative model to produce cellworlds. The
occupancy is easily understood as some-
thing akin to how cluttered an environment
is, and also gives us one point on the la-
cunarity curve for the space, as it will be2265

ln(Λ) = ln(1/P ) at the smallest spatial
scale (termed grain), where P is occupancy.
Network degree complexity tells us how
uncertain the distance of sensory connec-
tion will be for any two randomly chosen lo-2270

cations within the corresponding cellworld.
But high uncertainty can arise within a rela-
tively homogeneous space as well, as it does
for the hairpin maze. Finally, lacunarity
gives us a multi-scale view of the invariance2275

of a pattern to translation across spatial
scales of interest. If you’ve been in a space
where you feel it looks the same in all di-
rections, and the same when you move to a
different location, then at that spatial scale,2280

the ln(Λ) value of the space is nearing zero.
One could speculate that animals that use
cognitive maps will be challenged, and need
external landmarks to navigate succesfully
in such spaces. The area under the lacu-2285

narity curve, or L-value, is useful when a
single value to represent a space’s lacunar-
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ity is desired and can help group spaces with
different network degree complexity values
but similar levels of spatial homogeneity.2290

Arena configurations

Leveraging the flexibility of cellworld, the
system can emulate a wide range of estab-
lished experimental designs. Furthermore,
cellworld can effectively reproduce environ-2295

ments that have ethological relevance with
varying levels of visibility.
The creation of these diverse environ-

ments is realized through the use of auto-
mated tools specifically developed for this2300

system. The model for generating these en-
vironments relies on one primary variable:
the target entropy level of the cellworld.
This variable can be manipulated through
two parameters which include the number2305

of occlusions within the arena, or the de-
sired level of entropy. The method starts
with zero occlusions (O = 0) and incremen-
tally adds occlusions until the specified en-
tropy level is achieved. Conversely, if the2310

number of occlusions is explicitly given, this
step can be bypassed. Finally, the process
selects O cells randomly and marks them as
occluded.
To guarantee reproducibility, the algo-2315

rithm accepts an optional seed parame-
ter. When provided, this parameter se-
cures a consistent occlusion configuration
across runs. However, in the absence of
this parameter, the procedure will generate2320

a unique occlusion configuration for each ex-
ecution.
Validation Criteria. A configuration of

obstacles is considered valid when it meets
two essential conditions: First, all non-2325

occluded or open cells should be connected
by an open path, ensuring no open cells are
left in isolation. Second, the cells represent-
ing the entry and exit points must be open,

and at least one viable path between the en-2330

try and exit cells exists. The configuration
generation process repeats until the result-
ing arrangement passes the validation crite-
ria.

Mouse experiments2335

Experimental conditions were determined
by one of four sequential experimen-
tal phases—corridor training (CT), arena
training (T), robot (R), and post-robot
(PR) phase—which the mice were assigned2340

based on a combination of standardized and
individualized progress quotas. All mice
followed the same phase sequence. Dur-
ing corridor training, a channel made from
modified vinyl gutters was placed across the2345

length of the arena connecting the start and
end doors entering and exiting the arena.
The CT phase lasted for only one day, but
two mice (FMM9 and FMM10) were given
a second day in the corridor due to the lack2350

of trials. The corridor was removed and
obstacles were introduced to match a spec-
ified mid-entropy configuration (named as
“21 05”; Random 0.5 in Fig. 2c) for the T
phase. Mice roamed freely and progressed2355

at their own rate. Once trial count was ≥
15 over a 30 minute session and the trial
count plateaued, they transitioned to the R
phase where they performed the same task
in the presence of the robot. Progressing2360

past this phase also required a plateau of
their trial count; however, we added an ad-
ditional two days of experiments with the
robot after this stabilization occurred. Sta-
bilization was determined when, across a2365

three-day window, the trial count each day
did not exceed more than 20% of the three-
day trial count mean. As a result, mice
needed to run a minimum of three days
in the T phase before we could determine2370

if a plateau was occurring and mice could
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progress. In addition, during the R phase,
mice always had five days (three used for
the plateau check plus two additional days)
where they were considered “acclimated” to2375

the robot to match the required number
of days for the final phase (PR) where the
robot was not present as a control.
The cohort of mice which experienced the

no-obstacle condition (n=2, Fig. 6) under-2380

went slightly modified training procedures
consisting of previous exposure to a mid-
range entropy world with and without the
robot before being exposed to the open-field
arena. Experiments in the open-field arena2385

consisted of two days of self motivated ex-
ploration without the robot and then two
days with the robot.
Between each mouse, all obstacles were

removed from the arena, and the arena was2390

fully wiped down using 100% ethanol. At
the end of each day, the arena, the six inches
of the wall closest to the ground, and all
the obstacles were wiped down with 100%
ethanol. The return chute and chambers2395

were also cleaned using damp paper towel
sprayed with Labsan C-Dox. During ex-
periments, white noise was played from a
white noise generator (LectroFan Classic,
Campbell, CA, USA) along a nearby wall2400

at max volume settings. Both the cleaning
and white noise were applied to limit pos-
sible confounding effects from other sensory
modalities such as auditory and olfactory
cues.2405

BotEvade task

Cellworld automation is dictated by a
centralized script labeled as “experiment
controller”, which is able to receive and
broadcast experimental events from any de-2410

vice connected to it. In this case, the cam-
era system, robot, and both chambers are
connected to this system. As an example

of how the experiment controller connects
devices when a mouse licks the lick port2415

in the start chamber, the main experiment
controller receives a message from the start
chamber’s Raspberry Pi. Subsequently, the
experiment controller broadcasts the “start
trial” event to all connected components,2420

signaling the camera system to begin sav-
ing video recordings, and for all doors to
initialize to the proper state.

BotEvade utilizes a sequence of these
specified experiment events to dictate the2425

logic and progression of the task (Fig. 4a–
c). To begin the task, a researcher will place
a mouse in the start chamber and manu-
ally send out the “start experiment” event
via a terminal connected to the experiment2430

controller. Using this terminal, any com-
mand can be manually sent to override or
alter the progression of the task. In re-
sponse to the experiment starting, all doors
in cellworld will close, keeping the mouse2435

contained in the start chamber. After the
“start trial” event is sent, the Raspberry Pi
of the start chamber waits until the robot
has reached its spawn location before the
door connecting the start chamber to the2440

arena opens. Once the mouse past a 12.7 cm
radius (one cell) from the start as detected
by the camera system, a “prey enters arena”
event is triggered where the door behind
the mouse closes and the robot begins mov-2445

ing. A “finish trial” event is then broad-
casted once the mouse traverses the arena
and reaches the lick port at the end cham-
ber, closing/opening doors to guide it into
the return chute. Simultaneously, the cam-2450

era system stops recording and saves the
video recording of the trial, and the robot
begins to move to a spawn point for the next
trial. The task will restart via the broadcast
of the “start trial” once the mouse reaches2455

the lick port in the start chamber unless the
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experiment has progressed past 30 minutes.
In this case, the “finish experiment” event is
sent and all the doors in the start chamber
will close for mouse extraction.2460

Behavioral analysis

We performed all behavioral analysis in
Python using a custom-built library (http
s://pypi.org/project/cellworld/).
Trials with tracking errors were automati-2465

cally detected and removed, while a small
number of trials with robot malfunctions
or experimenter intervention were removed
through manual inspection of the video logs.
The remaining trials were counted towards2470

the trial count for each 30 minute experi-
ment.
Mouse and robot positions from online

tracking were logged and used to perform
all behavioral analyses. From the positional2475

coordinates of the logs, we computed in-
stantaneous speed by calculating the dis-
tance over time between adjacent frames,
then smoothed the speed trace with a mov-
ing average of 10 frames (11 ms). Path2480

length was computed as the sum of the
distance between adjacent frames. To as-
sess fear responses, we calculated the change
in the distance between the robot and the
mouse in a window starting at the time of2485

the airpuff and ending after 2 seconds. To
determine whether any given distance tra-
jectory was significantly different than ex-
pected by chance, we employed a permuta-
tion procedure, where we randomly sampled2490

n = 19,340 time points across non-airpuff
trajectories and computed the mouse-robot
distance. We then computed the 97.5th per-
centiles of the random samples, and any
true distance trajectory which fell above2495

these percentiles after 1 s post-attack was
considered significant.
To determine whether mice varied their

paths throughout various stages of the
task, we used a clustering algorithm2500

(QuickBundles34) to identify stereotyped
path choices. First, we interpolated the
mouse path locations along the x-axis of the
arena into 100 segments of equal lengths.
The interpolated paths were then clustered2505

using QuickBundles with the following pa-
rameters: minimum number of clusters =
1, distance threshold from cluster centroid
= 23.4 cm, and minimum number of paths
in a cluster = 10% of total trajectories be-2510

ing considered. During the clustering pro-
cess, the distance of each interpolated path
is compared to each existing cluster’s cen-
troids to identify the minimum distance. If
the distance to the closest cluster is less2515

than the distance threshold, the path is
added to that cluster and updates the clus-
ter’s centroid. If the distance exceeds the
threshold, a new cluster is created for that
path. Clusters that contain fewer paths2520

than the minimum allowed (10% of trajec-
tories in analysis set) are discarded at the
end of the process, and those paths are con-
sidered unclustered. For this analysis, we
pooled all paths for each mouse within each2525

phase of the task (T, R, and PR phases) and
clustered them separately. We then quanti-
fied path diversity in each phase by consid-
ering the number of clusters and the aver-
age distance to the nearest cluster for each2530

mouse.

To detect when the mouse paused, we de-
veloped a simple algorithm which required
two parameters: a distance threshold and
pause duration. A pause was defined as the2535

frames where the mouse’s location remains
within a given radius (distance threshold),
for a given number of frames (pause dura-
tion parameter). For this analysis, the dis-
tance threshold was set to a radius of 2.5 cm2540

and pause duration was set to 0.5 seconds.
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Airpuff aversion control experiment

For analysis of fear response to the airpuff
stimuli on a moving robot, we ran two naive
mice in an independent control experiment2545

where the airpuff on the robot was disabled.
Both mice went through three experimen-
tal phases within an open-field arena with
no obstacles. The arena doors remained
closed, containing the mice inside the arena,2550

and the mice were allowed to freely roam
the arena for the duration of each daily 30
minute experiment. The cleaning procedure
and white noise were identical to the main
cohort experiments. The first phase served2555

to acclimate the naive mouse to the robot
and the open field environment. The robot
was stationary throughout the entirety of
this phase which only lasted for one day.
In the next two sessions, the robot began2560

to move and pursue the mouse as in pre-
vious experiments, but the robot’s puffing
mechanism was disabled. For the last phase,
the robot’s puffing mechanism was enabled
again while the robot pursued the mouse.2565

The no puff phase lasted for 2 days while
the puffing phase lasted for 1 day.
We quantified the change in response be-

tween the puff disabled and puff enabled
session by measuring the distance between2570

the robot and the mouse 1-2 seconds af-
ter the mouse entered the attack threshold
(32 cm). These data were then averaged
over that time window for each puff event
to calculate statistical significance (Supple-2575

mentary Fig. 3b).

Quantification and statistical analysis

To calculate significance across the differ-
ent experimental phases we first averaged
each statistic per mouse per experimental2580

phase. Due to the small sample size (n=8)
and skewed distribution of many of the
outcome measures, we used non-parametric

Kruskal-Wallis (KW) tests followed by post-
hoc Dunn’s tests between experimental con-2585

ditions for each mouse. In all post-hoc tests,
the p-values were adjusted using Bonfer-
onni correction (padj). To calculate signif-
icant differences between puff and no-puff
conditions in the control experiment (Sup-2590

plementary Fig. 3), we used a Wilcoxon
ranksum test on the distributions distance
from the robot at the time of the puff after
puff-disabled and puff-enabled attacks. The
statistical details of all experiments are re-2595

ported in the Results section or in the leg-
end of the associated figure, where appro-
priate. To indicate the results of statisti-
cal tests in figure panels, asterisks indicate
the following significance levels: *p<0.05,2600

**p<0.01, ***p<0.001, ****p<0.0001. No
significance is indicated by n.s.
To account for potential gender dif-

ferences we performed non-parametric
Wilcoxon rank-sum tests to determine2605

whether male and female mice differed on
the task performance metrics considered in
Figure 6. We found that gender did not
significantly affect the number of trials per-
formed (p = 0.39), path length (p = 0.08),2610

average moving speed (p = 0.56), or the
number of pauses per trial while in the
arena (p = 0.56).

Supplementary Movies

• SM1: Movie of the aversive airpuff se-2615

quence, termed “attack” event, deliv-
ered by the airpuff module. Green
timer in background to illustrate event
duration.

• SM2: Movie of FMM13 fleeing from the2620

robot following an “attack” event. Ma-
genta circle indicates the robot’s attack
threshold. Magenta dot and arrow in-
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dicate the robot’s location and head-
ing, respectively. When the magenta2625

circle switches to red this indicates
that an attack was triggered. Cyan
arc indicates the entrance threshold.
Upon initial cross of the entrance the
“prey enters arena” experiment event2630

is triggered and the robot begins au-
tonomous motion. Cyan dot indicates
the mouse’s location.

• SM3: Movie of FMM16 during pilot
study where mice first interacted with2635

a pursuing robot with airpuff disabled
for two sessions. This movie shows the
mouse’s first experimental session with
the puff enabled.

• SM4: Movie of a trial with the airpuff2640

disabled. Here the mouse climbed onto
and stayed on the moving robot.

• SM5: Movie showing an example of
a stereotypical trajectory without the
robot (T phase) and in the presence2645

(first clip) and absence of obstacles
(second clip).

• SM6: Movie showing an example tra-
jectory with the robot (R phase) in
the presence and absence of obstacles.2650

First clip: Movie of FMM10 during
its seventh day of the R phase. The
mouse’s first line of sight with the
robot occurs at frame 590. Second clip:
Movie of trial in the open field arena2655

with the robot (R phase). The robot
shown is not the robot used during the
BotEvade task, it is an earlier iteration
of the robot.

• SM7: Movie of FMM9 during its first2660

experiment session after the robot was
removed (PR phase).

• SM8: Movie showing an example bait-
ing sequence. Following the sequence
described in Fig. 7a, (1, frames 1–2665

329) the mouse comes to a point where
it is seen by the robot. (2, frames
330–462) The mouse then retreats, (3,
frames 463–801) provoking the robot to
pursue. (4—5, frames 802–1006) This2670

retreat-pursue cycle repeats until (6,
frames 1007–1190) the robot is close to
the start gate, allowing the mouse to
outmaneuver the robot.

• SM9: Movie showing an example peek-2675

ing event. Following the sequence de-
scribed in Fig. 7b, (1, frames 1–525)
the mouse makes initial contact with
the robot, retreats and then (2, frames
526-579) peeks before (3, frames 580-2680

576) rerouting and escaping the robot.

• SM10: To determine the effect on the
mouse of suddenly changing the robot’s
behavior, this is a movie of a trial where
the robot was turned off in the middle.2685

In this trial, the mouse engages an ex-
tended sequence of peeks and reroutes
as it surveys the now stationary robot.
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J., Kubik, S., and Stuchlik, A. (2011). Func-
tional inactivation of the rat hippocampus dis-
rupts avoidance of a moving object. Proceed-
ings of the National Academy of Sciences 108,2895

5414–5418. Publisher: Proceedings of the Na-
tional Academy of Sciences, https://doi.or
g/10.1073/pnas.1102525108.

36. Svoboda, J., Lobellová, V., Popeĺıková, A.,
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