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Background

Eukaryotic genomes encompass thousands of open reading frames (ORFs). The vast
majority are so-called “noncanonical” ORFs (nORFs) excluded from genome annotations
because of their short length, lack of evolutionary conservation, and perceived irrele-
vance to cellular physiology [1-3]. The development of RNA sequencing (RNA-seq) [4]
and ribosome profiling [5, 6] has revealed genome-wide transcription and translation of
nORFs across species ranging from yeast to humans [6—14]. Recent studies have char-
acterized individual nORFs that form stable peptides and impact phenotypes, includ-
ing cell growth [10, 13, 15], cell cycle regulation [16], muscle physiology [17-19], and
immunity [20-22]. Unraveling the cellular, physiological, and evolutionary implications
of nORFs has become an active area of research [14, 23].

Many nORFs have evolved de novo from previously noncoding regions [24—26]. Thus,
the study of nORFs and de novo gene birth as evolutionary innovation carries a syner-
gistic overlap where findings in one area could improve our understanding of the other.
For instance, Sandmann et al. measured physical protein interactions for hundreds of
peptides translated from nORFs and proposed that short linear motifs present in young
de novo nORFs could mediate how nORFs impact essential cellular processes [26].
Other studies observed a gradual integration of evolutionary young ORFs into cellular
networks and showed they could gain essential roles [27-29]. These studies support an
evolutionary model whereby pervasive expression of nORFs generates the raw material
for de novo gene birth [24, 25].

The biological interpretation of nORF expression is complex. Some studies suggest
that the transcription or translation of nORFs could be attributed to expression noise
[30-32], whereby non-specific binding of RNA polymerases and ribosomes to DNA and
RNA might cause promiscuous transcription or translation, respectively. How do nORFs
become expressed in the first place? There are multiple hypotheses on how de novo
OREFs gain the ability to become transcriptionally regulated [33]. One possibility is the
emergence of novel regulatory regions along with or following the emergence of an ORF
(ORF-first), as was shown for specific de novo ORFs in Drosophila melanogaster [34],
codfish [35], human [36, 37], and chimpanzee [36]. Alternatively, ORFs may emerge on
actively transcribed loci such as near enhancers [38] or on long noncoding RNAs [39], as
was shown for de novo ORFs in primates [40] and for de novo ORFs upstream or down-
stream of transcripts containing genes [37] (transcription-first) [41-43]. Transcription
has a ripple effect causing coordinated activation of nearby genes [44, 45]. Thus, de novo
ORFs that emerge near established genes or regulatory regions may acquire transcrip-
tional regulation by “piggybacking” [45] on the pre-existing regulatory context [41, 46].
This piggybacking could predispose de novo ORFs to be involved in similar cellular pro-
cesses as their neighbors, which in turn would help with characterization. To date, the
fraction of nORFs that are transcriptionally regulated and contribute to cellular pheno-
types is unknown for any species.

An obstacle to studying nORF expression at scale is their detection, as nORF
expression levels are typically low and reliant on specific conditions [24, 36]. Recent
studies demonstrated that integrating omics data [14, 47-49] could effectively
address detection issues. For example, Wacholder et al. [14] recently discovered
around 19,000 translated nORFs in Saccharomyces cerevisiae by massive integration
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of ribosome profiling data. This figure is three times larger than the number of
canonical ORFs (cORFs) annotated in the yeast genome. These translated nORFs
have the potential to generate peptides that affect cellular phenotypes but are almost
entirely uncharacterized.

Coexpression is a well-established approach for studying transcriptional regulation
through the massive integration of RNA-seq data. Coexpression refers to the similar-
ity between transcriptional profiles of ORF pairs across numerous samples. Coexpres-
sion has been used successfully to identify new gene functions [50, 51], disease-related
genes [22, 52, 53], and for studying the conservation of the regulatory machinery [51, 54]
or gene modules [55] between species. Based on the assumption that genes involved in
similar pathways have correlated expression patterns, coexpression can reveal relation-
ships between genes and other transcribed genetic elements [56, 57]. Most coexpres-
sion studies have focused on cORFs, but the abundance of publicly available RNA-seq
data represents a tractable avenue to interrogate the transcriptional regulation of thou-
sands of nORFs at once using coexpression approaches [47, 58—61]. Indeed, RNA-seq is
probe-agnostic and annotation-agnostic, thereby enabling the reuse of existing data to
explore these novel ORFs. However, low expression levels can distort coexpression infer-
ences due to statistical biases [62, 63]. A coexpression analysis of translated nORFs that
addresses the statistical issues arising from low expression is still lacking for any species.

Here, we developed a dedicated statistical approach that accounts for low expres-
sion levels when inferring coexpression relationships between ORFs. We applied this
approach to the recently identified 19,000 translated nORFs in S. cerevisiae [14] and
built the first high-quality coexpression network spanning the canonical and noncanoni-
cal translatome of any species. Coexpression relationships suggest that the majority of
nORFs are transcriptionally regulated. While many nORFs form entirely new nonca-
nonical transcription modules, approximately half are transcriptionally associated with
genes involved in cellular homeostasis and transport. We show that de novo ORFs that
piggyback onto their neighbors’ transcription tend to have higher expression and tend
to be highly coexpressed with their neighbors. We provide a web application to allow
researchers to easily access this dataset to investigate the coexpression relationships and
potential cellular roles for thousands of ORFs.

Results

High-quality coexpression inferences show transcriptional and regulatory relationships
between nORFs and cORFs

To infer coexpression at the translatome scale in S. cerevisiae, we considered all cORFs
annotated as “verified’, “uncharacterized’, or “transposable element” in the Saccha-
romyces Genome Database (SGD) [64], as well as all nORFs, ORFs that were either
unannotated or annotated as “dubious” and “pseudogene’, with evidence of transla-
tion according to Wacholder et al. [14]. To maximize detection of transcripts contain-
ing nORFs, we curated and integrated 3916 publicly available RNA-seq samples from
174 studies (Fig. 1A, Additional file 1: Table S1). Many nORFs were not detected in
most of the samples we collected, creating a very sparse dataset (Fig. 1B). The issue of
sparsity has been widely studied in the context of single-cell RNA-seq (scRNA-seq). A
recent study looking at multiple measures of association for constructing coexpression
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Fig. 1 Overview of coexpression inference framework and properties of the dataset. A Workflow: 3916
samples were analyzed to create an expression matrix for 11,630 ORFs, including 5803 cORFs and 5827
nORFs; center log ratio transformed (clr) expression values were used to calculate the coexpression matrix
using proportionality metric, p, followed by normalization to correct for expression bias. The coexpression
matrix was thresholded using p > 0.888 to create a coexpression network (top 0.2% of all pairs). Created

with BioRender.com. B Distribution of the number of ORFs binned based on their median expression values
(transcript per million—TPM) and the number of samples the ORFs were detected in with at least 5 raw
counts. C Coexpressed cORF pairs (o > 0.888) are more likely to encode proteins that form complexes than
non-coexpressed cORF pairs (Fisher's exact test p < 2.2e—16; error bars: standard error of the proportion);
using annotated protein complexes from ref. [67]. D Coexpressed ORF pairs (o > 0.888) are more likely to have
their promoters bound by a common transcription factor (TF) than non-coexpressed ORF pairs (Fisher’s exact
test p < 2.2e—16; error bars: standard error of the proportion); genome-wide TF binding profiles from ref. [68]
and transcription start sites (TSS) from ref. [69] were analyzed to define promoter binding (see “Methods”).

E Hierarchical clustering of the coexpression matrix reveals functional enrichments for most clusters that
contain at least 5 cORFs; functional enrichments estimated by gene ontology (GO) enrichment analysis at
false discovery rate (FDR) < 0.05 using Fisher's exact test. F Coexpression is informative for predicting the
inclusion of cORFs in biological processes via a neighbor-voting scheme; 116 out of 117 GO slim biological
process (GO BP) terms had a mean area under the receiver operating characteristic (AUROC) greater than 0.5
across 3-fold cross-validation. Dashed vertical line represents null expectation at 0.5

networks from scRNA-seq showed that proportionality methods coupled with center
log ratio (clr) transformation consistently outperformed other measures of coexpression
in a variety of tasks including identification of disease-related genes and protein-protein
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network overlap analysis [65]. Thus, we used clr to transform the raw read counts and
quantified coexpression relationships using the proportionality metric, p [66].

We further addressed the issue of sparsity with two sample thresholding approaches.
First, any observation with a raw count below five was discarded, such that when calcu-
lating p only the samples expressing both ORFs with at least five counts were considered.
Second, we empirically determined that a minimum of 400 samples were required to
obtain reliable coexpression values by assessing the effect of sample counts on the sta-
bility of p values (Additional file 2: Fig. S1). These steps resulted in an 11,630 by 11,630
coexpression matrix encompassing 5803 cORFs and 5827 nORFs (OREF list in Additional
file 3: Table S2, Additional file 4: Table S3).

The combined use of clr, p, and sample thresholding accounted for statistical issues in
estimating coexpression deriving from sparsity, but the large difference in RNA expres-
sion levels between cORFs and nORFs posed yet another challenge. Indeed, Wang et al.
showed that the distribution of coexpression values is biased by expression level due
to statistical artifacts [62]. We observed this artifactual bias in our dataset (Additional
file 2: Fig. S2A) and corrected for it using spatial quantile normalization (SpQN) as rec-
ommended by Wang et al. [62] (Additional file 2: Fig. S2B). This resulted in a normalized
coexpression matrix (Additional file 5: Table S4) with p values centered around 0.476.

We then created a network representation of the coexpression matrix by considering
only the top 0.2% of p values between all ORF pairs (p > 0.888). This threshold was cho-
sen to include 90% of cORFs (Additional file 2: Fig. S3). Altogether, our dedicated analy-
sis framework (Fig. 1A) inferred 124,382 strong (p > 0.888) coexpression relationships
between 9303 ORFs, encompassing 4112 nORFs and 5191 cORFs.

To assess whether our coexpression network captures meaningful biological and regu-
latory relationships, we examined its overlap with orthogonal datasets. Using a curated
[67] protein complex dataset for cORFs, we found that coexpressed cORF pairs are sig-
nificantly more likely to encode proteins that form a protein complex together compared
to non-coexpressed pairs (odds ratio = 10.8, Fisher’s exact test p < 2.2e—16; Fig. 1C).
Using a previously published [68] genome-wide chromatin immunoprecipitation with
exonuclease digestion (ChIP-exo) dataset containing DNA-binding information for 73
sequence-specific transcription factors (TFs) and using transcript isoform sequencing
(TIE-seq) [69] data to determine transcription start sites (TSSs) and promoter regions,
we observed that coexpressed ORF pairs were more likely to have their promoters bound
by a common TF than non-coexpressed ORF pairs, whether the pairs consist of nORFs
or cORFs (canonical-canonical pairs: odds ratio = 3.84, canonical-noncanonical pairs:
odds ratio = 2.55, noncanonical-noncanonical pairs: odds ratio = 3.22, Fisher’s exact
test p < 2.2e—16 for all three comparisons; Fig. 1D). Enrichments were robust to differ-
ent coexpression cutoffs (Additional file 2: Fig. S4-S5). Using the WGCNA [70] method
to cluster the coexpression matrix, we found that more than half of the clusters identi-
fied contained functionally related ORFs (gene ontology (GO) biological process enrich-
ments at Benjamini-Hochberg (BH) adjusted false discovery rate (FDR) < 0.05; Fig. 1E;
Additional file 2: Fig. S6). Finally, the coexpression matrix was also informative for pre-
dicting known functional annotations of cORFs via neighbor-voting [71]: 99% of func-
tional annotations tested had an average AUROC greater than the null expectation (1 =
117 GO slim biological process terms tested in a 3-fold cross-validation scheme; Fig. 1F).
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These analyses demonstrate the high quality of our coexpression network and confirm
that it captures meaningful biological and regulatory relationships for both cORFs and
nORFs.

Conventional approaches for coexpression analysis include using transcript per mil-
lion (TPM) or reads per kilobase per million (RPKM) normalization, batch correction by
removing top principal components, and Pearson’s correlation as the similarity metric
[56, 72, 73]. Compared to these approaches, our framework increased the proportion
of coexpressed ORF pairs whose promoters are bound by a common TF specifically for
pairs containing nORFs (Additional file 2: Fig. S7) and yielded coexpression networks
encompassing the largest number of nORFs at most thresholds (Additional file 2: Fig.
S8). Correcting for batch effects by removing principal components prior to coexpres-
sion analysis has been shown to increase biological signal [73, 74]; however, we did not
observe an increase in performance for our analysis. This discrepancy could be because
these previous studies used much smaller sample sizes (Parsana et al. [73], n = between
304 and 430 samples; Mostafavi et al. [74] n = 69 and 60 samples; this manuscript #
= 3916 samples) suggesting principal component removal could be less effective when
the sample size or number of batches is very large. Furthermore, our network construc-
tion included nonconventional steps to account for the low expression levels of nORFs
and to increase the number of nORFs in the network, including thresholding to remove
RNA-seq observations with a read count of less than 5 and normalizing the coexpression
values to account for expression level bias. We found that the removal of non-detected
observations by thresholding to keep only RNA-seq observations with a raw count of 5
or greater and the use of SpQN to normalize coexpression values increased the propor-
tion of coexpressed ORF pairs whose promoters are bound by a common TF specifically
for pairs containing nORFs at all cutoffs that allow for at least 10% of nORFs included in
the network (Additional file 2: Fig. S9, Fig. S10). Hence, our dedicated analysis frame-
work therefore outperforms conventional coexpression approaches for the study of
nORFs. We offer an R Shiny [75] interface (https://carvunislab.csb.pitt.edu/shiny/coexp
ression/) to efficiently query, visualize, and download the coexpression data we gener-
ated. To our knowledge, this is the most comprehensive coexpression dataset focusing
on empirically translated elements, both annotated and unannotated, for any species to
date.

nORFs tend to be located at the periphery of the coexpression network and form new
noncanonical transcription modules

Conventional analyses of coexpression networks have been restricted to cORFs. Our full
coexpression network contains twice the number of ORFs and three times the number
of strong (p > 0.888) coexpression relationships compared to the canonical-only net-
work (Fig. 2A). We sought to compare the network properties of the canonical-only
and full networks. On average, nORFs have fewer coexpressed partners (degree) than
cORFs, suggesting that nORFs have distinct transcriptional profiles (Cliff’s Delta d =
—0.29, Mann-Whitney U test p < 2.2e—16; Fig. 2B). We found that 91% of cORFs are
coexpressed with at least one nORF (n = 4726; Fig. 2C), whereas only 59% of nORFs
are coexpressed with at least one cORF. In contrast, we would have expected an aver-
age of 89% of nORFs to be coexpressed with a cORF according to degree-preserving


https://carvunislab.csb.pitt.edu/shiny/coexpression/
https://carvunislab.csb.pitt.edu/shiny/coexpression/

Rich et al. Genome Biology (2024) 25:183

A Canonical-only network Full network

. canonical
n=5,191

. canonical
n=4,245 . noncanonical

coexpressed n=4112
== (p>0.888) coexpressed
n = 42,205 — (p>0.888)
n = 124,382
' . 2 .
ORF type []] canonical []] noncanonical oy
(]
L 4,000 o 754
1)
o = o
0.6 ! ! c
2 , S 3,000 5'5.:"
12 1 Q Q= 504
c o o0
O 0.4 L n ©
©
¢ 2.000- w.c
& o2 ) O = 254
®) 1,0004 c
—
- <
T — r . X
1 10 100 1000 01 ° 04
T T _—
number of coexpressed noncanonical noncanonical full random
E partners degree =0  degree >0 ner?g?l'k ",?i‘%"g&'és
1.00 G
2 0.754
(7]
2 0.50- ®»
o} 5}
5 0.254 420
0.00 g . . S
8 10 A2 5
F network diameter b
1.00 8
10
2 0.75+ QL
(2]
2 .50- g
)
o 0.254 c
0.00 . . . . 0 !
0.10 0.15 020, . 0.25 000 025 050 075 1.00
network transitivity proportion of NORFs
in a cluster

network type 1 canonical-only §full i random

Fig. 2 Topological properties of the coexpression network. A Visualization for canonical-only and full
coexpression networks using spring embedded graph layout [76]. The full network contains more cORFs
than the canonical-only network since addition of nORFs also results in addition of many cORFs that are
only connected to an nORF. B nORFs have fewer coexpression partners (degree in full network) than cORFs
(Mann-Whitney U test p < 2.2e—16). C Most cORFs are coexpressed with at least one nORF. D Only 59% of
nORFs are coexpressed with at least one cORFs and this is less than expected by chance, on average, 89%
of nORFs are coexpressed with a cORF across 1000 randomized networks generated in a degree-preserving
fashion by swapping edges of noncanonical nodes (Fisher’s exact test p < 2.2e—16; error bar: standard error
of the mean proportion across randomized networks). E Addition of nORFs to the canonical-only network
results in the full network being less compact, whereas the opposite is expected by chance, shown by

the decrease in diameters for the 1000 randomized networks. F Addition of nORFs to the canonical-only
network decreases local clustering in the full network; however, this is to a lesser extent than expected by
chance as shown by the distribution for the 1000 randomized networks. G Most clusters in the coexpression
matrix encompass either primarily nORFs or primarily cORFs (n = 69 clusters, green represents nORF majority
clusters, purple represents cORF majority clusters)

simulations of 1000 randomized networks where edges from nORFs were shuffled (odds
ratio = 0.174, Fisher’s exact test p < 2.2e—16; Fig. 2D, Additional file 2: Fig. S11). This
suggests that, while most nORFs are integrated in the full coexpression network, they
also have distinct expression profiles that differ markedly from those of all cORFs and
are more similar to those of other nORFs.

To investigate how these seemingly conflicting attributes impact the organization of
the coexpression network, we analyzed two global network properties: diameter, which

Page 7 of 28
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is the longest shortest path between any two ORFs; and transitivity, which is the ten-
dency for ORFs that are coexpressed with a common neighbor to also be coexpressed
with each other. The incorporation of nORFs in the full network led to a larger diam-
eter relative to the canonical-only network (Fig. 2E). This is in sharp contrast with the
null expectation, set by 1000 degree-preserving simulations, whereby random incor-
poration of nORFs decreases network diameter. The full coexpression network is thus
much less compact than expected by chance, suggesting that nORFs tend to be located
at the periphery of the network. Network transitivity decreased with the incorporation
of nORFs compared to the canonical-only network, but to a lesser extent than expected
by chance (Fig. 2F). This suggests that despite their low degree and peripheral locations,
the connections formed by nORFs are structured and may form noncanonical clusters.

To investigate this hypothesis, we inspected the ratio of nORFs and cORFs among
the cluster assignments from WGCNA hierarchical clustering of the full coexpression
matrix (Additional file 2: Fig. S6). Strikingly, we observed a bimodal distribution of clus-
ters, with approximately half of the clusters consisting mostly of nORFs and the other
half containing mostly cORFs (Fig. 2G). We conclude that nORFs exhibit a unique and
non-random organization within the coexpression network, simultaneously connecting
to all cORFs while also forming entirely new noncanonical transcription modules.

Coexpression profiles reveal most nORFs are transcriptionally associated with genes
involved in cellular transport and homeostasis

To determine whether nORFs are transcriptionally associated with specific cellular pro-
cesses, we performed gene set enrichment analyses [77] (GSEA) on their coexpression
partners. GSEA takes an ordered list of genes, in this case sorted by coexpression level,
and seeks to find if the higher ranked genes are preferentially annotated with specific
GO terms. For each cORF and nORF, we ran GSEA to detect if their highly coexpressed
partners were preferentially associated with any GO terms (Additional file 2: Fig. S12).
Almost all ORFs (99.9%), whether cORF or nOREF, had at least one significant GO term
associated with their coexpression partners at BH adjusted FDR < 0.01, suggesting that
nORFs are engaged in coherent transcriptional programs. We then calculated, for each
GO term, the number of cORFs and nORFs with GSEA enrichments in this term (Addi-
tional file 6: Table S5). These analyses identified specific GO terms that were significantly
more (16 terms, BH adjusted FDR < 0.001, odds ratio > 2, Fisher’s exact test; Fig. 3A,
Additional file 7: Table S6) or less (23 terms, BH adjusted FDR < 0.001, Odds ratio < 2,
Fisher’s exact test; Fig. 3B, Additional file 7: Table S6) prevalent among the coexpres-
sion partners of nORFs relative to those of cORFs. Most of the GO terms that were sig-
nificantly enriched among the coexpression partners of nORFs were related to cellular
homeostasis and transport (Fig. 3A) while most of the GO terms significantly depleted
among the coexpression partners of nORFs were related to DNA, RNA, and protein pro-
cessing (Fig. 3B). Running the same GSEA pipeline with Kyoto Encyclopedia of Genes
and Genomes (KEGG) [78] annotations yielded consistent results (Additional file 2: Fig.
S13, Additional file 8: Table S7, Additional file 9: Table S8). Half of nORFs were coex-
pressed with genes involved in homeostasis (GO:0042592, 53%), monoatomic ion trans-
port (GO:0006811, 49%), and transmembrane transport (GO:0055085, 47%). The nORFs
transcriptionally associated with the parent term “transport” (n = 2718, GO:0006810,
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GSEA BH adjusted FDR < 0.01) were 1.6 times more likely to contain a predicted trans-
membrane domain than other nORFs (p = 1.3e—4, Fisher’s exact test; Fig. 3C), in line
with potential transport-related activities. These findings reveal a strong and previously
unsuspected transcriptional association between nORFs, and cellular processes related
to homeostasis and transport.

Hsf1 and Sfp1 nORF targets are part of protein folding and ribosome biogenesis
transcriptional programs, respectively
Overall, our analyses relating coexpression to TF binding (Fig. 1D) and functional
enrichments (Fig. 3A,B) suggest that nORF expression is regulated rather than simply
the consequence of transcriptional noise. To further investigate this hypothesis, we
sought to identify regulatory relationships between specific TFs and nORFs. We rea-
soned that if nORFs are regulated by TFs in similar ways as cORFs, then genetic knock-
out of the TFs that regulate them should impact their expression levels as it does for
cORFs [81]. We focused on two transcriptional activators for which both ChIP-exo [68]
and knockout RNA-seq data [80] were publicly available: Sfp1, which regulates ribosome
biogenesis [82], and Hsf1, which regulates heat shock and protein folding responses [83].
For both cORFs and nORFs, knockout of Sfpl or Hsfl was more likely to trigger a
significant decrease in expression when the ORF’s promoter was bound by the respec-
tive TF according to ChIP-exo evidence (Fig. 3D). The statistical association between TF
binding and knockout-induced downregulation was as strong for nORFs as it was for
cORFs, consistent with nORFs having similar mechanisms of transcriptional activation
(Sfp1: cORFs odds ratio = 11.1, p < 2.2e—16; nORFs odds ratio = 21.8, p = 2.8e—9, Fish-
er’s exact test; Hsfl: cORFs odds ratio = 12.7, p < 2.2e—16; nORFs odds ratio = 12.1, p =
9.9e—13, Fisher’s exact test). Therefore, the nORFs whose promoters are bound by these
TFs, and whose expression levels decrease upon deletion of these TFs, are likely genu-
ine regulatory targets of these TFs. By this stringent definition, our analyses identified 9
nOREF targets of Sfpl (and 34 cORF targets) and 19 nORF targets of Hsfl (and 39 cORF
targets). The coexpression profiles of these Sfpl and Hsfl nORF targets were preferen-
tially associated with genes involved in processes directly related to the known functions
of Sfpl and Hsfl (Additional file 10: Table S9). For example, the coexpression profiles of
9 Sfp1 nOREF targets revealed preferential associations with genes involved in “ribosomal
large subunit biogenesis” and 7 Sfp1 nORF targets involved in “regulation of translation”
according to our GSEA pipeline (Fisher’s exact test, BH adjusted p-value < 6.7e—4 for
both terms). Similarly, 13 Hsfl nORF targets were preferentially associated with genes
involved in “protein folding” (Fisher’s exact test, BH adjusted p-value = 5.7e—9). These
results show that nORF expression can be actively regulated by TFs as part of coherent
transcriptional programs (Fig. 3E).

de novo ORF expression and regulation are shaped by genomic location

Previous literature has shown that many nORFs arise de novo from previously non-
coding regions [24, 26]. We wanted to investigate how these evolutionarily novel ORFs
acquire expression and whether their locus of emergence influences this acquisition. To
define which ORFs were of recent de novo evolutionary origins, we developed a multi-
step pipeline combining sequence similarity searches and syntenic alignments (Fig. 4A).
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cORFs were considered conserved if they had homologs detectable by sequence similar-
ity searches with BLAST in budding yeasts outside of the Saccharomyces genus or if their
open reading frames were maintained within the Saccharomyces genus [14]. cORFs and
nORFs were considered de novo if they lacked homologs detectable by sequence simi-
larity outside of the Saccharomyces genus and if less than 60% of syntenic orthologous
nucleotides in the two most distant Saccharomyces branches were in the same reading
frame as in S. cerevisiae. These criteria aimed to identify the youngest de novo ORFs.
Overall, we identified 5624 conserved cORFs and 2756 de novo ORFs including 77 de
novo cORFs and 2679 de novo nORFs (Fig. 4B). In general, the coexpression patterns
of de novo ORFs (Additional file 2: Fig. S14) were similar to those of nORFs (Fig. 3A,B).

We hypothesized that the locus where de novo ORFs arise may influence their expres-
sion profiles through “piggybacking” off their neighboring conserved ORFs’ pre-exist-
ing regulatory environment. To investigate this hypothesis, we categorized de novo
OREFs based on their positioning relative to neighboring conserved ORFs. The de novo
OREFs further than 500 bp from all conserved ORFs were classified as independent. The
remaining de novo ORFs were classified as either upstream or downstream on the same
strand (up same or down same), upstream or downstream on the opposite strand (up
opposite or down opposite), or as overlapping on the opposite strand (antisense over-
lap) based on their orientation to the nearest conserved ORF (Fig. 4C,D). We catego-
rized the orientations as being able to piggyback or unable to piggyback based on their
potential of sharing a promoter with neighboring conserved ORFs, with down opposite
and antisense overlap as orientations that cannot piggyback and up opposite, up same,
and down same as orientations that can piggyback (Fig. 4C). The piggybacking hypoth-
esis predicts that de novo ORFs that arise in orientations that can piggyback would be
positively influenced by the regulatory environment provided by the promoters of neigh-
boring conserved ORFs, resulting in similar transcription profiles as their neighbors and
increased expression relative to de novo ORFs that do not benefit from a pre-existing
regulatory environment.

We considered three metrics to assess piggybacking: RNA expression level, measured
as median TPM over all the samples analyzed, coexpression with neighboring con-
served ORE, and biological process similarity with neighboring conserved ORF. To cal-
culate biological process similarity between two ORFs, we used significant GO terms
at FDR < 0.01 determined by coexpression GSEA for each ORF (Additional file 2: Fig.
S12) and calculated the similarity between these two sets of GO terms using the rel-
evance method [84]. If two ORFs are enriched in the same specialized terms, their rel-
evance metric would be higher than if they are enriched in different terms or in the same
generic terms. We found that de novo ORFs in orientations that can piggyback tend to
have higher expression (focusing only on ORFs that could be assigned a single orienta-
tion, dashed box in Fig. 4D, Cliff’s Delta d = 0.4; Fig. 4E), higher coexpression with their
neighbor (Cliff’s Delta d = 0.43; Fig. 4F), and higher biological process similarity (Cliff’s
Delta d = 0.31; Fig. 4G), compared to ORFs in orientations that cannot piggyback (p <
2.2e—16 Mann-Whitney U test for all). Thus, all three metrics supported the piggyback-
ing hypothesis.

Closer examination revealed a more complex situation. First, the immediate neighbors
of de novo OREFs in orientations that can piggyback were rarely among their strongest
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coexpression partners (only found in the top 10 coexpressed partners for 15% of down
same, 4.5% of up same, 3% of up opposite ORFs). Therefore, emergence nearby a con-
served ORF in a piggybacking orientation influences, but does not fully determine, the
transcription profiles of de novo ORFs. Transcriptional regulation beyond that provided
by the pre-existing regulatory environment may exist. Second, while ORFs in all three
orientations that can piggyback displayed increased coexpression and biological process
similarity with their neighbors relative to background expectations (Additional file 2:
Fig. S15A-B), only down same de novo ORFs displayed increased RNA expression levels
(Additional file 2: Fig. S15C). The expression levels of up same de novo ORFs were sta-
tistically indistinguishable from independent de novo ORFs, while those of up opposite
de novo ORFs were significantly lower than those of independent de novo ORFs (Addi-
tional file 2: Fig. S15C). Down same de novo ORFs also showed stronger coexpression
and biological process similarity with their conserved neighbors than up same and up
opposite de novo ORFs (Additional file 2: Fig. S15A-B). Therefore, the transcription of
down same de novo ORFs appeared most susceptible to piggybacking.

To understand the molecular mechanisms leading to the differences in expression,
coexpression and biological process similarity between the orientations that can piggy-
back, which all have the potential to share a promoter with their neighboring conserved
OREF, we investigated which actually do by analyzing transcript architecture. Using a
publicly available TIF-seq dataset [69], we defined down same or up same ORFs as shar-
ing a promoter with their neighbor if they mapped to the same transcript at least once.
We defined up opposite ORFs as sharing a promoter with their neighbor if their respec-
tive transcripts did not have overlapping TSSs, as would be expected for divergent pro-
moters [85]. According to these criteria, 84% of down same (1 = 174), 64% of up same
(n = 368), and 66% of up opposite (7 = 185) de novo ORFs share a promoter with their
neighboring conserved ORFs (Additional file 2: Fig. S16). Among all de novo ORFs that
arose in orientations that can piggyback, those that share promoters with neighboring
conserved ORFs displayed higher expression levels than those that do not (down same: d
= 0.75, p = 1.06e—8; up same: d = 0.38, p = 1.23e—7; up opposite: d = 0.3, p = 2.9e—3
Mann-Whitney U test, d: Cliff’s Delta; Fig. 5A). We also observed a significant increase
in coexpression and biological process similarity between de novo ORFs and their neigh-
boring conserved ORFs when their promoters are shared compared to when they are
not (coexpression: down same: d = 0.28, p = 2.99e—9; up same: d = 0.31, p < 2.2e—16;
up opposite: d = 0.27, p = 2.1e—7; biological process similarity: down same: d = 0.24, p
= 5.5e—7; up same: d = 0.108, p = 3.78e—3; up opposite: d = 0.24, p = 6.1e—6, d: Cliff’s
Delta, Mann-Whitney U test; Fig. 5B, C, respectively). Hence, sharing a promoter led to
increases in the three piggybacking metrics for the three orientations.

Further supporting the notion that down same ORFs are particularly prone to pig-
gybacking, the down same de novo ORFs that share a promoter with their conserved
neighbors displayed much higher expression levels, and higher coexpression and bio-
logical process similarity with their conserved neighbor, than up same or up opposite
OREFs that also share a promoter with their conserved neighbors (expression: down same
vs up same: d = 0.58; down same vs up opposite: d = 0.55; coexpression: down same vs
up same: d = 0.29, down same vs up opposite: d = 0.38; biological process similarity:
down same vs up same: d = 0.37, down same vs up opposite: d = 0.45; d: Cliff’s Delta, p
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< 2.2e—16 for all comparisons, Mann-Whitney U test). This could be due to down same
ORF’s tendency to share promoters more often than up same ORFs, as a larger propor-
tion of transcripts containing down same ORFs also contain a conserved ORF (down
same vs up same: Clift’s Delta d = 0.26, Mann-Whitney U test p < 2.2e—16; Fig. 5D), or
higher expression levels of conserved ORFs that have down same ORFs on their tran-
scripts compared to conserved ORFs with up same or up opposite piggybacking ORFs
(down same vs up same: d = 0.2, p = 5.4e—3; down same vs up opposite: d = 0.34, p =
6.5e—4, Mann-Whitney U test, d: Cliff’s Delta; Fig. 5E).

Based on these results, we reasoned that transcriptional readthrough could be the
molecular mechanism underlying the efficient transcriptional piggybacking of down
same de novo ORFs. To investigate this hypothesis, we examined the impact of tran-
scription terminators Pcfl1 or Nrd1 on the frequency of transcript sharing between a
conserved ORF and its downstream de novo ORFE. Analyzing publicly available ChIP-exo
data [68], we found that the presence of terminators between conserved ORFs and their
downstream de novo ORFs resulted in a notably lower percentage of shared transcripts
(Cliff’s Delta d = —0.39, p = 1.59e—10, Mann-Whitney U test; Fig. 5F). As an illustration,
consider the genomic region on chromosome II from bases 194,000 to 196,000, contain-
ing the conserved ORF YBLO15W and a downstream de novo ORF (positions 195,794
to 195,847). No terminator factor is bound to the intervening DNA between these two
OREFs. This pair has high coexpression, with p = 0.96, and we observed that nearly all
transcripts in this region containing the de novo ORF also include YBLO15W (Fig. 5G).
In contrast, the genomic region on chromosome XVI from 639,000 to 641,800, contain-
ing the conserved ORF YPR034W and downstream de novo ORF (positions 641,385 to
641,534), does have a Pcf11 terminator factor between the pair, and as expected, none of
the transcripts in this region contain both YPR034W and the de novo OREF, which have
poor coexpression as a result (p = 0.1; Fig. 5H). We conclude that sharing a transcript
via transcriptional readthrough is the major transcriptional piggybacking mechanism for

down same de novo ORFs.

(See figure on next page.)

Fig. 5 Effects of promoter sharing on expression, coexpression, and biological process similarities of de
novo ORFs. A De novo ORFs that share a promoter with neighboring conserved ORFs, as determined by
TIF-seq transcript boundaries, have significantly higher expression levels than de novo ORFs that do not.
Considering only ORFs in a single orientation. Dashed line represents the median expression of independent
de novo ORFs. B De novo ORFs that share a promoter with neighboring conserved ORFs have higher
coexpression with their neighbors than de novo ORFs that do not share a promoter. Dashed line represents
median coexpression of de novo-conserved ORF pairs on separate chromosomes. C De novo ORFs that
share a promoter have more similar functional enrichments with neighboring conserved ORFs than de
novo ORFs that do not share a promoter. Dashed line represents median functional enrichment similarities
of the background distribution of de novo-conserved ORF pairs on separate chromosomes. D Down same
de novo ORFs share a promoter with neighboring conserved ORFs significantly more often than up same
ORFs. E Conserved ORFs with downstream de novo ORFs have a significant increase in expression compared
to conserved ORFs with upstream de novo ORFs. F Existence of transcription termination factors (Pcf11 or
Nrd1) in between conserved ORFs and nearby downstream de novo ORFs leads to less shared transcripts. G
Transcript isoforms (gray) at an example locus where there are no transcription termination factors present
between conserved ORF YBLO15W (pink) and downstream de novo ORF chr2:195794-195847(+) (blue). H
Transcript isoforms (gray) at an example locus where there is Pcf11 transcription terminator present (red line)
between conserved ORF YPRO34W (pink) and downstream de novo ORF chr16:641385-641534(+) (blue). All
detected transcript isoforms on these loci are plotted for G and F. (For all panels: ****: p < 0.0001, ***: p <
0.001, **:p < 0.01,* p < 0.05, ns: not-significant; Mann-Whitney U test)
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Discussion

We explored the transcription of nORFs from multiple angles including network topol-
ogy, associations with cellular processes, TF regulation, and influence of the locus of
emergence on de novo ORF expression. Delving into network topology, we find that
nORFs have distinct expression profiles that are strongly correlated with only a few other
OREFs. Nearly all cORFs are coexpressed with at least one nOREF, but the converse is not
true. Numerous nORFs form new structured transcriptional modules, possibly involved
in both known and unknown cellular processes. The addition of nORFs to the cellular

network resulted in a more clustered network than expected by chance, highlighting the

[ de novo ORF

= = « Pcf11 termination factor binding

previously unsuspected influence of nORFs in shaping the coexpression landscape.
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Our study is the first to show a large-scale association between the expression of
nORFs and cellular homeostasis and transport processes. We anticipate that future
studies will follow up to test these associations experimentally. We also found nORFs
to be preferentially associated with cellular processes related to metabolism, transposi-
tion, and cell adhesion but rarely with the core processes of the central dogma, DNA,
RNA, or protein processing. Genes involved in transport, metabolism, and stress tend
to have more variable expression compared to genes in other pathways [86]. Pathways
with more variable expression could be more likely to incorporate novel ORFs, possibly
as a form of an adaptive transcriptional response. There are several consistent observa-
tions in the literature [47, 87, 88]. For instance, Li et al. [47] showed that many de novo
ORFs are upregulated in heat shock. Wilson and Masel [89] found higher translation of
de novo ORFs under starvation conditions. Carvunis et al. [24] found de novo cORFs are
enriched for the GO term “response to stress” Other studies showed examples of how
specific de novo ORFs could be involved in stress response [35, 90] or homeostasis [90,
91]. For instance, the de novo antifreeze glycoprotein AFGP allows Arctic codfish to live
in colder environments [35] or MDFI in yeast [90, 92] was found in a screen to provide
resistance to certain toxins and mediates ion homeostasis [93]. Our results, combined
with these previous investigations, argue that a large fraction of nORFs provide adapta-
tion to stresses and help maintain homeostasis, perhaps through modulation of trans-
port processes.

Recent research in yeast has revealed an enrichment of transmembrane domains [15,
24, 94, 95] within de novo ORFs. Previous studies identified small nORFs and de novo
ORFs that localize to diverse cellular membranes, such as those of the endoplasmic
reticulum, Golgi, or mitochondria in different species [10, 15, 96—-99]. These findings are
consistent with the notion that de novo ORFs could play a role in a range of transport
processes, such as ion, amino acid, or protein transport across cellular membranes. By
establishing a connection between predicted transmembrane domains and increased
coexpression with transport-related genes, our findings set the stage for future experi-
mental investigations into the precise molecular mechanisms and functional roles of
nOREFs in diverse transport systems.

Lastly, we explored how the pre-existing regulatory context influences the transcrip-
tional profiles of de novo ORFs. We found that de novo ORFs that piggyback off their
neighboring conserved ORFs’ promoters had increases in expression, coexpression,
and biological process similarity with their neighboring conserved ORFs. Strikingly,
ORFs that emerge de novo downstream of conserved ORFs have the largest increases in
expression, coexpression, and biological process similarities with their neighbors com-
pared to other orientations, largely due to transcriptional readthrough leading to tran-
script sharing. Previous studies have shown that the transcription of regions downstream
of genes is functional and regulated [100]. A study in humans showed that readthrough
transcription downstream of some genes is responsible for roughly 15-30% of intergenic
transcription and is induced by osmotic and heat stress, creating extended transcripts
that play a role in maintaining nuclear stability during stress [101]. Another study in
humans and zebrafish showed that the translation of small ORFs located in the 3" UTR
of mRNAs (dORFs) increased the translation rate of the upstream gene [102]. Lastly, a
study in yeast found that genes preferentially expressed as bicistronic transcripts tend
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to contain evolutionarily younger genes compared to adjacent genes that do not share
transcripts, suggesting that transcript sharing could provide a route for novel ORFs to
become established genes [103]. These findings together with our results suggest that
genomic regions downstream of genes may provide the most favorable environment for
the transcription of de novo ORFs.

Our analyses show that the likelihood of a de novo ORF being expressed or repressed
under the same conditions as the neighboring conserved OREF is influenced by the extent
to which it piggybacks on the neighboring ORF’s regulatory context. Therefore, in addi-
tion to the evolutionary pressure acting on the sequence of emerging ORFs, our results
suggest that transcriptional regulation and genomic context also influence their func-
tional potential. However, this influence is not entirely deterministic and much weaker
when de novo ORFs emerge upstream than downstream of genes. Future studies are
needed to map regulatory networks controlling nORF expression and reconstruct their
evolutionary histories.

There are several limitations to our study. First, while SpQN enhances the coexpres-
sion signal of lowly expressed ORFs, it comes at the cost of reducing signals in highly
expressed ORFs [62]. Given our objective of studying lowly expressed nORFs, this trade-
off is deemed worthwhile. Second, our study provides evidence of associations between
nORFs and cellular processes such as homeostasis and transport, but these findings are
based on transcription profile similarities which do not necessarily imply cotranslation
or correlated protein abundances [104]. Furthermore, our analyses were performed in
the yeast S. cerevisiae and the generalizability of our findings to other species requires
further investigation.

Conclusions

In conclusion, our study represents a significant step forward towards the characteriza-
tion of nORFs. We employed advanced statistical methods to account for low expression
levels and generate a high-quality coexpression network. Despite being lowly expressed,
nORFs are coexpressed with almost every cORF. We find that numerous nORFs form
structured, noncanonical-only transcriptional modules which could be involved in regu-
lating novel cellular processes. We find that many nORFs are coexpressed with genes
involved in homeostasis and transport-related processes, suggesting that these path-
ways are most likely to incorporate novel ORFs. Additionally, our investigation into the
influence of genomic orientation on the expression and coexpression of de novo ORFs
showed that ORFs located downstream of conserved ORFs are most influenced by the
pre-existing regulatory environment at their locus of emergence. Our findings provide a
foundation for future research to further elucidate the roles of nORFs and de novo ORFs
in cellular processes and their broader implications in adaptation and evolution.

Methods

Creating ORF list

To create our initial ORF list, we utilized two sources. First, we took annotated ORFs
in the S. cerevisiae genome R64-2-1 downloaded from SGD [105], which included 6600
OREFs. Second, we utilized the translated ORF list from Wacholder et al. [14] reported in
their Supplementary Table 3. We filtered to include cORFs (Verified, Uncharacterized,
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or Transposable element genes) as well as any nORFs with evidence of translation at
g-value < 0.05 (Dubious, Pseudogenes, and unannotated ORFs). We removed ORFs with
lengths shorter than the alignment index kmer size of 25 nt used for RNA-seq align-
ment. In situations where ORFs overlapped on the same strand with greater than 75%
overlap of either ORF, we removed the shorter ORF using bedtools [106]. We removed
OREFs that were exact sequence duplicates of another ORF. This left 5878 cORFs and
18,636 nORFs, for a total of 24,514 ORFs used for RNA-seq alignment.

RNA-seq data preprocessing

Strand specific RNA-seq samples were obtained from the Sequencing Read Archive
(SRA) using the search query (saccharomyces cerevisiae[Organism]) AND rna sequenc-
ing. Each study was manually inspected and only studies that had an accompanying
paper or detailed methods on Gene Expression Omnibus (GEO) were included. Sam-
ples were quality controlled (nucleotides with Phred score < 20 at the end of reads were
trimmed) and adapters were removed using TrimGalore version 0.6.4 [107]. Samples
were aligned to the transcriptome GTF file containing the ORFs defined above and
quantified using Salmon [108] version 0.12.0 with an index kmer size of 25. Samples with
less than 1 million reads mapped or unstranded samples were removed, resulting in an
expression dataset of 3916 samples from 174 studies (Additional file 1: Table S1). ORFs
were removed to limit sparsity and increase the number of observations in the subse-
quent pairwise coexpression analysis. Only ORFs that had at least 400 samples with a
raw count > 5 were included for downstream coexpression analysis, # = 11,630 ORFs
(5803 canonical and 5827 noncanonical, Additional file 3: Table S2, Additional file 4:
Table S3).

Coexpression calculations

The raw counts were transformed using clr. Pairwise proportionality was calculated
using p [66] for each ORF pair. Spatial quantile normalization (SpQN) [62] of the coex-
pression network was performed using the mean clr expression value for each ORF as
confounders to correct for mean expression bias, which resulted in similar distributions
of coexpression values across varying expression levels (Additional file 2: Fig. S2). Only
OREF pairs that had at least 400 samples expressing both ORFs (at raw > 5) were included.
This threshold was determined empirically, as detailed below.

Since zero values cannot be used with log ratio transformations, all zeros must be
removed from the dataset. Proposed solutions in the literature on how to remove zeros,
all of which have their pros and cons, include removing all genes that contain any zeros,
imputing the zeros, or adding a pseudo count to all genes [109, 110]. Removing all ORFs
that contain any zeros is not possible for this analysis since the ORFs of interest are lowly
and conditionally expressed. The addition of pseudocounts can be problematic when
dealing with lowly expressed OREFs, for the addition of a small count is much more sub-
stantial for an ORF with a low read count compared to an ORF with a high read count
[111]. For these reasons, all raw counts below 5 were set to NA prior to clr transfor-
mation. These observations were then excluded when calculating the clr transformation
and in the p calculations. We used clr and p implementations in the R package Propr [66]
and the implementation of SpQN from Wang et al. [62].
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To determine the minimum number of samples needed to express both ORFs in a
pair, we determined the number of samples needed for coexpression values to converge
within p £ 0.05 or p £ 0.1 for 2167 nORF-cORF pairs which have a p > 99th percen-
tile (before SpQN). All samples expressing both ORFs in a pair were randomly binned
into groups of 10, and p was calculated after each addition of another sample. Fluctua-
tions were calculated as max(p) — min(p) within a sample bin. Convergence was deter-
mined as the first sample bin with fluctuations < fluctuation threshold, either 0.05 or
0.01 (Additional file 2: Fig. S1).

Comparing normalization and batch correction methods for coexpression network
construction

To compare our approach with a batch correction approach, we used clr to transform
the expression matrix, followed by removing the top principal component (PC1) of the
clr expression matrix to do batch correction using the function removePrincipalCompo-
nents from the WGCNA [70] R package. We then calculated p values and applied SpQN
normalization. Additionally, we created a coexpression matrix based on TPM as well as
RPKM normalized expression values instead of clr and calculated Pearson’s correlation
coefficient.

Protein complex enrichments

We retrieved a manually curated list of 408 protein complexes in S. cerevisiae from the
CYC2008 database by Pu et al. [67]. The coexpression matrix was filtered to contain only
the 1617 cORFs found in the CYC2008 database prior to creating the contingency table.
Fisher’s exact test was used to calculate the significance of the association between coex-
pression and protein complex formation. Coexpressed was defined as the 99.8th p per-
centile (p > 0.888) considering all ORF pairs in the coexpression matrix (n = 62,204,406
OREF pairs) for Fig. 1C.

TF binding enrichments

A ChIP-exo dataset from Rossi et al. [68] containing DNA-binding information for 73
sequence-specific TFs across the whole genome was used. For each ORF, we identified
which TFs had binding within 200 bp upstream of the ORF’s TSS. The TSSs for all ORFs
in the coexpression matrix were determined by the median 5 transcript isoform (TIF)
start positions using TIF-seq [69] dataset. Only ORFs found in the TIF-seq dataset were
considered (n = 5334 cORFs and 5362 nORFs). To calculate the enrichments reported in
Fig. 1D, Additional file 2: Fig. S5, Fig. S7, Fig. S9, and Fig. S10, the coexpression matrix
was first filtered to only include ORFs that have at least 1 TF binding within 200 bp
upstream of its TSS (n = 973 cORFs and 936 nORFs). Fisher’s exact test was used to
calculate the association between coexpression and having their promoters bound by a
common TF. Coexpressed was defined as the 99.8th p percentile (p > 0.888) considering
all OREF pairs in the coexpression matrix (n = 62,204,406 ORF pairs) for Fig. 1D.

Coexpression matrix clustering
We used the weighted gene coexpression network analysis (WGCNA) package [70] in
R to cluster our coexpression matrix. To do this, we first transformed our coexpression



Rich et al. Genome Biology =~ (2024) 25:183 Page 20 of 28

matrix into a weighted adjacency matrix by applying a soft thresholding, which involved
raising the coexpression matrix to the power of 12. This removed weak coexpression
relationships from the matrix. We then used the topological overlap matrix (TOM) simi-
larity to calculate the distances between each column and row of the matrix. Using the
hclust function in R with the ward clustering method, we created a hierarchical cluster-
ing dendrogram. We then used the dynamic tree cutting method within the WGCNA
package to assign ORFs to coexpression clusters, resulting in 73 clusters of which 69
were mapped to the full coexpression network. ORFs in the other four clusters were not
included in the network as they did not pass the p threshold.

GO analysis of clusters

We downloaded GO trees (file: go-basic.obo) and annotations (files: sgd.gaf) from ref.
[112]. We used the Python package GOATools [113] to calculate the number of genes
associated with each GO term in a cluster and the overall population of (all) genes in
the coexpression matrix. We excluded annotations based on the evidence codes ND (no
biological data available). We identified GO term enrichments by calculating the likeli-
hood of the ratio of the cORFs associated with a GO term within a cluster given the total
number of cORFs associated with the same GO term in the background set of all cORFs
in the coexpression matrix. We applied Fisher’s exact test and FDR with BH multiple
testing correction [114] to calculate corrected p-values for the enrichment of GO term
in the clusters. FDR < 0.05 was taken as a requirement for significance. We applied GO
enrichment calculations only when there were at least 5 cORFs in the cluster (n = 54).

GO neighbor-voting

Neighbor-voting was performed on the coexpression matrix using the EGAD [71] R
package to predict the inclusion of cORFs in GO slim biological process terms. The
coexpression matrix was subsetted to include only cORFs annotated as “Verified” in
SGD and annotated to at least one GO BP slim term, n = 5133 cORFs. GO slim terms
were retrieved from SGD on January 20, 2021, and include only annotations from
manually curated or high-throughput methods [105]. Terms were filtered to include
only those that have between 20 and 1000 genes, n = 117 terms. Three-fold cross-
validation was used to get a mean AUROC for each GO term.

Network randomization and topology analyses

To create random networks while preserving the same degree distribution, we used an
edge-swapping method (Additional file 2: Fig. S11). This method involved randomly
selecting two edges in the network, which were either cORF-nORF or nORF-nORF
edges and swapping them. The swap was accepted only if it did not disconnect any nodes
from the network and the newly generated edges were not already present in the net-
work. We repeated this process for at least ten times the number of edges in the net-
work. Network diameter and transitivity were calculated using the R package igraph
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[115] and networks were plotted using spring embedded layout [76] in the Python pack-
age networkx [116].

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) calculates enrichments of an ordered list of genes
given a biological annotation such as GO or KEGG. For each ORF in our dataset, we
used p values to order annotated ORFs and provided this sorted set to fgsea [117]. We
used the GO slim file downloaded from SGD [105] for GO annotations. We used the R
package clusterProfiler [118] to download KEGG annotations using KEGG REST API
[78] on April 1, 2023 and then used fgseaMultilevel function in the fgsea R package to
calculate enrichments for both annotations individually. To calculate GO or KEGG
terms that are enriched or depleted for nORFs compared to cORFs, we calculated the
number of cORFs and nORFs that had GSEA enrichments at BH adjusted FDR < 0.01.
Using these counts, we calculated the proportion of nORFs and cORFs associated with
a GO or KEGG term and used Fisher’s exact test to assess the significance of associa-
tion. p-values returned by Fisher’s exact test were corrected for multiple hypothesis
testing using BH correction. Odds ratios were calculated by dividing the proportion of
nORFs by the proportion of cORFs. Proportions for the GO terms with BH adjusted
FDR < 0.001 and odds ratio greater than 2 or less than 0.5 are plotted in Fig. 3A,B and
are reported in Additional file 7: Table S6 and proportions for KEGG terms are plotted
in Additional file 2: Fig. S13 and reported in Additional file 8: Table S7.

Transmembrane domain enrichment

Transmembrane domains were predicted using TMHMM 2.0 [79] for all nORFs. An
ORF was classified as having a transmembrane domain if it was predicted to have at
least one transmembrane domain. nORFs were classified as “coexpressed with trans-
port-related genes” if the ORF had a GSEA enrichment at FDR < 0.01 with any of the
15 GO slim transport terms: transport, ion transport, amino acid transport, lipid trans-
port, carbohydrate transport, regulation of transport, transmembrane transport, vacu-
olar transport, vesicle-mediated transport, endosomal transport, nucleobase-containing
compound transport, Golgi vesicle transport, nucleocytoplasmic transport, nuclear
transport, or cytoskeleton-dependent intracellular transport. Fisher’s exact test was used
to calculate the significance of association between transport-related processes and pre-
diction of a transmembrane domain.

Differential expression analysis for TF deletion and overrepresentation tests

For Hsfl analysis, RNA-seq samples were from Ciccarelli et al. (SRA accession
SRP437124) [80]. Hsfl deletion strains were compared to wild type (WT) strains when
exposed to heat shock conditions. For Sfpl analysis, RNA-seq samples were from SRA
accession SRP159150. In both cases, deletion strains were compared to WT strains.
Differential expression was calculated using the R package DESeq2 [119]. ORFs were
defined as differentially expressed if the log fold change (FC) in RNA expression between
WT and control strains was greater than or less than 0.5, i.e., log(FC) > 0.5 or log(FC)
< —0.5 and BH adjusted p-value < 0.05. ChIP-exo data for Hsfl and Sfpl binding was
taken from Rossi et al. [68] and an ORF was labeled as having Hsfl or Sfpl binding if
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the TF was found within 200 bp upstream of the ORF’s TSS. Fisher’s exact test was per-
formed to see if there is an association between an nORF in a GO biological process
and being regulated by the TF. We define an nORF to be “in” a GO term if it has a GSEA
enrichment for that GO term at FDR < 0.01. We defined an nORF as regulated by a TF
if the nORF had evidence of the TF binding within 200 bp of the nORF’s TSS in ChIP-
exo and has significantly downregulated expression in the TF deletion RNA-seq samples
compared to the WT samples. BH p-value correction was performed for all GO terms
tested. Significant GO terms and the associated regulated nORFs are reported in Addi-
tional file 10: Table S9.

Detection of homologs using BLAST

We obtained the genomes of 332 budding yeasts from Shen et al. [120]. To investigate
the homology of each non-overlapping ORF in our dataset, we used TBLASTN and
BLASTP [121] against each genome in the dataset, excluding the Saccharomyces genus.
Default settings were used, with an e-value threshold of 0.0001. The BLASTP analysis
was run against the list of protein-coding genes used in Shen et al., while the TBLASTN
analysis was run against each entire genome. We also applied BLASTP to annotated
ORFs within the S. cerevisiaze genome to identify homology that could be caused by
whole genome duplication or transposons.

Identification of de novo and conserved ORFs

To identify de novo ORFs, we applied several strict criteria. Firstly, we obtained trans-
lation g-values and reading frame conservation (RFC) data from Wacholder et al. [14].
All cORFs and only nORFs with a translation g-value less than 0.05 were considered as
potential de novo candidates. We excluded ORFs that overlapped with another cORF on
the same strand or had TBLASTN or BLASTP hits outside of the Saccharomyces genus
at e-value < 0.0001. Moreover, we eliminated ORFs that had BLASTP hits to another
cORF in S. cerevisiae. From the remaining list of candidate de novo ORFs, we investi-
gated whether their ancestral sequence could be noncoding. To do this, we utilized REC
values for each species within the Saccharomyces genus. We classified ORFs as de novo
if the RFC values for the most distant two branches were less than 0.6, suggesting the
absence of a homologous ORF in those two species.

We identified conserved ORFs if a non-overlapping cORF has an average RFC > 0.8 or
has either TBLASTN or BLASTP hit at e-value < 0.0001 threshold.

To identify conserved cORFs with overlaps, we first considered if the cORFs had a
BLASTP outside of Saccharomyces genus with e-value < 0.0001. Then for two over-
lapping ORFs, if one had RFC > 0.8 and the other had RFC < 0.8, we considered
the one with higher RFC as conserved. For the ORF pairs that were not assigned as
conserved using these two criteria, we applied TBLASTN for the non-overlapping
parts of the overlapping pairs. Those with a TBLASTN hit with e-value < 0.0001
were considered conserved. We found a total of 5624 conserved ORFs and 2756 de
novo ORFs.
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Calculation of GO term similarities

GO term similarities were calculated using the Relevance method developed in Schlicker
et al. [84]. This method considers both the information content (IC) of the GO terms
that are being compared and the IC of their most informative ancestor. IC represents the
frequency of a GO term; thus, an ancestral GO term has lower IC than a descendant. We
used the GOSemSim [122] package in R that implements these similarity measures.

Termination factor binding analysis

ChlIP-exo data for Pcf11 and Nrd1 termination factor binding sites are taken from Rossi
et al. [68]. This study reports binding sites at base pair resolution for S. cerevisiae for
around 400 proteins. We used supplementary bed formatted files for Pcfl11 and Nrd1,
which are known transcriptional terminators, and used in-house R scripts to find bind-
ing sites within the regions between the stop codon of conserved ORFs and the start
codon of down same de novo ORFs. ORF pairs were classified as having terminators pre-
sent between them if there was either Pcf11 or Nrd1 binding.

Determining shared promoters

To determine whether two ORFs shared a promoter, we reused the TIF-seq dataset from
Pelechano et al. [69]. TIF-seq is a sequencing method that detects the boundaries of
TIFs. We extracted all reported TIFs from the Pelechano et al. supplementary data file
S1 and identified all TIFs that fully cover each ORF in both YPD and galactose. We then
used this information to find ORF pairs that mapped to the same TIFs for down same
and up same pairs, as well as found TIFs with non-overlapping TSSs for up opposite de
novo-conserved ORF pairs. ORF pairs where the conserved ORF was not found in the
TIF-seq dataset were not included and pairs where the de novo ORF was not found were
considered to not share a promoter.

Web application

We utilized R language [123] and the shiny framework [75] to develop a web applica-
tion which allows querying of ORFs in our dataset for information about their coexpres-
sion with other ORFs, network visualization, and GSEA enrichments. It can be accessed
through a web browser and is available at https://carvunislab.csb.pitt.edu/shiny/coexp

ression/.

Glossary

Canonical ORFs (cORFs) open reading frames that have been annotated in the Saccharomyces Genome
Database as 'Verified' or 'Uncharacterized’

Noncanonical ORFs (nORFs) open reading frames that are either annotated as '‘Dubious’ or ‘pseudo genes'in the

Saccharomyces Genome Database or unannotated yet shown to be translated by
Wacholder and colleagues'analyses of Ribo-sequencing data (Wacholder et al. 2023)
de novo ORFs canonical or noncanonical open reading frames with evidence of translation from
Ribo-sequencing data (Wacholder et al. 2023) and evidence of recent evolution from
an ancestral locus that lacked an ORF (this study)
Conserved ORFs canonical open reading frames that are evolutionarily conserved across the Saccha-
romyces clade
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