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Detecting Traffic Anomalies During Extreme Events
via a Temporal Self-Expressive Model
Mina Nouri , Elif Konyar , Mostafa Reisi Gahrooeri , and Mohammad Ilbeigi

Abstract— Motivated by rapid urbanization and increasing
natural hazards, this study aims to develop a data-driven method
for detecting urban traffic anomalies during extreme events. Past
experiences have shown that abnormal traffic patterns caused by
extreme events can disrupt traffic in a large portion of the road
network. Timely and reliable traffic monitoring for detection of
such anomalies is crucial for congestion mitigation and successful
emergency operation plans. An effective traffic monitoring system
should detect disruptions at both network and local levels.
However, the existing methods are not capable of addressing
this need. This study proposes a temporal self-expressive network
monitoring method to achieve this purpose. The proposed method
first utilizes a temporal self-expressive model to uncover the
dynamic interdependencies between local zones of the traffic net-
work. Next, a statistical monitoring method detects network-wide
anomalies based on regular traffic interdependencies. Finally,
the method identifies the zones most affected by the anomalous
event. We applied the proposed method to the road network of
Manhattan in New York City to evaluate its performance during
Hurricane Sandy. The outcomes confirmed that the temporal self-
expressive model, augmented with statistical monitoring tools,
could accurately detect anomalous traffic at both network and
zone levels.

Index Terms— Anomaly detection, road traffic networks, self-
expressive modeling, statistical process control, urban traffic
monitoring.

I. INTRODUCTION

NATURAL and man-made extreme events can signifi-
cantly disrupt traffic flows on urban road networks. When

not appropriately handled, traffic disruptions may lead to
severe traffic congestion and unexpected gridlock, which may
seriously interrupt emergency management activities, such as
evacuation and recovery efforts. Past events have demonstrated
the impacts of such disruptions. For example, the evacuation
of Houston, Texas, before Hurricane Rita created a nearly
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100-mile-long traffic gridlock that lasted an entire day and led
to several deaths before the storm arrived [1], [2]. In traffic net-
works, extreme events can cause traffic anomalies that simul-
taneously affect large regions of the network. Monitoring of
road traffic to detect such anomalies creates an opportunity to
mitigate congestion and supports emergency operation plans.

A considerable number of studies in recent years aimed
to contribute to this research topic from various perspectives.
A group of studies focuses on real-time data collection to
provide reliable input data for disruption detection methods.
These studies consider different mediums for traffic data
collection, including traffic surveillance cameras (e.g., [3], [4],
[5]), loop detectors (e.g., [6], [7]), taxis and GPS trackers
(e.g., [8], [9], [10]), geo-tagged data from social media (e.g.,
[11], [12]), and connected vehicles (e.g., [13], [14], [15]).
For example, Ahmad et al. [13] proposed a traffic monitoring
framework using connected vehicles (CV) trajectory data to
assess the impacts of an emergency evacuation operation due
to wildfire on overall traffic conditions.

The remaining studies related to this research area propose
traffic disruption detection methods. These studies can be cat-
egorized into two main groups. The first group offers methods
that are applicable to only a limited number of road segments.
A set of these studies introduces few-step-ahead prediction
methods for disruption detection. The overall approach in these
studies is to use non-anomalous historical data to provide
short-term forecasts of traffic flow and detect traffic states that
fall outside the predictions’ confidence intervals as disruptions.
For example, Evans et al. [16] introduced a disruption detec-
tion algorithm that uses a context-based random forest model
to forecast the traffic flow data of individual loop detectors.
Their algorithm then employs the Quantile Random Tree
Regression (QRTR) method to establish a prediction interval.
If the observed traffic values fall outside the prediction interval
three times in a row, disruption alerts are raised. Other exam-
ples include [17], [18], [19]. These methods are impractical
for monitoring large-scale networks as they quickly lose their
statistical power when the number of road segments increases,
which results in a significant number of false alarms. The
second set of studies in this group develops classification mod-
els that can differentiate normal and abnormal traffic patterns.
Various machine learning methods, including Support Vector
Machines (e.g., [20], [21], [22]) Random Forests (e.g., [23],
[24]), and Artificial Neural Networks (e.g., [25], [26], [27])
have been used commonly in these studies. These methods are
often focused on incident detection within a single roadway
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TABLE I
SUMMARY OF TRAFFIC ANOMALY DETECTION METHODS

(e.g., a highway) and cannot be applied to a network with a
large number of roads due to the increased false alarm rate.

The second group of studies proposing traffic disruption
detection methods focuses on the entire road network and
provides solutions to detect the presence of network-wide dis-
ruptions. One example is the study by Donovan and Work [8].
They use GPS data collected from nearly 700 million taxi
trips in New York City to create probability distributions
of typical travel paces and use it to identify unusual traffic
patterns. However, their proposed method is computationally
expensive. Therefore, they divide the entire network into four
regions and develop the distributions for 16 trip types from
and to each one of these regions. To address this limitation,
Ilbeigi [28] introduced a computationally efficient method to
detect unusual traffic patterns by monitoring traffic network
topological features (e.g., closeness centrality index) using
statistical process control methods such as Cumulative Sum
(CUSUM) control charts. Hu et al. [29] recently introduced
an autoencoder-based anomaly detection method to detect
extreme events in origin-destination (OD) mobility datasets.
They model the OD mobility data as a set of time-dependent
directed graphs and use embedding techniques to capture the
spatiotemporal patterns of normal traffic. They then detect
anomalous graphs corresponding to extreme events through a
semi-supervised autoencoder approach. The primary limitation
of the studies in the second group contrasts with that of the
first group. These studies exclusively detect large-scale events
by monitoring traffic conditions at a high-level network view.
However, they cannot locate specific roads (or zones) that
experience abnormal traffic during such events.

An effective traffic disruption detection method should
ideally monitor the entire network and its road segments con-
currently. The critical element to creating such a method is to
model spatiotemporal interdependencies among road segments
in a network. A few studies have utilized the spatiotemporal
correlation of traffic data to detect anomalous events. For
example, Yang et al. [30] proposed a method for traffic event
detection based on the Bayesian Robust Principal Compo-
nent Analysis (BRPCA) approach. Their proposed method
combines multiple traffic data streams (e.g., traffic flow
and occupancy) through sharing the same sparse structure.

This sparse structure is used to localize traffic events in
space and time. Li et al. [31] introduced a coupled scal-
able Bayesian robust tensor factorization (coupled SBRTF)
model to detect non-recurrent traffic congestion (NRTC)
using high-dimensional spatiotemporal patterns of traffic data.
In another study, Hu and Work [32] proposed a method based
on the robust tensor decomposition approach to detect large
traffic events. Their proposed method separates traffic during
large events from normal traffic by decomposing traffic tensor
data into a low-rank tensor (for regular traffic) and a sparse
outlier tensor (for large events). While these methods take
advantage of the spatiotemporal correlations in traffic patterns,
they come with their own limitations. These methods perform
offline analysis of traffic data and detect abnormalities in a
retroactive manner. This limitation makes them unsuitable for
online monitoring (i.e., continuously receiving and analyzing
traffic data streams to detect abnormalities) of road traffic at
network and local levels of granularity.

In summary, current traffic anomaly detection methods have
three main limitations: First, they are unable to simulta-
neously detect extreme traffic events and pinpoint specific
roads (or zones) experiencing significant anomalous traffic
patterns. Second, they do not fully leverage the spatiotemporal
interdependencies of the traffic network to identify anomalous
events. Third, many of these methods detect traffic anomalies
retroactively and are not suitable for online monitoring of road
networks. Table I provides a summary of the existing traffic
anomaly detection methods and their characteristics.

Extreme events can significantly impact an entire road net-
work. Therefore, it is important to develop a method that can
assess the overall network traffic condition. Simultaneously,
for effective congestion mitigation, this method should be
capable of identifying specific regions that are most affected
by such events.

Considering the limitations of existing studies, this paper
proposes an innovative multi-level method for traffic net-
work monitoring and anomaly detection. This method detects
anomalies at both network and zone levels of granularity.
At the network level, the proposed method models spatiotem-
poral interdependences among local traffic zones to capture
the network traffic condition as a whole and detect extreme
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Fig. 1. The flowchart of the proposed temporal self-expressive network monitoring method.

traffic events. At the zone level, the method determines
local zones that exhibit abnormal traffic behavior. In the
context of extreme events, anomalies can result from either
increased congestion or a substantial decrease in travel demand
within a specific zone. Therefore, in this study, we define
anomalous zones as those that experience remarkable devi-
ations from their expected traffic patterns as a result of an
event.

Fig. 1 provides an overview of our proposed method.
In this method, first, the urban road network is divided into
small zones. Next, a temporal self-expressive model is devel-
oped to characterize the dynamic traffic interdependencies
between these zones. Then, using a statistical control chart,
anomalous traffic states are detected at the network level
through monitoring a novel goodness-of-fit measure derived
from the self-expressive model. Additionally, anomaly scores
are defined and calculated for individual zones over time to
identify the local zones most affected by the anomalous event.

The remainder of this paper is organized as follows.
In Section II, we introduce our notation. In Section III,
we present the proposed methodology in detail. In Section IV,
we apply the proposed method to the road network of Man-
hattan in New York City to detect traffic anomalies caused
by Hurricane Sandy at network and zone levels. Finally,
in Section V, we summarize the primary contributions of the
paper to the body of knowledge and outline potential future
research directions.

II. NOTATIONS AND PRELIMINARIES

The notations used in this paper follow the notations
adopted by Kolda and Bader [33]. Matrices are denoted
by boldface uppercase letters, e.g., A, vectors by boldface
lowercase letters, e.g., a, and scalars by lowercase letters,
e.g., a. Given a matrix A∈RI ×J , ai and a j are used to
represent the i th row and the j th column of A, respectively.

The transpose of a matrix A∈RI ×J is represented by AT ,
and its inverse is denoted by A−1.

We denote the l2 norm of a vector by ∥·∥2, which is
defined as ∥a∥2 =

√∑
k |ak |2, and the inner product of

two vectors a, b∈RK as ⟨a, b⟩ =
∑

k akbk . Moreover,
∥A∥2

F is used to denote the squared Frobenius norm of a given
matrix A∈RI ×J , which can be computed as the sum of the

squared l2 norms of its column vectors. The matrix l1 norm

is represented by ∥·∥1 and defined as ∥A∥1 =

√∑
i
∑

j |ai j |.
Furthermore, the rank−R decomposition, also known as rank
factorization, of a matrix A∈RI ×J has the form A = BC,
where B∈RI ×R , C∈RR ×J , and R is the rank of A.

In addition, sgn (·) is the sign function, where sgn(a) =

a/|a| if a ̸ = 0 and sgn(a) = 0 if a = 0 for a real number a.
Lastly, the notation (a)+ represents the positive part of a real
number a and is defined as (a)+ = max {a, 0}.

III. METHODOLOGY

In this section, we first present the temporal self-expressive
model for characterizing road interdependencies. Next,
we introduce a novel statistic that is monitored over time using
statistical control charts for detecting traffic anomalies. Finally,
we calculate an anomaly score for different network zones to
identify regions exhibiting the most anomalous behavior.

A. Temporal Self-Expressive Modeling

The proposed temporal self-expressive model in this paper
is motivated by the impracticality of individual monitoring of
road segments for anomaly detection. Individual monitoring of
road segments in large-scale road networks, such as the road
network in Manhattan, which consists of more than 8800 road
segments is impractical as it leads to a large number of false
alarms. Assume the monitoring process of each road segment
(using methods such as statistical control charts) is subject
to type I error (i.e., false positive) of α. The overall type I
error of monitoring all road segments is then calculated as
1−(1 − α)n , where n is the number of roads being monitored.
This overall error increases exponentially as n increases.
For example, with α = 0.05, monitoring a network with
only 100 roads results in an overall type I error of 0.994,
which results in a very low statistical power. To address
this issue, we introduce a temporal self-expressive framework
that models the spatiotemporal interdependencies among road
segments. This approach detects anomalies by monitoring the
changes in the interdependencies among road segments. Road
interdependencies are formed due to the spatial adjacency of
roads or common travel routes on the network. While our pro-
posed approach can detect anomalies at the road segment level
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of granularity, in this study, we group adjacent road segments
into small zones. Defining these zones is mainly due to the
lack of enough observations in large traffic datasets. That is,
traffic data may not always be available for all road segments.
These zones are designed to encompass enough data-rich road
segments, while also representing the local traffic patterns
within their respective regions. Modeling interdependencies
among local zones of a traffic network reveals how the traffic
flow in each zone relates to the traffic flow in other zones.
Furthermore, monitoring the interdependencies over time can
help identify unusual changes in traffic patterns and detect
anomalous events. In this section, we introduce a temporal
self-expressive model to characterize these interdependencies
by explaining the traffic in each zone using traffic information
from other zones.

Assuming that the traffic network has M zones, we denote
the traffic value of zone i = 1, · · ·, M at timepoint t by xi t
and model the data as a multivariate data stream. Using a
sliding time window, we arrange the streaming data into a
series of equal-size subsequences. In detail, a window of fixed
size, L , slides along the data, sample by sample, and creates a
series of subsequences such that each subsequence has the
same size (i.e., L) and ends one-time step later than the
prior subsequence. At a certain timepoint, t , the corresponding
subsequence contains traffic data of all zones from timepoint
(t − L + 1) to timepoint t , inclusively. Subsequences are
numbered sequentially and arranged in two-dimensional arrays
Xn ∈ RM×L , where subscript n is the subsequence number
(n = 1, 2, . . .). For a subsequence Xn , a linear self-expressive
model is constructed as follows:

xi t =
∑

j ̸=i
ci j x j t + ei t , ∀

{
i∈ {1, · · ·, M}

t∈Tn
(1)

where ei t represents the model error for zone i at time t,
and Tn denotes the set of all timepoints in the given subse-
quence. At every specific time t , each response variable in
the above model (i.e., xi t ) is also an explanatory variable for
all other response variables. Therefore, the model is called
self-expressive. Parameters of this model (i.e., ci j ) must be
estimated in a way that the equality is valid for all t∈Tn .
This model can be written more compactly by considering
Xn = [xi t ] ∈ RM×L and defining Cn =

[
ci j

]
∈ RM×M such

that the diagonal elements of Cn equal zero (i.e., diag (Cn) =

0). The compact version of the model is written as:

Xn = Cn Xn + En , ∀n∈ {1, 2, . . . } (2)

where En ∈ RM×L represents the matrix of residuals. In this
model, Cn ∈ RM×M is a matrix that captures the similarity of
zones in terms of their traffic patterns and must be estimated.
Since Cn may become a large matrix when the number of
zones is large, its estimation poses significant computational
and space complexity challenges. To address these challenges,
we impose a low-rank structure on the similarity matrix, Cn ,
by considering its rank−R decomposition, i.e., Cn = Un V n,

where Un ∈ RM×R and V n ∈ RR×M (R≪M) are factor
matrices. This constraint translates (2) into:

Xn = (Un V n) Xn + En, (3)

Here, we seek to estimate Un and V n , which requires esti-
mating 2RM values instead of M2 values in (2).

The sliding window moves forward with the passage of
time, and the above model is constructed for every consecutive
subsequence n (n = 1, . . . , N ) to characterize the similar-
ity of zones over time. Following the general least squares
estimation procedure, the model parameters (i.e., matrix Un
and matrix V n) for each subsequence are estimated by solving
the following minimization problem under the constraint that
diag (Un V n) = 0:

argmin
U,V

1
2
∥X− (U V ) X∥

2
F + α1∥U∥1 + α2∥V∥1

+
β1

2
∥U − H∥

2
F +

β2

2
∥V − P∥

2
F

s.t. diag (U V ) = 0≡uivi = 0(∀i∈ {1, · · ·, M}) (4)

In (4), we dropped the subsequence number for ease of
notation. In this equation, ∥·∥1 is the l1 norm that induces
sparsity in the estimation of the model parameters. Inducing
sparsity is favorable as we seek to identify the most infor-
mative zones for a given zone. H and P are the estimated
parameters of the model for the previous subsequence. That
is H = Un−1 and P = V n−1. We refer to these matrices as
history, which are carried over into the current step to control
the deviation of the current parameters from their previous
values. More specifically, ∥U − H∥

2
F (or ∥V − P∥

2
F ) in the

objective function does not allow the estimation of U (or
V ) to be arbitrarily different from its history. The motivation
for including these penalty terms is that physical traffic does
not suddenly jump from one state to another and often has a
smooth transition. The constraint diag (U V ) = 0 eliminates
the trivial solution of representing a data point as a linear
combination of itself, and α1, α2, β1 and β2 are scalar
hyperparameters.

Solving the problem given in (4) is challenging due to the
constraint and the non-differentiability of l1 norms. To solve
this problem, we introduce two auxiliary variables which
enable the decoupling of the least squared terms (i.e., first,
fourth, and fifth terms) from the l1 norm penalties. Using
auxiliary variables Y and Z, the problem is rewritten as:

argmin
U, V

1
2
∥X− (U V ) X∥

2
F + α1 ∥Y∥1 + α2∥Z∥1

+
β1

2
∥U − H∥

2
F +

β2

2
∥V − P∥

2
F

s.t. U = Y , V = Z, diag (U V ) = 0 (5)

Equation (5) is a constrained optimization problem that
can be solved by large-scale optimization algorithms such as
Alternating Direction Method of Multipliers (ADMM). A full
explanation of the ADMM algorithm can be found in [34]. The
corresponding augmented Lagrangian function for the problem
in (5) is constructed as:

L =
1
2
∥X− (U V ) X∥

2
F + α1 ∥Y∥1 + α2∥Z∥1

+
β1

2
∥U − H∥

2
F +

β2

2
∥V − P∥

2
F

+
ρ1

2
∥U − Y∥

2
F +

ρ2

2
∥V − Z∥2

F
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+ ⟨Λ, U − Y ⟩ + ⟨Γ , V − Z⟩

+

∑M

i=1

(
ρ3

2

(
uivi

)2
+ ωi uivi

)
(6)

where Λ, Γ , and ωi (i = 1, · · ·, M) are the Lagrangian
multipliers (also called dual variables), ρ1, ρ2 and ρ3 are
positive scalars, and ui and vi are the i th row and column
of U and V , respectively. Lagrangian multipliers Λ and Γ
have the same dimension as matrices U and V , respectively.

Using the ADMM algorithm, the problem in (5)
is solved by iteratively updating the seven sets of
variables

(
u1,u2, . . . ,uM)

, Y , (v1,v2, . . . ,vM ) , Z, Λ, Γ ,

(ω1,ω2, . . . ,ωM ). More specifically, at the start of each
iteration, rows of matrix U are updated by fixing all other
variables and solving the following problem for each i :

ui
=

argmin
ui

1
2

∥∥∥xi
− ui V X

∥∥∥2

2
+

β1

2

∥∥∥ui
− hi

∥∥∥2

2

+
ρ1

2

∥∥∥ui
− yi

∥∥∥2

2
+

〈
λi , ui

− yi
〉

+
ρ3

2

(
uivi

)2
+ ωi uivi (7)

where xi , hi , yi and λi are the i th rows of matrices X , H ,
Y , and Λ, respectively.

Considering the property of the l2 norm, ∥a + b∥2
2 = ∥a∥2

2+

∥b∥2
2 + 2 ⟨a, b⟩, the problem in (7) is rewritten as:

ui
=

argmin
ui

1
2

∥∥∥xi
− ui V X

∥∥∥2

2
+

β1

2

∥∥∥ui
− hi

∥∥∥2

2

+
ρ1

2

∥∥∥λi/ρ1 + ui
− yi

∥∥∥2

2

+
ρ3

2

(
uivi

)2
+ ωi uivi (8)

The closed form solution to (8) is derived as follows:

ui
=

(
xi XT V T

+ β1hi
− λi

+ ρ1 yi

−ωiv
T
i

) (
V X XT V T

+ (β1 + ρ1) I R

+ρ3viv
T
i

)−1
(9)

where I R is the identity matrix of size R.
Next, assuming all other variables are known, auxiliary

variable Y is updated by solving,

Y =
argmin

Y α1 ∥Y∥1 +
ρ1

2
∥U − Y∥

2
F + ⟨Λ, U − Y ⟩

=
argmin

Y α1 ∥Y∥1 +
ρ1

2
∥Λ/ρ1 + U − Y∥

2
F . (10)

In the second line of (10), the property of the Frobenius
norm, ∥A + B∥

2
F = ∥A∥2

F + ∥B∥
2
F + 2 ⟨A, B⟩, is used to

simplify the problem.
The closed-form solution to (10) is as [35]:

Y = sgn (Λ/ρ1 + U) ◦(|Λ/ρ1 + U | − α1/ρ1)+ (11)

where sgn(a) = a/|a| if a ̸ = 0 and sgn(a) = 0 if a =

0, and (a)+ = max {a, 0}. These operations, as well as the
scalar subtraction, are applied elementwise to matrices. Here,

the symbol ◦ denotes the Hadamard product (i.e., elementwise
matrix product).

Next, following the same technique that we used to solve
for U , the columns of matrix V are updated by minimizing
the following problem for each i :

vi =
argmin

vi

1
2

∥∥∥X−U
∑

j ̸=i

(
v j x j

− Uvi xi
)∥∥∥2

F

+
β2

2

∥∥vi − pi
∥∥2

2 +
ρ2

2
∥vi − zi∥

2
2

+
〈
γ i , vi − zi

〉
+

ρ3

2

(
uivi

)2

+ ωi uivi (12)

where pi , zi and γ i are the i th columns of matrices P , Z,
and Γ , respectively.

Solving (12) results in:

vi =
(

xi xi T U T U + (β2 + ρ2) I R

+ρ3ui T ui
)−1 (

U T Dxi T
+ β2 pi − γ i

+ρ2zi − ωi ui T
)

(13)

where D =

(
X − U

∑
j ̸=i v j x j

)
.

Similar to Y , auxiliary variable Z is updated by solving,

Z =
argmin

Z α2∥Z∥1 +
ρ2

2
∥V − Z∥2

F + ⟨Γ , V − Z⟩ ,

(14)

which results in:

Z = sgn (Γ /ρ2 + V ) ◦(|Γ /ρ2 + V | − α2/ρ2)+ (15)

Then, Lagrangian multipliers Λ and Γ are updated using
the following formulas:

Λ = Λ + ρ1 (U − Y) , (16)
Γ = Γ + ρ2 (V − Z) , (17)

Finally, Lagrangian multipliers ωi (i = 1, · · ·, M) are
updated for each i as:

ωi = ωi + ρ3

(
uivi

)
(18)

It should be noted that in the above update rules, the most
recent estimates of the variables are used. Iterating the above
procedure decreases the loss function in (5) together with
the residuals of the constraints and leads to a solution for
U and V such that either they cannot be improved any further
by the updating rules or a maximum number of iterations is
reached.

Having matrices U and V estimated, the similarity
matrix, C, is estimated as:

Ĉ = U V (19)

The pseudocode of the ADMM algorithm for the proposed
self-expressive model is outlined in Algorithm 1.

In implementing Algorithm 1, we use two stopping criteria
and continue with the updates until one is met. Firstly,
we check whether both U and V matrices have converged.
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Algorithm 1 ADMM Algorithm for Solving (5)
inputmatrix X , history matrices H, P, parameters α1, α2,
β1, β2, ρ1, ρ2, ρ3 and rank R
initialize U = Y = 0, V = Z , Λ = 0, Γ = 0, and
ωi = 0 (i ∈ {1, . . . , M})

repeat
fori ∈ {1, . . . , M} do

update ui by (9)
end for
update Y by (11)
fori ∈ {1, . . . , M} do

update v j by (13)
end for
update Z by (15)
update Λ by (16)
update Γ by (17)
fori ∈ {1, . . . , M} do

update ωi by (18)
end for
until convergence criterion or maximum iterations is

reached
return U, V

The algorithm terminates if both
∥∥U (k) − U (k−1)

∥∥
F < ε and∥∥V (k) − V (k−1)

∥∥
F < ε are satisfied, where k represents the

iteration number, and ε is the tolerance. Secondly, we set a
maximum number of iterations, which can be adjusted based
on the user’s computational resources.

B. Computational Complexity

In this section, we analyze the computational complexity
of the proposed temporal self-expressive model. The compu-
tational complexity of calculating ui using Equation (9) is
O(L M R + R2L +

1
3 R3

+ R2), which reduces to O(L M R +

R2L +
1
3 R3). Since R≪M , the complexity further reduces to

O(L M R+
1
3 R3). Note that Equation (9) requires the inversion

of an R × R matrix. The standard Gauss-Jordan elimina-
tion requires O

(
R3) steps. However, this can be reduced to

O( 1
3 R3) steps with Cholesky decomposition for R > 1. This

procedure is performed for every ui (i = 1, . . . , M). Thus,
the update of U requires O

(
L M2 R +

1
3 R3 M

)
steps. The

computational complexity of updating Y using Equation (11)
is O(M R). The computational complexity of updating vi
using Equation (13) is O(L+R2 M+

1
3 R3

+L M R+R2), which
reduces to O(R2 M + L M R). Therefore, the update of matrix
V requires O

(
R2 M2

+ L M2 R
)

steps. The computational
complexity of updating Z using Equation (15) is O(M R).
Finally, the updates of Λ, Γ , and ωi (i = 1, . . . , M) require
O(M R), O(M R), and O(M R) steps, respectively. Therefore,
the complexity of a single ADMM iteration is calculated as
O(L M2 R +

1
3 R3 M + M R + R2 M2

+ L M2 R + M R + M R +

M R+M R), which reduces to O(L M2 R+ R2 M2). Assuming
K iterations of the ADMM algorithm is performed to estimate
all variables, the overall complexity of the proposed method
is O(K R2 M2

+ K L M2 R).

C. Statistical Monitoring for Anomaly Detection

The temporal self-expressive model proposed in the pre-
vious section sets the stage for establishing a monitoring
framework to detect network-wide traffic anomalies and iden-
tify the local zones most affected by the anomalous event.
As described in Section III-A, this model expresses the traffic
of each zone using traffic information from other zones.
During normal conditions, the model is developed to capture
regular interdependencies among traffic in different zones.
Therefore, when applied to regular traffic, it can reliably
explain the traffic condition of each zone. However, when an
extreme event impacts the network, traffic interdependencies
between local zones change significantly, and the developed
model cannot account for unusual patterns of traffic. This leads
to large and dispersed errors in the model. In view of this
fact, we can detect network-wide anomalies by monitoring a
statistic that measures the goodness of fit of the self-expressive
model over time.

At each timepoint, t, we estimate the parameters of the
self-expressive model (i.e., matrix Ĉ) using a subsequence
that spans from (t − L + 1) to t . With these estimated
parameters, we can compute the error vector of the model
as et = Ĉxt − xt , where xt ∈ RM contains traffic values of
all zones at timepoint t . If the model captures most of the
variation within the traffic data, the resulting errors will be
small with limited variance compared to the original variance
of the data. Therefore, we define,

G t =
var (et )

var(xt )
, (20)

as a statistic that measures the quality of fit of the self-
expressive model. Larger values of G indicate that the model
could not capture the patterns within the traffic data, meaning
that different zones cannot explain each other. This situation
often appears when an anomalous event occurs in the network.

Our monitoring scheme is based on statistical process con-
trol (SPC) charts. Control charts are powerful monitoring tools
used to detect statistically significant changes or deviations in a
process from its expected pattern. A typical control chart plots
a certain statistic against time and uses upper and lower control
limits (UCL and LCL) to identify abnormal variations. These
control limits are determined based on the typical variation of
the monitoring statistic obtained from historical data. An out-
of-control signal is raised when the statistic goes beyond the
control limits, indicating the presence of a source of anomaly.
Montgomery [36] provides a detailed description of different
types of control charts.

In this study, we create an empirical control chart to monitor
the goodness-of-fit for the self-expressive model. The chart is
developed in two phases: Phase 1 and Phase 2. In Phase 1,
we utilize historical data to determine the underlying prob-
ability distribution of the monitoring statistic, G. Using this
distribution, we then set the control limits of the chart based
on a desired significance level. This significance level serves
as an upper bound for the probability of observing a G value
that exceeds the control limits. By adjusting the significance
level, the method can detect events of different severity; a
lower level can focus on the most severe events, while a
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higher level can capture less severe events at the cost of more
frequent false alarms. In Phase 2, we plot the monitoring
statistic, G, over time. If traffic condition deviates from its
typical pattern, the statistic will fall outside of the control
limits, indicating the occurrence of an unusual event in the
network. By implementing this approach, we can reliably
monitor network performance and detect large-scale anomalies
in a timely manner.

D. Identification of the Anomalous Zones

After detecting anomalous events at the network level, our
second goal is to perform zone-level diagnostics to identify
the zones that exhibit the most anomalous traffic patterns.
Notably, we examine the error vectors of the self-expressive
model, i.e., et , which allows us to gain insights into the traffic
behavior of each zone at every point in time. When the error
value for a particular zone i at timepoint t , i.e., ei t , becomes
large, it indicates that the zone is experiencing an abnormal
traffic pattern that the model cannot explain. In other words,
the traffic pattern of the zone cannot be explained by the other
zones in the network. A naïve approach to identify the zones
with anomalous behavior is to monitor the model error of each
zone individually. However, in this approach, performance of
the monitoring system drops significantly due to high false
alarm rate. To address this problem, we propose to calculate
anomaly scores at the zone level based on the error vectors of
the self-expressive model.

Considering that the model errors of all M zones at time-
point t are represented by a vector et ∈ RM , we obtain a
sparse representation of this vector by imposing a lasso penalty
as follows:

argmin
st

1
2
∥et − st∥

2
+ θ ∥st∥1 (21)

where st denotes the sparse representation of vector et .
Equation (21) can be solved by applying a soft-thresholding

operator to the vector et [37] as:

st = sgn (et ) ◦(|et | − θ)+ (22)

where sgn (·) is the sign function, and (a)+ represents
the positive part of a real number a which is defined as
(a)+ = max {a, 0}. The soft-thresholding operator is applied
elementwise to the vector et .

The absolute values of the sparse representation st are used
as anomaly scores. Specifically, the absolute value of the i th
element of vector st represents the anomaly score for zone i
at timepoint t . The larger the score, the more anomalous the
behavior in zone i is at timepoint t .

We select the threshold θ such that the anomaly score for
the majority of the zones (at least 80% of the zones) becomes
zero during non-event periods. This scoring approach enables
us to both identify the zones with anomalous traffic behavior,
i.e.,

{
i |sit > 0

}
, and find the zones with the highest potential

of causing a change in the network by ranking the non-zero
scores. When an extreme event occurs, the proposed approach
allows us to identify and monitor zones with high anomaly
scores and take actions accordingly to improve overall traffic
flow.

IV. APPLICATION TO HURRICANE
SANDY IN NEW YORK CITY

In this section, we assess the effectiveness of the proposed
self-expressive network monitoring method by applying it to
the road network of Manhattan in New York City. Specifically,
we evaluate its ability to detect traffic anomalies caused by
Hurricane Sandy in 2012.

A. Dataset Description

In this study, we analyze traffic on the New York City road
network using a publicly available dataset derived from taxi
trajectories [38]. Many previous studies, including [8], [39],
and [40], examined the reliability of trajectory data as a proxy
that represents traffic patterns in road networks and used it
in various applications. The New York City traffic dataset was
estimated from records of nearly 700 million taxi trips in New
York City over the years 2010-2013. This dataset contains
hourly average travel times on individual road segments of
the NYC road network from January 2010 to December 2013.
It also includes information about the coordinates and length
of each road segment. Previous studies showed that many
events occurred within these four years [8], [23]. Among
these events, this study pays attention to Hurricane Sandy,
which formed on October 22, 2012, and hit New York City on
October 29, 2012.

For the purpose of this study, the traffic data for a period
of three weeks, from Monday, October 15, 2012, to Mon-
day, November 5, 2012, in the borough of Manhattan is
selected. The road network in Manhattan consists of 8839 road
segments, represented in the dataset by 3910 nodes and
8839 links.

B. Data Preprocessing

Since the traffic dataset is incomplete, in the first step,
we group adjacent road segments by their geographical loca-
tions. Specifically, the Manhattan area is divided into forty-six
small equally-sized zones (Fig. 2). A road segment is assigned
to a zone if its midpoint falls within the boundaries of
that zone. From a theoretical perspective, we can continue
reducing the size of traffic zones to the point where each
zone encompasses only a single road segment. This approach
allows us to create a model that can detect anomalous traffic at
the road segment level. However, the quality of such models
can be severely affected by the lack of observations in many
road segments, particularly during off-peak hours. Dividing the
road network area into equally-sized zones is an appropriate
approach for the Manhattan area, considering the homogeneity
of the traffic network. However, as discussed in the conclusion
section, further investigation on determining the shape and size
of the zones in other urban areas can be a topic for future
studies.

To identify unusual traffic patterns and detect anomalies,
each zone’s hourly average pace of traffic (i.e., travel time per
unit of distance) is used in the proposed self-expressive model.
Using pace as the key traffic metric allows for accommodating
the varied length of road segments within zones [8]. On a
single road segment, the average pace of traffic is equal
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Fig. 2. Partitioning of the road network of Manhattan into forty-six zones.

to the average travel time divided by the road segment’s
length, which is simply the inverse of the average speed [41].
In this paper, the average pace of a zone is defined as the
length-weighted average of all its road segments’ paces. More
precisely, the average pace of zone i at time t (i.e., xi t ) is
calculated as:

xi t =

∑
r∈Si

l(r)p (r, t)∑
r∈Si

l(r)
(23)

where Si denotes the set of all road segments in zone i , p (r, t)
is the average pace of traffic on road segment r at time t , and
l(r) is the length of road segment r .

Hurricane Sandy hit New York City on October 29, 2012.
Therefore, we use traffic data recorded from October 15, 2012,
to November 5, 2012, for analysis. Fig. 3 shows the average
pace of traffic in a sample zone over the selected period. The
figure reveals the expected periodic pattern of traffic data. For
example, during rush hours, when the speed of traffic is lower,
the pace is higher, whereas at night (when typically, the speed
is higher), the pace values are lower. Moreover, rush hour is
less extreme on weekends. During regular days, there may be
a small variance around these patterns, but, as it is illustrated
in the figure, the pace varies significantly when an unusual
event occurs.

The hourly average pace of all zones can be viewed as a
multivariate data stream. A representation of this data stream
is a matrix of size M × T , where M = 46 is the number of
zones in the network and T = 504 is the number of timepoints
in the data stream (i.e., 24 × 7 × 3 = 504 hours). This matrix
contains the hourly average pace values of all the forty-six
zones from October 15, 2012, to November 5, 2012.

Fig. 3. Hourly average pace of traffic in a sample zone during the selected
three-week period (October 15, 2012, to November 5, 2012).

Fig. 4. Demonstration of the changes in monitoring statistic G over the
selected three-week period (October 15, 2012, to November 5, 2012).

C. Selection of Hyperparameters

Algorithm 1 requires the selection of parameters
α1, α2, β1, β2, ρ1, ρ2, ρ3 and rank R. In our experiment,
we choose a low rank R of 3. For ease of computation,
α1 and α2 can be set to the same value, and we set
α1 = α2 = 1/

(
2
√

max {M, R}
)
= 0.0737. We follow the

same idea for β1 and β2 and set them to the same value.
Specifically, we determine β1 and β2 as the inverse of the
average value of ∥xt − xt−1∥2 for every 1≤t≤168 (data prior
to October 22, 2012).

In addition, we set the starting values of ρ1, ρ2 and ρ3
to 10−1, which are increased geometrically over the iterations
by a fixed factor f = 2 up to 104. Moreover, we set the
tolerance ε to 10−5 and the maximum number of iterations
to 103. Lastly, we choose the window size L = 8 for casting
the data stream into subsequences. Generally, traffic patterns
in an urban area show three different regimes almost every
8 hours (i.e., morning, afternoon, and evening). Therefore,
in this study, we selected a window size of 8 to ensure that
the model effectively captures these traffic patterns.

D. Network-Level Anomaly Detection

In order to detect traffic anomalies at network level, we first
obtain the parameters of the self-expressive model at every
timepoint over the selected three-week period. In more detail,
the self-expressive parameters (i.e., matrix Ĉ) for each hour, t ,
are estimated through Algorithm 1 using a subsequence of the
data that spans from hour (t − L + 1) to hour t , where L = 8.
Next, using the estimated parameters, we obtain the error
vector (i.e., et = Ĉxt − xt ) of the model at every timepoint t .
We then use these error vectors to quantify the quality of
fit of the model (i.e., G t in (20)) over the selected analysis
period.
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Fig. 5. Decomposition process to remove seasonality patterns from
statistic G.

Fig. 4 shows the resulting time series of monitoring statis-
tic G over the three-week analysis period. Unusual changes
in G during the week of the hurricane are visually apparent
in this figure, suggesting that the traffic has deviated from its
normal pattern because of an unusual event.

As Fig. 4 shows, statistic G exhibits a daily seasonal
pattern. Notably, during post-midnight hours, when road traffic
is reduced and interdependencies among traffic is weaker,
G values are generally higher. To account for this daily pattern,
we apply a moving average technique [42] with a window
size of 24 hours to extract the underlying trends in the data.
Fig. 5 illustrates the process of removing the seasonality
and extracting the trends. The extracted trends are further
monitored using a statistical control chart to accurately identify
atypical patterns and detect traffic anomalies at the network
level.

The statistical control chart is created based on the under-
lying distribution of our monitoring statistic. Specifically,
we analyze historical data from a period characterized by
normal traffic conditions to empirically determine the dis-
tribution of the monitoring statistic. Based on this empirical
distribution, we determine the upper and lower control limits
(UCL and LCL) for the chart to achieve a desired significance
level.

In this study, we employ the Python library distfit [43] to
identify the distribution that best fits the monitoring statis-
tic during normal conditions (prior to October 22, 2012).
A Weibull distribution, with shape = 0.881, location =

0.285 and scale = 0.032 parameters, is identified as the best fit
(as shown in Fig. 6). Using this distribution, we set the upper
and lower control limits at a 0.02 significance level to detect
abnormal traffic patterns. The calculated UCL and LCL are
0.404 and 0.165, respectively (depicted as red dashed lines
in Fig. 6). It is worth noting that a lower significance level
would result in wider control limits and reduce the number of

Fig. 6. Best-fitted distribution to the data in Phase 1 of the empirical control
chart.

false alarms at the cost of overlooking small shifts. A higher
significance level would yield tighter control limits and enable
detection of smaller anomalous shifts at the cost of more
frequent false alarms.

Fig. 7 shows phases 1 and 2 of the empirical control chart.
As the figure illustrates, traffic anomalies are detected on
October 29, 2012, when Hurricane Sandy struck the NYC area.
The anomalies start after midnight on October 29, 2012, and
last until midday on November 1, 2012. The figure demon-
strates that the proposed framework can accurately capture
the abnormal traffic patterns at the network level.

E. Zone-Level Anomaly Detection

To analyze how Hurricane Sandy affected traffic behavior
across different zones, we calculate an anomaly score for each
zone at every hour over the analysis period. As explained in
Section III-C, these scores are calculated based on the error
vectors of the self-expressive model (i.e., et ). In this study,
we first use a moving average technique [42] with a window
size of 24 hours to extract the hourly vectors of the trends in
the model errors of individual zones. The underlying reason is
to remove seasonal patterns from the error sequences. We then
apply a soft-thresholding operator to these vectors to obtain
the anomaly scores of every zone over time. For this study,
we set the threshold parameter θ to 0.01, resulting in 82% of
the scores being zero during the week before the hurricane
(non-event period). Our goal is to identify the zones whose
traffic is affected by the hurricane the most.

Fig. 8(a) shows the hourly anomaly scores for all forty-six
zones from October 22, 2012, to November 5, 2012. The
anomaly scores reflect the degree of deviation from expected
behavior, with a higher score indicating more anomalous traffic
behavior in a specific zone at a given time. The network
disturbance caused by the hurricane is evident in this figure.
As shown in the figure, certain zones exhibit a higher level
of abnormality, which is expected during an extreme event.
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Fig. 7. Empirical control chart of statistic G detecting anomalies on October 29, 2012.

Fig. 8. (a) Anomaly scores for every zone from October 22, 2012, to November 5, 2012. During the hurricane, zones #8 and #18 have the highest anomaly
scores, while zones #6 and #13 receive the lowest anomaly scores. (b) locations of the identified zones on the Manhattan network.

Depending on their location, population and infrastructure,
some zones may experience more anomalous traffic patterns
than others.

To demonstrate the advantages and effectiveness of the
proposed method, we use a face validation approach, in which
the traffic condition (pace) of a road is visually examined for
various zones with different anomaly scores (computed by
our method). The results are demonstrated in Figure 8 and
Figure 9. The outcomes confirm that the zones with a higher
anomaly score show stronger shifts in their pace time-series
data, whereas the ones with a lower score show negligible
changes in the pace. More specifically, Fig. 8(a) demonstrates
zones #8 and #18 received the highest anomaly scores on
October 31. This observation is validated by their pace plots

in Fig. 9(a) and 9(b), which show severe congestion in these
zones during that time. In contrast, zones #6 and #13 have low
anomaly scores during the hurricane, indicating that they were
less affected by the network disturbance. Their pace plots in
Fig. 9(c) and 9(d) confirm that they did not experience signif-
icant disruption during the hurricane. Fig. 8(b) illustrates the
locations of these zones on the Manhattan network. As shown
on the map, the two most anomalous zones (i.e., zones #8
and #18) are located in midtown, while zones with the lower
scores are both in the upper west side of Manhattan.

F. Sensitivity Analysis

In this section, we examine the sensitivity of our proposed
method to the hyperparameters α1, α2, β1, β2, rank R, and
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Fig. 9. Actual pace plots of zones with high ((a) and (b)) and low ((c) and (d)) anomaly scores. (a) zone #8. (b) zone #18. (c) zone #6. (d) zone #13.

TABLE II
SENSITIVITY TO THE RANK R AND WINDOW SIZE L

window size L . First, we consider the time between the first
detected anomaly and the beginning of October 29 (the day
that Hurricane Sandy struck NYC area) as an evaluation metric
for the sensitivity analysis. We denote this metric by τ . Next,
we assess the performance of the proposed method in terms
of τ , for different combinations of the hyperparameters.

In the proposed method, α1 and α2 control the sparsity
of self-expressive parameters, while β1 and β2 regulate the
deviations of the model parameters at each timepoint from
their preceding values. As detailed in Section IV-C, follow-
ing the theoretical results in [44], we set α1 and α2 to
1/

(
2
√

max {M, R}
)
, where M denotes the number of zones,

and R is the rank of the similarity matrix, C . Additionally,
β1 and β2 were both set to the inverse of the average
norm of the difference between pace vectors at consecutive
timepoints (∥xt − xt−1∥2) for data prior to October 22, 2012
(i.e., 1≤t≤168). This value captures the average variations in
traffic pace under normal conditions and provides a reasonable
choice for balancing the deviations of the model parameters
from their previous values. Specifically, in our study, we set
α1 = α2 = α = 0.0737 and β1 = β2 = β = 3.50.

To explore the sensitivity to the hyperparameters α and β,
we vary α between 0.0537 and 0.0937, and β between 2.50 and
4.5. The remaining hyperparameters (i.e., rank R, and window
size L) are set as described in Section IV-C. Fig. 10 shows
τ for different combination of α and β. The results indicate
that lower values of β, along with higher values of α, result

Fig. 10. Sensitivity analysis for the hyperparameters α and β.

in a slightly quicker anomaly detection. However, overall, the
proposed anomaly detection method is not highly sensitive
to these two hyperparameters, meaning that small changes in
their values do not significantly impact the anomaly detection
outcomes.

Next, we examine the sensitivity of our method to rank R
and window size L . Table II reports the values of τ for
different combinations of R and L , indicating that the
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proposed anomaly detection method is not considerably sensi-
tive to these two hyperparameters. While the sensitivity to L
and R is not significant, one should select the window size and
the rank sufficiently large to encompass a large enough sample
of traffic patterns and effectively capture the complexity of the
traffic patterns over the selected window.

To examine the proposed method more rigorously,
we applied the method to another extreme event (a blizzard
that hit New York City on December 26, 2010) and presented
the outcomes in the supplementary document. Like the results
of Hurricane Sandy, the anomaly scores computed using the
proposed method agree with the visual examinations of the
traffic patterns measured by pace [45].

G. Discussion

Our results show that the proposed framework can accu-
rately detect anomalous traffic patterns at both network and
zone levels. In comparison to existing anomaly detection meth-
ods that analyze traffic for each road segment individually,
which may lead to a significant number of false alarms in
large-scale networks, our proposed method efficiently monitors
the entire road network and identifies the most anomalous
zones by imposing a sparsity-inducing penalty on the errors of
the self-expressive model. By adopting the proposed approach,
decision-makers can determine which regions of the network
are most affected by the extreme event and prioritize their
mitigation efforts accordingly.

The current implementation of our proposed method creates
zones that consist of a sufficient number of data-rich road
segments. This approach allows us to mitigate the impact of
incomplete data. However, in cases where enough data is not
available for certain zones, we can employ data imputation
techniques to handle incomplete data. There is a body of
research that has developed methods for imputing traffic data
in large-scale networks (e.g., [46], [47], [48]). These methods
can be integrated into our current work to address potential
problems of incomplete data.

The proposed method offers flexibility in defining traffic
zones, without specific constraints on their shape or the type
and number of roads they may contain. In this study, given
the relatively homogeneous structure of Manhattan’s road
network, we partitioned the network into grids of comparable
size that resulted in zones with relatively similar sets of road
segments. It is worth noting that the proposed self-expressive
model can capture the collective explanatory power of each
zone to model traffic patterns in other zones. Therefore, if the
road segments in one zone significantly differ from those
in another zone in a manner that leads to a lower level of
explanatory power, the self-expressive model can capture these
distinctions and provide reliable outcomes. This adaptable
approach enables our method to account for the varying road
types and traffic levels throughout the network. In addition, our
method is specifically designed to identify events that create
statistically significant changes in traffic patterns. This enables
us to distinguish shifts in the traffic data from background
noise.

Furthermore, our proposed method has the potential to
be integrated into an online traffic monitoring system. The

method can continuously receive and analyze traffic data
streams to detect abnormalities in traffic patterns. In addi-
tion, the method’s ability to constantly adapt and learn from
evolving traffic conditions makes it a reliable tool for traffic
management during extreme events.

The results from the computational complexity analysis
in Section III-B indicate that the computational cost of the
proposed method increases quadratically as the number of
zones (denoted by M) in a network increases. Therefore,
the proposed method is scalable to real-world road networks.
Furthermore, a hierarchical approach where the impacted area
is first divided into small number of zones and then a zone
that shows abnormal traffic patterns is divided into smaller
zones, can be used to improve the overall scalability of the
method.

Finally, data privacy in traffic monitoring may cause con-
cerns. To address this issue, the proposed method is designed
to rely exclusively on the aggregation and analysis of vehi-
cle speeds on road segments, without utilizing any form
of personally identifiable information (PII) derived from the
vehicles.

V. CONCLUSION

Timely and reliable detection of traffic anomalies in road
networks is a critical step toward developing resilient trans-
portation systems. The existing data-driven methods for road
traffic monitoring during extreme events are limited to detect-
ing anomalies at the network level and are not capable of
identifying anomalous traffic at the zone level. This study
aims to address this limitation by proposing a temporal
self-expressive network monitoring method that can detect
anomalies caused by extreme traffic events and determine what
parts (zones) of the network are most affected by the anoma-
lous event. In this method, first, we divide the road network
into small zones. Next, we develop a temporal self-expressive
model to characterize the dynamic traffic interdependencies
between these zones. Then, we employ a statistical monitoring
tool to detect large-scale traffic anomalies caused by extreme
events through monitoring the goodness of fit of the self-
expressive model. Finally, we calculate an anomaly score for
every zone over time to determine which zones are consider-
ably affected by the extreme event.

We applied our proposed method to the road network of
Manhattan in New York City to evaluate its performance
in detecting traffic anomalies caused by Hurricane Sandy in
2012 and a major blizzard in 2010. The results confirmed that
the proposed self-expressive network monitoring method could
effectively detect anomalous traffic resulting from the events
at both network and zone levels.

The primary contribution of this study to the existing core
body of knowledge is to create a network monitoring method
that can detect traffic anomalies during extreme events at both
network and zone levels. Further investigations to determine
the shape and size of zones, especially in non-homogenous
urban areas, can be a potential topic for future studies. Investi-
gations to address the problem of incomplete data and develop
practical anomaly detection solutions at a road-segment level
of granularity can be another basis for future research.
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