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Multilevel Monitoring System for Road Networks: Anomaly
Detection at the Network and Road-Segment Levels
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Abstract: This study introduces a novel multilevel disruption detection method for road networks. The proposed monitoring and disruption
detection method can detect disruptions at both the network and road-segment levels simultaneously. The monitoring process begins with a
short-term prediction of hourly traffic speed on each road segment of the network using long short-term memory (LSTM) artificial neural
networks. The prediction errors on each road segment at each timestep are used as a proxy to detect disruptions. Network-level disruptions are
detected using a multivariate cumulative sum (MCUSUM) control chart. Local disruptions at a road-segment level of granularity are detected
by decomposing the monitoring statistic of the MCUSUM control chart that follows a quadratic form using the correlation-maximization
(corr-max) transformation. The proposed method was applied to the road network of Manhattan in New York City to examine its performance
in detecting disruptions caused by Hurricane Sandy in 2012. The outcomes indicated that the proposed method could detect disruptions
precisely at both network and road-segment levels. Whereas existing solutions can either monitor the entire network as a whole or focus on
one or a limited number of road segments, the proposed method in this study can recognize if the entire network has been disrupted and also
can recognize the road segments that are experiencing unusual traffic patterns. The outcomes of this study set the stage for transportation
agencies and decision makers to design adaptive traffic management systems using real-time disruption detection at the network and road-
segment levels. DOI: 10.1061/JTEPBS.TEENG-8391. © 2024 American Society of Civil Engineers.
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Introduction

Transportation networks are the nervous system of an urban envi-
ronment. The ability to systematically monitor traffic patterns in
road networks to detect disruptions and unusual traffic patterns
on a real-time basis is a vital component of intelligent transporta-
tion systems. Reliable disruption-detection systems enable trans-
portation agencies and decision makers to respond effectively to
disruptions and manage transportation systems to avoid cascading
failures in the network. Disruption detection systems for road net-
works also play a vital role in disaster management and during
emergency operations such as urgent evacuations. Due to this vital
role of road networks in timely, efficient, and successful emergency
services, the first Emergency Support Function (i.e., ESF #1) of the
FEMA focuses on transportation systems (DOT 2016). The EFS #1
indicates that

the ability to sustain transportation services, mitigate adverse
economic impacts, meet societal needs, and move emergency
relief personnel and commodities will depend on effective
transportation decisions at all levels. Unnecessary reductions
or restrictions to transportation will directly impact the
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effectiveness of all prevention, preparedness, response, recov-
ery, and mitigation efforts. (DOT 2016)

EFS #1 requires transportation agencies and their support
departments to monitor and report the status of transportation
systems and infrastructures due to an incident. This monitoring pro-
cess is especially critical during evacuation and recovery opera-
tions. Recent natural disasters showed that road transportation
networks mainly fail due to unusual traffic patterns before the dis-
aster (e.g., during evacuations) and/or after the disaster (e.g., during
recovery). For example, evacuation operations in Texas before
Hurricane Rita in 2005 led to a more than 100-mi-long traffic grid-
lock that took more than 1 day to clear and resulted in a totally
failed evacuation plan (Blumenthal 2005). The combination of se-
vere gridlock and excessive heat led to more than 90 deaths even
before the storm arrived (Levin 2015). In 2012, when Hurricane
Sandy hit New York City (NYC), major disruptions in the NYC
road network occurred after the Hurricane when many people
returned to the city and recovery operations began (Donovan
and Work 2017; Ilbeigi 2019a, b). The substantial need for traf-
fic monitoring systems is not restricted to large-scale human-
caused or natural disasters. Any occasional event (e.g., accidents,
festivals, and social events) resulting in unusual traffic patterns
may lead to unexpected gridlocks and require such a monitoring
process.

Existing Methods and Their Limitations

The existing literature on traffic monitoring and disruption detection
methods can be categorized into three main groups. The first group
of studies used various classification methods, including support
vector machines (Xiao 2019; Parsa et al. 2019; Yao et al. 2014), ran-
dom forests (Su et al. 2022; Dogru and Subasi 2018), and artificial
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neural networks (e.g., Li et al. 2016; Zhu et al. 2018; Srinivasan et al.
2008) to categorize and label historical traffic data into normal
and abnormal observations. The main limitation of these studies
for proactive and real-time disruption detection is their retrospective
approach. These methods can differentiate anomalous traffic patterns
only in historical data, and have limited power in real-time traffic
monitoring and proactive traffic management systems.

The second group of studies developed data-driven methods to
detect unusual traffic patterns at the network level. Those studies
considered and monitored the entire network as a whole. For ex-
ample, Donovan and Work (2017) used historical traffic data to de-
velop benchmark probability distributions for the usual travel pace
(i.e., travel time divided by distance) in the network and used it to
identify unusual traffic patterns. Ilbeigi (2019a) proposed a method
to monitor the variations in the network topological features, such
as the closeness centrality index, and used it to examine whether
the road network is experiencing statistically significant disruptions.
Hu et al. (2022) employed a semisupervised autoencoder approach
to detect traffic disruptions by monitoring spatiotemporal patterns
in origin—destination (OD) mobility data represented as a time-
dependent directed graph. Although the methods proposed in those
studies effectively can detect network-level disruptions, they cannot
detect local disruptions and do not offer a solution to detect traffic
disruptions at the road-segment level. This limitation is a major ob-
stacle preventing these methods from supporting data-driven traffic
management systems effectively during extreme events.

The third group of studies took an entirely different approach
than the second group. They focused on individual road segments.
The studies in this group proposed methods to monitor traffic pat-
terns in one road segment and detect disruptions based on historical
variations in traffic data. The overall approach in these studies was
to use nonanomalous historical traffic data in a road segment to
provide short-term forecasts of traffic flows and detect traffic states
that fall outside the prediction’s confidence intervals as disruptions.
For example, Tang and Gao (2005) developed a nonparametric
regression model to forecast traffic flow on a road and detect ab-
normal traffic patterns using the standard deviation. Abanto et al.
(2013) used autoregressive integrated moving average (ARIMA)
time series models and the quantum frequency algorithm (QFA)
to conduct short-term traffic forecasting and detect unusual traffic
patterns based on the confidence intervals of the predictions. Zhang
etal. (2021) used an autoencoder model augmented with spatiotem-
poral data, including weather conditions to monitor a bus trajectory
and detect disruptive situations. Evans (2020) devised a disruption
detection algorithm for individual loop detectors using a context-
based random forest model. The proposed solution uses the quan-
tile random tree regression (QRTR) method to determine prediction
intervals. If three observations in a row fall outside this interval, the
algorithm considers it to be an unusual pattern.

A critical limitation of the methods proposed in this group of
studies is their lack of scalability to monitor a large number of road
networks simultaneously. Specifically, the performance of these
methods considerably drops when they aim to monitor many road
segments. This lack of performance is due to computational costs
and the methods’ approach to considering the road segments indi-
vidually. In this setting, even if sufficient computational power were
available to monitor thousands of roads concurrently, a large num-
ber of false alarms would appear at any significance level (Chen
2010) (typically 5%).

Objective

An effective road traffic monitoring network must be able to mon-
itor the entire network and its road segments together in order to
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provide valuable and timely information for traffic management
systems under the stress of extreme events such as natural disasters.
As the review of the existing literature shows, the current traffic
monitoring solutions are not able to monitor the road network
and all its road segments simultaneously. Motivated by this critical
limitation, the overarching objective of this study was to create a
novel road traffic monitoring method that can detect disruptions at
both network and road-segment levels in one step.

The proposed disruption detection mechanism in this study uses
deep learning solutions to forecast hourly travel speed at each road
segment in one step. It then uses the prediction errors as inputs for
multivariate statistical process control charts to detect network-
level disruptions. At the same time, it detects road segment—level
disruptions by quantifying the contributions of each road segment
in the network disruptions using a decomposition method for quad-
ratic equations.

The remainder of this paper is structured as follows to introduce
the proposed method and evaluate its performance. First, we
present the proposed method and the required steps to be con-
ducted. Next, we apply the method to the road network of Man-
hattan in NYC to detect traffic anomalies caused by Hurricane
Sandy in 2012 to evaluate its effectiveness. We then summarize
the paper’s primary contribution to the core body of knowledge
and outline potential future research directions in the “Conclusion”
section.

Methodology

The proposed multilevel traffic disruption detection method for
road networks involves three capabilities: (1) short-term traffic
speed prediction, (2) multivariate statistical process control, and
(3) contribution assessment through the decomposition of quadratic
equations.

First, using historical data on the road network, hourly traffic
speed on each road segment is predicted using long short-term
memory (LSTM) artificial neural networks. The prediction model
conducts a one-point-ahead prediction using a sliding time window
with a fixed size of 24 h. The proposed LSTM prediction model is
able to forecast the hourly traffic speed on all road segments con-
currently. This capability offers three essential advantages. First,
the computational cost is considerably lower than the cost of indi-
vidual predictions for each road. Second, the entire prediction pro-
cess is faster, making it possible to conduct real-time analysis.
Third, the prediction model incorporates spatiotemporal interde-
pendencies among the traffic patterns in the road segments in
the forecasting process instead of considering them independent
from each other. This considerably improves the accuracy of the
model and its prediction power.

Although the LSTM prediction model is able to accurately fore-
cast the hourly traffic speed on each road, similar to any other
model, its prediction is not perfect, and the predicted values are
subject to error. The prediction errors can be used as a proxy to
monitor traffic disruption. Specifically, because the LSTM predic-
tion model is trained using usual traffic patterns and data, we
hypothesize that if a disruption occurs, the prediction power of
the model will decrease significantly, and there will be a consid-
erable increase in the error values. Monitoring prediction errors
as a proxy to control a process is a well-established approach and
has been used in many previous studies in various domains, such as
multivariate control performance assessment (Zhao et al. 2010),
electrical motors’ predictive current control (Siami et al. 2016),
and control design and fault diagnosis (Campestrini et al. 2017).
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Fig. 1. Steps conducted in the proposed multilevel disruption detection
mechanism for road networks.

To detect disruptions at the network level, the prediction errors
in each road segment are monitored collectively using a multivari-
ate cumulative sum (MCUSUM) control chart. The input data for
the control chart is a vector. Each vector dimension represents the
prediction error for hourly travel speed on each road segment at a
specific time. Therefore, the data set can be represented by a p x T
matrix, where p is the number of roads, and T is the number of
observations through time on that road segment. As suggested
by Pignatiello and Runger (1990), the MCUSUM control chart uses
the Mahalanobis distance measure (Mahalanobis 1936) to combine
different dimensions of the input vector and monitor the road net-
work as a whole.

Whereas the MCUSUM control chart monitors the network as a
whole and detects network-level disruptions, at each point in time
the roads that have anomalous traffic patterns can be detected based
on their contribution to the MCUSUM’s calculated monitoring sta-
tistic. Specifically, the MCUSUM control statistic has a quadratic
form (Pignatiello and Runger 1990), and the contribution of each
road segment to the value of that statistic at each point in time is
assessed using a method proposed by Garthwaite and Koch (2016).

Fig. 1 summarizes the proposed method to develop a multilevel
disruption detection mechanism for road networks. The following
sections briefly review the overall structure of the LSTM prediction
model, the MCUSUM control chart, and the contribution assess-
ment method. More detailed information is provided in the “Imple-
mentation and Assessment” section, in which we apply the
proposed method to the road network of Manhattan in NYC.

Short-Term Prediction Using LSTM Networks

The original version of LSTM networks was introduced by
Hochreiter and Schmidhuber (1997). However, throughout the
years, many researchers refined and improved the method. LSTM

© ASCE

04024036-3

i@

—

QqQ

1

>

>

) 4
®

Xt

Forget gate (f)

[
)
©
oo
-
3
o
=

Control gate (c)
Output gate (o)

Fig. 2. Overall structure of the LSTM networks.

networks are a special form of recurrent neural networks (RNNs)
that are able to consider and analyze a long-term chain of informa-
tion without suffering from the vanishing and exploding gradients
problem (Basodi et al. 2020). Specifically, LSTM networks can ef-
fectively recognize the optimal amount of information in sequential
data and selectively memorize or forget information over extended
periods to adjust the decay of statistical dependency dynamically
and produce more-accurate predictions. The selective memoriza-
tion capability also facilitates capturing nonlinear relationships
in complex systems, big data analysis, and robustness to noise
and missing data (Goodfellow et al. 2016).

The cornerstone of the LSTM structure is the cell state that re-
tains information over time and enables capturing long short-term
dependencies. LSTM networks contain a series of connected cells
to create a recurrent network. Each cell’s output serves as the next
cell’s input, enabling the propagation of information throughout the
network. Information in a cell state is managed using a gate mecha-
nism. Typically, LSTMs are equipped with four types of gates:
(1) forget gates (f), (2) input gates (i), (3) control gates (c), and
(4) output gates (o). Fig. 2 shows the overall structure of the LSTM
networks; C, is the cell state at time #, H, is the unit output at time ¢,
X, is the input signal at time ¢, o represents an activation function
operation, denotes an element-wise multiplication of vectors, and
@ indicates vector summation.

The mathematical expressions for gate functions and cell state
features are as follows:

fi=0(Wy X, + Wy h,_y + by) (1)

i, =o(WuX; + Wyih,_y + b;) (2)
01 = 0(WeoXi + Wiohy +b,) (3)
¢ =o(WyeX, + Wpyehi_y + b,.) (4)

¢ = (fix ¢y +i xtanh(W X, + Wych, o +b.))  (5)

h; = o, x tanh(c,) (6)

where W, Wy, Weo, Wee, Wie, Wii, W, and W, are the cor-
responding weight matrices; and by, b;, b,, and b are the corre-

sponding bias vectors. The bias vector gives the ability to adjust
values to prioritize or deprioritize information, regulate memory
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retention, and impact output generation based on input sequence
context. It introduces adaptability and fine-tuning to the LSTM’s
memory cell, enhancing the network’s capability to capture long-
term dependencies in sequential data.

Each element of the input data (i.e., traffic speed on a road seg-
ment at a specific time) is featured using a series of weighted binary
neurons (typically 32 or 64 units). These neuron units communicate
the information among the cell states. The LSTM model is adapt-
able to any form of transportation network and can be implemented
in any urban setting, because it can adjust its features actively and
dynamically to discover spatiotemporal traffic patterns during the
training process. This capability is facilitated by iteratively updat-
ing the associated weights to each connection between two neurons
in the recurrent neural network, representing traffic temporal inter-
connectivity between two roads. The ability to adjust the weights
dynamically allows the model to capture varying traffic conditions
and improves the prediction power and fitness of the model while
maintaining its flexibility and adaptability to any form of road
network and traffic patterns. In each iteration of the training pro-
cess, the weights are adjusted using a back-propagation algorithm
to minimize the error between the predicted and actual values
(Sherstinsky 2020). Specifically, for a given weight w;; connecting
neuron i to neuron j, the weight adjustment (Aw;;) can be ex-
pressed using a gradient descent formulation

oL
Aw;; = _UWU (7)

where Aw;; = change in weight; 7 = learning rate, which controls
the step size of the update; and OL/0w;; is the partial derivative of
the loss function L with respect to the weight w;;.

Solving the partial derivative determines weight adjustments to
minimize the error between the predicted and actual values. As the
model learns from historical data in each iteration, it dynamically
quantifies the temporal impact of each road segment on the traffic
of other roads by updating the weights of the corresponding inter-
connected neurons. Further detailed information about LSTM net-
works was presented by Goodfellow et al. (2016).

The final output of the LSTM prediction is a time series of travel
speed at each point of time on each road segment. The predicted
values are compared with the actual observations, and a time series
of prediction errors is created for each road segment. A p (i.e., num-
ber of road segments) x T (i.e., length of time series) matrix con-
sisting of the prediction error times series is the input for the
network monitoring mechanism using the MCUSUM control chart.

Network Monitoring Using MCUSUM

Statistical process control methods offer systematic approaches to
monitor variations in a variable over time, characterize its usual
patterns, and define thresholds to detect any statistically significant
change (if any). One of the powerful and sensitive statistical pro-
cess control methods is the CUSUM control chart. CUSUM control
charts have been used in various areas, such as quality control in
manufacturing (Wu et al. 2009), market analysis (Ilbeigi et al.
2017), and infrastructure resilience (Ilbeigi and Dilkina 2018). A
CUSUM control chart monitors a time series by accumulating
deviations of each observation from the mean of the series.
When the input data is a vector, an extended version of the
CUSUM, the multivariate cumulative sum (MCUSUM), control
chart must be used. A MCUSUM control chart monitors the joint
behavior of multiple dimensions of the vector collectively. There
are various versions of the MCUSUM control chart that use dif-
ferent approaches to model the collective behavior of different
dimensions in the input vector. In this study, we used the method
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proposed by Pignatiello and Runger (1990) due to its sensitivity to
small shifts. This approach is based on the Mahalanobis distance
measure (Mahalanobis 1936) and defines the monitoring statistic,
G, as follows:

G, — rnax[q [CTS51C, = 0.5( — o) S (1 — po)nin 0] (8)

where G; is the monitoring statistic that captures the cumulative
deviations of the observations, and is equal to zero at the beginning
(i.e., Gy = 0); pp is a p x 1 vector that represents the average traffic
speed prediction error in each road segment of the network during
in-control periods, where p =road segments in network; j; isa p x
1 vector that represents the threshold for out-of-control scenarios;
Yo isa p x p matrix that denotes the variance-covariance of the in-
control traffic speed prediction error in the road segments; n; is a
counting factor calculated as follows:

n,-_l—i-l, if Gi—l >0

n; = . )
1, otherwise

and C; is a p x 1 vector that shows the deviation of the ith obser-

vation from the in-control mean vector, i,

i

Ci= Z (Xi = po) (10)

I=i—m+1

where X; is a p x 1 vector that represents traffic speed prediction
error on each road segment at time i.

The MCUSUM control chart constantly calculates and monitors
G, against a control limit. The control limit, H, is determined based
on the in-control average run length (ARL,) (Montgomery 2020).
The ARL, value is the expected number of observations until the
control chart signals for an out-of-control observation, if the entire
process is still in control, meaning that the detected out-of-control
observation is a random event without a persistent shift pattern.
When the ARL,, is longer than the length of the available in-control
historical observations, more in-control observations are generated
using simulations based on the Markov chain Monte Carlo method
(Brook and Evans 1972; Gamerman and Lopes 2006).

In a MCUSUM control chart, G; is a scaler that captures the
collective variations of all dimensions in the input vector and
has a quadratic form. Therefore, the original MCUSUM control
chart can only monitor the entire network as a whole, and cannot
detect unusual traffic patterns at the road-segment level of granu-
larity. To address this limitation, we propose a method to augment
the MCUSUM control chart with a decomposition procedure
for quadratic equations inspired by the corr-max transformation
method introduced by Garthwaite and Koch (2016). This method
can quantify how different road segments contribute to the calcu-
lated G; value at each point in time. The method is reviewed in the
next section.

Road Segment Monitoring Using Contribution
Assessment Method

The main idea of the proposed method to detect disruptions at the
road-segment level involves the fact that the MCUSUM monitoring
statistic, G;, has a quadratic form. Garthwaite and Koch (2016) pro-
posed a decomposition method for quadratic equations as follows:

WIW = (X — o) 25" (X = ho) (11)

where W is a p x 1 vector.
The identity matrix of W (i.e., the product of W and its trans-
pose) gives G;. Therefore, each element of W represents the

J. Transp. Eng., Part A: Systems

J. Transp. Eng., Part A: Systems, 2024, 150(7): 04024036



Downloaded from ascelibrary.org by CASA Institution Identity on 10/15/24. Copyright ASCE. For personal use only; all rights reserved.

contribution of that dimension to the calculated value of G,. For
example, if the jth element of W is close to zero, the jth dimension
of the X; (i.e., the error of traffic speed prediction on the jth road
segment at time /) does not have a considerable contribution to the
magnitude of G;. Therefore, it can be concluded that the traffic on
that road segment has not been disrupted significantly. Conversely,
if the absolute value of the kth element of W is considerably larger
than zero, the traffic on the kth road segment at time i has been
disrupted, with a considerable contribution to the calculated G;.
The remaining challenge is to determine W and its elements.
Garthwaite and Koch (2016) proposed a method, called corr-max
transformation, to determine W. The corr-max method proposes
a transformation function that maximizes the sum of correlations
between individual variables and their transformed counterparts.

Implementation and Assessment

Data Set Description

To empirically examine the effectiveness of the proposed disruption
detection method, we applied it to the road network of Manhattan
in NYC and assessed its performance in detecting traffic disrup-
tions due to Hurricane Sandy in 2012. Hurricane Sandy was
one of the most disruptive natural events in the history of the United
States (Klotzbach et al. 2022). The storm formed on October 22,
2012, and impacted the NYC area on October 29, 2012. The NYC
traffic data are a publicly available data set prepared by Donovan
and Work (2017). This data set contains hourly average travel time
on each road segment of the NYC road network estimated using
historical trajectories of nearly 700 million taxi trips in NYC from
January 2010 to December 2013. It also includes the coordinates
and length of each road segment. Using this information, the hourly
average travel speed in each road segment can be calculated. The
data set contains 8,839 road segments, represented by 3,910 nodes
and 8,839 links.

Data Preprocessing

The LSTM model was trained using traffic data from January 1,
2011, to October 10, 2012. The data preprocessing procedure in
this study consisted of four main steps. First, we checked the data
set for errors or misrecorded data (e.g., a negative travel time). The
data set did not have any issues in that regard. Second, because the
LSTM model should be trained using usual traffic data, we re-
moved observations during periods in which the NYC road net-
work experienced abnormal disruptions. Donovan and Work
(2017) identified disruptions in the NYC road network (at the net-
work level) due to various stressors such as blizzards, storms, and
New Year events using this data set. Removing traffic data during
the disruption periods led to the elimination of observations at 264
time points.

Considering the nature of the LSTM models, the input data for
each road segment need to be a continuous time series without any
missing data. However, traffic data sets typically are sparse and
have missing observations because many road segments, especially
minor ones, may not carry traffic flows recorded through taxi tra-
jectories at all timesteps. Therefore, in this study, we used traffic
data from main road segments that did not have more than two con-
secutive missing values. This set of roads consisted of 1,229 road
segments. These road segments covered the majority of the main
road segments in Manhattan (Fig. 3). We imputed the missing val-
ues using a two-step interpolation technique (Fan et al. 2020). We
also tested the data set for interpolating more than two consecutive
missing values; however, the result showed that this would lead to
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Fig. 3. Road segments for LSTM model training after two-step inter-
polation. (© OpenStreetMap contributors.)

overfitting and adversely affect the prediction power of the model.
Finally, the hourly average traffic speed in the data set was normal-
ized using a minimum-maximum scaler approach to ensure com-
pliance with the LSTM requirements.

LSTM Model Development

To train the model, the input stream of data was arranged into a
series of equal-sized subsequences using a sliding time window
with a fixed size. Considering the daily cyclical patterns in the
traffic data, we considered a sliding window length of 24 h. There-
fore, the model uses 24 hourly observations to predict the traffic
speed in the following hour and moves the sliding window in
1-h increments.

As suggested by many previous studies on LSTM modeling,
such as Brownlee (2017), our short-term prediction model consists
of two LSTM layers to improve prediction accuracy. In each layer,
64 units of neurons transform the input matrix into weighted binary
data. The model uses a rectified linear unit (ReLLU) activation func-
tion (Nair and Hinton 2010). This activation function is one of the
LSTM features that overcome the vanishing gradient problem by
allowing the model to learn faster. The ReLU is a piecewise linear
function that outputs the input directly if it is positive; otherwise, it
outputs zero. More-detailed information about ReLU activation
function was presented by Nair and Hinton (2010).
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Fig. 4. Sample road segment speed prediction error.

Because traffic data may contain noisy and outlier observations,
a dropout method was used in the training process. Dropout is a
regularization technique commonly used in neural networks to pre-
vent overfitting and to improve the robustness of the model against
noisy data (Srivastava et al. 2014). The dropout strategy involves
randomly deactivating (i.e., setting to zero) a percentage of neurons
(typically 40%) in the neural network during each training iteration.
This introduces an element of randomness to the learning process,
forcing the model to learn more-general features and patterns to
reduce its reliance on specific data points, especially those that
might be noisy or outliers. This regularization technique improves
the model’s performance on new, unseen data.

The optimization criteria were defined based on the mean
squared error (MSE) of predictions using the Adam optimizer
(Kingma and Ba 2014). For early stopping conditions, we set
the model to abort the training process if the accuracy of the pre-
dictions did not improve for five consecutive rounds.

To properly assess the goodness-of-fit and prediction power of
the LSTM model, we used 80% of the observations for model

training and 20% for prediction evaluation. The model training pro-
cess converged in less than 4 min using a workstation equipped
with a 12th-generation Intel Core i9 processor and 64 GB memory.
The outcomes indicated that the in-sample goodness-of-fit was
99.56%. We then used the remaining 20% of the data to evaluate
the prediction power of the model. The results indicated that the
out-of-sample prediction accuracy was 99.39%.

Short-Term Prediction Using the LSTM Model

The created LSTM model was used to predict hourly travel speed
on each road segment from October 11, 2012, to November 10,
2012, through a one-step-ahead prediction using a 24-h sliding
window. Next, the time series of prediction errors for each road
segment was calculated. For example, Fig. 4 shows the time series
of prediction errors for one of the road segments. These time series
re used to create a stream of a vector, X,, which shows the predic-
tion error in each road segment at time ¢. The stream of these vec-
tors is the input to the MCUSUSM control chart.

Network-Level Disruption Detection Using MCUSUM
Control Chart

Fig. 5 shows the MCUSUM control chart for prediction errors in
the network. The control limit, H, was determined to maintain an
ARL, equal to 10,000, indicating that on average, one false positive
alarm may occur every 10,000 consecutive hours. The calculated
values for G; in the control chart indicate that the overall variations
in the hourly speed of the traffic network shifted from its natural
range on October 29, 2012, at about 11:00 a.m. local time, 10 h
before the Hurricane struck NYC. To detect the return point, at
which the traffic flow returned to its natural behavior, we conducted
a reverse control chart (Ilbeigi and Dilkina 2018). The reverse con-
trol chart indicated that the overall variations in the NYC road net-
work returned to their natural behavior on November 2, 2012, at
about 11:00 p.m. local time. Therefore, in total, the NYC road net-
work was disrupted for 108 h. These results are aligned with the
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Fig. 5. MCUSUM and the reverse MCUSUM control charts for the network-level disruption detection.
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Fig. 6. Road segment-level disruptions using the quadratic contribution assessment.

outcomes of previous studies that evaluated disruptions at a net-
work level, including Donovan and Work (2017) and Ilbeigi
(2019a).

Road Segment-Level Disruption Detection Using
Contribution Assessment

Road segment disruptions are detected using the contribution as-
sessment method. Fig. 6 displays the contribution of each road seg-
ment to the calculated G; value throughout time. The heatmap
clearly shows that a considerable number of roads contributed to
the shifted MCUSUM control statistic, G;, that crossed the control
limit during the Hurricane. However, the length and magnitude of
their contributions vary. To further investigate the outcomes of the
contribution assessment, we focus on a few road segment exam-
ples here.

Fig. 7 shows hourly traffic speed on three road segments. The
first road segment [Fig. 7(a)] is Road segment 97,082 in the data
set, which represents a relatively short segment of 3rd Avenue in
residential areas of the Upper East Side. The heatmap in Fig. 6 in-
dicated that this road segment did not make a considerable contri-
bution to G;. Consistent with this observation, the hourly speed
time series of that road segment [Fig. 7(a)] also does not show
a significant shift in its variations during the hurricane period, in-
dicating that the Hurricane did not disrupt its traffic pattern. Con-
versely, the heatmap in Fig. 6 shows that Road segments 225,530 (a
road segment of 10th Avenue close to commercial areas at the en-
trance of Columbus Circle) and 33,632 (a road segment of 8th
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Avenue close to the entrance of the Lincoln Tunnel, which is
one of the main connectors of Manhattan to New Jersey and
was closed during the Hurricane) considerably contributed to the
overall disruption of the network. Their hourly speed time series
[Figs. 7(b and c)] also confirmed that their traffic patterns signifi-
cantly changed during the hurricane period. The disruptions in
these two road segments were not very similar in terms of the size
and duration of the disruptions. The comparison of these three road
segments clearly shows the value of a road segment—level disrup-
tion detection method that helps decision makers better understand
how the network and its elements are under the stress of an extreme
event at each point in time.

Conclusions and Future Studies

This study introduces a novel traffic disruption detection method
that involves three capabilities: (1) short-term traffic speed predic-
tion using a LSTM model, (2) detecting network level disruptions
by monitoring prediction errors using a MCUSUM control chart,
and (3) detecting disrupted road segments using a contribution
assessment method for quadratic equations based on corr-max
transformation. The proposed method was implemented using the
Manbhattan road network in NYC to examine its performance in
detecting disruptions caused by Hurricane Sandy in 2012. The out-
comes indicated that the proposed method could effectively and
accurately detect disruptions at the network level and also local dis-
ruptions at the road-segment level.
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Fig. 7. Hourly traffic speed on three sample road segments with different levels of disruptions during Hurricane Sandy: (a) Road segment 97,082,
which was not disrupted; (b) Road segment 225,530, which was disrupted; and (c) Road segment 33,632, which was significantly disrupted.

The primary contribution of this study to the core body of
knowledge is the development of a multilevel disruption detection
method that can monitor and detect disruptions at both network and
road-segment levels simultaneously. In other words, whereas the
existing solutions presented in previous studies either can monitor
the entire network as a whole or can focus on one or a limited num-
ber of road segments, the proposed method in this study can rec-
ognize if the entire network has been disrupted and also can
determine the road segments that are experiencing unusual traffic
patterns. The proposed method is adaptable to various transporta-
tion networks with different characteristics and traffic patterns. It
can detect anomalous patterns in different situations, including
planned events (e.g., a parade) or unexpected and spontaneous
events (e.g., natural disasters), regardless of their causes.

This study sets the foundation for developing adaptive and pro-
active intelligent transportation systems that can recognize local and
network-level disruptions on a real-time basis and take corrective
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actions to alleviate the disruptions. The proposed method can con-
tribute to adaptive intelligent transportation systems for smart traffic
metering, especially in the future of road networks when connected
autonomous vehicles (CAVs) will have high penetration in the trans-
portation systems. These systems also can play a vital role in emer-
gency management operations in response to extreme events.
Although the implementation and assessment of the proposed
method showed promising results, the method is subject to some
inherent limitations. One of the major limitations is linked to the
LSTM forecasting model. As noted previously, the LSTM model
needs a complete time series of hourly traffic data without any
missing observations. In reality, traffic data sets are sparse, and
there may not be sufficient observations from all roads at all times.
This is especially the case for minor road segments that do not carry
a considerable traffic volume. As discussed in detail in the previous
sections, for the implementation of the proposed method, we ad-
dressed this challenge by focusing only on main road segments.
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Although this strategy helped us implement and evaluate the pro-
posed method in this study, developing forecasting and monitoring
methods with lower sensitivity to missing values or augmenting the
method proposed in this study with data imputation solutions such
as the one proposed by Nouri et al. (2022) can be a basis for future
studies. Furthermore, designing and developing algorithms for
adaptive road networks that can react automatically to the detected
disruptions to optimize the overall traffic flow in the network can
be a target for future studies. Finally, further investigation of the
causes of the detected disruptions is another potential topic for
future studies.
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