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Change Detection in Partially Observed Large-Scale
Traffic Network Data

Meng Zhao , Mostafa Reisi Gahrooei , and Mohammad Ilbeigi

Abstract— Intelligent Transportation Systems generate an
unprecedented amount of high-dimensional traffic data. The
proper analysis of such data can transform traffic monitoring
mechanisms. However, existing monitoring methods for detecting
abrupt changes in traffic patterns have two limitations. First, they
do not capture the spatiotemporal characteristics of traffic data
and are not equipped with a built-in mechanism to handle missing
observations. To address these limitations, this study proposes a
dynamic, robust tensor completion method to monitor and detect
changes in partially observed traffic data streams. The proposed
method simultaneously completes and decomposes the partially
observed data into a sum of a low-rank tensor that captures
the spatiotemporal patterns and a sparse tensor that captures
anomalies. Subsequently, the proposed method defines a statistic
monitored by an exponentially weighted moving average control
chart to detect abrupt temporal changes. The performance of
the proposed method is evaluated by simulation and case studies.
The simulation results indicate the proposed method outperforms
all benchmarks. It can also detect changes more than twice
as fast as other benchmarks in terms of average run length
in most scenarios. The proposed method is also applied to the
traffic data in New York City to evaluate its performance in
detecting unusual traffic patterns when Hurricane Sandy hit the
city. The experimental results demonstrated the superiority of
the proposed method in quickly detecting unusual changes at
both network and road segment levels. Particularly, the proposed
method detects changes in traffic patterns approximately twelve
hours earlier than the next best alternative benchmark method.

Index Terms— High-dimensional incomplete data streams,
robust tensor completion, statistical monitoring.

I. INTRODUCTION

WITH the rapid advancement of sensing technologies in
Intelligent Transportation Systems (ITS), an unprece-

dentedly large amount of spatiotemporal traffic data has
become available. Major cities have tens of thousands of roads,
and various ITS technologies, such as vehicles equipped with
Global Positioning Systems (GPS), loop detectors, and ultra-
sound Doppler radars, continuously generate traffic data from
many of these roads. Such big data streams offer opportunities
for more effective, precise, and efficient traffic monitoring
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mechanisms. Comprehensive traffic monitoring systems that
cover large-scale road networks can help decision-makers
detect abnormal traffic patterns quickly, plan to mitigate con-
gestion proactively, and support emergency operations in the
aftermath of extreme events.

Efficiently analyzing high-dimensional (HD) traffic data
requires transformative changes in state-of-the-art methods for
traffic monitoring. HD traffic data includes a large number of
potentially highly correlated features, representing the current
state of the traffic network. More specifically, at each time,
the state of the traffic network is explained by thousands of
observations, each indicating the traffic condition of a road
segment, that may correlate with each other. Each observation
can be considered as a feature of the traffic network at a given
time. These features should be viewed collectively as modeling
and monitoring them individually often results in loss of
knowledge and a significant number of false alarms. As it is
described in more detail in this section, the existing solutions
for traffic monitoring are not scalable to handle HD data
and may not effectively capture their complex characteristics.
More specifically, designing such methods is complicated
due to two challenges. The first challenge is to capture the
complex characteristics of HD traffic data, including high
dimensionality, spatiotemporal correlation structure, and non-
stationarity [1]. A monitoring method with these capabilities
can quickly detect abrupt changes with fewer false alarms.
The second challenge is to handle incomplete and partially
observed traffic data. Traffic datasets, even when captured
by advanced technologies, are often incomplete. Permanent
traffic counters are not available on all roads, and vehicles
equipped with GPS devices may not travel on all roads at all
times. As a result, traffic data is only partially observable at
each point in time. Occasional sensor failures and technical
issues in data transmissions may also result in further missing
observations [2], [3]. Therefore, effective traffic monitoring
methods require the ability to detect unusual patterns in HD
spatiotemporal traffic data streams that contain considerable
missing values.

A. Existing Methods for Traffic Monitoring and Their
Limitations

Overall, previous studies in traffic monitoring can be cate-
gorized into three main groups. The first group of studies uses
non-anomalous historical data to create short-term forecasting
models with confidence intervals and alarm for an abnormal
pattern when a prediction falls outside the intervals [4], [5],
[6], [7]. The second group of studies develops classification
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models to recognize unusual patterns using various machine
learning methods such as artificial neural networks [8], [9],
[10], support vector machines [11], [12], [13], and random
forests [14], [15]. Both predictive and classification methods
quickly lose their statistical power when applied to networks
with a large number of roads and lead to a significant number
of false alarms. Therefore, they can effectively monitor only
a very limited number of roads and are not scalable to handle
HD data.

The third group of studies proposes network-wide shift
detection methods. Typically, these methods summarize HD
traffic data from a road network into a monitoring statistic
as a proxy to explain the overall network-level patterns. The
monitoring statistics can be defined using different approaches,
including based on a probability distribution that explains
variations of traffic speed on the roads [16] or dynamic
network topological characteristics (e.g., network betweenness
centrality index) [17]. Although these methods can monitor a
large network as a whole, they cannot capture spatiotemporal
correlations and interdependencies among roads. This limita-
tion prevents them from explaining what part of a network is
experiencing abnormal traffic when a change is detected at the
network level.

In addition, none of the existing solutions offer a systematic
approach to handle partially observed data during the monitor-
ing process. The fundamental limitations in the existing traffic
monitoring methods to handle HD spatiotemporal traffic data
call for the development of new monitoring methods.

Although the existing methods for traffic monitoring are
subject to essential limitations in handling partially observed
HD data, recent advancements in other domains, such as
manufacturing, focused on developing monitoring mechanisms
that are able to capture complex characteristics in incomplete
and partially observed HD data may seem viable potential
solutions to be adopted in the context of traffic. Therefore,
in the following two subsections, we review state-of-the-art
methods for HD data monitoring developed in other areas and
discuss their critical limitations for potential applications in
traffic monitoring.

B. Existing Methods for HD Data Monitoring in Other
Domains

A group of studies developed for monitoring HD data use
LASSO estimators to create Lasso-based control charts and
detect unusual shifts in the data streams by declaring the
non-zero values as anomalies [18], [19], [20]. While these
methods are able to handle HD data, they cannot address the
complex spatiotemporal characteristics of HD traffic datasets,
which may result in large number of false alarms.

Some other studies use dimensionality reduction techniques
to embed the HD data onto a lower dimensional space
where anomalies can be identified [21], [22]. For instance,
Liu [23] used T 2 and Q charts for reducing dimensions
and monitoring spatiotemporal data. Paynabar et al. [24]
proposed a functional principle complement-based control
chart to monitor multivariate functional data. Tensor (multi-
dimensional arrays) analysis has also been used for HD data

dimension reduction and monitoring. Yan et al. [1] provided
a comprehensive introduction to the use of low-rank tensor
decomposition (LRTD) and dimension reduction methods,
including multilinear principal component analysis (MPCA)
[25], uncorrelated multilinear principal component analysis
(UMPCA) [26], and tensor rank-one decomposition (TROD)
for process monitoring. Additionally, Qian et al. [27] proposed
a CP decomposition to extract discriminant features from
signal streams, and Hou et al. [28] designed a three-order
Tucker decomposition and reconstruction-based change detec-
tion framework.

The methods designed based on dimension reduction are
subject to two main drawbacks for implementation in a traffic
context. First, they may not fully capture the spatiotemporal
characteristics of the data, particularly when techniques such
as unfolded PCA are used. This limitation is because they
may destroy the inherent correlations and interactions within
the data by unfolding the HD data (e.g., an image) into a
vector. Second, the extracted features may not capture a change
as they are extracted by combining the global patterns that
can mask smaller abnormalities. Another group of studies
proposed methods that decompose the data into a smooth
(or low-rank) background and sparse outliers. For example,
Candès et al. [29] proposed a robust PCA model (RPCA)
to decompose the observed data into a low-rank background
component and a sparse component. This model has drawn
a lot of attention in anomaly detection in numerous applica-
tions [30], [31], [32]. While these methods can exploit the
spatial characteristics of the data, they do not account for the
temporal patterns in the data stream.

C. Existing Methods for Handling Partially Observed Data
in Monitoring

A typical solution to manage partially observed data is
to develop data imputation methods. These methods first
complete the dataset and then apply the monitoring processes.
Classic imputation methods for traffic data use three main
approaches, including prediction [33], [34], [35], [36], [37],
[38], [39], [40], interpolation [41], [42], [43], and statistical
learning [44], [45]. These methods have inherent limitations
in completing HD spatiotemporal data [2], [46].

More advanced data imputation approaches apply
decomposition-based techniques, such as low-rank tensor
completion methods [47], [48]. These methods reconstruct
data profiles from a low-dimensional representation of the
collected data using nuclear norm approximation [49] or
by imposing a predefined decomposition form [50], [51].
Despite the superiority of these methods against classic
data imputation methods in HD data, they may not fully
capture the clustered structure of the HD spatiotemporal
data. To address this limitation, a recent study [2] extended
PARATUCK2 matrix decomposition to develop a novel
data imputation method for HD traffic data with spatial and
temporal clusters. Despite the considerable advancements in
data imputation methods, employing these solutions leads
to a two-step process for traffic monitoring in which the
data streams must first be completed and then monitored.
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Furthermore, the performance of the imputation methods and
the accuracy of the estimated values for missing observations
may critically affect the reliability of the monitoring process.
A data monitoring process that can inherently manage
missing values and partially observed large-scale traffic data
can improve the efficiency of traffic monitoring mechanisms.

D. Objective and Overview of the Proposed Method

Motivated by the limitations in the existing literature, the
objective of this article is to develop a new method for
monitoring and change detection in partially observed HD
traffic network data streams. This study contributes to the body
of knowledge by proposing a new monitoring method with two
novel capabilities:

• The proposed method is equipped with a built-in data
imputation approach that can handle simultaneously par-
tially observed traffic data as an integrated part of the
monitoring process.

• The proposed method can detect unusual traffic patterns
at both network and road levels of granularity.

The proposed method first estimates the missing values of
the HD data streams by using both spatial and temporal
information. This is achieved by constructing a new objective
function that utilizes the dynamic information from past data.
Second, it separates the sparse components (outliers) from the
natural observation patterns and monitors the sparse compo-
nents for change detection. More specifically, we develop a
spatiotemporal robust tensor completion approach combined
with an exponentially weighted moving average (EWMA)
control chart. To capture the temporal patterns of data streams
and enhance the precision of missing data completion and
anomaly detection, two Frobenius norm-based penalties are
introduced to minimize the difference between two adjacent
observations (each represented by a tensor) in the data stream.
To detect a change in the data stream, the L1 norm of anomaly
tensors is used as the monitoring statistic, monitored by an
EWMA control chart. For convenience, we name the proposed
approach, robust spatiotemporal tensor completion-based mon-
itoring (RSTCM), in the following sections.

The remainder of this article is organized as follows: In
Section II, we introduce notations related to our defined
problem and the background of the RTC problem. Section III
presents the formulation of the proposed RSTCM model and
the algorithmic approach to model estimation. In Section IV,
a simulation analysis is conducted to evaluate the performance
of the proposed method. Next, the proposed method is applied
to New York City (NYC) historical traffic data to examine
its performance in detecting abnormal traffic patterns due to
Hurricane Sandy in 2012 in Section V. Finally, Section VI
summarizes the proposed method and concludes the primary
contributions of this article to the body of knowledge.

II. MULTILINEAR ALGEBRA AND ROBUST TENSOR
COMPLETION

In this section, tensor notations and basic definitions used
throughout this article are introduced. In addition, the robust
tensor recovery and completion problems are reviewed.

A. Tensor Basics and Multilinear Algebra

Throughout this paper, we denote scalars, vectors, matrices,
and tensors by lowercase or capital letters (a or A), boldface
lowercase letters (a), boldface capital letters (A), and Euler
script letters (A), respectively. A fiber of the tensor A is
a column vector defined by fixing all but one index. The
unfolding of the tensor A in the i-th mode results in a matrix
A(i) by augmenting the i-th mode fibers as its columns.
This process is also called matricization. The inner product
of two matrices A and B is defined as ⟨A, B⟩ = Tr(ATB)

and the inner product of two tensors A and B is defined
as ⟨A,B⟩ = ⟨A( j), B( j)⟩. The symbols ⊗ and ⊙ denote the
Kronecker and Khatri-Rao products, respectively.

For a N -th order tensor A ∈ RI1×I2×···×IN , its Frobenius
norm is defined as the square root of the sum of the squares
of its elements, i.e., ∥A∥F = ∥A(i)∥F =

√
AT

(i)A(i). Its
L1 norm is defined as the sum of the absolute value of its
entries, denoted by ∥A∥1 =

∑
i1i2···in

|Ai1i2···in |. The nuclear
norm of A is defined as the sum of nuclear norms of the
tensor A unfoldings in all N modes, denoted by ∥A∥∗ =∑

i ∥A(i)∥∗, where ∥A(i)∥∗ =
∑

j σ j and σ j is the j th singular
value of the matrix A(i) via the singular value decomposition
(SVD). The CANDECOMP/PARAFAC (CP) decomposition
factorizes the tensor A into a sum of rank-one tensors, which
is denoted as A ≈ [[A(1), A(2), · · · , A(N )

]] ≡
∑R

r=1 a(1)
r ◦a(2)

r ◦

· · · ◦a(N )
r , where the notation ◦ is the outer product operation.

B. Review of Robust Tensor Recovery and Completion

This subsection summarizes the robust tensor recovery
and completion formulations, which provides a basis for our
proposed approach. The robust tensor recovery (RTR) attempts
to recover a low-rank tensor from a tensor that is corrupted by
sparse outliers. That is, RTR will decompose a higher-order
tensor X ∈ RI1×I2×···×IN into a summation of a low-rank ten-
sor L ∈ RI1×I2×···×IN and a sparse tensor S ∈ RI1×I2×···×IN ,
so that L + S matches X . The locations and the values of
outliers (i.e., non-zero elements of the sparse tensor S) are
not known apriori. To achieve this decomposition, rank(L)+

λ∥S∥1 is minimized under the constraint that X = L + S .
However, this problem is intractable because identifying the
rank of a tensor is an NP-hard problem. Therefore, various
convex relaxations of this problem have been proposed that
use the nuclear norm of a tensor as a convex proxy to the
rank penalty [52], [53], [54]. The hyper-parameter λ is often
selected empirically. Particularly, [53] provided evidence that
the tuning parameter λ can be set to 1/

√
max(I1, I2)I3 for a

third-order tensor with dimensions I1, I2, and I3 to guarantee
the exact recovery.

A tensor completion (TC) problem uses the low-rank prop-
erties of a tensor to impute missing values of the tensor.
To be more precise, let � ⊂ {1, · · · , I1} × {1, · · · , I2} ×

· · · × {1, · · · , IN } denotes the set of observed entries of X
and X� represent the projection of tensor X onto the subspace
supported on �, defined as follows

X�
=

{
Xi1i2...iN , (i1, i2, . . . , iN ) ∈ �,

0, otherwise.
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The TC problem then estimates the complete tensor Z by
minimizing rank(Z) such that Z�

= X�. Similar to the TR
problem, the rank penalty is often replaced by a convex proxy
such as nuclear norm [55].

The robust tensor completion (RTC) combines tensor recov-
ery and completion to recover a low-rank tensor from a
corrupted and partially observed tensor. The objective of the
RTC model is to determine a low-rank tensor L and a sparse
tensor S so that Z = L+S represents the imputed version of
partially observed tensor X . Tensors L and S are estimated by
minimizing rank(L)+λ∥S∥1, subject to X�

= (L+S)�. The
rank penalty has been approximated by various other norms to
achieve a computationally tractable problem [56], [57], [58],
[59]. Although existing RTC techniques can complete partial
observations and identify sparse components effectively [3],
they are not designed to capture the temporal patterns of tensor
data streams. Therefore, they are not directly applicable to the
effective monitoring and change detection of partially observed
HD data streams.

III. PROPOSED RSTCM MODEL FOR TRAFFIC
MONITORING AND CHANGE DETECTION

In this section, we present the proposed RSTCM model
based on the RTC formulation described in Section II-B to
capture the temporal characteristics of incomplete HD traffic
data streams for monitoring and change detection.

A. Problem Formulation

We consider and monitor HD traffic data as a stream
of tensors {X1,X2, · · · ,Xt , · · · } for detecting abrupt and
unexpected changes. Here, Xt ∈ RI1×I2×···×IN is a partially
observed tensor, representing traffic data acquired at a time
window t . Each tensor may include outliers that must be
detected in order to efficiently and effectively detect statis-
tically significant changes in traffic patterns. One potential
approach to monitoring a stream of partially observed tensors
is directly applying RTC to each tensor at time t to complete
tensors and extracting outliers to be monitored for change
detection. However, this approach ignores the temporal cor-
relation structure of the traffic data stream when performing
tensor completion and outlier detection. In other words, This
issue may lead to excessive false alarms as natural patterns
of data may be detected as abrupt changes. Our goal is to
incorporate the temporal relationship among tensors when
performing tensor completion and outlier detection in our pro-
posed method. This allows for separating the natural temporal
patterns from the abrupt changes and consequently reducing
the false alarms.

Let Zt denote the completed version of tensor Xt . At each
time t , we decompose Zt as a summation of a low-rank tensor
Lt and a sparse tensor of outliers St while considering the tem-
poral correlation between current tensor data and previously
observed ones. In order to capture the temporal correlation,
we include a penalty term that penalizes deviation of Lt from
Lt−1 enforcing them to remain within each others proximity.
Therefore, we solve the following problem to estimate Lt and

St :

min
Lt ,St

∥Lt∥∗ + λ∥St∥1 +
α

2
∥Lt − Lt−1∥

2
F ,

s.t. Zt = Lt + St . (1)

The challenge in solving (1) is that Zt is not known; instead,
we only observe Xt that contains missing entries outside
the set �t , where �t ⊂ {1, · · · , I1} × {1, · · · , I2} × · · · ×

{1, · · · , IN }. To address this challenge following [3], we first
introduce a compensation tensor Mt ∈ RI1×I2×···×IN whose
entries are zero in the support set �t and takes non-zero
values outside �t . Let �̄t ⊂ {1, · · · , I1} × {1, · · · , I2} ×

· · · × {1, · · · , IN } denote the complement set of �t to denote
the index set where elements in Xt are not observed. Then,
we define

M =

{
Mi1i2...iN , (i1, i2, . . . , iN ) ∈ �̄t,

0 otherwise.

Using this compensation tensor, we update the problem
formulation to estimate Lt , St , and Mt so that X�t

t =

Lt + St +Mt . In this formulation, the compensation tensor
Mt cancels Lt + St to produce the zero values in X�t

t . That
is, Mt contains the negative of estimated missing values in
Xt . When estimating these missing values, not only do we
use the spatial characteristics of Xt , but we also consider the
temporal relation between the current and previously observed
tensors. For this purpose, we encourage Mt to remain within
the proximity of L�̄t

t−1.
Thus, we formulate our proposed objective function as

min
Lt ,St ,Mt

∥Lt∥∗ + λ∥St∥1 +
α

2
∥Lt − Lt−1∥

2
F

+
β

2
∥L�̄t

t−1 +Mt∥
2
F ,

s.t. X�t
t = Lt + St +Mt , (2)

where the first term imposes a low-rank penalty to recover
the underlying low-rank tensor, and the second term imposes
sparsity on the outlier tensor. The third term includes a penalty
so that the entries of low-rank tensors at time t and t −1 to be
similar due to the temporal characteristics of the data streams,
and similarly, the fourth term encourages the entries in Mt
at time t to be similar to the corresponding entries of the
projected low-rank tensor Lt−1 on �̄t . Please note that the
low-rank tensor Lt−1 is assumed to be known at time t , and
λ ≥ 0, α ≥ 0, and β ≥ 0 are three hyperparameters that need
to be tuned to balance the weighted losses in the objective
function.

To solve problem (2), we use the alternating direc-
tion method of multipliers (ADMM), which can solve
constrained convex optimization problems with separable
objective functions (into differentiable and non-differentiable
terms) efficiently. While ADMM provides a framework to
approach this problem, it does not directly solve the problem.
Instead, it translates the problem into other optimization prob-
lems, as we discuss later on. When applying ADMM, we first
write the corresponding augmented Lagrangian function for
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problem (2), where we simplify Lρ(Lt ,St ,Mt ,Yt ) to Lρ

Lρ = ∥Lt∥∗ + λ∥St∥1 +
α

2
∥Lt − Lt−1∥

2
F

+
β

2
∥L�̄t

t−1 +Mt∥
2
F

+ ⟨Xt − Lt − St −Mt ,Yt ⟩

+
ρ

2
∥Xt − Lt − St −Mt∥

2
F , (3)

where Yt are the Lagrange multipliers or dual variables and ρ

is a positive scalar. Using the property of the Frobenius norm,
∥A + B∥2

F = ∥A∥
2
F + ∥B∥2

F + 2⟨A,B⟩, minimizing (3) is
equivalent to minimizing the following objective function,

Lρ = ∥Lt∥∗ + λ∥St∥1 +
β

2
∥L�̄t

t−1 +Mt∥
2
F

+
γ

2
∥Lt −

1
γ

(αLt−1 + ρ(Xt − St −Mt + Yt/ρ))∥2
F ,

(4)

where γ = α+ρ. Minimizing (4) cannot be directly achieved
due to the definition of the tensor nuclear norm. Let us denote
L�̄t

t−1 by H and drop the time index t for simplicity of notation.
Also, set E = X−S−M+Y/ρ. Then, the matricized version
of the above objective function is as follows:

Lρ =
1
N

N∑
i=1

(
∥L(i)∥∗ + λ∥S(i)∥1 +

β

2
∥H(i) + M(i)∥

2
F

+
γ

2
∥L(i) −

1
γ

(
αH(i) + ρE(i)

)
∥

2
F

)
, (5)

where E(i) is the folded (matricized) version of E along
the mode i . Because the folded tensors, L(i), along different
modes, are coupled and share the same elements, we cannot
minimize this objective function separately for each folded
tensor. To address this issue, we define N auxiliary tensors,
Ri = L (i = 1, · · · , N ). We use these auxiliary tensors to
decouple the problem by replacing the folded tensor L(i) with
Ri(i) as follows to obtain:

Lρ =
1
N

N∑
i=1

(
∥Ri(i)∥∗ + λ∥S(i)∥1 +

β

2
∥H(i) + M(i)∥

2
F

+
γ

2
∥Ri(i) −

1
γ

(αH(i) + ρE(i))∥
2
F

)
, (6)

subject to Ri = L for i = 1, · · · , N . Adding these constraints
into the above objective function gives a new augmented
lagrangian function as follows:

Lρ =
1
N

N∑
i=1

(
∥Ri(i)∥∗ + λ∥S(i)∥1

+
β

2
∥H(i) + M(i)∥

2
F

+
γ

2
∥Ri(i) −

1
γ

(αH(i) + ρE(i))∥
2
F

+ ⟨Ci ,Ri − L⟩ +
ζ

2
∥Ri − L∥2

F

)
, (7)

where Ci (i = 1, · · · , N ) is the tensor of dual variables and
ζ is a hyperparameter. Then, the ADMM algorithm iteratively

updates the set of variables Ri , S , M, Y , Ci , and L. More
specifically, when estimating one of the variables, we fix
others similar to the block coordinate algorithms [60], [61].
Accordingly, updating Ri (i = 1, · · · , N ) is to solve the
following problem

min
Ri(i)

∥Ri(i)∥∗ +
γ

2
∥Ri(i) −

1
γ

(αH(i) + ρE(i))∥
2
F

+ ⟨Ci(i), Ri(i) − L(i)⟩ +
ζ

2
∥Ri(i) − L(i)∥

2
F , (8)

that can be re-written as

min
Ri(i)

∥∥Ri(i)
∥∥
∗

+
ω

2

∥∥∥∥Ri(i) −
1
ω

(
H(i) + ρE(i) + ζ

(
L(i) −

Ci(i)

ζ

))∥∥∥∥2

F
,

(9)

where ω = γ + ζ . Next, updating the global variable L is to
solve the following problem:

min
L

N∑
i=1

⟨Ci ,Ri − L⟩ +
ζ

2
∥Ri − L∥2

F (10)

Updating St is to solve the following problem

min
S

λ∥S∥1 +
γ

2
∥L−

1
γ

(αH+ ρE)∥2
F . (11)

Updating M is to solve the following problem

min
M

β

2
∥Q∥

2
F +

γ

2
∥L−

1
γ

(αH+ ρE)∥2
F , (12)

where Q = H+M. Finally, updating the Lagrange multipliers
Y and Ci (i = 1, · · · , N ) are as follows

Yk+1
= Yk

+ ρ (X − L− S −M) , (13)

Ck+1
i = Ck

i + ζ (Ri − L) , (14)

where k denotes the iteration index. Before we provide solu-
tions to the above problems, let us define the soft thresholding
operation 2u(X ) for the tensor X ∈ RI1×I2×···×IN as

2u (X )i1i2···iN =
(
Xi1i2···iN − u

)
+
−

(
−Xi1i2···iN − u

)
+

.

Also, for the matrix X ∈ RM×N , with the singular value
decomposition X = USVT, the hard thresholding operation
8u(X) is defined as

8u(X) = U2u(S)VT.

The following propositions provide the solution to these
above optimization problems to update each variable.

Proposition 1: Given Sk , Mk , Yk , Lk , and Ck
i , problem (9)

has a closed form solution as follows:

Rk+1
i(i) = 8 1

ω

(
1
ω

(
H(i) + ρE(i) + ζ

(
L(i) −

Ci(i)

ζ

)))
,

where 8u is a hard-thresholding operator [54] and k denotes
the iteration index. The tensor Ri is obtained by unfolding
(tensorizing) the matrix Ri(i)
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Proposition 2: Given Rk+1
i , Ck

i (i = 1, · · · , N ) prob-
lem (10) has a closed form solution as follows:

Lk+1
=

1
N

N∑
i=1

Ck
i + ζRi .

Proposition 3: Given Lk+1, Mk , and Yk , problem (11) has
a closed form solution as follows:

Sk+1
=

γ

ρ
2 λ

ρ

(
ρ

γ

(
X −Mk

+
1
ρ
Yk

)
−

(
Lk+1

−
α

γ
H

))
,

where 2u is a soft-thresholding operator [54].
Proposition 4: Given Lk+1, Sk+1, and Yk , problem (12)

has a closed form solution as follows:

Mk+1
=

1
β + ρ

(
Yk

+ ρ
(
X − Lk+1

− Sk+1
)
− βH

)
.

The complete ADMM algorithm for the proposed method is
presented in Algorithm 1.

Algorithm 1 ADMM Solver for the Proposed RSTCM Model
1: Input: The observed tensor Xt ; the low-rank tensor Lt−1;

parameters λ, α, and β

2: Initialization: L0
t = S0

t = M0
t = Y0

t = 0; ϵ = 1e − 5;
γ = 1.2; ρ0 = 1e − 3; ρmax = 1e8

3: while not converged do
4: Update Lk+1

t by Proposition 1;
5: Update Sk+1

t by Proposition 2;
6: Update Mk+1

t by Proposition 3;
7: Update Yk+1

t by Eq. (13);
8: Update ρk+1 by ρk+1 = min(γρk, ρmax);
9: Check the convergence conditions

∥Lk+1
t − Lk

t ∥F ≤ ϵ; ∥Sk+1
t − Sk

t ∥F ≤ ϵ;
∥Mk+1

t −Mk
t ∥F ≤ ϵ;

∥Lk+1
t + Sk+1

t +Mk+1
t − Xt∥F ≤ ϵ

10: end while
11: Output: Lt ,St ,Mt

B. EWMA Control Chart for Change Detection

This section presents a procedure for monitoring
higher-order data streams to detect abrupt changes caused by
a shock different from the underlying dynamics of data. For
each tensor data Xt ∈ RI1×I2×···×IN , the proposed method
estimates the sparse outlier tensor St . We consider ∥St∥1 as
the monitoring statistic and use the exponentially weighted
moving average (EWMA) control chart. A control chart
characterizes the usual patterns in historical data to detect
unprecedented shifts in the variations of incoming data. More
specifically, a control chart defines upper and lower limits
(control limits) that identify a region where the observed
values follow the underlying null distribution (usual patterns)
with some level of confidence. When a point falls outside
these thresholds, that point is considered to be significantly
different from the usual patterns, indicating an abrupt change
in the underlying process. A control chart can be viewed as
dynamic hypothesis testing. The monitoring process using
control charts consists of two phases. In Phase I, historical
data that are obtained when the process is in-control and does

not contain abnormal observations (also known as in-control
data) is used to determine the control limits. In Phase II,
new streams of data are constantly monitored by comparing
the monitoring statistics against the control limits to detect
statistically significant abnormal traffic patterns. The control
limits of the EWMA chart depend on the parameters of
the monitoring statistic’s distribution which are estimated
in Phase I. Because of the definition of the monitoring
statistic ∥St∥1 =

∑I1
i1=1 · · ·

∑IN
in=1 |(St )i1i2···iN | and by

the central limit theorem, ∥St∥1 approximately follows a
normal distribution. The mean and standard deviation of this
normal distribution is estimated given a sequence of phase
I traffic data, {X1,X2, . . . ,XT }. The estimated parameters
are used to obtain the control limits. More specifically,
the EWMA monitoring statistic at time t is calculated by
zt = λcc∥St∥1 + (1 − λcc)zt−1, where 0 < λcc ≤ 1 is the
weighted factor of EWMA control chart. The corresponding
upper control limit (UCL) and lower control limit (LCL) at
time t are calculated by

UCLt = µ0 + Lσ

√
λcc

2 − λcc
[1 − (1 − λcc)2t ],

LCLt = µ0−Lσ

√
λcc

2 − λcc
[1 − (1 − λcc)2t ],

where µ0 and σ are the in-control mean and standard deviation
of ∥S∥1 estimated in Phase I. The two parameters λcc and
L are obtained through Monte Carlo simulations to achieve
a desired in-control average run length (ARL0), as detailed
in the next section. The average run length (ARL) indicates
how long it takes, on average, for the monitoring statistic to
fall outside the control limits. Even when the process is in-
control, the monitoring statistic may occasionally fall outside
the control limits due to a type I error. The ARL0 refers to the
average run length when the process is in-control. Similarly,
The out-of-control average run length (ARL1) indicates how
long it takes, on average, to detect a change after it occurs
in a process. When in Phase II, for each incoming data Xt ∈

RI1×I2×···×IN (t = T + 1, T + 2, · · · ), the proposed method
first estimates the sparse outlier tensor St and consequently
monitor the EWMA statistics zt . If zt > UCLt or zt < LCLt,
the sample is considered as out-of-control, indicating a change
has occurred in the data stream.

C. Parameter Tuning

The proposed RSTCM method involves three hyperparam-
eters α, β, and λ. A proper setting of these parameters is
essential to achieve adequate model performance. As discussed
in Section III-A, the parameter λ encourages the sparsity of
the outlier tensor, S and the larger the λ, the sparser the tensor
S would be. The parameters α and β adjust the current estima-
tion flexibility with respect to the previous estimations. That is,
when α and β are very large (i.e., tend to infinity), the current
estimation of low-rank tensor at time t becomes the same
as the previous estimation at time t − 1. On the other hand,
when α and β are set to zero, the current low-rank tensor is
estimated regardless of historical data. In our implementation,
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an empirical value of λ is given as λ = 1/
√

max(I1, I2) and
λ = 1/

√
max(I1, I2)I3 for a two-way and a three-way tensor,

respectively. According to [53], this selection of λ results in
exact recovery of corrupted low-rank tensors. We select α and
β by using 1

δ·∥X 0t
t+1−X

0t
t ∥F

, where 0t = �t+1 ∩ �t . Particu-

larly, assuming we have T observations during Phase I (i.e.,
historical data), we set α = β =

1
T−1

∑T−1
t=1

1
δ·∥X 0t

t+1−X
0t
t ∥F

.

The intuition behind this selection is that when Xt is very
similar to Xt+1, (i.e., gradual temporal variations are very
small), the values of α and β increase, which encourages the
similarity between the current and previous estimations of the
low-rank tensors at times t and t + 1. On the other hand,
when the observed data from time t and t +1 are considerably
different(i.e., the data shows natural temporal variations), these
parameters are set to smaller values, allowing for a more
flexible estimation of the low-rank tensors. For example, if the
historical data remains constant over time (i.e., no temporal
patterns exist), both α and β are set to infinity, which forces the
estimations of Lt and Lt+1 be equal, representing no temporal
changes in the low-rank estimations. Finally, we initiate the
learning rate ρ = 0.001 and dynamically increase it to reach
a maximum value ρmax = 108. The dynamic increase of ρ

ensures the constraints are satisfied and the solution is feasible.

IV. PERFORMANCE EVALUATION USING SIMULATIONS

This section examines the performance of the proposed
RSTCM using synthetic datasets where the data streams
contains sparse corruptions as outliers. We compare the pro-
posed method with five benchmarks. The first benchmark,
denoted by RTC, uses the robust tensor completion method
introduced in Section II-B and monitors ∥S∥1 by an EWMA
control chart. The second benchmark, designated as UPCA,
employs unfolded principal component analysis to extract
low-dimensional features. UPCA transforms the data into a
matrix by unfolding the tensor along one of the tensor modes
(e.g., first mode) and then applies general principal component
analysis (PCA) to the unfolded tensor to extract features. The
third benchmark, denoted by MPCA, uses multilinear PCA
proposed by [25] to extract features from data. The fourth
benchmark, identified by TROD, extracts data features by
factorizing a tensor into a sum of rank one tensors. Finally,
the fifth benchmark, designated as UMPCA, extracts data
features through uncorrelated multilinear principal component
analysis, introduced by [26]. Features extracted from UPCA,
MPCA, TROD, and UMPCA are monitored using a Hoteling
T 2 control chart. When running these algorithms, we follow
the settings as detailed in [62].

A. Data Generation

The data-generating process used in the experiments is
defined by the first-order autoregressive (AR(1) model. Fol-
lowing the AR(1) model, we generate a sequence of third-order
tensors {X1,X2, . . . ,XT } in an in-control situation. Especially,
at each acquisition time t , we generate a tensor data Xt =

L + φXt−1 + Nt ∈ RI1×I2×I3 , where φ = 0.9 and the
tensor L ∈ RI1×I2×I3 is generated via three factor matrices

U(i)
∈ RIi×R (i = 1, 2, 3) whose entries are randomly

drawn from a standard normal distribution. More specifically,
L = [[U(1), U(2), U(3)

]] and Nt ∈ RI1×I2×I3 is the global
Gaussian noise tensor, whose entries are simulated from a
normal distribution N (0, (k1σL)2), where k1 is a positive
number and σL is the standard deviation of the tensor L.
Starting from time T + 1, a sparse tensor of outliers is added
to generate out-of-control samples. Specifically, the observed
tensor is generated by Xt = L+φXt−1+Nt +S where S is a
sparse tensor that represents the temporal changes. The sparse
tensor is generated as follows: We simulate all the entries of
S from a normal distribution N (0, (k2σL)2), where k2 is a
positive scalar. Then, we randomly keep a certain proportion
of entries of S , denoted by c, and set the rest 1 − c percent
to zero. In other words, the parameters c and k2 control the
occurrence probability of corruption and the corruption level.

At each time t , we randomly keep p percent of tensor entries
Xt and eliminate the rest 1− p percent of entries to represent
missing values. Simulation studies are conducted in two stages.
First, we generate 1,000 in-control sample sequences of length
1,000 to determine the EWMA control chart parameter L ,
while fixing λcc to 0.9, so that the in-control average run
length (ARL0) is approximately 200. Secondly, 300 out-of-
control samples are generated to evaluate the change detection
performance of the proposed method. The average out-of-
control run length ARL1 computed over 1000 replications is
used as the evaluation criterion. For a fixed ARL0, a control
chart with a smaller ARL1 can detect changes more quickly.

B. Parameter Settings

In this simulation, we set the tensor size and the tensor
rank as I1 = I2 = I3 = 10, R = 3. The Gaussian noise level
parameter is set as k1 = 0.1. We also select c and k2 from the
sets c ∈ {0.1, 0.2} and k2 ∈ {0.3, 0.4, 0.5, 0.6, 0.7} to validate
the performance of our proposed method. The parameter L is
found as L = 2.8906. Subsequently, we also test the effective-
ness of our method on different levels of partially observed
data. Specifically, we set p ∈ {1, 0.9, 0.8}. The parameter
δ is set to 0.1. For a fair comparison, the low-rank tensor
completion method is first applied to benchmarks UPCA,
MPCA, UMPCA, and TROD, since they are not designed for
partially observed data.

C. Simulation Results

In this subsection, we demonstrate and analyze the results
from our simulation experiments. Figure 1 demonstrates the
estimated ARL1 values of different methods in Phase II for
the described simulation. According to Figure 1, our proposed
method outperforms other benchmarks in detecting the out-
liers. In other words, RSTCM exhibits the best performance
in the quick detection of abrupt changes. For example, when
k1 = 0.1, c = 0.2, p = 1, and k2 = 0.5, the average
run length of each method is as follows: RSTCM: 6.1, RTC:
8.2, TROD: 21.7, MPCA: 24.3, UMPCA: 20.8, UPCA: 43.7.
This indicates that the proposed robust tensor completion
methods can effectively capture anomalies due to its capacity
to model spatial and temporal characteristics of the data and
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Fig. 1. Average Run Length (ARL) of the proposed method in comparison to the benchmarks.

separate the outliers. More specifically, our proposed method
can detect the smaller changes (i.e., k < 1) faster (with a
smaller standard error) than all benchmarks in all cases. For
large changes (i.e., k > 2.5), the performance of all methods
is comparable. Among all benchmarks, UPCA indicates the
worst performance. Besides the fact that UPCA cannot capture
the temporal pattern of data, the main reason that UPCA fails
to detect small changes is that this method destroys the inner
structure of tensor data.

V. IMPLEMENTATION AND EMPIRICAL EVALUATION: NEW
YORK CITY TRAFFIC NETWORK DURING HURRICANE

SANDY

In this section, we implement the proposed monitoring
and change detection method using historical traffic data in
New York City (NYC). Using this dataset, we evaluate the
performance of the proposed solution in detecting unusual
traffic patterns in the NYC road network caused by Hurricane
Sandy in 2012. Hurricane Sandy was formed on October 22,
2012, and hit New York City on October 29, 2012. Even
though it was only a Category 1 hurricane when it made
landfall in the NYC area, considering the dense urban areas
that were affected, the storm caused major disruptions in many
infrastructure systems, including road networks.

Fig. 2. Hourly average pace of traffic during the selected four-week period
(October 14, 2012, to November 11, 2012).

We selected this case study to evaluate the performance of
the method because of three reasons. First, the NYC road
network is a good example of a complex traffic network
with complex interconnectivities generating HD traffic data.
Second, historical traffic data in NYC is publicly available.
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Fig. 3. Example of traffic data of two roads over 672 hours (October 14 to November 11, 2012). Data from both roads shows a significant level of missing
values. The period between two black dash lines shows hurricane Sandy’s duration in New York City.

Third, a series of studies have used this dataset to analyze
the impacts of the hurricane on transportation networks. Their
outcomes provide a benchmark to evaluate and validate the
results of our assessment.

The NYC historical traffic dataset, prepared by Donovan
and Work [63], contains hourly average travel time on each
road segment of the network. The average travel times were
estimated using the historical trajectory of nearly 700 million
taxi trips collected from more than 100,000 taxis equipped
with GPS trackers in NYC from January 2010 to December
2013. The NYC road network in the borough of Manhattan
consists of 8839 links (i.e., road segments) and 3910 nodes.
The dataset also includes the length of each road segment,
which allows us to calculate the hourly average speed and
pace (i.e., the inverse of speed) on each road segment.

As suggested by previous studies [17], [63], traffic condi-
tions in each road of the network are quantified using traffic
pace, which is calculated as travel time divided by the length of
the road segment. In this study, a subset of the data, including
a period of four weeks from October 14, 2012 (two weeks
before the hurricane) to November 11, 2012 (two weeks after
the hurricane), is used to analyze the impacts of the hurricane.
This subset of data forms a stream of 672 tensors representing
the traffic conditions for all the 8839 road segments during
the four-week time window. The daily average pace in a
normal day before and after the hurricane is around 0.16,
however, the daily average pace during the hurricane week
is 0.13 (see the figure 2). This dataset contains 32% missing
observations. Figure 3 shows the observed and missing data
in two road segments as an example. In this figure, the black
dashes indicate the approximate time of the hurricane, and
the unconnected lines (i.e., blue and red) denote that there
are missing values in between. This figure shows that the
percentage of missing observations considerably increased
when the hurricane hit the city.

Considering cyclical patterns in traffic pace during every
24 hour, we consider a sliding window of size 8839×24 with
a sliding step of s = 4 that moves across the complete matrix
of traffic data of size 8839 × 672. Therefore, 163 matrices of
size 8839×24 are finally obtained as samples to be monitored.
Next, the first week’s data, which contains 43 matrices, are
considered in-control samples. In-control samples are assumed

TABLE I
THE NUMBER OF HOURS BEFORE (-) OR AFTER (+) THE HURRICANE

LANDFALL EACH METHOD DETECTS UNUSUAL TRAFFIC PATTERNS

to show usual traffic patterns and are used to determine the
control limits for the EWMA control chart (known as phase
I). The remaining 120 samples may contain unusual and
anomalous traffic patterns and are tested for change detection
in the second phase of the statistical process control. The
parameters of the EWMA control chart are set as L = 3 and
λcc = 1 and δ is set as 0.1. The EWMA control chart and the
variations of the monitoring statistics (i.e., ∥S∥1) obtained by
our method are plotted in Figure 4.

The results indicate traffic patterns in the NYC network
experienced abnormal changes from sample 84 (i.e., October
29, 2012, at 9:00 PM) to sample 112 (i.e., November 3,
2012, at 12:00 PM). These findings are closely aligned with
the results from previous studies [16], [17], confirming the
validity and accuracy of our method in detecting disruptions
at the network level. It is worth noting that the previous
studies aggregate the data at the network level to handle
missing values and cannot identify the local disruptions. Our
proposed method directly accounts for missing values and
allows for fine-granularity analysis of the network. To evaluate
the performance of the proposed methods in the monitoring
of the traffic data at the network level, we compare it with the
benchmark methods (UPCA, MPCA, UMPCA and TROD)
presented in Section IV. Considering that these methods
cannot handle missing observations, we first apply low-rank
tensor completion to impute the missing values. Table I reports
the number of hours from the time of hurricane landfall (used
as a reference point) that each method detects network-level
disruptions. The results indicate that the proposed method
outperforms other benchmarks and can detect unusual traffic
patterns around 15 hours before the hurricane’s landfall.

Another major advantage of the proposed method in this
study is the ability to detect unusual local traffic changes
at the road segment level of granularity. Figure 5 shows the
NYC road network one day after the hurricane’s landfall. The
road segments highlighted in red were experiencing abnormal
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Fig. 4. The monitoring statistic based on the traffic data in New York City
(The blue line shows when hurricane Sandy landfalls).

Fig. 5. Gridlocks in the NYC road network one day after the Hurricane
Sandy landfall.

gridlocks. It should be noted that many roads during that
period of time did not carry a significant amount of traffic
since the hurricane disrupted almost all daily operations and
most citizens sheltered at their homes or evacuated before the
hurricane hit the city. However, some road segments, such
as those closer to the entrance of the Lincoln Tunnel and
the bridge to Roosevelt Island, experienced unusually heavy
traffic. The performance of the proposed method in detecting
local disruptions at the road segment level can be evaluated by
visually inspecting the time series of traffic pace in the road
segments. For example, the results of the proposed monitoring
method indicated that road segment 33362, which is part of
8th Avenue near the entrance of the Lincoln Tunnel, expe-
rienced an abnormal gridlock after the hurricane’s landfall.
Figure 6 (a) shows the hourly traffic pace in this road segment
during the four-week analysis period, validating the significant
shift in traffic pace variations. Figure 6 (b) shows the time
series of traffic pace in road segment 97082. This road segment
is part of 3rd Avenue in residential areas of the Upper East
Side. The time series does not show any significant shift in the

Fig. 6. Hourly traffic pace on two sample road segments with different levels
of disruptions during Hurricane Sandy. The blue dashed line denotes the start
of Hurricane Sandy.

variations of the traffic pace during the analysis period. This
observation is closely aligned with the results of the proposed
method that did not detect any traffic gridlock in this road
segment.

VI. CONCLUSION

The primary contribution of this study to the core
body of knowledge is to develop and empirically evaluate
a traffic monitoring solution for incomplete and partially
observed HD traffic data using a robust spatiotemporal tensor
completion-based monitoring (RSTCM) method. The pro-
posed method exploits the spatial and temporal patterns of the
data to complete and decompose the tensor data in the sum
of low-rank and sparse tensors. The sparse tensor represents
the outliers and is used to define monitoring statistics to
be monitored using an EWMA control chart. We examined
the performance of the proposed method using two methods:
(1) a simulation analysis using synthetic data and (2) an
empirical assessment using historical traffic data in NYC to
assess the method’s performance in detecting congestions and
unusual traffic patterns caused by Hurricane Sandy in 2012.
The outcomes of both simulation and empirical assessments
confirmed the accuracy and efficacy of the proposed method.
The proposed method uses a sliding window of time to create
the tensor of traffic data and assumes an autoregressive under-
lying model, which may limit the memory of the algorithm
in capturing historical patterns. To address these limitations,
future studies can extend the proposed method by incorpo-
rating deep neural network methods, such as long short-term
memory (LSTM), to capture both short and long-term patterns
in the underlying dynamics of the data. The LSTM will serve
as a constraint on the smooth part of the model.
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