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In the minimum eigenvalue problem, we are given a collection of vectors in R¢, and the goal is to pick a subset
B to maximize the minimum eigenvalue of the matrix },,_; v,07. We give a O (no(d log(d)/ 52))-time randomized

algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least (1 — ¢)

times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic
version of Kadison-Singer problem.

1. Introduction

Subset selection problems with spectral objectives offer a natural
model for studying problems in a variety of fields, including numerical
linear algebra [1], graph theory [2], convex geometry [3,4], resource
allocation [5,6], and optimal design of experiments [7-9], all under a
single umbrella.

In this work, we consider the minimum eigenvalue problem. In an
instance of a minimum eigenvalue problem, we are given a collection
of n vectors vy,...,v, € R4, and the goal is to pick a subset B C [n]
of given vectors to maximize the minimum eigenvalue of the matrix
Yicn Ui vl.T. The selected set B must satisfy additional constraints such
as cardinality, partition, or more generally matroid constraints. While
much of the focus in previous works [7-9] has been on cardinality con-
straints, in this work, we consider partition constraints, but note that
with some additional work our approach can be extended to general
matroid constraints. Partition constraints are enough to model the al-
gorithmic version of the Kadison Singer problem [10,11] as well as the
Max-min allocation problem [5,12,13,6,14] as a special case of the min-
imum eigenvalue problem.

The “discrepancy” formulation of the Kadison-Singer problem
(shown to be equivalent to the original formulation in [15] and proved
in [10]) states that given a set of vectors vy, ...,v,, € R¢ with lvi]| <@
and ), v; UiT = 1, there exists a partition of [m] into two subsets .S}, .S,,
such that for every j, Y, UI-U‘T spectrally approximates I,;/2 to an
additive factor of O(a). Algorithmically, finding such a partition is

* Corresponding author.

equivalent to solving an instance of the minimum eigenvalue maxi-
mization problem under partition matroid constraints (see Section 2.2).

Another classical application of the minimum eigenvalue problem
arises in the area of optimal design of experiments in statistics [16,7].
The goal in the design of experiments is to select a subset of vectors .S
from a given list of vectors {vy,...,v,} such that certain measures of the
covariance matrix (Zie S UI-U’T)_I are small. In particular, minimizing
the maximum eigenvalue of the covariance matrix, classically known as
the E-design problem in statistics, is exactly the minimum eigenvalue
problem. While much of the previous work has focused on the case when
the selected set of measurements .S must satisfy cardinality constraints,
our work generalizes this problem to be studied under general matroid
constraints.

1.1. Our results and contributions

In this note, we present an approximation algorithm for the mini-
mum eigenvalue problem for partition constraints.

Theorem 1. For any ¢ > 0 there is an O (no(d log(d)/ 52)) -time algorithm

which, given a collection of vectors v;; € R4 for i € [k] and j € P, returns
an assignment o : [n] — [n] such that with probability at least 1 — d -4

k
T
}‘min <Z Uiﬂ(i)vio'(i)>

i=1
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k
-
>(1-e)- max Amin (Z Uia*(i)uia*(i)) ’

i=1

Our result generalizes to give a PTAS (for constant dimension) when
the objective is a general matrix function satisfying certain technical
properties. In particular, this implies that a similar result as in Theo-
rem 1 is achievable when the objective is to maximize the determinant of
Yep Uiv] or to minimize any norm of the eigenvalues of (3, v;v7) 7.
We use S‘fr to denote the set of d X d positive semidefinite matrices.

Theorem 2. Suppose we are given a partition P = (Py, ..., P,), and a col-
lection V of vectors v;; € RY fori €[kl and j € P,. Let f : Si > Rbea
concave, monotone, and homogeneous function given with a value and first
order oracle.

For any e > 0, there is an O (no(”’ log(d)/€?) )-time randomized algorithm,
which takes (V, P, ) as input and returns an assignment o : [k] — [n] such
that with probability at least 1 —d =,

k k
T T
I <Z ”ia(i)"mn) 2 (1-¢€)-max f (Z Ui!f*(l')”m*(i)) :
i=1 i=1

Although Theorem 2 is stated in terms of maximizing concave func-
tions, our algorithm can also be applied to minimize monotone and
homogeneous convex functions (e.g., trace ((X,cp v;v; )~!)) by consid-
ering the natural convex relaxation of the function over the matroid base
polytope and using the same rounding strategy. This allows us to model
a variety of experimental design problems by selecting an appropriate
objective function, and using a uniform matroid to model the cardinality
constraint. For example, with the determinant or trace objective men-
tioned earlier, we can get a PTAS for the D- and A-design problem in
constant dimension. The extension from the minimum eigenvalue to a
more general objective is not a special property of our particular algo-
rithm. For example, a similar connection was made in [7] in the context
of experimental design.

Using the more general technique of pipage rounding, the result can
be extended to all matroids. We give an overview of the approach in
Section 2.1 and the full details are available in the arxiv version [17].

Theorem 3. Suppose we are given a collection V of vectors v; € R? for
i € [n] and a matroid M = ([n], I) with an independence oracle. Let f :
S‘i :— R be a concave, monotone, and homogeneous function given with a
value and first order oracle.

O(d log(d)/?)

For any € > 0 there is an O (n ) -time algorithm which, takes

(Y, M, f) as input and returns a set B € T such that with probability at least
1—d™*

T . T
f<ZU,-Ul.>2(1 €) lrglle;xlf<ZU,Ui>.

i€eB i€B*

We also show the application of our result to obtain an algorithmic
version of the Kadison-Singer problem [10] for constant dimension. We
slightly improve the run time compared to the recent work [11].

Corollary 1. Suppose we are given collection of vectors U" = (uy, ..., u,) €
RY with ||u;||> < « for any i € [n] and ZL] u,-u’T =1, and a constant ¢ > 0
such that there exists a set T* satisfying

(% —C\/;)Idﬁ > wul < (%“'C\/;)Id'
ieT

For any e > 0, there exists a randomized algorithm such which given U" and
¢ as input, returns a set T' such that

(1_6).(%-gﬁ)ldﬁzu[ufﬁ(He)-(%+c\/§)ld,

ieT
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with probability at least 1 — O(d~*). The run time of the algorithm is
O(nO(dlogd/ez)).

1.2. Related work

The minimum eigenvalue problem with partition constraints can be
interpreted as a generalization of the max-min allocation problem. In
the case of cardinality constraints, it can also model problems from ex-
perimental design and spectral sparsification. We give an overview of
prior work for these special cases.

Max-min allocation: In the max-min allocation problem, we are given a
set [d] of agents and a set [n] of items where agent j € [d] has valuation
h; ;= 0 for item i. The goal is to select an assignment o : [n] — [d] which
maximizes

This can be seen as a special case of the minimum eigenvalue problem
with partition constraints.

Bansal and Sviridenko [18] introduced the configuration LP as a
relaxation for the max-min allocation problem but showed that it has
an integrality gap of Q(\/Z) [18]. Asadpour and Saberi [5] gave a
rounding scheme for the same LP, which achieves an 0(\/5 log? n)-
approximation. This was later improved by Chakrabarty et al. [6] to an
O(n®)-approximation for any e € Q(loglogn/logn) by iteratively con-
structing new instances with smaller integrality gap.

Experimental design (E-optimal design): Even with cardinality con-
straints (uniform matroid of rank k), the minimum eigenvalue problem
is NP-hard [19]. Allen-Zhu et al. [7] showed that it is possible to de-
terministically find a (1 — ¢)-approximation so long as k > Q(d /e?)
by rounding the natural convex relaxation. They also conjectured that
this requirement was necessary. This conjecture was confirmed in [8],
where they showed an integrality gap instance for the convex relax-
ation. Recently Lau and Zhou [9] have built on the regret minimization
framework from [7] to show that a modified local search algorithm with
a “smoothed” objective works as long as there is a near-optimal solution
with a good condition number.

Since our algorithm also gives approximations for other objectives
we can also make comparisons to other experimental design problems.
In D-design the objective is select a collection of k vectors to maxi-
mize f : X — det(X) and in A-design the goal is to minimize f : X —
trace(X~1). In both cases there are combinatorial (1 +¢)-approximations
when k > Q(d/¢) [20,9]. This requirement on k is weaker than if prior
results for E-design are extended directly. The approximations are much
worse for k close to d. For example a d-approximation for A-design when
k=d [8].

Spectral sparsification and Kadison-Singer The problem of rounding the
natural convex programming relaxation for the minimum eigenvalue
problem is closely related to spectral sparsification [2] and the Kadison-
Singer problem [10]. In spectral sparsification [2], the goal is to pick a
small subset of vectors S C [n] such that ), ¢ wivivg— spectrally approx-
imates Y, ieln] v,-vl.T for some weights w;. In the cardinality constrained
minimum eigenvalue problem, rounding the convex programming so-
lution involves finding a small set .S, such that Y, ¢ v; U,.T spectrally
approximates Z[e[n] x,»v,»v,.T, where the weights x; form the solution
to the convex relaxation. Indeed [7] essentially build on this connec-
tion to obtain their results for the E-design problem discussed earlier.
The Kadison-Singer problem [10] is closely related to the minimum
eigenvalue problem under a partition matroid constraint. We utilize
this connection in Corollary 1 to give an algorithmic version of the
Kadison-Singer problem for constant dimensions. More generally, the
Kadison-Singer problem can be reformulated as showing that the inte-

grality gap of the natural relaxation of the minimum eigenvalue problem
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2
under partition matroid constraints is at most 1/(1 — \/E ) if the length
of each vector is at most O(¢). We discuss this connection in Section 3.

2. The algorithm for partition matroids

Suppose that our ground set is split into k parts E = P; U--- U P, with
each part containing n elements, and we have a collection of vectors v;;
for i € [k] and j € P,. The goal is to select an element o (i) € P, for each
i to maximize A, (Zf;l Uia(i)UI,(,-))

We can construct the natural convex relaxation of this problem as
follows. For each i € [k] and j € P,, we add a decision variable x; I which
represents whether we select the vector v; ; from part P, i.e., if o(i) = j.
Then we get the convex program

max Amin(X)
X= Z Z xlj 1/ ,j
i=1jEP, (CP)
Zx,-jzl, Vi e [k]
jep;
x>0

The constraint Y, jep, Xij = 1 ensures that we have a probability dis-
tribution over the possible assignments within each part in the optimal
solution.

Given an optimal solution x* with value OPT, a natural round-
ing strategy is to round independently within each part. Following this
rounding strategy, we get a rank 1 random matrix M, for each part P,
with

Pr(M, = v,-jviTj)zxi*j, VjEP,.

The following matrix concentration inequality bounds the probability of
failure of this rounding strategy.

Theorem 4. [21, Theorem 5.1.1] Consider independent random matrices
M,...,.M; € Si. Set

e e])

If Anax(M;) < R for all i € [k] a.s. then

><(1—€)/4mm>
P
Sd.exp<m>,
2R

If we round according to the optimal solution x* then

i=1 jeP;

S0 piin = OPT, and since for our particular case M; arerank 1, R=
max; Ap,y (M;) = max;; ||lv;; ||I%. To bound the failure probability, we want
R =~ €2 /log(d), which in turn requires that max;; ||v;; 12 = O(e2/ log(d)).
This is a very strong assumption on an instance and thus the above ap-
proach does not work directly. We now discuss how to remedy it by the
following procedure.

The plan is to “guess” a suitable change of basis such that all the vec-
tors in the support of our optimal solution have a small norm. This will
be useful because of the following standard, but slightly more flexible,
version of the preceding matrix concentration inequality.

max

max

Corollary 2. Let A be a positive definite matrix and consider independent
random matrices M{,..., M, € Si. Define
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e )

If A (A™Y2M,; A=1/2) < R for all i € [k] a.s. then

max

k 2
—e2y,
Pr(ZM,.;t(l —e)ymm-A> Sd—exp(T”M).
i=1

Again, since M; is rank 1 for our case, we have R =
maX;e() Amax(A7/2M;A71/?) = max, v A”"v;;. So, to use this corol-
lary, we first need to find a matrix A such that viTj Ay, ;= 0(e?/ log(d))
for all [i] € [k],j € P;. We will only need to consider matrices A of a
specific form that uses the input vectors.

Given a subset S C E, we define Ag 1=} o5 Uy u’ and con-
sider the set of long vectors in the norm induced by Ag: L(S) :=

{(1 J)EE\S: UTA vy 10102(‘1) } For a fixed set S, the following

convex program ensures that S is included in the solution and no “long”
vectors from L(.S) are included in the solution.

max A, (X)
X= Z Z i‘ IJU;S
i=1jEP;
> x;; =1, Vie[k] (CP(S))
JEP;

x;; =0, V(i j) € L(S)
x; =1, VGi,j)eS
x>0

The additional constraints exclude all long vectors outside of .S, and
force us to include all elements of .S (which may also be long). Thus, all
fractional variables correspond to short vectors and we can now use the
flexible matrix concentration inequalities to randomly round the opti-
mal solution.

But, it is not clear that there is a good choice of S for which the
convex program (CP(S)) is still a relaxation of the original problem. Our
main lemma shows that there exists a suitable set .S that is not too large.

Lemma 1. For any set T and a set of vectors {v; : i € T} in RY such
that Y ,u is invertible, there exists a subset S C T such that |.S| =
oW log(d)/ez), Ag=Dcs Ui ul.T is invertible, and for all i € T\ S,

2

U.TAE1 v; < L
! 101log(d)

The proof of this lemma is inspired by the local search algorithm
of [20] which they used to find an approximately optimal solution to the
determinant maximization problem. Their algorithm is combinatorial,
and while they never do any rounding, they do rely on a convex program
for the analysis.

At first glance, it may not be apparent why a subset satisfying the
conditions of Lemma 1 should exist. However, in the proof, we show
that any subset of T that is locally optimal with respect to a local search
criteria indeed satisfies the guarantees of Lemma 1.

Proof of Lemma 1. We consider the local search process of [20]. Start-
ing with a set .S of size # := 10d log(d)/e* + d — 1 such that Ag =
Yies Ui UT is invertible, we apply the following update rule. For any
jE T\S and i € S, if det(Ag) < det(Ag — v; u +v; UT), update S =
(S\{iHhu{j} and iterate.

Let .S C T be alocally optimal (under single element swaps) solution
for this process (such an .S corresponds to the locally optimal solution
determinant maximization problem subject to the cardinality constraint
[S|<¢),andlet A=Ag =Yg vivl.T. More concretely, this means that
forallie .S and j € T\S,

det(A) > det(A —v; u +v; v; )
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We calculate the ratio of right-hand side with the left-hand side using
the matrix determinant lemma,

det(A)™" - det(A — v;v] +v; u;.r)

=det(4)7! - det <A+ [v,— vj] [—v,- vj]T)

=det (12 + [—UI- Uj]TA_] [v,- Uj]>

=(1- U;.rA_lUi)(l + v}—A_lvj) + (U?—A_lvj)z.
So local optimality implies that for every i € S and j ¢ S, (1 —
U[TA‘IU,-)(I + U}—A_IUJ-) + (U?—A_ll}j)z < 1. Rearranging this inequality

we get

T 4—1 T 4-1 T 41 T 4—1,, 32
UJ.A v;—(v; A Ui)~(l)jA vy)+; A7 ;)

<ola™ly;. )}
Note that
2 U;.'—A_lui = Z trace(u;.rA_lv,.)
ies ies
= Z trace(v; U;.'—A_l) = trace(AA_l) =d

ieS
and, forall j €T,
Z(viTA’luj)2 = Z vaA’luiTU,»A’lvj
ies ieS
o Ta-l g a1, T 41
_ujA AA Uj—UjA v;.
So for a fixed j € T\.S, summing equation (1) over all i € S implies
-0l A —d vl A7, + UJ.TA‘1 v; < d. Rearranging, we see that for
any j €T\S,
2
vTA < d = € R
J T=¢—-d+1 10log(d)

where the last equality follows from the choice of

¢ =10dlog(d)/e* +d —1. [

We will apply this lemma to the set T = {v;,+(;y : i € [k]} where
o™ is the choice function that maximizes the minimum eigenvalue, i.e.,
when T contains the vectors from an optimal integral assignment. In
particular, we get the following corollary.

Lemma 2. There is a subset S C E such that | S| = O(d log(d)/€?), and the
convex program (CP(S)) is a relaxation for the minimum eigenvalue problem.

As d is a constant, the size of the set .S we search for is also con-
stant. Thus, there are at most O(n01o(@)/e*)y possible choices for S.
We will consider each choice in turn to guess the correct set. Note that
trying every set of the appropriate size will be the dominant factor in
determining the algorithm’s runtime.

The following lemma proves that for any fixed subset .S, rounding the
optimal solution to (CP(S)) gives a good approximation to the optimal
value of (CP(S)).

Lemma 3. Let .S C E be an independent set, and let x be a feasible solution
to (CP(S)). Then rounding randomly in each part outputs an assignment
o : [k] = E with o(i) € P, such that

k k

T T
2 Vio@ iy = (1 =€)+ D) D xij 00
i=1 i=1 jeP;

with probability at least 1 — O(d~™*).

— Yk T : : T . .
Proof. Let X =37, ¥ cp X;; v;;V,;. The matrix X contains v;;v;; with

- . T T y—1
coefficient 1 for every (i,j) € S. Thus X > ZieS v;iv; 5 SO U; X"y <
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m for all j ¢ L US. For the purposes of the analysis, for every

Jj € S we can replace the vector v; with (v] X~1v;) - 1/10log(d)/e?
copies of the same vector scaled down to have squared-length at most
€2 /(101og(d)) with respect to X. Since all elements of S get value 1 in x,
we can similarly extend the vector x so that it has a 1 in all the copied en-
tries. Since these values of x are deterministic, nothing changes about
the resulting distribution over matrices, but we can now assume that
U;;X_IU‘-/- < €2 /(101log(d)) for all (i, j) in the support of x.

Next, define random matrices M, ..., M, such that for any i € [k],

Pr (Mi =y U;;) = x;; for all j € P;. We then apply Corollary 2 with
A = X on random matrices M, ..., M. Since x is not supported on L,
2
— -1/2p7 x-1/2y < €
R max Apax X T/ M X7 ) < 71010g(d) .

In addition, as E (}; M,) = X by definition, we have i, = 1.
Thus, if 6 : [k] = E is the choice function obtained by independent
rounding,

k
.
Pr, [Z Vis(Vin(i) Fd-eX
i=1
<d-exp(=5logd)=d~*. O

Combining this lemma with the earlier guarantee that there exists
a set .S of reasonable size such that (CP(S)) is a relaxation, we get the
following algorithm: try all possible choices for the set .S and return the
solution with the best objective.

Algorithm 1 Algorithm to find an approximation to OPT.

1: Input: Partition matroid M with k parts P, ..., P,

2: for each S C [n] such that |.S| = 10d log(d)/e> +d — 1 do

3 x* « optimal solution of (CP(S)) for matroid M

4: For each i € [k], set o4(i) = j with probability xl,*/.

5: end for

6: Return the assignment function oy which maximizes 4, ( i Viag(i) U;I;y(i))
over all choices of .S

We will prove Theorem 2, from which Theorem 1 follows as a special
case. The only difference in the algorithm is that we solve the convex
program (CP(S)) with a concave, monotone, homogeneous function f
as the objective instead of A,;,. We will be able to apply Lemma 2 since
its proof makes no reference to the objective function, only the optimal
solution, and we will use Lemma 3 without modification.

Proof of Theorem 2. By Lemma 2 there is a set S C E with |S| =
O(d logd /€?) such that (CP(S)) is a relaxation.

Let x* be the optimal solution of (CP(S)) and let 6* be the choice
function of the optimal basis for the integral problem (both with objec-

tive f). Since (CP(S)) is a relaxation, we have f (Zf;l U,»J*(i)viTa* (i>> <

f( ijx:‘jv,-jv;;)

Lemma 3 implies that with high probability, the choice function
obtained by rounding x*, oy, is a good approximation to (CP(S)). So
combining Lemma 3 with the previous inequality gives

k
T
f <Z Ufo's(i) Uios(i)>

i=1

>(l—¢)-f <in*jviju;;>
ij
k
2(l-e)-f (Z U[U*(f)UIa'*(i)> ;

i=1
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with probability at least 1 — d*. Since we iterate over all choice func-
tions in step 6 of Algorithm 1, we will output a choice function ¢ which
is at least as good as o g with the same probability. []

2.1. General matroid constraints

In the general form of the problem, we are given a collection of vec-
tors vy,...,v, € R? and a matroid M = ([n], I), and the goal is to find
a basis B € T which maximizes 4., (X;cp viv; )-

For a general matroid, the idea of finding a linear transformation
under which all elements in the optimal solution have a small norm
generalizes easily. So we can use the same approach of first guessing a
set S C E on a reasonable size and then solving the convex relaxation
of the problem conditioned on .S being included in the solution.

Given a subset S C [n], we can again set Ag =, ¢ vivlT, and con-
sider the set of long vectors:

2
LS)=Riem\S:v ATl > ——— V.
() {’ [n\S: 07 A v > 1510e@)
For a matroid M, let P(M) C [0, 1]" denote the matroid base polytope.
Then the following is the natural convex programming relaxation which
excludes the “long” vectors.
max A, (X)
n
X=Yx;-v
i=1
x € P(M)
x; =0, Vie L(S)
x;=1,VieS
x>0

ij U;;
(CP(S)

This convex program can be solved in polynomial time using an inde-
pendence oracle. Just like in the partition case, Lemma 1 guarantees
that there is a set .S for which (CP(S)) is a relaxation for the minimum
eigenvalue problem. As before, after solving (CP(S)), we can guarantee
that all the vectors in the fractional support of the optimal solution will
have a small norm with respect to Ag.

The challenge in extending the earlier approach to general matroid
constraints comes from the rounding step. For a partition matroid, we
could simply round the fractional optimum of (CP(S)) independently in
each part to obtain a basis. However, for more general constraints, it is
not so clear how to round a fractional solution to a basis.

Instead of rounding independently, we will use the technique of pi-
page rounding to find a basis.

Algorithm 2 Randomized Pipage Rounding.

1: Input: Point x € P(M), where P(M) is a matroid base polytope
2: while x is not integral do
3: a,b « distinct elements of [n] s.t. 3¢ > 0 with x + e(e, — e,) € P(M)
4 ¢ —min{y>0:x—yle, —e,) € P(M)}
5 h<max{y>0:x+yle,—e,) € P(M)}
- x—C(e,—e,) W.p.C[/(C+h)
X+ h(e, —e,) w.p. h/(€+h)
7: end while
8: Return basis B of M with indicator vector x € P(M)

The following lemma is the lower-tail version of the same concen-
tration inequality proved in [22]. The complete details of the proof can
be found in the arxiv version [17].

Lemma 4. Let P(M) be a matroid base polytope and x € P(M). Let
M, ..., M, be self-adjoint matrices that satisfy A, (M;) < R. Let u =
Amin (2 iet) XiM, [). If randomized pipage rounding (Algorithm 2) starts at
x and outputs the characteristic vector of a basis B of M, then we have

—e2u
Pr ZMiS(l—S)'M <d-exp 7R .

i€B
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We use this lemma to generalize our earlier approach to all matroids.

Lemma 5. Let S C E be an independent set in M and let x be a feasible
solution to (CP(S)). Then pipage rounding starting at x* outputs a basis B
such that

Pr Zviu;r;f(l—e) inviU,T <d™

i€B i€[n]

The proof is identical to that of Lemma 3, except we use the matrix
concentration inequality from Lemma 4.

2.2. Application: algorithmic Kadison-Singer problem

The Kadison-Singer conjecture was resolved in [10] using the follow-
ing theorem which can be interpreted as a generalization of Weaver’s
conjecture [15].

Theorem 5. [10, Corollary 1.5 with r =2] Let u, ... ,u,, € RY be vectors
such that 37" wu] =1 and ||u;||* < a for all i. There exists a set T C [m]
such that

(% —3\/2) I< Y wul < (% +3\/5) I,.

ieT

Their proof is based on analyzing interlacing families of polynomi-
als and does not lead to an efficient algorithm to find such a subset
T. In [11], they introduce an algorithmic form of the Kadison-Singer
problem, which asks to find such a subset assuming it exists. For a con-
stant ¢ > 0 and a set of vectors uj, ...,u, € R? such that ||y < a,
> u,-u,.T = I where there exists a subset T' C [m] satisfying

(%—cﬁ)lﬁZuiu?$<%+C\/&), (2)
ieT

the goal is actually to find a set T C [m] which satisfies the above con-
dition. This problem is FNP-hard when ¢ =1/ (4\/5) for general values
of d [11, Theorem 2].

Their main result [11, Theorem 1] is an algorithm with running time

) (('Z) ‘ poly(m,d)) where

k=0<%log(d)log( ! >>
€ cya

which returns a set T’ C [m] such that
1 1
(l—e)(i—cx/;>15Zuiuz—f(l+e)(§+c’\/a)l, &)
ieT’

In this section, we will show how to use the rounding technique for
partition matroids to give a simpler algorithm that achieves the same
guarantee with the same run time, except we save the small dependence
on log(1/c \/E) in the exponent.

The main idea of the proof is not new; the central construction is es-
sentially the same as the one used in [10] to prove Corollary 1.5 and
deduce Weaver’s conjecture from their main result. We make a few aes-
thetic modifications to more closely match our prior setup.

Proof of Corollary 1. Given vectors u, ...,u, € R?, we construct an
instance of the minimum eigenvalue with partition constraints as
follows. Let E = (1,2} X [m], with m parts Py,...,P, so that P, =

{(i,1),(i,2)} for i € [m]. For each i € [m] define the vectors

Ui =

0

u"] €R*, and v, = [l?] e R,
i

To see how v and u are related, note that for any 6 € [0,1/2) there is a
choice function ¢ : [m] - {1,2} such that
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m
1 T
i=
if and only if there is a set T' C [m] such that
1 T 1
——5)15 ‘.5(—+5)1. 5
(2 iez;”’”' 2 ®

Given o satisfying (4), let X; 1= Y. _ wu] and X, := ¥, o uul.

Then X and X, are respectively the first and second diagonal d X d
1 .

block of X", U,-o.(,-)l);l;(l.). Therefore (5 - 6) Ly <Y Uig@vr . if and

io(i)
only if X, > (% - 6) 1; and X, > (% —6) 1,. In addition, since X +
X, = 1, this is equivalent to

(% —5)5,5 3w =1, - X, < (%+5)Id.
ito(i)=1
We then use Algorithm 1 to find a (1 — ¢) approximate solution ¢ :
[m] — {1,2} to input M and vectors v; e Since we assume there is a
set T satisfying (2), Theorem 1 implies that with probability at least
1-0d™*), Algorithm 1 will return a choice function ¢* such that (1 —
€) (% - cﬁ) Ly =Y", via*(i)vl*(i), and we will return the set 7/ =
{ie[m]:o*()=1}.
From the equivalence between (4) and (5), the set T/ = {i € [m] :
o(i) = 1} satisfies (3)

(1—6)(%—C\/E)Id5 Zuiui5(1+6)<%+0\/;>ld. 0O

ieT’
3. Conclusion and remarks
The resolution of the Kadison-Singer problem in [10] using the in-
terlacing families of polynomials implies the following existential result

about maximizing the minimum eigenvalue under partition matroid
constraints.

Theorem 6. [10, Theorem 1.4] For € > 0 and vectors {v;; };c(x jein) € R4

with ||v,-j||2 <efordli€[k],j€ [n], if there exist x;; > 0 such that
k n n

Zinj-uijv;z.zld and injzlforallie[k],

i=1 j=1 j=1

then there exists a choice function o : [k] — [n] such that
k

A =e? I = Z Vig(Vipsy S (1 + Ver -1,
i=1

We can state this result equivalently as an “existential” rounding
result. When ||v;; |2 < e, Theorem 6 implies that the integrality gap of
the natural convex relaxation (CP) for the minimum eigenvalue problem
with partition constraints is only 1/(1 — \/2)2. It is an open problem to
efficiently round the solution to the convex relaxation with comparable
guarantees for any dimension d.

More generally, the problem of designing an approximation algo-
rithm for the minimum eigenvalue problem under partition or ma-
troid constraints in arbitrary dimensions remains wide open. However,
checking whether there is a solution with a non-zero objective can be
solved in polynomial time through matroid intersection. Recently, there
has been significant progress in the case of maximizing the determi-
nant [4,3,23-27], but it remains open whether those techniques can be
applied to the minimum eigenvalue problem.
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