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In the minimum eigenvalue problem, we are given a collection of vectors in ℝý , and the goal is to pick a subset 
ý to maximize the minimum eigenvalue of the matrix 

∑
ÿ∈ý ÿÿÿ

⊤
ÿ
. We give a ÿ

(
ÿÿ(ý log(ý)∕ÿ

2)
)
-time randomized 

algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least (1 − ÿ)

times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic 
version of Kadison-Singer problem.

1. Introduction

Subset selection problems with spectral objectives offer a natural 
model for studying problems in a variety of fields, including numerical 
linear algebra [1], graph theory [2], convex geometry [3,4], resource 
allocation [5,6], and optimal design of experiments [7–9], all under a 
single umbrella.

In this work, we consider the minimum eigenvalue problem. In an 
instance of a minimum eigenvalue problem, we are given a collection 
of ÿ vectors ÿ1, … , ÿÿ ∈ ℝ

ý , and the goal is to pick a subset ý ⊆ [ÿ]

of given vectors to maximize the minimum eigenvalue of the matrix ∑
ÿ∈ý ÿÿÿ

⊤
ÿ
. The selected set ý must satisfy additional constraints such 

as cardinality, partition, or more generally matroid constraints. While 
much of the focus in previous works [7–9] has been on cardinality con-
straints, in this work, we consider partition constraints, but note that 
with some additional work our approach can be extended to general 
matroid constraints. Partition constraints are enough to model the al-
gorithmic version of the Kadison Singer problem [10,11] as well as the 
Max-min allocation problem [5,12,13,6,14] as a special case of the min-
imum eigenvalue problem.

The “discrepancy” formulation of the Kadison-Singer problem
(shown to be equivalent to the original formulation in [15] and proved 
in [10]) states that given a set of vectors ÿ1, … , ÿÿ ∈ℝ

ý with ‖‖ÿÿ‖‖ f ÿ

and 
∑

ÿ ÿÿÿ
⊤
ÿ
= ýý , there exists a partition of [ÿ] into two subsets ÿ1, ÿ2, 

such that for every ÿ, 
∑

ÿ∈ÿÿ
ÿÿÿ

⊤
ÿ
spectrally approximates ýý∕2 to an 

additive factor of ÿ(ÿ). Algorithmically, finding such a partition is 
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equivalent to solving an instance of the minimum eigenvalue maxi-
mization problem under partition matroid constraints (see Section 2.2).

Another classical application of the minimum eigenvalue problem 
arises in the area of optimal design of experiments in statistics [16,7]. 
The goal in the design of experiments is to select a subset of vectors ÿ
from a given list of vectors {ÿ1, … , ÿÿ} such that certain measures of the 

covariance matrix 
(∑

ÿ∈ÿ ÿÿÿ
⊤
ÿ

)−1
are small. In particular, minimizing 

the maximum eigenvalue of the covariance matrix, classically known as 
the ý-design problem in statistics, is exactly the minimum eigenvalue 
problem. While much of the previous work has focused on the case when 
the selected set of measurements ÿ must satisfy cardinality constraints, 
our work generalizes this problem to be studied under general matroid 
constraints.

1.1. Our results and contributions

In this note, we present an approximation algorithm for the mini-
mum eigenvalue problem for partition constraints.

Theorem 1. For any ÿ > 0 there is an ÿ
(
ÿÿ(ý log(ý)∕ÿ

2)
)
-time algorithm 

which, given a collection of vectors ÿÿÿ ∈ ℝ
ý for ÿ ∈ [ý] and ÿ ∈ ÿÿ returns 

an assignment ÿ ∶ [ÿ] → [ÿ] such that with probability at least 1 − ý−4

ÿmin

(
ý∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

)
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g (1 − ÿ) ⋅max
ÿ∗

ÿmin

(
ý∑

ÿ=1

ÿÿÿ∗(ÿ)ÿ
⊤
ÿÿ∗(ÿ)

)
.

Our result generalizes to give a PTAS (for constant dimension) when 
the objective is a general matrix function satisfying certain technical 
properties. In particular, this implies that a similar result as in Theo-
rem 1 is achievable when the objective is to maximize the determinant of ∑

ÿ∈ý ÿÿÿ
⊤
ÿ
or to minimize any norm of the eigenvalues of (

∑
ÿ∈ý ÿÿÿ

⊤
ÿ
)−1. 

We use ÿý
+
to denote the set of ý × ý positive semidefinite matrices.

Theorem 2. Suppose we are given a partition  = (ÿ1, … , ÿý), and a col-
lection  of vectors ÿÿÿ ∈ℝ

ý for ÿ ∈ [ý] and ÿ ∈ ÿÿ. Let ÿ ∶ ÿý+ ∶→ℝ be a 
concave, monotone, and homogeneous function given with a value and first 
order oracle.

For any ÿ > 0, there is an ÿ
(
ÿÿ(ý log(ý)∕ÿ

2)
)
-time randomized algorithm, 

which takes ( ,  , ÿ ) as input and returns an assignment ÿ ∶ [ý] → [ÿ] such 
that with probability at least 1 − ý−4,

ÿ

(
ý∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

)
g (1 − ÿ) ⋅max

ÿ∗
ÿ

(
ý∑

ÿ=1

ÿÿÿ∗(ÿ)ÿ
⊤
ÿÿ∗(ÿ)

)
.

Although Theorem 2 is stated in terms of maximizing concave func-
tions, our algorithm can also be applied to minimize monotone and 
homogeneous convex functions (e.g., trace

(
(
∑

ÿ∈ý ÿÿÿ
⊤
ÿ
)−1

)
) by consid-

ering the natural convex relaxation of the function over the matroid base 
polytope and using the same rounding strategy. This allows us to model 
a variety of experimental design problems by selecting an appropriate 
objective function, and using a uniform matroid to model the cardinality 
constraint. For example, with the determinant or trace objective men-
tioned earlier, we can get a PTAS for the D- and A-design problem in 
constant dimension. The extension from the minimum eigenvalue to a 
more general objective is not a special property of our particular algo-
rithm. For example, a similar connection was made in [7] in the context 
of experimental design.

Using the more general technique of pipage rounding, the result can 
be extended to all matroids. We give an overview of the approach in 
Section 2.1 and the full details are available in the arxiv version [17].

Theorem 3. Suppose we are given a collection  of vectors ÿÿ ∈ ℝ
ý for 

ÿ ∈ [ÿ] and a matroid  = ([ÿ], ) with an independence oracle. Let ÿ ∶

ÿ
ý
+ ∶→ℝ be a concave, monotone, and homogeneous function given with a 
value and first order oracle.

For any ÿ > 0 there is an ÿ
(
ÿÿ(ý log(ý)∕ÿ

2)
)
-time algorithm which, takes 

( , , ÿ ) as input and returns a set ý ∈  such that with probability at least 
1 − ý−4

ÿ

(
∑

ÿ∈ý

ÿÿÿ
⊤
ÿ

)
g (1 − ÿ) ⋅ max

ý⋆∈
ÿ

(
∑

ÿ∈ý⋆

ÿÿÿ
⊤
ÿ

)
.

We also show the application of our result to obtain an algorithmic 
version of the Kadison-Singer problem [10] for constant dimension. We 
slightly improve the run time compared to the recent work [11].

Corollary 1. Suppose we are given collection of vectors  = (ÿ1, … , ÿÿ) ∈
ℝ
ý with ‖ÿÿ‖2 f ÿ for any ÿ ∈ [ÿ] and 

∑ÿ

ÿ=1 ÿÿÿ
⊤
ÿ
= ýý and a constant ý > 0

such that there exists a set ÿ ∗ satisfying
(
1

2
− ý

√
ÿ

)
ýý ⪯

∑

ÿ∈ÿ ∗

ÿÿÿ
⊤
ÿ
⪯
(
1

2
+ ý

√
ÿ

)
ýý .

For any ÿ > 0, there exists a randomized algorithm such which given  and 
ý as input, returns a set ÿ such that

(1 − ÿ) ⋅
(
1

2
− ý

√
ÿ

)
ýý ⪯

∑

ÿ∈ÿ

ÿÿÿ
⊤
ÿ
⪯ (1 + ÿ) ⋅

(
1

2
+ ý

√
ÿ

)
ýý ,

with probability at least 1 − ÿ(ý−4). The run time of the algorithm is 
ÿ(ÿÿ(ý logý∕ÿ

2)).

1.2. Related work

The minimum eigenvalue problem with partition constraints can be 
interpreted as a generalization of the max-min allocation problem. In 
the case of cardinality constraints, it can also model problems from ex-
perimental design and spectral sparsification. We give an overview of 
prior work for these special cases.

Max-min allocation: In the max-min allocation problem, we are given a 
set [ý] of agents and a set [ÿ] of items where agent ÿ ∈ [ý] has valuation 
ℎÿÿ g 0 for item ÿ. The goal is to select an assignment ÿ ∶ [ÿ] → [ý] which 
maximizes

min
ÿ∈[ý]

∑

ÿ∶ÿ(ÿ)=ÿ

ℎÿÿ .

This can be seen as a special case of the minimum eigenvalue problem 
with partition constraints.

Bansal and Sviridenko [18] introduced the configuration LP as a 
relaxation for the max-min allocation problem but showed that it has 
an integrality gap of Ω(

√
ÿ) [18]. Asadpour and Saberi [5] gave a 

rounding scheme for the same LP, which achieves an ÿ(
√
ÿ log3 ÿ)-

approximation. This was later improved by Chakrabarty et al. [6] to an 
ÿ̃(ÿÿ)-approximation for any ÿ ∈ Ω(log logÿ∕ logÿ) by iteratively con-
structing new instances with smaller integrality gap.

Experimental design (E-optimal design): Even with cardinality con-
straints (uniform matroid of rank ý), the minimum eigenvalue problem 
is NP-hard [19]. Allen-Zhu et al. [7] showed that it is possible to de-
terministically find a (1 − ÿ)-approximation so long as ý g Ω(ý∕ÿ2)

by rounding the natural convex relaxation. They also conjectured that 
this requirement was necessary. This conjecture was confirmed in [8], 
where they showed an integrality gap instance for the convex relax-
ation. Recently Lau and Zhou [9] have built on the regret minimization 
framework from [7] to show that a modified local search algorithm with 
a “smoothed” objective works as long as there is a near-optimal solution 
with a good condition number.

Since our algorithm also gives approximations for other objectives 
we can also make comparisons to other experimental design problems. 
In D-design the objective is select a collection of ý vectors to maxi-
mize ÿ ∶ÿ ↦ det(ÿ) and in A-design the goal is to minimize ÿ ∶ÿ ↦

trace(ÿ−1). In both cases there are combinatorial (1 +ÿ)-approximations 
when ý gΩ(ý∕ÿ) [20,9]. This requirement on ý is weaker than if prior 
results for E-design are extended directly. The approximations are much 
worse for ý close to ý. For example a ý-approximation for A-design when 
ý = ý [8].

Spectral sparsification and Kadison-Singer The problem of rounding the 
natural convex programming relaxation for the minimum eigenvalue 
problem is closely related to spectral sparsification [2] and the Kadison-
Singer problem [10]. In spectral sparsification [2], the goal is to pick a 
small subset of vectors ÿ ⊆ [ÿ] such that 

∑
ÿ∈ÿ ýÿÿÿÿ

⊤
ÿ
spectrally approx-

imates 
∑

ÿ∈[ÿ] ÿÿÿ
⊤
ÿ
for some weights ýÿ. In the cardinality constrained 

minimum eigenvalue problem, rounding the convex programming so-
lution involves finding a small set ÿ , such that 

∑
ÿ∈ÿ ÿÿÿ

⊤
ÿ
spectrally 

approximates 
∑

ÿ∈[ÿ] ýÿÿÿÿ
⊤
ÿ
, where the weights ýÿ form the solution 

to the convex relaxation. Indeed [7] essentially build on this connec-
tion to obtain their results for the ý-design problem discussed earlier. 
The Kadison-Singer problem [10] is closely related to the minimum 
eigenvalue problem under a partition matroid constraint. We utilize 
this connection in Corollary 1 to give an algorithmic version of the 
Kadison-Singer problem for constant dimensions. More generally, the 
Kadison-Singer problem can be reformulated as showing that the inte-
grality gap of the natural relaxation of the minimum eigenvalue problem 



Operations Research Letters 57 (2024) 107186

3

A. Brown, A. Laddha and M. Singh

under partition matroid constraints is at most 1∕(1 −
√
ÿ
2
) if the length 

of each vector is at most ÿ(ÿ). We discuss this connection in Section 3.

2. The algorithm for partition matroids

Suppose that our ground set is split into ý parts ý = ÿ1∪⋯ ∪ÿý with 
each part containing ÿ elements, and we have a collection of vectors ÿÿÿ
for ÿ ∈ [ý] and ÿ ∈ ÿÿ. The goal is to select an element ÿ(ÿ) ∈ ÿÿ for each 

ÿ to maximize ÿmin

(∑ý

ÿ=1 ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

)
.

We can construct the natural convex relaxation of this problem as 
follows. For each ÿ ∈ [ý] and ÿ ∈ ÿÿ, we add a decision variable ýÿÿ which 
represents whether we select the vector ÿÿ from part ÿÿ, i.e., if ÿ(ÿ) = ÿ. 
Then we get the convex program

max ÿmin (ÿ)

ÿ =
ý∑
ÿ=1

∑
ÿ∈ÿÿ

ýÿÿ ⋅ ÿÿÿÿ
⊤
ÿÿ

∑
ÿ∈ÿÿ

ýÿÿ = 1, ∀ÿ ∈ [ý]

ý g 0

(CP)

The constraint 
∑

ÿ∈ÿÿ
ýÿÿ = 1 ensures that we have a probability dis-

tribution over the possible assignments within each part in the optimal 
solution.

Given an optimal solution ý⋆ with value ÿÿÿ , a natural round-
ing strategy is to round independently within each part. Following this 
rounding strategy, we get a rank 1 random matrix ýÿ for each part ÿÿ
with

Pr(ýÿ = ÿÿÿÿ
⊤
ÿÿ
) = ý⋆

ÿÿ
, ∀ÿ ∈ ÿÿ .

The following matrix concentration inequality bounds the probability of 
failure of this rounding strategy.

Theorem 4. [21, Theorem 5.1.1] Consider independent random matrices 
ý1, … , ýý ∈ ÿ

ý
+. Set

ÿmin = ÿmin

(
ý

[
ý∑

ÿ=1

ýÿ

])
.

If ÿmax(ýÿ) fý for all ÿ ∈ [ý] a.s. then

Pr

(
ÿmin

(
ý∑

ÿ=1

ýÿ

)
< (1 − ÿ)ÿmin

)

f ý ⋅ exp

(
−ÿ2ÿÿÿÿ

2ý

)
.

If we round according to the optimal solution ý⋆ then

ý

[
ý∑

ÿ=1

ýÿ

]
=

ý∑

ÿ=1

∑

ÿ∈ÿÿ

ý⋆
ÿÿ
ÿÿÿÿ

⊤
ÿÿ
.

So ÿmin =ÿÿÿ , and since for our particular case ýÿ are rank 1, ý =
maxÿ ÿmax(ýÿ) =maxÿÿ ‖ÿÿÿ‖2. To bound the failure probability, we want 
ý ≈ ÿ2∕ log(ý), which in turn requires that maxÿÿ ‖ÿÿÿ‖2 =ÿ(ÿ2∕ log(ý)). 
This is a very strong assumption on an instance and thus the above ap-
proach does not work directly. We now discuss how to remedy it by the 
following procedure.

The plan is to “guess” a suitable change of basis such that all the vec-
tors in the support of our optimal solution have a small norm. This will 
be useful because of the following standard, but slightly more flexible, 
version of the preceding matrix concentration inequality.

Corollary 2. Let ý be a positive definite matrix and consider independent 
random matrices ý1, … , ýý ∈ ÿ

ý
+. Define

ÿmin ∶= ÿmin

(
ý−1∕2

ý

[
ý∑

ÿ=1

ýÿ

]
ý−1∕2

)
.

If ÿmax(ý
−1∕2ýÿý

−1∕2) fý for all ÿ ∈ [ý] a.s. then

Pr

(
ý∑

ÿ=1

ýÿ  (1 − ÿ)ÿmin ⋅ý

)
f ý ⋅ exp

(
−ÿ2ÿÿÿÿ

2ý

)
.

Again, since ýÿ is rank 1 for our case, we have ý =
maxÿ∈[ý] ÿmax(ý

−1∕2ýÿý
−1∕2) = maxÿ,ÿ ÿ

⊤
ÿÿ
ý−1ÿÿÿ . So, to use this corol-

lary, we first need to find a matrix ý such that ÿ⊤
ÿÿ
ý−1ÿÿÿ =ÿ(ÿ2∕ log(ý))

for all [ÿ] ∈ [ý], ÿ ∈ ÿÿ. We will only need to consider matrices ý of a 
specific form that uses the input vectors.

Given a subset ÿ ⊆ ý, we define ýÿ ∶=
∑

(ÿ,ÿ)∈ÿ ÿÿÿÿ
⊤
ÿÿ
, and con-

sider the set of long vectors in the norm induced by ýÿ : ÿ(ÿ) ∶={
(ÿ, ÿ) ∈ý∖ÿ ∶ ÿ⊤

ÿÿ
ý−1
ÿ
ÿÿÿ >

ÿ2

10 log(ý)

}
. For a fixed set ÿ , the following 

convex program ensures that ÿ is included in the solution and no “long” 
vectors from ÿ(ÿ) are included in the solution.

max ÿmin (ÿ)

ÿ =
ý∑
ÿ=1

∑
ÿ∈ÿÿ

ýÿÿ ⋅ ÿÿÿÿ
⊤
ÿÿ

∑
ÿ∈ÿÿ

ýÿÿ = 1, ∀ÿ ∈ [ý]

ýÿÿ = 0, ∀(ÿ, ÿ) ∈ÿ(ÿ)

ýÿÿ = 1, ∀(ÿ, ÿ) ∈ ÿ

ý g 0

(CP(S))

The additional constraints exclude all long vectors outside of ÿ , and 
force us to include all elements of ÿ (which may also be long). Thus, all 
fractional variables correspond to short vectors and we can now use the 
flexible matrix concentration inequalities to randomly round the opti-
mal solution.

But, it is not clear that there is a good choice of ÿ for which the 
convex program (CP(S)) is still a relaxation of the original problem. Our 
main lemma shows that there exists a suitable set ÿ that is not too large.

Lemma 1. For any set ÿ and a set of vectors {ÿÿ ∶ ÿ ∈ ÿ } in ℝý such 
that 

∑
ÿ∈ÿ ÿÿÿ

⊤
ÿ
is invertible, there exists a subset ÿ ⊆ ÿ such that |ÿ| =

ÿ(ý log(ý)∕ÿ2), ýÿ =
∑

ÿ∈ÿ ÿÿÿ
⊤
ÿ
is invertible, and for all ÿ ∈ ÿ ∖ÿ ,

ÿ⊤
ÿ
ý−1
ÿ
ÿÿ f

ÿ2

10 log(ý)
.

The proof of this lemma is inspired by the local search algorithm 
of [20] which they used to find an approximately optimal solution to the 
determinant maximization problem. Their algorithm is combinatorial, 
and while they never do any rounding, they do rely on a convex program 
for the analysis.

At first glance, it may not be apparent why a subset satisfying the 
conditions of Lemma 1 should exist. However, in the proof, we show 
that any subset of ÿ that is locally optimal with respect to a local search 
criteria indeed satisfies the guarantees of Lemma 1.

Proof of Lemma 1. We consider the local search process of [20]. Start-
ing with a set ÿ of size ý ∶= 10ý log(ý)∕ÿ2 + ý − 1 such that ýÿ =∑

ÿ∈ÿ ÿÿÿ
⊤
ÿ
is invertible, we apply the following update rule. For any 

ÿ ∈ ÿ ∖ÿ and ÿ ∈ ÿ , if det(ýÿ ) < det(ýÿ − ÿÿÿ
⊤
ÿ
+ ÿÿÿ

⊤
ÿ
), update ÿ =

(ÿ∖{ÿ}) ∪ {ÿ} and iterate.
Let ÿ ⊆ ÿ be a locally optimal (under single element swaps) solution 

for this process (such an ÿ corresponds to the locally optimal solution 
determinant maximization problem subject to the cardinality constraint 
|ÿ| f ý), and let ý =ýÿ =

∑
ÿ∈ÿ ÿÿÿ

⊤
ÿ
. More concretely, this means that 

for all ÿ ∈ ÿ and ÿ ∈ ÿ ∖ÿ ,

det(ý) g det(ý− ÿÿÿ
⊤
ÿ
+ ÿÿÿ

⊤
ÿ
) .
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We calculate the ratio of right-hand side with the left-hand side using 
the matrix determinant lemma,

det(ý)−1 ⋅ det(ý− ÿÿÿ
⊤
ÿ
+ ÿÿÿ

⊤
ÿ
)

= det(ý)−1 ⋅ det
(
ý+

[
ÿÿ ÿÿ

] [
−ÿÿ ÿÿ

]⊤)

= det
(
ý2 +

[
−ÿÿ ÿÿ

]⊤
ý−1

[
ÿÿ ÿÿ

])

= (1 − ÿ⊤
ÿ
ý−1ÿÿ)(1 + ÿ⊤

ÿ
ý−1ÿÿ ) + (ÿ⊤

ÿ
ý−1ÿÿ )

2 .

So local optimality implies that for every ÿ ∈ ÿ and ÿ ∉ ÿ , (1 −
ÿ⊤
ÿ
ý−1ÿÿ)(1 + ÿ⊤

ÿ
ý−1ÿÿ ) + (ÿ⊤

ÿ
ý−1ÿÿ )

2 f 1. Rearranging this inequality 
we get

ÿ⊤
ÿ
ý−1ÿÿ − (ÿ⊤

ÿ
ý−1ÿÿ) ⋅ (ÿ

⊤
ÿ
ý−1ÿÿ )+(ÿ

⊤
ÿ
ý−1ÿÿ )

2

f ÿ⊤
ÿ
ý−1ÿÿ . (1)

Note that
∑

ÿ∈ÿ

ÿ⊤
ÿ
ý−1ÿÿ =

∑

ÿ∈ÿ

trace(ÿ⊤
ÿ
ý−1ÿÿ)

=
∑

ÿ∈ÿ

trace(ÿÿÿ
⊤
ÿ
ý−1) = trace(ýý−1) = ý

and, for all ÿ ∈ ÿ ,

∑

ÿ∈ÿ

(ÿ⊤
ÿ
ý−1ÿÿ )

2 =
∑

ÿ∈ÿ

ÿ⊤
ÿ
ý−1ÿ⊤

ÿ
ÿÿý

−1ÿÿ

= ÿ⊤
ÿ
ý−1ýý−1ÿÿ = ÿ⊤

ÿ
ý−1ÿÿ .

So for a fixed ÿ ∈ ÿ ∖ÿ , summing equation (1) over all ÿ ∈ ÿ implies 
ý ⋅ ÿ⊤

ÿ
ý−1ÿÿ − ý ⋅ ÿ⊤

ÿ
ý−1ÿÿ + ÿ⊤

ÿ
ý−1ÿÿ f ý. Rearranging, we see that for 

any ÿ ∈ ÿ ∖ÿ ,

ÿ⊤
ÿ
ý−1ÿÿ f

ý

ý − ý + 1
=

ÿ2

10 log(ý)
,

where the last equality follows from the choice of

ý = 10ý log(ý)∕ÿ2 + ý − 1. □

We will apply this lemma to the set ÿ = {ÿÿÿ⋆(ÿ) ∶ ÿ ∈ [ý]} where 
ÿ∗ is the choice function that maximizes the minimum eigenvalue, i.e., 
when ÿ contains the vectors from an optimal integral assignment. In 
particular, we get the following corollary.

Lemma 2. There is a subset ÿ ⊆ ý such that |ÿ| =ÿ(ý log(ý)∕ÿ2), and the 
convex program (CP(S)) is a relaxation for the minimum eigenvalue problem.

As ý is a constant, the size of the set ÿ we search for is also con-
stant. Thus, there are at most ÿ(ÿÿ(ý log(ý)∕ÿ

2)) possible choices for ÿ . 
We will consider each choice in turn to guess the correct set. Note that 
trying every set of the appropriate size will be the dominant factor in 
determining the algorithm’s runtime.

The following lemma proves that for any fixed subset ÿ , rounding the 
optimal solution to (CP(S)) gives a good approximation to the optimal 
value of (CP(S)).

Lemma 3. Let ÿ ⊆ ý be an independent set, and let ý be a feasible solution 
to (CP(S)). Then rounding randomly in each part outputs an assignment 
ÿ ∶ [ý] →ý with ÿ(ÿ) ∈ ÿÿ such that

ý∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

⪰ (1 − ÿ) ⋅

ý∑

ÿ=1

∑

ÿ∈ÿÿ

ýÿÿ ÿÿÿÿ
⊤
ÿÿ

with probability at least 1 −ÿ(ý−4).

Proof. Let ÿ =
∑ý

ÿ=1

∑
ÿ∈ÿÿ

ýÿÿ ÿÿÿÿ
⊤
ÿÿ
. The matrix ÿ contains ÿÿÿÿ

⊤
ÿÿ
with 

coefficient 1 for every (ÿ, ÿ) ∈ ÿ . Thus ÿ ⪰
∑

ÿ∈ÿ ÿÿÿ
⊤
ÿ
, so ÿ⊤

ÿ
ÿ−1ÿÿ f

ÿ2

10 log(ý)
for all ÿ ∉ ÿ ∪ ÿ . For the purposes of the analysis, for every 

ÿ ∈ ÿ we can replace the vector ÿÿ with (ÿ
⊤
ÿ
ÿ−1ÿÿ) ⋅

√
10 log(ý)∕ÿ2

copies of the same vector scaled down to have squared-length at most 
ÿ2∕(10 log(ý))with respect to ÿ. Since all elements of ÿ get value 1 in ý, 
we can similarly extend the vector ý so that it has a 1 in all the copied en-
tries. Since these values of ý are deterministic, nothing changes about 
the resulting distribution over matrices, but we can now assume that 
ÿ⊤
ÿÿ
ÿ−1ÿÿÿ < ÿ2∕(10 log(ý)) for all (ÿ, ÿ) in the support of ý.
Next, define random matrices ý1, … , ýý such that for any ÿ ∈ [ý], 

Pr
(
ýÿ = ÿÿÿÿ

⊤
ÿÿ

)
= ýÿÿ for all ÿ ∈ ÿÿ. We then apply Corollary 2 with 

ý =ÿ on random matrices ý1, … , ýý. Since ý is not supported on ÿ,

ý =max
ÿ

ÿmax(ÿ
−1∕2ýÿÿ

−1∕2) f
ÿ2

10 log(ý)
.

In addition, as ý
(∑

ÿýÿ

)
=ÿ by definition, we have ÿmin = 1.

Thus, if ÿ ∶ [ý] →ý is the choice function obtained by independent 
rounding,

Prÿ

[ ý∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

 (1 − ÿ)ÿ

]

f ý ⋅ exp(−5 log(ý)) = ý−4. □

Combining this lemma with the earlier guarantee that there exists 
a set ÿ of reasonable size such that (CP(S)) is a relaxation, we get the 
following algorithm: try all possible choices for the set ÿ and return the 
solution with the best objective.

Algorithm 1 Algorithm to find an approximation to ÿÿÿ .
1: Input: Partition matroid  with ý parts ÿ1, … , ÿý
2: for each ÿ ⊆ [ÿ] such that |ÿ| = 10ý log(ý)∕ÿ2 + ý − 1 do
3: ý∗ ← optimal solution of (CP(S)) for matroid 
4: For each ÿ ∈ [ý], set ÿÿ (ÿ) = ÿ with probability ý∗

ÿÿ

5: end for
6: Return the assignment function ÿÿ which maximizes ÿmin

(∑
ÿ ÿÿÿÿ (ÿ)ÿ

⊤
ÿÿÿ (ÿ)

)

over all choices of ÿ

We will prove Theorem 2, from which Theorem 1 follows as a special 
case. The only difference in the algorithm is that we solve the convex 
program (CP(S)) with a concave, monotone, homogeneous function ÿ

as the objective instead of ÿmin. We will be able to apply Lemma 2 since 
its proof makes no reference to the objective function, only the optimal 
solution, and we will use Lemma 3 without modification.

Proof of Theorem 2. By Lemma 2 there is a set ÿ ⊆ ý with |ÿ| =
ÿ(ý logý∕ÿ2) such that (CP(S)) is a relaxation.

Let ý∗ be the optimal solution of (CP(S)) and let ÿ⋆ be the choice 
function of the optimal basis for the integral problem (both with objec-

tive ÿ ). Since (CP(S)) is a relaxation, we have ÿ
(∑ý

ÿ=1 ÿÿÿ∗(ÿ)ÿ
⊤
ÿÿ∗(ÿ)

)
f

ÿ

(∑
ÿÿ ý

∗
ÿÿ
ÿÿÿÿ

⊤
ÿÿ

)
.

Lemma 3 implies that with high probability, the choice function 
obtained by rounding ý∗, ÿÿ , is a good approximation to (CP(S)). So 
combining Lemma 3 with the previous inequality gives

ÿ

(
ý∑

ÿ=1

ÿÿÿÿ (ÿ)
ÿ⊤
ÿÿÿ (ÿ)

)

g (1 − ÿ) ⋅ ÿ

(
∑

ÿÿ

ý∗
ÿÿ
ÿÿÿÿ

⊤
ÿÿ

)

g (1 − ÿ) ⋅ ÿ

(
ý∑

ÿ=1

ÿÿÿ∗(ÿ)ÿ
⊤
ÿÿ∗(ÿ)

)
,
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with probability at least 1 − ý−4. Since we iterate over all choice func-
tions in step 6 of Algorithm 1, we will output a choice function ÿ which 
is at least as good as ÿÿ with the same probability. □

2.1. General matroid constraints

In the general form of the problem, we are given a collection of vec-
tors ÿ1, … , ÿÿ ∈ ℝ

ý and a matroid  = ([ÿ], ), and the goal is to find 
a basis ý ∈  which maximizes ÿmin

(∑
ÿ∈ý ÿÿÿ

⊤
ÿ

)
.

For a general matroid, the idea of finding a linear transformation 
under which all elements in the optimal solution have a small norm 
generalizes easily. So we can use the same approach of first guessing a 
set ÿ ⊆ ý on a reasonable size and then solving the convex relaxation 
of the problem conditioned on ÿ being included in the solution.

Given a subset ÿ ⊆ [ÿ], we can again set ýÿ =
∑

ÿ∈ÿ ÿÿÿ
⊤
ÿ
, and con-

sider the set of long vectors:

ÿ(ÿ) =

{
ÿ ∈ [ÿ]∖ÿ ∶ ÿ⊤

ÿ
ý−1
ÿ
ÿÿ >

ÿ2

10 log(ý)

}
.

For a matroid , let (ý) ⊆ [0, 1]ÿ denote the matroid base polytope. 
Then the following is the natural convex programming relaxation which 
excludes the “long” vectors.

max ÿmin (ÿ)

ÿ =
ÿ∑
ÿ=1

ýÿ ⋅ ÿÿÿÿ
⊤
ÿÿ

ý ∈ ()

ýÿ = 0, ∀ÿ ∈ÿ(ÿ)

ýÿ = 1, ∀ÿ ∈ ÿ

ý g 0

(CP(S))

This convex program can be solved in polynomial time using an inde-
pendence oracle. Just like in the partition case, Lemma 1 guarantees 
that there is a set ÿ for which (CP(S)) is a relaxation for the minimum 
eigenvalue problem. As before, after solving (CP(S)), we can guarantee 
that all the vectors in the fractional support of the optimal solution will 
have a small norm with respect to ýÿ .

The challenge in extending the earlier approach to general matroid 
constraints comes from the rounding step. For a partition matroid, we 
could simply round the fractional optimum of (CP(S)) independently in 
each part to obtain a basis. However, for more general constraints, it is 
not so clear how to round a fractional solution to a basis.

Instead of rounding independently, we will use the technique of pi-
page rounding to find a basis.

Algorithm 2 Randomized Pipage Rounding.
1: Input: Point ý ∈ (), where () is a matroid base polytope
2: while ý is not integral do
3: ÿ, ÿ ← distinct elements of [ÿ] s.t. ∃ÿ > 0 with ý ± ÿ(ÿÿ − ÿÿ) ∈ ()

4: ý←min{ÿ g 0 ∶ ý − ÿ(ÿÿ − ÿÿ) ∈ ()}

5: ℎ ←max{ÿ g 0 ∶ ý + ÿ(ÿÿ − ÿÿ) ∈ ()}

6: ý ←

{
ý− ý(ÿÿ − ÿÿ) w.p. ý∕(ý + ℎ)

ý+ ℎ(ÿÿ − ÿÿ) w.p. ℎ∕(ý + ℎ)

7: end while
8: Return basis ý of  with indicator vector ý ∈ ()

The following lemma is the lower-tail version of the same concen-
tration inequality proved in [22]. The complete details of the proof can 
be found in the arxiv version [17].

Lemma 4. Let () be a matroid base polytope and ý ∈ (). Let 
ý1, … , ýÿ be self-adjoint matrices that satisfy ÿmax(ýÿ) f ý. Let ÿ =

ÿmin

(∑
ÿ∈[ÿ] ýÿýÿ

)
. If randomized pipage rounding (Algorithm 2) starts at 

ý and outputs the characteristic vector of a basis ý of , then we have

Pr

[
∑

ÿ∈ý

ýÿ f (1 − ÿ) ⋅ ÿ

]
f ý ⋅ exp

(
−ÿ2ÿ

2ý

)
.

We use this lemma to generalize our earlier approach to all matroids.

Lemma 5. Let ÿ ⊆ ý be an independent set in  and let ý be a feasible 
solution to (CP(S)). Then pipage rounding starting at ý⋆ outputs a basis ý
such that

Pr

[
∑

ÿ∈ý

ÿÿÿ
⊤
ÿ
 (1 − ÿ)

∑

ÿ∈[ÿ]

ýÿ ÿÿÿ
⊤
ÿ

]
< ý−4.

The proof is identical to that of Lemma 3, except we use the matrix 
concentration inequality from Lemma 4.

2.2. Application: algorithmic Kadison-Singer problem

The Kadison-Singer conjecture was resolved in [10] using the follow-
ing theorem which can be interpreted as a generalization of Weaver’s 
conjecture [15].

Theorem 5. [10, Corollary 1.5 with ÿ = 2] Let ÿ1, … , ÿÿ ∈ℝ
ý be vectors 

such that 
∑ÿ

ÿ=1 ÿÿÿ
⊤
ÿ
= ý and ‖ÿÿ‖2 f ÿ for all ÿ. There exists a set ÿ ⊆ [ÿ]

such that
(
1

2
− 3

√
ÿ

)
ýý ⪯

∑

ÿ∈ÿ

ÿÿÿ
⊤
ÿ
⪯
(
1

2
+ 3

√
ÿ

)
ýý .

Their proof is based on analyzing interlacing families of polynomi-
als and does not lead to an efficient algorithm to find such a subset 
ÿ . In [11], they introduce an algorithmic form of the Kadison-Singer 
problem, which asks to find such a subset assuming it exists. For a con-
stant ý > 0 and a set of vectors ÿ1, … , ÿÿ ∈ ℝ

ý such that ‖ÿÿ‖2 f ÿ, ∑ÿ

ÿ=1 ÿÿÿ
⊤
ÿ
= ý where there exists a subset ÿ ⊆ [ÿ] satisfying

(
1

2
− ý

√
ÿ

)
ý ⪯

∑

ÿ∈ÿ

ÿÿÿ
⊤
ÿ
⪯
(
1

2
+ ý

√
ÿ

)
, (2)

the goal is actually to find a set ÿ ⊆ [ÿ] which satisfies the above con-
dition. This problem is FNP-hard when ý = 1∕(4

√
2) for general values 

of ý [11, Theorem 2].
Their main result [11, Theorem 1] is an algorithm with running time 

ÿ

((ÿ
ý

)
⋅ poly(ÿ,ý)

)
where

ý =ÿ

(
ý

ÿ2
log(ý) log

(
1

ý
√
ÿ

))

which returns a set ÿ ′ ⊆ [ÿ] such that

(1 − ÿ)
(
1

2
− ý

√
ÿ

)
ý ⪯

∑

ÿ∈ÿ ′

ÿÿÿ
⊤
ÿ
⪯ (1 + ÿ)

(
1

2
+ ý

√
ÿ

)
ý, (3)

In this section, we will show how to use the rounding technique for 
partition matroids to give a simpler algorithm that achieves the same 
guarantee with the same run time, except we save the small dependence 
on log(1∕ý

√
ÿ) in the exponent.

The main idea of the proof is not new; the central construction is es-
sentially the same as the one used in [10] to prove Corollary 1.5 and 
deduce Weaver’s conjecture from their main result. We make a few aes-
thetic modifications to more closely match our prior setup.

Proof of Corollary 1. Given vectors ÿ1, … , ÿÿ ∈ ℝ
ý , we construct an 

instance of the minimum eigenvalue with partition constraints as 
follows. Let ý = {1, 2} × [ÿ], with ÿ parts ÿ1, … , ÿÿ so that ÿÿ =
{(ÿ, 1), (ÿ, 2)} for ÿ ∈ [ÿ]. For each ÿ ∈ [ÿ] define the vectors

ÿÿ1 =

[
ÿÿ
0

]
∈ℝ

2ý , and ÿÿ2 =

[
0

ÿÿ

]
∈ℝ

2ý .

To see how ÿ and ÿ are related, note that for any ÿ ∈ [0, 1∕2) there is a 
choice function ÿ ∶ [ÿ] → {1, 2} such that
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(
1

2
− ÿ

)
ý2ý ⪯

ÿ∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

(4)

if and only if there is a set ÿ ⊆ [ÿ] such that
(
1

2
− ÿ

)
ý ⪯

∑

ÿ∈ÿ

ÿÿÿ
⊤
ÿ
⪯
(
1

2
+ ÿ

)
ý. (5)

Given ÿ satisfying (4), let ÿ1 ∶=
∑

ÿ∶ÿ(ÿ)=1 ÿÿÿ
⊤
ÿ
and ÿ2 ∶=

∑
ÿ∶ÿ(ÿ)=2 ÿÿÿ

⊤
ÿ
. 

Then ÿ1 and ÿ2 are respectively the first and second diagonal ý × ý

block of 
∑ÿ

ÿ=1 ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

. Therefore 
(
1

2
− ÿ

)
ý2ý ⪯

∑ÿ

ÿ=1 ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

if and 

only if ÿ1 ⪰
(
1

2
− ÿ

)
ýý and ÿ2 ⪰

(
1

2
− ÿ

)
ýý . In addition, since ÿ1 +

ÿ2 = ýý , this is equivalent to
(
1

2
− ÿ

)
ýý ⪯

∑

ÿ∶ÿ(ÿ)=1

ÿÿÿÿ = ýý −ÿ2 ⪯
(
1

2
+ ÿ

)
ýý .

We then use Algorithm 1 to find a (1 − ÿ) approximate solution ÿ ∶

[ÿ] → {1, 2} to input  and vectors ÿÿÿ . Since we assume there is a 
set ÿ satisfying (2), Theorem 1 implies that with probability at least 
1 −ÿ(ý−4), Algorithm 1 will return a choice function ÿ∗ such that (1 −

ÿ) 
(
1

2
− ý

√
ÿ

)
ý2ý ⪯

∑ÿ

ÿ=1
ÿÿÿ∗(ÿ)ÿ

⊤
ÿÿ∗(ÿ)

, and we will return the set ÿ ′ =

{ÿ ∈ [ÿ] ∶ ÿ∗(ÿ) = 1}.
From the equivalence between (4) and (5), the set ÿ ′ = {ÿ ∈ [ÿ] ∶

ÿ(ÿ) = 1} satisfies (3)

(1 − ÿ)
(
1

2
− ý

√
ÿ

)
ýý ⪯

∑

ÿ∈ÿ ′

ÿÿÿÿ ⪯ (1 + ÿ)
(
1

2
+ ý

√
ÿ

)
ýý . □

3. Conclusion and remarks

The resolution of the Kadison-Singer problem in [10] using the in-
terlacing families of polynomials implies the following existential result 
about maximizing the minimum eigenvalue under partition matroid 
constraints.

Theorem 6. [10, Theorem 1.4] For ÿ > 0 and vectors {ÿÿÿ}ÿ∈[ý],ÿ∈[ÿ] ∈ℝ
ý

with ‖ÿÿÿ‖2 f ÿ for all ÿ ∈ [ý], ÿ ∈ [ÿ], if there exist ýÿÿ g 0 such that

ý∑

ÿ=1

ÿ∑

ÿ=1

ýÿÿ ⋅ ÿÿÿÿ
⊤
ÿÿ
= ýý and

ÿ∑

ÿ=1

ýÿÿ = 1 for all ÿ ∈ [ý],

then there exists a choice function ÿ ∶ [ý] → [ÿ] such that

(1 −
√
ÿ)2 ⋅ ýý ⪯

ý∑

ÿ=1

ÿÿÿ(ÿ)ÿ
⊤
ÿÿ(ÿ)

⪯ (1 +
√
ÿ)2 ⋅ ýý .

We can state this result equivalently as an “existential” rounding 
result. When ‖ÿÿÿ‖2 f ÿ, Theorem 6 implies that the integrality gap of 
the natural convex relaxation (CP) for the minimum eigenvalue problem 
with partition constraints is only 1∕(1 −

√
ÿ)2. It is an open problem to 

efficiently round the solution to the convex relaxation with comparable 
guarantees for any dimension ý.

More generally, the problem of designing an approximation algo-
rithm for the minimum eigenvalue problem under partition or ma-
troid constraints in arbitrary dimensions remains wide open. However, 
checking whether there is a solution with a non-zero objective can be 
solved in polynomial time through matroid intersection. Recently, there 
has been significant progress in the case of maximizing the determi-
nant [4,3,23–27], but it remains open whether those techniques can be 
applied to the minimum eigenvalue problem.
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