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Abstract

In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible items, G,
and n agents, A, where each agent i € A has a valuation v;; > 0 for each item j € G. In addition, every
agent ¢ has a non-negative weight w; such that the weights collectively sum up to 1. The goal is to find an

assignment o : G — A that maximizes [, 4 (Z vij) ' When all the weights equal to £, the problem

j€a=1(i)
reduces to the classical Nash Social Welfare problem, which has recently received much attention. In this work,

we present a 5 - exp (2 - Dxn(w || %)) =5-exp (2 logn+2>7"  w;log wi)-approximation algorithm for the

weighted Nash Social Welfare problem, where Dk, (w || %) denotes the KL-divergence between the distribution
w and the uniform distribution on [n].

We generalize the convex programming relaxations for the symmetric variant of Nash Social Welfare
presented in [CDG17, AGSS17] to two different mathematical programs. The first program is convex and
is necessary for computational efficiency, while the second program is a non-convex relaxation that can be
rounded efficiently. The approximation factor derives from the difference in the objective values of the convex
and non-convex relaxation.

1 Introduction

In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible items G, and a set
of n agents, A. Every agent i € A has a weight w; > 0 such that ) ;. , w; = 1 and an additive valuation function
vi:29 = Rxq. Let v;; := v;({j}). The goal is to find an assignment of items, o : G — A so that the following
welfare function is maximized:

(11) II{ > w

i€A \jeo—1(i)

wi

For ease of notation, we will work with the log objective and denote

(1.2) NSW(o) = Zw, log Z Vij

i€A jE€o—1(i)

and OPT = max,.g,4 NSW(o) denote the optimal log objective. The case in which w = u where u; = % for
each i € A is the much-studied symmetric Nash social welfare problem, where the objective is the geometric mean
of agents’ valuations.
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Fair and efficient division of resources among agents is a fundamental problem arising in various fields
[BT05, BT96, BCET16, RW98, Rot15, You94]. While there are many social welfare functions which can be
used to evaluate the efficacy of an assignment of goods to the agents, the Nash Social Welfare function is well-
known to interpolate between fairness and overall utility. The symmetric Nash Social Welfare function first
appeared as the solution of an arbitration scheme proposed by Nash for two-person bargaining games that was
generalized to multiple players [NJ50, KN79]. Since then, it has been widely used in numerous fields to model
resource allocation problems. An attractive feature of the objective is that it is invariant under scaling by any
of the agent’s valuations and therefore each of the agents can specify their utility in their own units (see [CMO04]
for a detailed treatment). While the theory of Nash Social Welfare objective was initially developed for divisible
items, more recently it has been applied in the context of indivisible items. We refer the reader to [CKM™119]
for a comprehensive overview of the problem in the latter setting. Indeed, optimizing the Nash Social Welfare
objective also implies notions of fairness such as envy free allocation in an approximate sense [CKM*19, BKV18].

The Nash Social Welfare function with weights (also referred to as asymmetric or non symmetric Nash Social
Welfare) was first studied in the seventies [HS72, Kal77] in the context of two person bargaining games. For
example, in the bargaining context, it allows different agents to have different weights. This flexibility has made
the problem arise in many different domains, including bargaining theory [CMO04, LV07], water resource allocation
[FKL12, HLZ13], and climate agreements [YIWZ17]. From a context of indivisible goods, the study of this problem
has been much more recent [GKK20, GHV21, GHL*23]. In this work, we aim to shed light on this problem,
especially, with a focus on mathematical programming relaxations for the problem.

1.1 Our Results and Contributions In this work, we present a exp (2log2 + o + 2Dk, (w || u)) ~ 4.81 -
exp (2 logn — 23", w;log %)—approximation algorithm for the weighted Nash Social Welfare problem with

additive valuations. When all the weights are the same, this gives a constant factor approximation. Our algorithm
builds on and extends a convex programming relaxation for the symmetric variant of Nash Social Welfare presented
in [CG15, CDGT17, AGSS17]. In the theorem, we state the guarantee in log objective and therefore, the guarantee
becomes an additive one.

THEOREM 1.1. Let (A,G,v,w) be an instance of the weighted Nash Social Welfare problem with ),  ,w; = 1
and |A| = n agents. There exists a polynomial time algorithm (Algorithm 1) that given (A,G,v,w) returns an
assignment o : G — A such that

1
NSW(o) > OPT — 2log2 — % 2 DgrL(w||u),
where OPT is the optimal log-objective and Drr(w||lu) = logn — 3, , w;log o-.

We additionally note that our approach can be modified to give exp (2log2+ 5= + Dxr(w || u))-
approximation that runs in pseudo-polynomial time. The details of this result can be found in the full version

of the paper. Observe that the KL-divergence term Dkp(w ||u) = (logn — Y icawilog wi) is always upper

bounded by log(nwmax) which is exactly the guarantee of previous work [GHL'23]. In many settings, the term
Dx1,(w||u) can be significantly smaller than nwmay; for example, consider the setting where wy = loén and
w; = (1 — loén) for i = 2,...,n, i.e., one agent has significantly higher weight than other. In this case, our
results imply O(1)-approximation while previous results imply O(
be found in Example A in Appendix A.

Our algorithm relies on two mathematical programming relaxations for the weighted Nash Social Welfare
problem both of which generalize the convex relaxation for the symmetric version [CDGT17, CG15, AGSS17].
One of the relaxations is non-convex but retains a lot of structural insights obtained for the convex relaxation
in the symmetric version. We show that the same rounding algorithm as in the symmetric version [CG15] gives
a O(1)-approximation for the weighted version when applied to a fractional solution of the non-convex program.
While the rounding algorithm is the same, the analysis requires new ideas as many of the interpretations via
market equilibrium in the symmetric case are no longer present in the weighted version. Unfortunately, due to its
non-convex nature, we cannot solve this relaxation to optimality even though it can be rounded efficiently. Now
the second mathematical programming relaxation comes to the rescue. This relaxation is convex and thus can be

n
logn

)-approximation. A calculation of this can
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solved efficiently. We solve the convex relaxation, then use the non-convex relaxation to measure the change in
objective as we process the solution and eventually round to an integral assignment. The approximation factor
of Dk1,(w || u) arrives due to the difference in objective values of these two programs. In Section 1.3, we give a
technical overview before giving the details in the later sections.

1.2 Preliminaries
KL-Divergence. For two probability distributions p, q over the same discrete domain X', the KL-divergence

between p and q is defined as
p(x
Dxi(plla) =Y p(z)log (qEz;) :

reX

It is well-known, via Gibb’s inequality, that the KL-divergence between two distributions is non-negative and
is zero if and only if p and q are identical.
We use this fact crucially in the following claim.

CrAaM 1.1. Given positive z1, ..., z4, for any yi1,Y2,...,ya > 0,

d d d d d d
D uilos | Dz | =D wilog | D s | =D wilogz =) uslogy;.
Jj=1 Jj=1 Jj=1 Jj=1 j=1 j=1

z
lIz]l1 "

Proof. Define vectors y = (y1,...,yq) and z = (21,...,24). Let y = 0 Y— and z = The inequality reads

o vl
DKL(sz)zO O

Moreover, if ¢ is a uniform distribution on X and p an arbitrary distribution on the same domain, then

1
Dxi(pllg) =log|X| = > p(x)log ——.
= p(z)
Matching Polytope. Consider a complete bipartite graph G = (G U A, E) where E contains an edge (i, j)
for each i € A and j € G. Let M(A) denote the set of all matchings in G of size |A], i.e., matchings which have

an edge incident to every vertex in A. Then the convex hull M(A) is given by

Alx|G
(1.3) b € R <17
Y by=1 VieA
j€G
Zbijgl Vjeg
€A

We call this polytope the Agent Matching Polytope of (A, G).

1.3 Technical Overview Building on the algorithm of [CG15], [CDG*17] introduced the following relaxation
for the symmetric Nash Social Welfare problem.

1 1
(CVX-Sym) max - D0 bilog (vig) — =Y (Z bij) log (Z bij)
4 MieAjes " jeg \iea icA
st Y by=1 VieA
J
D biy<1l Vjieg

bijZO V(’L,j)GAXg

They showed that (CVX-Sym) is a convex relaxation of the Nash Social Welfare objective, and the prices used
by the algorithm presented in [CG15] can be obtained as dual variables of (CVX-Sym). The convex relaxation is,
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interestingly, not in the assignment variables. Indeed given an optimal assignment o : G — A, the corresponding
setting of the variables b;; is

(1.4) by = | Tremigue 100 =1
0 otherwise .

One can verify that b satisfies all the constraints in (CVX-Sym) and its objective equal to the log of the geometric
means of the valuations.

Programs for Weighted NSW. While [CDG"17] and [CG15] used intuition from economics and market
equilibrium to arrive at (CVX-Sym), these concepts do not generalize to the case when weights are not uniform.
We take a different, more algebraic approach that relates the use of log-concave polynomials in [AGSS17] to the
convex programming interpretation given in [CDGT17]. More concrete details on this relationship and how it
leads to the two programs can be found in the full version of the paper.

By setting b to be the same value as (1.4), it is natural to see that (CVX-Weighted) is a relaxation of weighted
NSW. However, this program is not easy to round. To circumvent this issue, we introduce an intermediate non-
convex mathematical program in (NCVX-Weighted), which is also a relaxation of weighted NSW.

max fevx(b) := Z sz b;j log v;j max frevx(b) := Z Zwl bij log vy
i€eAjeg i€Ajeg

— Zsz bij log (Z w; bij> — ZZU)L bij IOg (Z b”>
jeEGicA i€ A jEGiIcA i€ A

+ Zwi log w;
€A

s.t. me =1 VieA s.t. wa =1 VieA

j€G j€g

Zbijgl V]Eg Zbijgl V_]Eg

i€ A €A

by >0 V(i,j) e AxG bij 20 V(i,j) e AxG

(CVX-Weighted)

(NCVX-Weighted)

LEMMA 1.1. (CVX-Weighted) and (NCVX-Weighted) are relazations of the weighted Nash Social Welfare
problem. Moreover, When the weights are symmetric, i.e., w; = 1/n for all i € A, the programs (CVX-Weighted)
and (NCVX-Weighted) are equivalent to the convex program (CVX-Sym).

We formally prove Lemma 1.1 in Appendix A.
Note that the constraints for both (CVX-Weighted) and (NCVX-Weighted) are identical. We use P(A,G) to
denote this constraint polytope.

DEFINITION 1.1. (FEASIBILITY POLYTOPE) For a set of m indivisible items G, and a set of n agents, A, the
feasibility polytope, denoted by P(A,G) is defined as

P(AG) =4beRL S b =1vied,Y b;<1Vjeg

j€G i€ A

The constraint Zjeg bij = 1 is called the Agent constraint for agent i and the contraint ), 4 bi; <1 is referred
to as the Item constraint for item j.
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We will refer to points in P(A,G) as either feasible points or solutions.

Observe that P(A, G) is identical to the Agent Matching polytope as defined in equation (1.3). So P(A,G) is
the convex hull of the set of matchings between A and G in which every agent is matched.

The two relaxations. We observe that the objective of (CVX-Weighted) is a concave function, and thus
it is a polynomial time tractable convex program. But the objective of (NCVX-Weighted) is not necessarily
concave. Despite this, (NCVX-Weighted) still satisfies many desirable properties: given a point b € P(A,G), one
can efficiently find another point be P(A,G) without decreasing the objective fyevx such that the graph formed
by support of bisa forest, as stated in the following lemma. We formally define the support graphs in Definition
2.1.

LEMMA 1.2. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bt in the support
of b such that

fncvx (bforeSt) 2 fnCVX (B) .

Such a bt can be found in time polynomial in |A| and |G|.

Next, we establish that one can efficiently round any feasible point whose support graph is a forest to an
assignment.

THEOREM 1.2. For a Nash Social Welfare instance (A, G,v,w), given a vector b € P(A,G) such that the support
of b is a forest, there exists a deterministic polynomial time algorithm (Algorithm 2) which returns an assignment
o:G — A such that

NSW(0) > feux(b) — Dxr(w]|u) — 2log2 — 21? ,

Our rounding algorithm is the same as that of [CG15], however our analysis is quite different. Our analysis
relies crucially on two facts: the relative stability of stationary points of (CVX-Weighted) and the interplay
between the values of feyx and fucvx. First, we establish that any stationary point of (CVX-Weighted) is relatively
stable, i.e., the difference between the objective values of a stationary point and any feasible solution is independent
of the valuations v, and therefore can be bounded effectively. Second, we show that for any feasible solution, the
difference between fevx and fuevx is at most the KL-Divergence between the weights and the constant vector.

We use the stability of stationary points of (CVX-Weighted) along with the structure of the feasiblility
polytope to iteratively sparsify a stationary solution to obtain a matching between the agents and bundles of
items while only losing a constant factor in the objective. It is worth noting that the first term in the objective
frevx (and feyx) is linear in the variable b. As the constraint set on b is a matching polytope, the solution
optimizing a linear objective would be a matching in which all agents receive exactly one item. While such a
matching would be very suboptimal compared to OPT, our algorithm constructs an augmented graph which
indeed contains a matching with value comparable to OPT. The crux of our algorithm is to find a feasible vector
in the matching polytope for which fycvx is close to OPT and the additional non-linear term in fy.yx are relatively
small.

The remaining challenge to our approach is that (NCVX-Weighted) is not a convex program and therefore
we cannot efficiently find a global optima that maximizes fhcvx(b). However, we show that the objective of
(NCVX-Weighted) and (CVX-Weighted) differ by at most the Dky,(w || u), as stated in the following lemma. We
leverage this fact to initialize (NCVX-Weighted) with the globally optimal solution of (CVX-Weighted) to obtain
the approximation guarantee.

LEMMA 1.3. For any b € P(A,G) and weights wy, ..., w, >0 with ), , w; = 1,
1
0 S fcvx(b) - fncvx(b) S DKL(w || ’Ll,) = logn - sz 10g .
Wi
i€ A
By combining Lemma 1.2, Theorem 1.2, and Lemma 1.3 we obtain our main result.

1.4 Related Work The problem of finding the allocation which maximizes the Nash Social Welfare objective
is an NP-hard problem, as was proven by [NNRR14]. Additionally, [Leel7] showed that finding such an allocation
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is also APX-hard. From an algorithmic perspective, the first constant-factor approximation for the symmetric
version was provided in [CG15] using analogies from market equilibrium. [AMGV18] provided an improved
analysis of the algorithm from [CG15, CDGT17] and introduced a convex programming relaxation. Using an
entirely different approach, [AGSS17] also provided a constant factor approximation for the symmetric variant,
where their analysis employed the theory of log-concave polynomials. The best-known approximation factor with
linear valuations of 1.45 is due to [BKV18], where they provide a pseudopolynomial time algorithm that finds an
allocation which is envy-free up to one good. Their algorithm is entirely combinatorial and is polynomial time
when the valuations are bounded.

Another setting of interest is when the valuation of each agent is submodular instead of additive. For
instance, [GHV21] gave a constant factor approximation algorithm for maximizing the symmetric Nash Social
welfare function when the agents’ valuations are Rado, a special subclass of submodular functions. In the weighted
case, the approximation factor of this algorithm depends on the ratio of the maximum weight to the minimum
weight. [LV22] provided a constant factor approximation algorithm for the symmetric case with submodular
valuations. More recently, [GHLT23] gave a local search-based algorithm to obtain an O(nwmay )-approximation
for the weighted case and a 4-approximation for the symmetric case with submodular valuations. Note that this
O(nwWmax )-approximation factor was also the previously best-known approximation for the weighted case, even
when considering additive valuations.

2 Approximation Algorithm

Before describing our algorithm, we need the following definitions.

DEFINITION 2.1. (SUPPORT GRAPH) For a vector b € P(A,G), the support graph of b, denoted by Gsupp(b), is
a bipartite graph with vertex set AUG. For any i € A and j € G, the edge (i,7) belongs to the edge set of G if
and only if by; > 0.

DEFINITION 2.2. (ACYCLIC SOLUTION) A wector b € P(A,G) is called an acyclic solution if the support graph
of b, Ggupp(b), does not contain any cycles.

For ease of notation, given any feasible point b € P(A,G), we use variables q € RI9! to denote the projection

of b to G, i.e.,
g =) by
i€A
for each j € G. Since q is completely defined by b, with abuse of notation, we will interchangeably use P(A, G)
to denote feasible vectors b as well as (b, q). Similarly, we will use fuevx(b,q) and fevx(b,q), to also denote the
objective fucvx(b) and feyx(b), respectively. With a slight abuse of notation, we define

foevx(b,@) := > Y wibijlogvi; — > > w;bijlogg; .

i€AjeG icAjeg

for any b € RI4IXIGl and q € RICI.

Our main algorithm, Algorithm 1, begins by finding the optimal solution b to the convex program (CVX-
Weighted). It then constructs another feasible point, bt in support of b such that the support graph of
bforest ig a forest. While this may decrease the value fe.x, we show that it is always possible to find bfr*st such
that bt has the same fucvx Objective value as b. Finally, the algorithm then rounds this solution, bfrest, to

an integral solution using Algorithm 2. Theorem 1.2 establishes a bound on the rounding error incurred during
Algorithm 2.

Algorithm 1: Approximation Algorithm for Weighted Nash Social Welfare

Input. NSW instance (A,G, v, w)

b + optimal solution of (CVX-Weighted)

q < vector in RI9! with ;= ica bij

(bforest gforest) < acyclic solution in support of b such that fycv (b)) > ficvy(b)

o + output of Algorithm 2 with input (A4, G, v, w, bferest gforest)
Output. o

o Ut A W N
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Lemma 1.2, which we re-state below for the reader’s convenience, guarantees the existence of an acyclic
solution in the support of which does not decrease the fi.yx function, ensuring that the algorithm is well-
defined. It is worth mentioning that for the unweighted case, the existence of an acyclic optimum was utilized by
[CG15, CDG™17] for the convex program (CVX-Sym). In the weighted setting, this structural property is not
inherited by the convex program (CVX-Weighted) but is inherited by the non-convex program (NCVX-Weighted).

LEMMA 1.2. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, bt in the support
of b such that

fncvx (bforest) > fncvx (B) .

Such a bt can be found in time polynomial in |A| and |G|.

Proof. Let Ggupp(b) contain a cycle (io, jo,%1, .., je—1,%¢) with 49 = i¢, where i, € A and j, € G. The main
idea is to modify the variables b on this cycle while ensuring the value of q does not change. If q is fixed, then
frevx(+, @) is linear in the input, and as a result, we can cancel the cycle by considering the following vector.
Define § € RMAIXI9 with §;,;, =1 and §;,,,;, :== —1 for z € {0,...,¢ — 1}, and §;; := 0 otherwise.

Note that } . 4 d;; = 0 for any item j. As a result, for each j € G,

Zgij+€(5ij :Zl_)ij =qj.

€A €A

Therefore, the change in frcvx is given by

fncvx(B + 65, (_]) — fncvx(Ba (_]) = Z Zewi 57;]‘ IOg’U,'j — Z Z EWw; 51']' lqu_j =& h(é, q) .
i€AjEG icAjeg
Note that h(d,q) is a linear function in 8. So, if h(d,q) > 0, then setting ¢ = max, b;,,,;, ensures that
Jonovk(P4€0,Q) > fuevx(b, @), and b+¢d € P(A,G). In addition, the number of cycles in Ggypp(b+€9d) is strictly
less than the number of cycles in Gyypp(b).
Similarly, if h(d,q) < 0, then setting ¢ = —max,b;,;, gives the same guarantees. Iterating this cycle
cancelling process until the support does not contain any cycles leads to the required solution. ]

By combining Lemma 1.2 with Lemma 1.3, we obtain the following corollary.

COROLLARY 2.1. Let b be any feasible point in P(A,G). Then there exists an acyclic solution, b in the
support of b such that B

fcvx(bforeSt) 2 fcvx(b) - DKL(W || ll) .
Moreover, such a bt can be found in time polynomial in |A| and |G|.

It is possible to save the additive factor of Dkr,(w || u) in the above corollary by directly finding a first-order
optimal solution to the non-convex program. This would lead to an approximation factor that improves on the
current best O(n - wypax) [GHLT23]. Unfortunately, we can only find such a solution in pseudopolynomial time
where the running time depends on the unary representation of both the weights w and the valuations v. More
details on this approach are provided in the full version of the paper.

Before presenting Algorithm 2, we give the proof of Theorem 1.1, which now follows directly from Theorem 1.2
and Corollary 2.1, as outlined below.

Proof of Theorem 1.1. Let (b,q) and (bfrest gforest)  denote the feasible points defined in Steps 1 and 3 of
Algorithm 1, respectively. Let o* be the assignment returned by Algorithm 2 on input (bforest gforest). By
Theorem 1.2, we have

1
NSW(O'*) > fcvx(bforest7qforest) _ DKL(W || u) _ 210g2 _ %
(@ — 1
> foux(b, @) —2- Dxr,(wl|u) —2log2 — %
(i1) 1
> OPT — 2 Dxr(w]|u) —2log2 — %
e

Here, (i1) follows from Corollary 2.1, and (4i%) follows from Lemma 1.1. O

Copyright (© 2024 by SIAM
Unauthorized reproduction of this article is prohibited

1313



Downloaded 05/02/25 to 128.61.46.63 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2.1 Rounding an Acyclic Solution Given an acyclic solution b, Algorithm 2 returns an assignment with
value comparable to f.yx(b), as stated in Theorem 1.2.

Algorithm 2: Algorithm for Rounding an Acyclic Solution

1 Input. NSW instance (A, G, v, w), acyclic solution (b,q) € P(A,G)
2 (b*,q*) + optimal solution of (CVX-Weighted) restricted to the support of (b, q)
38 F*  Ggupp(b*) with every tree rooted at an agent node

4 Remove edges between item j and its children in F* whenever g7 <1 /2 to get forest F (Pruning)
5 L* « set of leaf children of agent i in F and let L* = U;{L}}
6 M* < matching between A4 — G\L* in F which maximizes weight function
wi(M) =3, 4 w; log (Uz'M(i) + Xjers Uij) 1
7 0* < assignment of G to A with o*(j) =i if j € {LF UM™*(i)} (Matching)
8 Output. ¢*

Given an acyclic solution b, Algorithm 2 first finds an optimal solution, denoted by b* to (CVX-Weighted)
restricted to the support of b, i.e., b* is the optimal solution to (CVX-Weighted) with input A, G, v, w), where
v;; = 0 if b;; = 0, and v;; = v;; otherwise. This is crucial to later utilize the stability properties of stationary
points of (CVX-Weighted).

Next, the algorithm implements a “pruning” step by sparsifying b* by removing edges between any item with
g <1 /2 and its children in Ggypp(b*). This is equivalent to assigning item j to its parent agent. As a result,
any item with ¢7 <1 /2 is a leaf in this pruned forest. Since removing edges will exclude certain items from being
assigned to some agents, pruning can lead to a sub-optimal solution. We bound this loss in objective by showing
the existence of a fractional solution (bPruned gpruned) that is feasible in F' after pruning, and has an objective
comparable to the objective of (b*,q*). For concrete details, see Section 3.

It is important to emphasize that the algorithm does not need to find such a solution (bPruned gpruned) The
mere existence of (bPruned gPruned) s enough to guarantee that the assignment returned by the algorithm will be
good, as we explain below.

After the pruning step, the algorithm assigns every leaf item in the pruned forest to its parent. We use L}
to denote the set of leaf items whose parent is agent ¢ and L* = U,;c 4L to denote the set of all leaf items in the
pruned forest. So, each agent ¢ receives all the items in the bundle L7. In the matching step, the algorithm assigns
at most one additional item to each agent by finding a maximum weight matching between agents A and items
G\L* (the set of non-leaf items in the pruned forest). This matching is determined using an augmented weight
function, denoted by wz. The weight of a matching M between A and G\ L* in the pruned forest is defined as
follows:

wi(M) = Zwi log | viniy + Z vij | s

i€A JjeL}

where vy = 0 if 7 is not matched in M. Observe that this weight function exactly captures the weighted Nash
Social Welfare objective when agent 4 is assigned the item set S; := {M (i) UL}} for each i € A. Moreover, finding
the optimal matching M can be easily formulated as a maximum weight matching problem in a bipartite graph.

Since the standard linear programming relaxation for the bipartite matching problem is integral, it is enough
to demonstrate the existence of a fractional matching with a large weight wz in the pruned forest. In Section
3.2, we show how to construct a fractional matching corresponding to bP™"¢d such that the objective for the
matching problem can be compared to the objective fycvx(bPTed bPruned)  We emphasize that this matching
corresponding to bP™"¢d is only required for the sake of analysis: to lower bound the performance of the matching
returned by the algorithm. We do not require bP™"¢d for the execution of the algorithm.

TIf agent 4 in unmatched in M, we let vin (i) =0
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3 Rounding via the Non-Convex Relaxation

In this section, we prove Theorem 1.2 by establishing some properties of the set of support restricted optimal
solutions of (CVX-Weighted). First, in Lemma 3.1, we show that any optimum whose support is restricted to a
forest can be “pruned” to a feasible solution while only losing a constant factor in objective. Specifically, we show
that given a support restricted optimum (b*, q*), we can construct a feasible solution (bPruned gPruned) gyuch that
any item with q;?mmd < 1/2 is a leaf in support graph of bP™"¢d and f, (bPruned gpruned) > ¢ (b* q*) —log 2.

Second, in Lemma 3.2, we demonstrate the existence of a matching in support graph of bP*"¢d sych that the
augment weight function of this matching differs from fcoy (bP™¢4) by a constant factor. After presenting these
two lemmas, we provide the proof of Theorem 1.2.

LEMMA 3.1. Let (b*,q*) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible point
bferest . Let F' be the directed forest formed by Gsupp(b*) when every tree is rooted at an agent node. Then, there
exists an acyclic feasible point (bPrured gpruned) yn D(A G such that Geupp(bP™eY) is a subgraph of Gsupp(b*)
and

. qf“med > q; for any j with g; > 1/2
e cach item with q; < 1/2 is a leaf in Goupp (BP™) connected to its parent in F,
° fcvx(bpruned, qpruned) > fCVX(b*7 q*) _ IOg 2.

The proof of Lemma 3.1 relies on the stability properties of first-order stationary solutions, as outlined in
Section 3.1.

LEMMA 3.2. Let (b, q) be an acyclic solution in P(A, G) such that every item with ¢; < 1/2 is a leaf in Gsupport(b).
Let S : A — 29 be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with q; < 1/2. Then, there exists a matching M in the subgraph
of Gsupp(b) with vertices AU{G\ U; {S(i)}} such that

1
Z w; 108; sz(z) + Z Uij Z fncvx(b7 q) - 10g2 - % )
€A jeS(i)

where vip iy = 0 if agent i is not matched in M.
We prove this lemma in Section 3.2.

Proof of Theorem 1.2. Given (b, q) such that Gsupp(b) is a forest, let (b*, q*) be the optimal solution of (CVX-
Weighted) restricted to support of b, let F denote the forest obtained after pruning Gyupp(b*). Let
(ppruned gpruned) he g feasible solution guaranteed by Lemma 3.1 on input (b*, q*).

Since Gsupp(bP™¢d) is a subset of Gupp(b*), and every item with q; < 1/21is a leaf in Gisupp (bPTed) | we

conclude that Gsupp(bpru“ed) is a subgraph of F. Furthermore, for any agent ¢, the set of leaf children of ¢ in F
is a subset of the leaf children of i in Ggupp(bP™1ed). To observe this, note that for any item j with o <1/2,j

is a leaf in Ggupp(bP™d) only connected to its parent in Ggupp(b*). For any item j in F with q; > 1/2, we have

q?r“ned > qf. If j is leaf in F connected to agent i, q;?runed > qf and Geupp(b*) C F enforces that j is a leaf in

Gsupp(b*) connected to agent i.
Therefore, for each agent 4, the set L¥ is a subset of the set of leaves of agent i in Ggupp(bP™*4) and L}

contains all the items with (I?rumd < 1/2 in Gaupp(bP™°). So, the function S(i) = L satisfies the constraints

of Lemma 3.2 with input (bpruned gpruned),

Using Lemma 3.2 on (bPruned gpruned) with function S(i) = L}

¥, we conclude that there exists a matching,
M, in Ggupp(bPred) such that

1
Z wilog | vin(iy + Z vij | = Z w; log | vinriy + Z Vij | > faevx (BP0, @PM) —log 2 — %
i€A JjeEL} i€ A JES(7)
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Since Gyupp(bPT2¢4) is a subgraph of F, the matching M is also a present in F. Therefore, the matching M*
(and corresponding assignment ¢*) returned by Algorithm 2 satisfies

NSW (o Z wilog | ving+(iy + Z Vij
i€ A jeL:
(%)
> Z w; log ViM (3) + Z Vij
€A JEL}
(i) 1
> fncvx(bpruned qpruned) o IOg 9 _ ?
(&

(#41) 1
Z fcvx(bpruned’ qpruned) _ DKL (’LU || u) _ 10g2 _ %

(iv) 1
> fcvx(b*aq*) — DKL(’UJ || U) — 210g2 —_ —

2e
(v) 1
> fcvx(baq) - DKL(w ||u) - 210g2 - 276 .
Here, (i) follows from the optimality of M™, (i) follows from Lemma 3.2 and (¢i:) follows from Lemma 1.3, (iv)
follows from Lemma 3.2, and (v) follows from optimality of b*. O

3.1 Pruning Small Items In this section, we prove Lemma 3.1 by establishing some properties of the set of
first-order stationary solutions of (CVX-Weighted) in Lemma 3.3 and Lemma 3.4.

First, we show that any such stationary solution of (CVX-Weighted) is relatively stable, i.e., the change in
function value when moving away from the stationary solution can be quantified in terms of how much we deviate
from that solution. We formalize the stability of a first-order stationary solution of (1) as follows.

LEMMA 3.3. Let (b*,q*) be the optimal solution of (CVX-Weighted) in the support of some acyclic feasible point
brest . Let (b,q) be a feasible point in P(A,G) such that the support of b is a subset of the support of b*, and
forany j € G, if ¢ =1, then q; = 1. Then

w; by
fevx(b*, @) = fevx(b, q) Zsz bi; log (ZZEA J) :

jEGicA ZlGA Wi b”

We provide the proof of this lemma in Appendix A.

Second, in Lemma 3.4, we show that any acyclic first-order stationary point of (CVX-Weighted) can be
pruned to a feasible solution, denoted by bP™"¢d which is amenable to rounding. Specifically, we show that given
a first-order stationary point (b*,q*), we can construct a feasible solution (bPred gPruned) guch that any item
with qlDruned < 1/2 is a leaf in support of bPrned and bpruned < min{1,2b};} for any agent i and item j.

LEMMA 3.4. Let (b*,q*) be any acyclic feasible point in P(A,G). Let F' be the directed forest formed by Gsupp(b*)
when every tree is rooted at an agent node. There exists a feasible solution (bP*ed gPruned) of P( A G) such that
Gsupp (BP0 s a subgraph of Gsupp(b*),

o g < q?runed for each item j with g5 >1/2,

e cach item with ¢ < 1/2 is a leaf in Gupp (BP™d) connected to its parent in F, and

e for any (i,j) € AX G, b?;umd < min{1,2-b;}.

Before proving Lemma 3.4, we use Lemma 3.4 along with Lemma 3.3 to prove Lemma 3.1.

Proof of Lemma 3.1. By Lemma 3.4 , there exists a feasible solution (bPrned gPruned) syuch that Gyypp (bPT1ed)
is a subgraph of Gyupp(b) and (bPruned gpruned) gatisfies the first two items claimed in the lemma. Furthermore,

for any (i,7) € A% G, bpruned < min{1,2-bj;}.
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So using Lemma 3.3, the difference in objective between (b*, q*) to (bPruned gpruned) jg hounded as follows

d
b*. a* pruned pruned pruncd ZZE.A Wi bf]rune
Frosx(6",47) = freux(b Y w2 g ZieA T)

j€gicA e i by
Since bpmned < min{1, 2bj;} for each (i,j), we have Y, w; b%mned <237 wibj
(35) fncvx(b*7 q ) fncvx( pruned pruned < Z Z '(U»L pruncd log 2.
JEGieA

The feasibility of bPred implies

Z Z w; bi)]runed _ Z w; Z bpruned Z w; = 1.

jeGicA €A jEG i€ A
Plugging this bound in equation (3.5) completes the proof. O

Before proving Lemma 3.4, we need the following lemma about the feasibility of a solution when we decrease
the b;; for some edge (j — %) in the support forest of b.

LEMMA 3.5. Let (b,q) be a feasible point in P(A,G) such that Gsupp(b) is a forest. Let F be the directed forest
formed by Gsupp(b) when every tree is rooted at an agent node. For a non-root agent i in F, let item j be its
parent. Then for any 0 < & < min{b;;, 1 — b;;}, there exists a feasible solution, (b°,q°) such that bfj =b;; — 6,

¢} =a; =06, 4} > qy for all j € G\{j}, and

W < min{l, 2by}  if i, 5" € T(i)
= by jr otherwise,,

where T'(x) denotes the subtree in the forrest F' rooted at x.

Proof of Lemma 3.4. We will iteratively build the solution (bPruned gpruned) gatisfying these properties while
ensuring that it remains feasible. For a vertex x € AU G, let par(x) denote its in parent in Ggupp(b*), let C(x)
to denote the set of its children in Ggupp(b*), and let T'(x) denote the sub-tree rooted at vertex z in Ggypp(b*).

Consider an item j with ¢7 <1 /2. To make the vertex corresponding to j a leaf, the algorithm removes
all the edges between item j and its children C’( j). To reflect this change, we will update the solution b* to an
intermediate solution b such that the support of b does not contain any edges between item j and its children. To
maintain feasibility, we require:

a] = bpar(j)J = bpar(J)J

(3.6) bi; = 0 for all i € C(j)

Note that ¢ < 1/2 implies b}; < 1/2. As a result, b;; < min{bj;, 1 — bj;} for each i € C(j).

By 1terat1vely applylng Lemma 3.5 to edge (j — z) Wlth 0 = by for each 1 € C(j), we arrive at the required
solution (b, §) such that b” = 0 for each i € C(j) and ¢; = q; — >_;c () bij = bpar(j);- Since T(j) is the disjoint
union of the sub-trees rooted at nodes in C(j), for distinct i1,i2 € C(j), updating the sub-tree for i; does not
affect the b values for any edge in T'(i2) and vice versa. Therefore, we have ¢, < g; for any item j €T(j) and
by rj < min{1,2bj;, } for any i’, ' € T(j).

Since we want to ensure that all items with g7 <1 /2 become leaves, we must repeat the above process for
any such item. The following fact is crucial to bound the values after multiple pruning processes: Pruning an
item j only changes b values for edges in T'(j), and item j becomes a leaf after that. So, if we prune ancestors of
j after pruning j, the b values of edges in T'(j) are not changed.

So let (bpruned gpruned) he the solution obtained by pruning the set of items J = {j € G : q; < 1/2}in
decreasing order of their height?. Note that pruning item j does not decrease ¢ value for any item other than j.

2Note that pruning items in decreasing order of their height is only an artifact of the analysis. The algorithm can prune items

with ¢; < 1/2 in any order.
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pruned

Therefore, if g; < 1/2, then item j has already been pruned and is a leaf. For any item j with ¢f > 1/2,
its g value only increases when its nearest ancestor is pruned, and this is the only time its ¢ value changes, we
concludes that qpr“md > g;. This proves the second claim of the lemma.

To estabhsh the third point of the lemma, observe that the b variable for any edge in Ggupp(b*) changes at
most twice during the pruning process: If ¢; > 1 /2, then item j itself is not pruned, and b values of edges incident

to j may change only when the nearest ancestor of j is pruned. By Lemma 3.5, b%mned < min{1, 2bj;} for each
ie A If g <1 /2, the b value of any edge from j to its children becomes zero when j is pruned, and the b value
of the edge (par(j) — j) does not change when we prune j, and it may increase if j has an ancestor that is also

pruned after j. If so, we have bP"™""4 < min{1, 2b*

par(j)j par(j)j }

O

3.2 Fractional Matching and Analysis In this section, we prove Lemma 3.2, which completes the proof of
Theorem 1.2.

We establish Lemma 3.2 by proving two inequalities (in Lemmas 3.6 and 3.6) about the properties fycvx for
any feasible point whose support is a forest. Lemma 3.6 shows that fucyx can be upper bounded by a linear
function in b while losing a constant factor.

LEMMA 3.6. Let (b, q) be an acyclic solution in P(A, G) such that every item with q; < 1/2 is a leaf in Gsupport (D).
Let S : A — 29 be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with g; < 1/2. Then

Z wi Z bU log Vigj + Z blj log Z Vij Z fncvx(ba q) - 10g2 - % .

ic A J¢S(4) JES(1) JES(1)

Lemma 3.7 demonstrates how the linear function obtained from Lemma 3.7 can be used to as a lower bound
for the maximum weight matching. A crucial component of this Lemma is the fact that any feasible b in P(A, G)
corresponds to a point the matching polytope where all agents are matched.

LEMMA 3.7. Let (b, q) be an acyclic solution in P(A, G) such that every item with ¢; < 1/2 is a leaf in Gsupport(b).
Let S : A — 29 be a function such that for each agent i, S(i) is a subset of leaf items connected to agent i in
Gsupp(b), and S(i) contains all children of agent i with q; < 1/2. Then, there exists a matching M in the subgraph
of Gsupp(b) with vertices AU{G\ U; {S(i)}} such that

(3.7) Zwilog ViM (i) T Z Vij ZZwi Z bijlog vi; + Z bi; log Z Vij ,

icA JES () icA JES () JES( JES(3)
where vy = 0 if agent i is not matched in M.

Lemma 3.6 and Lemma 3.6 together establish Lemma 3.2. In the rest of this section, we provides the proofs
of Lemma 3.6 and Lemma 3.7.

Proof of Lemma 3.6. Recall that

fncvx b q Z W; Z bzy log Vij — Z w; Z bij log q;

€A jeG €A jEG
(3.8) = Zwl Z b;;jlogv;;j — Zwl Z bi; log g; + Zwl Z b;;logv;j — bijlog b;;
i€ A J¢5S(3) ic A Jj¢S(7) i€ A JjES(7)

where the last equation follows from the fact that every item in L; is a leaf, i.e., there is exactly one agent ...
Therefore, for any j ¢ L, g; > 1/2. As a result,

(3.9) — Z w; bijlog g; < log2 Z w; byj .
icA icA
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Plugging this bound into equation (3.8) gives

(3.10) frevx(b, Q) SZwi Z bijlogvi; — sz Z bij log2—|—ZwZ Z bij log v;; — bi; log bs;

€A j¢S(i) €A j¢S(1) €A JES(i

As b € P(A,G), we have > oq;) bij = 1 — 3,5 biy for every agent i. Substituting this in equation (3.10)
yields

faevx(b,q) < Zwl Z bi; logv;; + sz log 2 + Zwl Z bijlogvi; — b;;logb;; — b;;log2

i€ A j¢S(2) ic A ic A JjES(4)
(3.11) = sz Z b;; logv;; +log2 + Z w; Z bi;jlogv;; — bijlogb;; — bijlog2 |,
i€ A j¢S(4) ic A JES(7)

where the last equation follows from ), w; = 1.
For each agent i € A, Claim 1.1 implies that

Z bij log Vij — bij log bij S Z bij log Z Vij Z b” log Z bij

JeSs (i) JeS() JEeS(@) JeS(3) JEeS(@)

So, for any agent ¢,

Z bij log Uij — bij IOg bij — bij 10g2 S Z bij log Z Uij — Z bij log Z bij Z bzy 10g2

JES(7) JjES(7) JES(7) JjE€S(7) JES(7) JES(3
1
< . - —
(3.12) < > bylog | Y wi |+ o
JjE€S(7) JES(7)
where the last inequality follows from —xlog(z) — xlog2 < 1/(2e) for all z > 0 applied to =}, ;) bij-
Substituting (3.12) in (3.11), we get
1
< ) . . . - . —
fncvx(ba q) > Z w; Z sz 10g Vij + 10g2 + Z w; Z sz IOg Z vi; | + %
i€ A J€S (i) i€ A jE€S(i) JES(3)
1
= Z w; Z bi; log vi; + Z b;; log Z Vi +log2 + %"
i€ A J¢S(7) JES(7) JES(3)
where the last inequality follows from >, , w; = 1. O

Proof of Lemma 3.7. In this proof, we will analyze a matching that either assigns the bundle S(4) to an agent or
a single item j ¢ U;S(i). Observe that the matching M clearly finds an assignment with a larger objective as

log | vine(s) + Z vij | = max ¢ log vin(;), log Z Vij
jES(i) JES()

So, for each agent i € A, we create a new leaf item ¢; with v;y, = Ejes(i) v;; corresponding to the sey of
items in S(i). Define S := U;S(i) and G := {G\S} U {£;}sea. We show that the maximum weight matching in

the bipartite graph (A, G) suffices to prove the lemma. As the matching polytope is integral, to show there exists
a matching of large objective, it is enough to demonstrate a fractional matching of large value.
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Using b, we define fractional assignment variables x as follows:
CEij = bij VZ c ./4 ] S {g\L}

= > by Vi

jeS(i)

Using x, we can re-write the L.H.S. of equation (3.7) as

(3.13) Zwi Z b;; logv;; + Z bi; log Z Vij = Z Zwij w; log vyj .

icA J¢S() JES() JES(i) €A jeg

Observe that x lies in the convex hull of matchings between agents A and items G in which every agent is matched
as x satisfies the following properties:

Dmip= > b+ > by=1 VicA

jeg J¢S(i) JES(7)

€A
Here, the last inequality for item j ¢ S is inherited from the feasibility of b. The constraint for ¢;; for some i’ € A
is implied by the constraint ) ;. 4 7ij = @4; = ZjeS(i) bij < Zjeg b;; < 1, where the last constraint follows from
feasibility of b. . B
Using the integrality of the matching polytope, there exists a matching M : A — G such that

(314) Z Z Tij Wy 1og Vij < Z w; IOg ’UZ.M i

iEAjegv i€ A

Now consider a M : A — G with M(i) = 0 if M (i) = ¢;, and M (i) = M (i) otherwise. Then

(3.15) Zwi logfuiﬁ(i) < sz log | vinrg) + Z Vi

i€ A i€ A JjES(3)

Then equations (3.13), (3.14) and (3.15) together imply

Zwi log | vinreiy + Z Vij ZZwi Z bijlogvs; + Z bi; log Z Vij

icA 0 €A 0 JES(i) FES (i)

4 Conclusion and Open Questions

In this paper, we introduced a convex and a non-convex relaxation for the weighted (asymmetric) Nash Social
Welfare problem. Both of these relaxations play a crucial role in obtaining the approximation algorithm for
the problem. There are two natural open questions. First, is the factor exp (Dkp(w ||u)) necessary in the
approximation guarantee? Equivalently, is it possible to obtain a constant factor approximation for the weighted
Nash Social Welfare problem? It is important to emphasize that we lose the exp (Dkr,(w || w)) when relating
the objectives of the two relaxations; we only lose a constant factor when rounding the non-convex relaxation.
There may exist a direct approach to approximately solve the non-convex formulation that gives an improved
approximation guarantee.

The second question is whether the techniques introduced in this work generalize to more general valuation
functions, in particular, submodular valuations for the weighted Nash Social Welfare problem. While there
are constant factor approximation algorithms for symmetric Nash Social Welfare with submodular valuations,
obtaining anything better than O(nw,.x)-approximation for the weighted variant of the problem remains an
open question.
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A  Omitted Proofs and Lemmas

Ezample. Consider a weight vector w with w; =

log n logn

1 n 1 n 1

log +(1- log 1-—
logn logn logn n—1 logn

log 1 1 1 1
:1770g0gn+ 1— — ) log L. +{1———log(1l-—

logn logn n—1 logn logn
S1+log<n>§2.

n—1

and wy = . .zwn:n (1— ).Then

Dgr(w|[u) =

Proof of Lemma 1.1. Let 0 : G — A be the optimal assignment of an instance of Nash Social Welfare. For each
agent i € A, define V; = > ;) Vij- Using o, we define a vector b € P(A,G) as

jeo—1(

0 otherwise.

b{v if o(j) = i
ij

It is easy to verify that > ., bi; < 1 for each j € G and ), ;5 b;; = 1 for each i € A. We will now show that
fevx(b) and frevx(b) are both equal to NSW (o).

o) =Y wa(‘;)vz(m logvsyy — 3 wa(j)vz_;(j>j log < amvg(g)]) S wilogw,

o Vou = Ve Vo) by
We(j)Vo
_Z (”lg< )—i—Zwtlogwt
j€g Wo(5) €A

=N w > %]lg( ) > wilogw

€A jeo—1(i) icA

= Zwﬂog( > +Zwllogwl ZwilogVi = NSW(o),and

€A i€A icA
wo(j)UU(J)J wU(j)Uo'(J)j UO’(])]
Frevx(b) = ) — =108 0o (), — log ( )
) JEZQ Vo) o Jzeé Voii) 2%
_Zwa UU(]] lOng(J) _sz Z 7_] IOgV
JEG €A jco— 1()
=" wilog Vi = NSW(o).
€A
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For the second claim in the lemma, when w; = 1/n for each i, for any b € P(A, G), we have

bi;
fcvx(b) = %ZZZ)” IOgUZ‘j EZZ[)” ]Og ( €A ) —logn

i€eAjeg icAjeG

= %ZZb,’j log v;j — fZZb,] log (Zb”> ZZZ)” logn — logn
i€AJEG i€AjEG €A zE.A jeg

= fZZb” logv;; — ZZbH log <wa> ,
i€AjEG zeAJeQ i€ A

where we used >, b;; = 1 for every i in the last inequality. Simply substituting w; = 1/n for each i in fucyx
completes the proof. O

Proof of Lemma 1.3. We will show that

fcvx(b) - fncvx(b) = DKL(W || u) - DKL(:U’ H 9) ’
where p, 0 are two probability distributions on G given by

Z'LEA bij

n

Zwl i and  0(j) =

€A

Using > ;e qwi =1 and } by =1 for each i € A, one can verify that >, o u(j) =1=3,.50(j).
Expanding the difference between the functions gives

fcvx(b) - fncvx(b) = Zwl Ingi - Z Zwl bz] IOg (Z Wi zg) + +sz bl] IOg (Z sz)

i€ A jEGiIcA i€ A i€ A
Y iea Wib;
ZwilogwiZZwlbUIOg< ZE » ij
€A jeGieA icA
— Zmlogm +ZZwawlogn—Zu log( j;)
icA JjEGIEA jEeg ‘7
(using >, b;; = 1) = Z w; log(nw;) Zu )log ( j;)
icA jeg j

= Dxr(w|[u) — Dxr(p]0)

As Dy, (p,0) > 0, the above equation implies

fCVX(b) - fncvx(b) < DKL(W || 11) :

For the lower bound it suffices to show that Dky(u||0) < Dkr(w||u). To see this, we can expand the
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definition:

Dxr (1] 0) Z (Z w; Z]> log < zz::ze,:?:lbu)

1 Z’LEA w"bl]
og Z b
€A

Jj€EG \icA

%(;;bw)(
s 2 (50

Z ZzEA ij

€A

Z ZZEA ij

€A

= log(n) + Z w; log(w; Z bij

jeEA jegG

= log(n) + Z w; log(w;)
i€ A

) (St )
> w; log(w;)

DKL(W || u) .

Here, the only inequality is the convexity of xlog(x), and the last equality follows from the feasibility of b. O

As a first step to establish the stability of a stationary point of (1), we need the following the property about

its support.

LEMMA A.1. Let b* be the optimal solution of (CVX-Weighted) (even with support restriction) with q}

Yoicabli. Then there exist real numbers {X\;}7—, and {n;}7

i€A Vig”
and if by ; > 0, then

w; log v;; = w; log (Z wiby;

i€ A

j=1

> 0 such that n;(1 —q;) = 0 for all j € G

)+wi+>\i+nj~

Proof of Lemma A.1. If b* is a first-order stationary solution of 1, then using the KKT conditions, there exist

Ai € R and Q5,15 > 0 such that

oL
(A.1) Fa w; logv;; — w; —w;lo
ij icA
and
(1= by) =
(Complementary slackness) i€A

Qs b* 0.

Using the complementary slackness condition, if b}; > 0, then

w; log vy = w; + w; log <

€A

> wil;

g (Zwibfj> —Ai—njta; =0

>+>\i+77j-

Proof. Expanding the difference between the two function values, we get

-w; logv;; — Z Z w; b}; log (Z w; b%)

fCVX(b*7q ) fCVX b q ZZ

€A JEG

jEGiIcA

i€ A

1324
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Since (b*, q*) is locally optimal, Lemma A.1 implies that there exist real numbers \; for each i € A and ; > 0
for each j € G such that 7;(1 —¢j) = 0 for all j € G, and if bj; > 0, then

w; logv;; = w; log (Z w; b;-}) + A+ w + ;.
€A

Substituting this value of v;; in equation (A.2) gives

fcvx(b*aq ) fcvx b q ZZ ’L] (wz log (sz b;}) +)\z +wz +7b>

i€ AjeG i€ A
— Z Z w; bfj log <Z w; b%) + Z Z w; byj log (Z w; b¢j>
jeGicA e A jeGicA €A
=> "> w;bijlog (%LEAU}I lj) +D Qatwi) | 305 =3 by
JEGicA iea i€A jeg jeg
+D (Z DY bia‘)
JjEG i€A i€A

Using > cgbij = > g by = 1 for every i € A, we get

forx(*, %) = feux(byq) =Y > " w; by log @sz ”) +> i (@ —a)
eAW

jeGicA jeg

where the last equation follows from the definitions of ¢; and ¢7.

Note that by Lemma A.1, n;(1—¢;) = 0 for any j € G. So 1f q; <1, then n; = 0 and therefore n;(q; —¢q;) = 0.
If g§ = 1, then by the hypothesw of the Lemma, ¢; = 1, and again we obtain that 77]( —q;) =0. Usmg this
bound in the above equation gives

’Lbl
fCVX<b*7q ) fcvx b q Zzwz bz] log (ZlGAw ]> :

jeGicA ZzeA Wi bz]
0

Proof of Lemma 3.5. For x € AUG, let C(z) denote the children of node x in F' and let T'(x) denote the sub-tree
rooted at node 2. We will prove this lemma by induction of the height of agent i by building (b°,q’) € P(A,G)
inductively.

For the base case, assume agent 4 has height 1, i.e., T'(i) consists of only leaf item nodes that are the children
of node i. Note that setting bfj =b;; — 6 and q}s = ¢; — 0 only violates the Agent constraint for agent i. So we
only need to change the values of b in T'(7) to make the solution feasible.

By the feasibility of b, b;; —&—Ekec(i) bir, = 1 and for every item node k € C(i), g = bi, < 1. Using Lemma A.2
with o = b;; and S = bk, there exists some d;, € R>q for each k € C(i) such that

bij =0+ Y bi(l+0) =1
keC (i)
0<6 <1 VkeC(i).

So, for each k € C(i), we set ¢ = b%, = bix(1 + dx). As every item in C(i) is a leaf, this gives ¢} < 1 for all

k € C(i), and
Z By =biy —0+ > b(l+08) =1
keC (i keC (i)
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Therefore (b°, ¢°) is feasible. Additionally, for every k € C(i), ¢} = qi(1+ 61) < 2gi, as & < 1.

For the induction hypothesis, assume that the lemma is true whenever the height of agent is at most ¢ — 1
for some integer ¢ > 1. We will show that the statement also holds when the height of agent i is /.

Again, that setting bfj =b;; — 0 and q? = ¢; — 0 violates the Agent constraint for agent 7. Similar to the base
case, we can find 0 € (0,1) for each k € C(i) such that b (1 + i) < 1 and

bij =0+ D bi(l+6)=1.
keC(i)

Setting b%, = b (1 + 6)) for each k € C(i) will ensure that b° satisfies the Agent constraint for agent i.
However, this can violate the Item constraint for some item k € C(i), as q,‘z = qr + Oibik. So we inductively
update the values of b and ¢ for the sub-tree rooted at item j for which such a violation occurs.

Consider an item k& € C(i) such that q,‘i = qp + 0xb;x > 1. Define v := qi + dpbj, — 1. Since qp < 1,
we have v < 0gpbir < b as dp < 1. We will decrease by to ensure that q,‘z is at most 1. Using the fact that
qr = Zi,ec(k) bi'k. + bix, we can further bound ~ as follows.

v =qr + b — 1 = Z birk + big + Orbix — 1
i1eC(k)

(using b (14 6;) < 1) < Z birk
i'eC(k)

Therefore, there exist numbers v;; > 0 for each ¢’ € C(k) such that v < by and 32, c o) Vir = -
We set b0, = by, — i for each i’ € C(k). Then ¢ = bJ, + Zi,ec(k) bg,,, satisfies the following inequalities.

@y = b + Z b

i'eC(k)
=bi(1+0)+ Y (k=) =1+7- Y sw=1>¢; and
ireC(k) ireC(k)
qg:bik(l—i—ék)-F Z (bi’k_'Yi/) <bik(1+5k)+ Z birg
ireC(k) ireC(k)

= qr + Orbir < 2qx,

where we used §; < 1 and b;; < ¢ for the last inequality.
Furthermore, as 7, < v < b, we have v < qx — by, <1 — by, for any i’ € C(k). So for each i’ € C(k),

~vir < min{by, 1 —byg}.

Using the induction hypothesis, for each i’ € C(k), there exists feasible (b7, ¢") which differs from (b, ¢q) only
in the sub-tree rooted at ¢ such that for any item j’ € T'(¢'), ¢;» < q;;“ < min{1, 2¢; }.
For item j' € T(i'), setting qg, = qj,i/ completes the proof.4 O

LEMMA A.2. Let « > 0 and B1,...,0Bx > 0 with o + Z?zl B: = 1. For any 0 < 6 < min{a, 1 — a}, there exist
real numbers (01,...,0k) such that

(A.3) a—6+ Y Bi(l+4d)=1

JElK]
Bi(1+46;) <1 Vjelk]

Proof. As the above system contains only linear constraints on d;, we use Farkas’ Lemma to show the existence
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of {(5j}§:1. Re-arranging the constraints gives

(A.4) > Bidj =6

J€E(k]
Bid; <1—p5; Vje€ K]
0<4; <1 Vjelk

If there do not exist real numbers {4; }"7?:1 satisfying (A.4), then by Farkas’ Lemma, there exist real numbers
7, {%‘}?:1, {)\j};?zl such that

(A.5) Bin+ By +A; =0 Vi€ [K]
(A.6) o+ Y (L=Bv+ > A <0
j JE[K]

Adding equation (A.5) for all j € [k], we get
nZﬁj"‘Zﬁ]V] ZAJ'Z(L
J€lk] €[] J€[K]

Since o+ ;g B = 1, this implies (1 — &) + 32,4 B + 2 jep Aj = 0. In addition, since §; > 0, we also
have o < 1. Therefore dividing by 1 — « gives

Bivi Aj
Al B EEV
(A7) Zl—a+21—a_ n
JEK] Jelk]
On the other hand, equation (A.6) implies
(1= Bj)v Aj
(A8) REDPLESOINE
JE(k] JElk]
On combining equations (A.7) and (A.8), we obtain
(A.9) > f”ﬂa Z Z ﬁg %, Z
JEIK] JElk] JE[K]

We will now derive a contradiction to (A.9).
As 6 <1—a, wehave 1/(1 — «) < 1/§, we have

(A.10) ZlA_j SZ%

o
JElk] jelk]

where we also use the fact that \; > 0 for all j € [k].
In addition, any j € [k]
Bi A=) _ B (A=F) _ a+thi-1

A1l — < — = <0.
( ) 11—« 0 T l-« ! a(l —a) =0

Here, the first inequality follows from § < a and the last inequality follows from the fact that o + > Jelk] B =1
and o, 3; > 0.
On adding equation (A.10) with equation (A.11) for all j € [k], we obtain

5]] 1*53' J )‘]
> lﬁz sy ey 2

JE[K] JE[K] jelk]
which contradicts (A.9). Therefore, there exist real numbers {d; }?:1 satisfying (A.3). 0
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