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Abstract. Online advertising has motivated interest in online selection problems. Dis-
playing ads to the right users benefits both the platform (e.g., via pay-per-click) and the 
advertisers (by increasing their reach). In practice, not all users click on displayed ads, 
while the platform’s algorithm may miss the users most disposed to do so. This mis-
match decreases the platform’s revenue and the advertiser’s chances to reach the right 
customers. With this motivation, we propose a secretary problem where a candidate 
may or may not accept an offer according to a known probability p. Because we do not 
know the top candidate willing to accept an offer, the goal is to maximize a robust objec-
tive defined as the minimum over integers k of the probability of choosing one of the top 
k candidates, given that one of these candidates will accept an offer. Using Markov deci-
sion process theory, we derive a linear program for this max-min objective whose solu-
tion encodes an optimal policy. The derivation may be of independent interest, as it is 
generalizable and can be used to obtain linear programs for many online selection mod-
els. We further relax this linear program into an infinite counterpart, which we use to 
provide bounds for the objective and closed-form policies. For p g p7 j 0:6, an optimal 
policy is a simple threshold rule that observes the first p1=(1ÿp) fraction of candidates and 
subsequently makes offers to the best candidate observed so far.

Funding: Financial support from the U.S. National Science Foundation [Grants CCF-2106444, CCF- 
1910423, and CMMI 1552479] is gratefully acknowledged. 
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1. Introduction
The growth of online platforms has spurred renewed interest in online selection problems, auctions, and stopping 
problems (Alaei et al. [3], Devanur and Hayes [24], Edelman et al. [29], Lucier [55], Mehta et al. [58]). Online adver-
tising has particularly benefited from developments in these areas. As an example, in 2005, Google reported about 
$6 billion in revenue from advertising, roughly 98% of the company’s total revenue at that time; in 2020, Google’s 
revenue from advertising grew to almost $147 billion. Targeting users is crucial for the success of online advertis-
ing. Studies suggest that targeted campaigns can double click-through rates in ads (Farahat and Bailey [31]), despite 
the fact that internet users have acquired skills to navigate the web while ignoring ads (Cho and Cheon [18], Drèze 
and Hussherr [26]). Therefore, it is natural to expect that not every displayed ad will be clicked on by a user, even if 
the user likes the product on the ad, whereas the platform and advertiser’s revenue depend on this event (Pujol 
et al. [61]). An ignored ad misses the opportunity of being displayed to another user willing to click on it and 
decreases the return on investment for the advertiser, especially in cases where the platform uses methods like 
pay-for-impression to charge the advertisers. At the same time, the ignored ad uses the space of another, possibly 
more suitable ad for that user. In this work, we take the perspective of a single ad, and we aim to understand the 
right time to begin displaying the ad to users as a function of the ad’s probability of being clicked.

We model the interaction between the platform and the users using a general online selection problem. We refer 
to it as the secretary problem with uncertain acceptance (SP-UA for short). Using the terminology of candidate and deci-
sion maker, the general interaction is as follows: 

1. Similar to other secretary problems, a finite sequence of candidates of known length arrives online, in a ran-
dom order. In our motivating application, candidates represent platform users.

2. Upon an arrival, the decision maker (DM) is able to assess the quality of a candidate compared with previ-
ously observed candidates and has to irrevocably decide whether to extend an offer to the candidate or move on to 

1 

MATHEMATICS OF OPERATIONS RESEARCH 
Articles in Advance, pp. 1–35 

ISSN 0364-765X (print), ISSN 1526-5471 (online) https://pubsonline.informs.org/journal/moor 

mailto:sperez@rice.edu
https://orcid.org/0000-0003-4534-7721
mailto:mohit.singh@isye.gatech.edu
mailto:atoriello@isye.gatech.edu
https://orcid.org/0000-0002-3147-0764
https://doi.org/10.1287/moor.2023.0210


the next candidate. This captures the online dilemma the platform faces: the decision of displaying an ad to a user 
is based solely on information obtained up to this point.

3. When the DM extends an offer, the candidate accepts with a known probability p * (0, 1], in which case the 
process ends, or turns down the offer, in which case the DM moves on to the next candidate. This models the users, 
who can click on the ad or ignore it.

4. The process continues until either a candidate accepts an offer or the DM has no more candidates to assess.
A DM that knows in advance that at least one of the top k candidates is willing to accept the offer would like to 

maximize the probability of making an offer to one of these candidates. In reality, the DM does not know k; hence, 
the best she can do is maximize the minimum of all these scenario-based probabilities. We call the minimum of 
these scenario-based probabilities the robust ratio and our max-min objective the optimal robust ratio (see Subsection 
1.2 for a formal description). Suppose that the DM implements a policy that guarantees a robust ratio γ * (0, 1]. 
This implies the DM will succeed with probability at least γ�in obtaining a top k candidate, in any scenario where a 
top k candidate is willing to accept the DM’s offer. This is an ex ante guarantee when the DM knows the odds for 
each possible scenario, but the policy is independent of k and offers the same guarantee for any of these scenarios. 
Moreover, if the DM can assign a numerical valuation to the candidates, a policy with robust ratio γ�can guarantee 
a factor at least γ�of the optimal offline value. Tamaki [68] also studies the SP-UA and considers the objective of 
maximizing the probability of selecting the best candidate willing to accept the offer. Applying Tamaki’s policy to 
value settings can also guarantee an approximation factor of the optimal offline cost; however, the policy with the 
optimal robust ratio attains the largest approximation factor of the optimal offline value among rank-based policies 
(see Proposition 1).

SP-UA captures the inherent unpredictability in online selection, as other secretary problems do, but also the 
uncertainty introduced by the possibility of candidates turning down offers. SP-UA is broadly applicable; the fol-
lowing are additional concrete examples.

1.1. Data-Driven Selection Problems
When selling an item in an auction, buyers’ valuations are typically unknown beforehand. Assuming valuations 
follow a common distribution, the aim is to sell the item at the highest price possible; learning information about 
the distribution is crucial for this purpose. In particular auction settings, the auctioneer may be able to sequentially 
observe the valuations of potential buyers and can decide in an online manner whether to sell the item or continue 
observing valuations. Specifically, the auctioneer decides to consider the valuation of a customer with probability 
p, and, otherwise, the auctioneer moves on to see the next buyer’s valuation. The auctioneer’s actions can be inter-
preted as an exploration-exploitation process, which is often found in bandit problems and online learning (Cesa- 
Bianchi and Lugosi [15], Freund and Schapire [35], Hazan [42]). This setting is also closely related to data-driven 
online selection and the prophet inequality problem (Campbell and Samuels [14], Kaplan et al. [47], Kertz [48]); 
some of our results also apply in these models (see Section 6).

1.2. Human Resource Management
As its name suggests, the original motivation for the secretary problem is in hiring for a job vacancy. Screening 
resumes can be a time-consuming task that shifts resources away from the day-to-day job in Human Resources. 
Since the advent of the internet, several elements of the hiring process can be partially or completely automated; 
for example, multiple vendors offer automated resume screening (Salem and Gupta [64]), and machine learning 
algorithms can score and rank job applicants according to different criteria. Of course, a highly ranked applicant 
may nevertheless turn down a job offer. Although we consider the rank of a candidate as an absolute metric of their 
capacities, in reality, resume screening may suffer from different sources of bias (Salem and Gupta [63]), but 
addressing this goes beyond our scope. See also Smith [66], Tamaki [68], and Vanderbei [72] for classical treat-
ments. Similar applications include apartment hunting (Bruss [12], Cowan and Zabczyk [23], Presman and Sonin 
[60]), among others.

1.3. Our Contributions
(1) We propose a framework and a robust metric to understand the interaction between a DM and competing can-
didates, when candidates can reject the DM’s offer. (2) We state a linear program (LP) that computes the optimal 
robust ratio and the best strategy. We provide a general methodology to derive our LP, and this technique is gener-
alizable to other online selection problems. (3) We provide bounds for the optimal robust ratio as a function of the 
probability of acceptance p * (0, 1]. (4) We present a family of policies based on simple threshold rules; in particular, 
for p g p7 j 0:594, the optimal strategy is a simple threshold rule that skips the first p1=(1ÿp) fraction of candidates 
and then makes offers to the best candidate observed so far. We remark that as p ³ 1, we recover the guarantees of 
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the standard secretary problem and its optimal threshold strategy. (5) Finally, for the setting where candidates also 
have nonnegative numerical values, we show that our solution is the optimal approximation among rank-based 
algorithms of the optimal offline value, where the benchmark knows the top candidate willing to accept the offer. 
The optimal approximation factor equals the optimal robust ratio.

1.4. Problem Formulation
A problem instance is given by a fixed probability p * (0, 1] and the number of candidates n. These are ranked by a 
total order, 1 ï 2 ï ⋯ ï n, with 1 being the best or highest-ranked candidate. The candidate sequence is given by a 
random permutation π ÿ (R1, : : : , Rn) of [n]ÿ: {1, 2, : : : , n}, where any permutation is equally likely. At time t, the 
DM observes the partial rank rt * [t] of the t-th candidate in the sequence compared with the previous tÿ1 candi-
dates. The DM either makes an offer to the t-th candidate or moves on to the next candidate, without being able to 
make an offer to the t-th candidate ever again. If the t-th candidate receives an offer from the DM, she accepts the 
offer with probability p, in which case the process ends. Otherwise, if the candidate refuses the offer (with probabil-
ity 1ÿ p), the DM moves on to the next candidate and repeats the process until she has exhausted the sequence. A 
candidate with rank in [k] is said to be a top k candidate. The goal is a policy that maximizes the probability of 
extending an offer to a highly ranked candidate that will accept the offer. However, because the DM does not know 
which candidate will accept the offer, the DM would like to be robust against any possible scenario. To measure 
the quality of a policy P, we use the robust ratio

γ
P
ÿ γ

P
(p) ÿ min

kÿ1, : : : ,n

P(P selects a top k candidate, candidate accepts offer)
P(At least one of the top k candidates accepts offer) : (1) 

The k-th term in the minimization operator, γ
P, k(p), is the probability that policy P successfully selects a top k can-

didate, given that some top k candidate will accept the offer. Then, the robust ratio γ
P
ÿ minkÿ1, : : : , nγP, k(p) captures 

the situation where policy P has the worst possible performance over all such scenarios. When every candidate 
accepts an offer with certainty, pÿ1, the robust ratio γ

P 
equals the probability of selecting the highest-ranked can-

didate, thus, we recover the standard secretary problem and γ
P
(1) j 1=e for the optimal policy P. The goal is to 

find a policy that maximizes this robust ratio, γ7n ÿ
:

sup
P
γ

P
. We say the policy P is γ-robust if γ f γ

P
.

1.4.1. The Robust Ratio and Related Objectives. The SP-UA has been studied before under different objectives. 
Smith [66] studied the SP-UA with the objective of maximizing the probability of selecting the top candidate and 
having that candidate accept the offer. This is the unconditional version of γ

P, k for kÿ1; however, the top candidate 
may not accept the offer, and the objective does not plan for this contingency. This is particularly inadequate when 
p is small, as in many of our motivating applications.

Tamaki [68] instead studied the SP-UA with the objective of maximizing the probability of choosing the top can-
didate willing to accept the offer. Despite being more realistic than Smith [66], this objective is often overly selective 
and may not make an offer, hoping to encounter a better candidate in the future. Our objective overcomes this 
selectiveness and makes an offer to a candidate as long as their rank is high compared with other candidates will-
ing to accept the offer. A further distinction between Tamaki’s objective and the robust ratio emerges when values 
are assigned to the candidates. In this case, a value-driven DM would like to maximize the value obtained from a 
candidate that accepts the offer. The robust ratio turns out to be the optimal approximation ratio of any rank-based 
algorithm in this setting (see Proposition 1). In Section 8, we provide extensive numerical experiments for the value 
version of the problem. Our policy consistently yields better results for small acceptance probabilities, p < 0:2, 
demonstrating its effectiveness compared with Tamaki [68].

1.5. Our Technical Contributions
Recent works have studied secretary models using linear programming methods (Buchbinder et al. [13], Chan et al. 
[16], Correa et al. [21], Dütting et al. [27]). We also give an LP formulation that computes the best robust ratio and 
the optimal policy for our model. Whereas these recent approaches derive an LP formulation using ad hoc argu-
ments, our first contribution is to provide a general framework to obtain LP formulations that give optimal bounds 
and policies for different variants of the secretary problem. The framework is based on Markov decision process 
(MDP) theory (Altman [4], Puterman [62]). This is surprising because early literature on secretary problem used 
MDP techniques—for example, Dynkin [28] and Lindley [54]—though typically not LP formulations. In that sense, 
our results connect the early algorithms based on MDP methods with the recent literature based on LP methods. 
Specifically, we provide a mechanical way to obtain an LP using a simple MDP formulation (Section 4). Using this 
framework, we present a structural result that completely characterizes the space of policies for the SP-UA:
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Theorem 1. Any policy P for the SP-UA can be represented as a vector in the set

POL ÿ (x, y) g 0 : xt, s + yt, s ÿ
1

t

Xtÿ1

σÿ1

(ytÿ1,σ + (1ÿ p)xtÿ1,σ), ∀t > 1, s * [t], x1, 1 + y1, 1 ÿ 1

( )

:

Conversely, any vector (x, y) * POL represents a policy P. The policy P makes an offer to the first candidate with probability 
x1, 1 and to the t-th candidate with probability txt, s=(

Ptÿ1
σÿ1 ytÿ1,σ + (1ÿ p)xtÿ1,σ) if the t-th candidate has partial rank rtÿ s.

The variables xt, s represent the probability of reaching candidate t and making an offer to that candidate when 
that candidate has partial rank s * [t]. Likewise, variables yt, s represent the probability of reaching candidate t and 
not making an offer when this candidate’s partial rank is s * [t]. We note that although the use of LP formulations 
in MDP is a somewhat standard technique—see, for example, Puterman [62]—the recent literature in secretary pro-
blems and related online selection models does not appear to make an explicit connection between LPs used in 
analysis and the underlying MDP formulation.

Problems solved via MDP can typically be formulated as reward models, where each action taken by the DM 
generates some immediate reward. Objectives in classical secretary problems fit in this framework, as the reward 
(e.g., the probability of selecting the top candidate) depends only on the current state (the number t of observed 
candidates so far and the current candidate’s partial rank rtÿ s), and on the DM’s action (make an offer or not); see 
Section 4.1 for an example. Our robust objective, however, cannot be easily written as a reward depending only on 
rtÿ s. Thus, we split the analysis into two stages. In the first stage, we deal with the space of policies and formulate 
an MDP for our model with a generic utility function. The feasible region of this MDP’s LP formulation corre-
sponds to POL and is independent of the utility function chosen; therefore, it characterizes all possible policies for 
the SP-UA. In the second stage, we use the structural result in Theorem 1 to obtain a linear program that finds the 
largest robust ratio.

Theorem 2. The best robust ratio γ7n for the SP-UA equals the optimal value of the linear program

max
xg0

γ

s:t:

(LP)n, p xt, s f 1

t
1ÿ p

Xtÿ1

τÿ1

Xτ

σÿ1

xτ,σ

 !

∀t * [n], s * [t]

γ f p

1ÿ (1ÿ p)k

Xn

tÿ1

Xt

sÿ1

xt, sP(Rt f k |rt ÿ s) ∀k * [n], 

where P(Rt f k |rt ÿ s) ÿPk∧(nÿt+s)
iÿs

ÿ
iÿ 1
sÿ 1

ÿÿ
nÿ i
tÿ s

ÿ
=
ÿ

n
t

ÿ
is the probability the t-th candidate is ranked in the top k given 

that her partial rank is s.
Moreover, given an optimal solution (x7,γ7n) of (LP)n, p, the (randomized) policy P7 that at state (t, s) makes an offer with 

probability tx7t, s=(1ÿ p
Ptÿ1
τÿ1

Pτ
σÿ1 x7

τ,σ) is γ7n-robust.

We show that γ
P 

can be written as the minimum of n linear functions on the x variables in POL, where these vari-
ables correspond to a policy’s probability of making an offer in a given state. Thus, our problem can be written as 
the maximum of a concave piecewise linear function over POL, which we linearize with the variable γ. By projecting 
the feasible region onto the (x,γ) variables, we obtain (LP)n, p.

As a by-product of our analysis via MDP, we show that γ7n is nonincreasing in n for fixed p * (0, 1] (Lemma 1), 
and, thus, limn³>γ7n ÿ γ7> exists. We show that this limit corresponds to the optimal value of an infinite version of 
(LP)n, p from Theorem 2, where n tends to infinity and we replace sums at time t with integrals (see Section 5). This 
allows us to show upper and lower bounds for γ7n by analyzing γ7>. Our first result in this vein gives upper bounds 
on γ7>.

Theorem 3. For any p * (0, 1], γ7>(p) f min{pp=(1ÿp), 1=β}, where 1=β j 0:745 and β�is the (unique) solution of the equa-
tion 

R 1
0 (y(1ÿ log y) + βÿ 1)ÿ1dy ÿ 1.

To show γ7> f pp=(1ÿp), we relax all constraints in the robust ratio except kÿ1. This becomes the problem 
of maximizing the probability of hiring the top candidate, which has a known asymptotic solution of p1=(1ÿp)

(Smith [66]). For γ7>(p) f 1=β, we show that any γ-robust ordinal algorithm can be used to construct an algorithm 
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for independent and identically distributed (i.i.d.) prophet inequality problems with a multiplicative loss of (1+
o(1))γ�and an additional o(1) additive error. Using a slight modification of the impossibility result by Hill and 
Kertz [43] for the i.i.d. prophet inequality, we conclude that γ7> cannot be larger than 1=β.

By constructing solutions of the infinite LP, we can provide lower bounds for γ7n. For 1=k g p > 1=(k+ 1) with 
integer k, the policy that skips the first 1=e fraction of candidates and then makes an offer to any top k candidate 
afterward obtains a robust ratio of at least 1=e. The following result gives improved bounds for γ7>(p).
Theorem 4. Let p7 j 0:594 be the solution of p(2ÿp)=(1ÿp) ÿ (1ÿ p)2. There is a solution of the infinite LP for p g p7 that 
guarantees γ7n g γ7>(p) ÿ pp=(1ÿp). For p f p7, we have γ7>(p) g (p7)p7=(1ÿp7) j 0:466. Moreover, for p ³ 0, we obtain γ>(p)
g 0:51.

To prove this result, we use the following general procedure to construct feasible solutions for the infinite LP. 
For any numbers 0 < t1 f t2 f ⋯ f tk f ⋯ f 1, there is a policy that makes offers to any candidate with partial 
rank rt * [k] when a fraction tk of the total number of candidates has been observed (Proposition 2). For p g p7, the 
policy corresponding to t1 ÿ p1=(1ÿp) and t2 ÿ t3 ÿ⋯ÿ 1 has a robust ratio of at least pp=(1ÿp). For p f p7, we show 
how to transform the solution for p7 into a solution for p with an objective value at least as good as the value 
γ7>(p7) ÿ (p7)p7=(1ÿp7). For values of p close to 0, we construct a feasible solution of the infinite LP that guarantees 
γ7>(p) g 0:51.

Figure 1 depicts the various theoretical bounds we obtain. For reference, we also include numerical results for γ7n 

computed by solving (LP)n, p in Theorem 2 for nÿ200 and with p ranging from p ÿ 10ÿ2 to pÿ1, with increments of 
10ÿ3. Given that γ7n is nonincreasing in n, the numerical values obtained by solving (LP)n, p also provide an upper 
bound over γ7>.

We follow this introduction with a brief literature review. In Section 3, we present preliminaries, including MDP 
notation and an alternative characterization of the robust ratio in terms of utility functions. In Section 4, we present 
the MDP framework and use it to prove Theorems 1 and 2. In Section 5, we introduce the infinite relaxation of (LP), 
then prove Theorem 3 in Section 6. In Section 7, we prove Theorem 4. In Section 8, we present a numerical compari-
son between the policies obtained by solving (LP)n, p and other benchmarks policies. We conclude in Section 9, and 
Appendices A–E include proofs and analysis omitted from the main article.

2. Related Work
2.1. Online Advertising and Online Selection
Online advertising has been extensively studied from the viewpoint of two-sided markets: advertisers and plat-
form. There is extensive work in auction mechanisms to select ads (e.g. second-price auctions, the VCG mechanism, 
etc.), and the payment systems between platforms and advertisers (pay-per-click, pay-for-impression, etc.) (Deva-
nur and Kakade [25], Edelman et al. [29], Fridgeirsdottir and Najafi-Asadolahi [36]); see also Choi et al. [19] for a 
review. On the other hand, works relating the platform, advertisers, and web users have been studied mainly from 
a learning perspective, to improve ad targeting (Devanur and Kakade [25], Farahat and Bailey [31], Hlynka and 
Sheahan [42]. In this work, we also aim to display an ad to a potentially interested user. Multiple online selection 

Figure 1. (Color online) Bounds for γ7> as a function of p. The solid line represents the theoretical upper bound given in Theo-
rem 3. The dashed-dotted line corresponds to the theoretical lower bound given in Theorem 4; for p close to 0, the guarantee rises 
to 0.51. In dashed line we present numerical results by solving (LP)n, p for n ÿ 200 candidates. 
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problems have been proposed to display ads in online platforms—for example, packing models (Babaioff et al. 
[6], Korula and Pál [52]), secretary problems and auctions (Babaioff et al. [7]), prophet models (Alaei et al. [3]), 
and online models with “buyback” (Babaioff et al. [5]). In our setting, we add the possibility that a user ignores 
the ad; see, for example, Cho and Cheon [18] and Drèze and Hussherr [26]. Failure to click on ads has been con-
sidered in full-information models (Goyal and Udwani [38]); however, our setting considers only partial informa-
tion, where the rank of an incoming customer can only be assessed relative to previously observed customers—a 
typical occurrence in many online applications. Our model is also disaggregated and looks at each ad individu-
ally. Our goal is to understand the right time to display an ad/make offers via the SP-UA and the robust ratio for 
each individual ad.

2.2. Online Algorithms and Arrival Models
Online algorithms have been extensively studied for adversarial arrivals (Borodin and El-Yaniv [10]). This worst- 
case viewpoint gives robust algorithms against any input sequence, which tend to be conservative. Conversely, 
some models assume distributional information about the inputs (Kertz [48], Kleywegt and Papastavrou [51], 
Lucier [55]). The random order model lies in between these two viewpoints, and perhaps the most studied example 
is the secretary problem (Dynkin [28], Gilbert and Mosteller [37], Lindley [54]). Random order models have also 
been applied in Adword problems (Devanur and Hayes [24]), online LPs (Agrawal et al. [2]), and online knapsacks 
(Babaioff et al. [6], Kesselheim et al. [49]), among others.

2.3. Secretary Problems
Martin Gadner popularized the secretary problem in his 1960 Mathematical Games column; for a historical review, 
see Ferguson et al. [33] and also the classical survey by Freeman [34]. For the classical secretary problem, the opti-
mal strategy that observes the first n/e candidates and thereafter selects the best candidate was computed by Lind-
ley [54] and Gilbert and Mosteller [37]. The model has been extensively studied in ordinal/ranked-based settings 
(Buchbinder et al. [13], Gusein-Zade [39], Lindley [54], Vanderbei [71]), as well as cardinal/value-based settings 
(Bateni et al. [8], Kleinberg [50]).

A large body of work has been dedicated to augment the secretary problem. Variations include cardinality con-
straints (Buchbinder et al. [13], Kleinberg [50], Vanderbei [71]), knapsack constraints (Babaioff et al. [6]), and 
matroid constraints (Feldman et al. [32], Lachish [53]), and Soto [67]. Model variants also incorporate different 
arrival processes, such as Markov chains (Hlynka and Sheahan [44]) and more general processes (Dütting et al. 
[27]). Closer to our problem are the data-driven variations of the model (Correa et al. [21], Correa et al. [22], Kaplan 
et al. [47]), where samples from the arriving candidates are provided to the decision maker. Our model can be inter-
preted as an online version of sampling, where a candidate rejecting the decision maker’s offer is tantamount to a 
sample. This also bears similarity to the exploration-exploitation paradigm often found in online learning and ban-
dit problems (Cesa-Bianchi and Lugosi [15], Freund and Schapire [35], Hazan [42]).

2.4. Uncertain Availability in Secretary Problems
The SP-UA is studied by Smith [66] with the goal of selecting the top candidate—kÿ1 in (1)—who gives an asymp-
totic probability of success of p1=(1ÿp). If the top candidate rejects the offer, this leads to zero value, which is perhaps 
excessively pessimistic in scenarios where other competent candidates could accept. Tamaki [68] considers maxi-
mizing the probability of selecting the top candidate among the candidates that will accept the offer. Although 
more realistic, this objective still gives zero value when the top candidate that accepts is missed because she arrives 
early in the sequence. In our approach, we make offers to candidates, even if we have already missed the top candi-
date that accepts the offer; this is also appealing in utility/value-based settings (see Proposition 1). We also further 
the understanding of the model and our objective by presenting closed-form solutions and bounds. See also Bruss 
[12], Presman and Sonin [60], and Cowan and Zabczyk [23].

2.5. Linear Programs in Online Selection
Linear programming has been used extensively in online selection (Agrawal et al. [2], Beyhaghi et al. [9], Epstein 
and Ma [30], Kesselheim et al. [49]). Typically, the LP is used as a structured bound over a benchmark that the 
algorithm designer can compare with. Our approach is different, as we provide an exact formulation of our 
robust objective. In secretary problems, early work used mostly MDPs (Lindley [54], Smith [66], Tamaki [68]), 
whereas LP formulations were recently introduced by Buchbinder et al. [13]; subsequently, multiple formula-
tions have been used to solve variants of the secretary problem (Chan et al. [16], Correa et al. [21], Dütting et al. 
[27]). We extend this line of work and use an MDP to derive the exact polyhedron that encodes policies for the 
SP-UA; this helps explain why some LP formulations in secretary problems are exact (see Subsection 4.1). Jiang 

Perez-Salazar, Singh, and Toriello: Robust Online Selection 

6 Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2024 INFORMS 



et al. [46], Jiang et al. [45], and Perez-Salazar et al. [59] are closer to our work, as these studies characterize the 
optimal policies for prophet inequalities. Further connections between MDP and LPs in related models have 
been studied mostly in approximate regimes (Adelman [1], Torrico and Toriello [69], Torrico et al. [70]) and parti-
cularly in constrained MDPs (Altman [4], Haskell and Jain [40], Haskell and Jain [41]. To the best of the authors’ 
knowledge, there was previously no explicit connection between the MDP formulation and the exact LP formula-
tion in secretary problems.

3. Preliminaries
To discuss our model, we use standard MDP notation for secretary problems (Dynkin [28], Freeman [34], Lindley 
[54]). An instance is characterized by the number of candidates n and the probability p * (0, 1] that an offer is 
accepted. For t * [n] and s * [t], a state of the system is a pair (t, s) indicating that the candidate currently being evalu-
ated is the t-th and the corresponding partial rank is rtÿ s. To simplify notation, we add the states (n+ 1, s), s * [n+ 1], 
and the state Θ�as absorbing states where no decisions can be made. For t<n, transitions from a state (t, s) to a state 
(t+ 1,σ) are determined by the random permutation π ÿ (R1, : : : , Rn). We denote by St * {(t, s)}s*[t] the random vari-
able indicating the state in the t-th stage. A simple calculation shows

P(St+1 ÿ (t+ 1,σ) |St ÿ (t, s)) ÿ P(rt+1 ÿ σ |rt ÿ s) ÿ P(St+1 ÿ (t+ 1,σ)) ÿ 1=(t+ 1), 
for t<n, s * [t] and σ * [t+ 1]. In other words, partial ranks at each stage are independent. For notational conve-
nience, we assume the equality also holds for tÿn. Let A ÿ {offer, pass} be the set of actions. For t * [n], given a state 
(t, s) and an action At ÿ a * A, the system transitions to a state St+1 with the following probabilities:

P((t, s), a), (τ,σ) ÿ P(St+1 ÿ (τ,σ) |St ÿ (t, s), At ÿ a) ÿ

1ÿ p

t+ 1
a ÿ offer,τ ÿ t+ 1,σ * [τ]

p a ÿ offer, (τ,σ) ÿΘ
1

t+ 1
a ÿ pass,τ ÿ t+ 1,σ * [τ]:

8
>>>><

>>>>:

The randomness is over the permutation π�and the random outcome of the t-th candidate’s decision. We utilize 
states (n+ 1,σ) as end states and the state Θ�as the state indicating that an offer is accepted from the state St. A policy 
P : {(t, s) : t * [n], s * [t]} ³ A is a function that observes a state (t, s) and decides to extend an offer (P(t, s) ÿ offer) 
or move to the next candidate (P(t, s) ÿ pass). The policy specifies the actions of a decision maker at any point in 
time. The initial state is S1 ÿ (1, 1), and the computation (of a policy) is a sequence of state and actions (1, 1), a1, 
(2, s2), a2, (3, s3), : : : where the states transitions according to P((t, s), a), (t+1,σ) and at ÿ P(t, st). Note that the computa-
tion always ends in a state (n+ 1,σ) for some σ�or the state Θ, either because the policy was able to go through all 
candidates or because some candidate t accepted an offer.

We say that a policy reaches stage t or reaches the t-th stage if the computation of a policy contains a state st ÿ
(t, s) for some s * [t]. We also refer to stages as times.

A randomized policy is a function P : {(t, s) : t * [n], s * [t]} ³ ∆A, where ∆A ÿ {(q, 1ÿ q) : q * [0, 1]} is the proba-
bility simplex over A ÿ {offer, pass} and P(st) ÿ (qt, 1ÿ qt) means that P selects the offer action with probability qt 

and otherwise selects pass.
We could also define policies that remember previously visited states and at state (t, st) make decisions based on 

the history, (1, s1), : : : , (t, st). However, MDP theory guarantees that it suffices to consider Markovian policies, which 
make decisions based only on (t, st); see Puterman [62].

We say that a policy P collects a candidate with rank k if the policy extends an offer to a candidate that has rank k 
and the candidate accepts the offer. Thus, our objective is to find a policy that solves

γ7n ÿ max
P

min
k*[n]

P(P collects a candidate with rank f k)
1ÿ (1ÿ p)k

ÿ max
P

min
k*[n]

P(P collects a top k candidate |a top k candidate accepts):

The following result is an alternative characterization of γ7n based on utility functions. We use this result to relate 
SP-UA to the i.i.d. prophet inequality problem; the proof appears in Appendix A. Consider a nonzero utility func-
tion U : [n] ³ R+ with U1 g U2 g⋯g Un g 0 and any rank-based algorithm ALG for the SP-UA—that is, ALG only 
makes decisions based on the relative ranking of the values observed. In the value setting, if ALG collects a candi-
date with overall rank i, it obtains value Ui. We denote by U(ALG) the value collected by such an algorithm.
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Proposition 1. Let ALG be a γ-robust algorithm for SP-UA. For any U : [n] ³ R+, we have E[U(ALG)] g γE[U(OPT)], 
where OPT is the maximum value obtained from candidates that accept. Moreover,

γ7n ÿ max
ALG

min
E[U(ALG)]
E[U(OPT)] : U : [n] ³ R+, U ≠ 0, U1 g U2 g⋯g Un g 0

ÿ ÿ
:

4. The LP Formulation
In this section, we present the proofs of Theorems 1 and 2. Our framework is based on MDP and can be used to 
derive similar LPs in the literature—for example, Buchbinder et al. [13], Chan et al. [16], and Correa et al. [21]. As a 
by-product, we also show that γ7n is a nonincreasing sequence in n (Lemma 1). For ease of explanation, we first pre-
sent the framework for the classical secretary problem, then we sketch the approach for our model. Technical 
details are deferred to Appendix B.

4.1. Warm-Up: MDP to LP in the Classical Secretary Problem
We next show how to derive an LP for the classical secretary problem (Buchbinder et al. [13]) using an MDP frame-
work. In this model, the goal is to maximize the probability of choosing the top candidate, and there is no offer 
uncertainty.

Theorem 5 (Buchbinder et al. [13]). The maximum probability of choosing the top-ranked candidate in the classical secre-
tary problem is given by

max
Xn

tÿ1

t

n
xt : xt f 1

t
1 ÿ

Xtÿ1

τÿ1

xτ

 !

, ∀t * [n], x g 0

( )

:

We show this as follows: 
1. First, we formulate the secretary problem as a Markov decision process, where we aim to find the highest- 

ranked candidate. Let v7
(t, s) be the maximum probability of selecting the highest-ranked candidate in t+ 1, : : : , n, 

given that the current state is (t, s). We define v7
(n+1, s) ÿ 0 for any s. The value v7 is called the value function, and it can 

be computed via the optimality equations (Puterman [62])

v7
(t, s) ÿ max P(Rt ÿ 1 |rt ÿ s), 1

t+ 1

Xt

σÿ1

v7(t+1,σ)

( )

: (2) 

The first term in the max operator corresponds to the expected value when the offer action is chosen in state (t, s). 
The second corresponds to the expected value in stage t+1 when we decide to pass in (t, s). Note that P(Rt ÿ 1 |rt ÿ s)
ÿ t=n if sÿ1 and P(Rt ÿ 1 |rt ÿ s) ÿ 0 otherwise. The optimality Equations (2) can be solved via backward recursion, 
and v7(1, 1) j 1=e (for large n). An optimal policy can be obtained from the optimality equations by choosing at each 
state an action that attains the maximum, breaking ties arbitrarily.

2. Using a standard argument (Manne [56]), it follows that v7 ÿ (v7(t, s))t, s is an optimal solution of the linear pro-
gram (D):

min
vg0

v(1, 1)

(D) v(t, s) g P(Rt ÿ 1 |rt ÿ s) ∀t f n, ∀s f t, (3) 

v(t, s) g
1

1+ t

Xt+1

σÿ1

v(t+1,σ) ∀t f n, s f t: (4) 

3. Taking the dual of (D), we obtain (P):

max
x, yg0

Xn

tÿ1

t

n
xt, 1 

(P) x1, 1 + y1, 1 f 1, (5) 

xt, s + yt, s f 1

t

Xtÿ1

σÿ1

ytÿ1, σ ∀t f n, s f t: (6) 
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Variables xt, s are associated with Constraints (3) and yt, s with Constraints (4). Take any solution (x, y) of the prob-
lem (P) and note that the objective does not depend on y. Incrementing y to tighten all constraints does not alter the 
feasibility of the solution, and the objective does not change; thus, we can assume that all constraints are tight in 
(P). Here, xt, s is the probability that a policy (determined by x, y) reaches the state (t, s) and makes an offer, whereas 
yt, s is the probability that the same policy reaches state (t, s), but decides to not to make an offer.

4. Finally, projecting the feasible region of (P) onto the variables (xt, 1)t*[n]—for example, via Fourier-Motzkin 
elimination (see Schrijver [65] for a definition)—gives us Theorem 5. We skip this for brevity.

The same framework can be applied to obtain the linear program for the secretary problem with rehire (Buchbin-
der et al. [13]) and the formulation for the (J, K)-secretary problem (Buchbinder et al. [13], Chan et al. [16]). It can also 
be used to derive an alternative proof of the result by Smith [66]. Besides secretary problems, this approach using 
MDP has been applied for prophet problems (Jiang et al. [46]) and in online bipartite matching (Torrico and Tor-
iello [69], Torrico et al. [70]).

4.2. Framework for the SP-UA
Next, we sketch the proof of Theorem 1 and use it to derive Theorem 2. Technical details are deferred to Appendix B.

In the classical secretary problem, the objective is to maximize the probability of choosing the top candidate, which we 
can write in the recursion of the value function v7. For our model, the objective γ

P 
corresponds to a multiobjective criteria, 

and it is not clear a priori how to write the objective as a reward. We present a two-step approach: (1) First, we follow the 
previous subsection’s argument to uncover the polyhedron of policies; and (2) second, we show that our objective func-
tion can be written in terms of variables in this polyhedron, and we maximize this objective in the polyhedron.

4.2.1. The Polyhedron of Policies via a Generic Utility Function. When we obtained the dual LP (P) (step 3 in the 
above framework), anything related to the objective of the MDP is moved to the objective value of the LP, while any-
thing related to the actions of the MDP remained in Constraints (5) and (6). This suggests using a generic utility function 
to uncover the space of policies. Consider any vector U : [n] ³ R+, and suppose that our objective is to maximize the 
utility collected, where choosing a candidate of rank i means obtaining Ui g 0 value. Let v7

(t, s) be the maximum value col-
lected in times t, t+ 1, : : : , n, given that the current state is (t, s), where v7

(n+1, s) ÿ 0. Then, the optimality equations yield

v7
(t, s) ÿ max pUt(s) + (1ÿ p) 1

t+ 1

Xt+1

σÿ1

v7
(t+1,σ),

1

t+ 1

Xt+1

σÿ1

v7
(t+1,σ)

( )

, (7) 

where Ut(s) ÿ
Pn

iÿ1 UiP(Rt ÿ i |rt ÿ s). The term in the left side of the max operator is the expected value obtained by 
an offer action, whereas the term in the right corresponds to the expected value of the pass action. Using an 
approach similar to the one used in steps 2 and 3 from the previous subsection, we can deduce that

POL ÿ (x, y) g 0 : x1, 1 + y1, 1 ÿ 1, xt, s + yt, s ÿ
1

t

Xtÿ1

σÿ1

(ytÿ1,σ + (1ÿ p)xtÿ1,σ), ∀t > 1, s * [t]
( )

, 

contains all policies (Theorem 1). A formal proof is presented in Appendix B.

4.2.2. The Linear Program. Next, we consider Theorem 2. Given a policy P, we define xt, s to be the probability of 
reaching state (t, s) and making an offer to the candidate and yt, s to be the probability of reaching (t, s) and passing. 
Then, (x, y) belongs to POL. Moreover,

P(P collects a top k candidate) ÿ p
Xn

tÿ1

Xt

sÿ1

xt, sP(Rt f k |rt ÿ s): (8) 

Conversely, any point (x, y) * POL defines a policy P: At state (t, s), it extends an offer to the t-th candidate with 
probability x1, 1 if tÿ1, or probability txt, s=(

Ptÿ1
σÿ1 ytÿ1,σ + (1ÿ p)xtÿ1,σ) if t>1. Also, P satisfies (8). Thus,

γ7n ÿ max
P

min
k*[n]

P(P collects a top k candidate)
1ÿ (1ÿ p)k

ÿ max
(x,y)*POL

min
k*[n]

p
Pn

tÿ1

Pt
sÿ1 xt, sP(Rt f k |rt ÿ s)
1ÿ (1ÿ p)k

ÿ max γ : (x, y) * POL,γ f p
Pn

tÿ1

Pt
sÿ1 xt, sP(Rt f k |rt ÿ s)
1ÿ (1ÿ p)k

, ∀k * [n]
( )

: (9) 
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Projecting the feasible region of (9) as in step 4 onto the (x,γ)-variables gives us Theorem 2. The details appear in 
Appendix B.

Our MDP framework also allows us to show the following monotonicity result.

Lemma 1. For a fixed p * (0, 1], we have γ7n g γ7n+1 for any n g 1.

We sketch the proof of this result here and defer the details to Appendix B.3. The dual of the LP (9) can be refor-
mulated as

min
u : [n]³R+P

iuig1

v(1, 1)

DLP( ) s:t: v(t, s) g max Ut(s) +
1 ÿ p

t + 1

Xtÿ1

σÿ1

v(t+1, σ),
1

t + 1

Xtÿ1

σÿ1

v(t+1,σ)

( )

∀t * [n], s * [t]

v(n+1, s) ÿ 0 ∀s * [n + 1], 

where Ut(s) ÿ p
Pn

jÿ1(
P

kgjuk=(1ÿ (1ÿ p)k))P(Rt ÿ j |rt ÿ s). The variables u1, : : : , un correspond to the constraints 

involving γ�in the LP (9). Note that (DLP) is the minimum value that an MDP can attain when the utility functions 
are given by Ui ÿ p

P
kgiuk=(1ÿ (1ÿ p)k). Taking any weighting u : [n] ³ R+ with 

P
iui g 1, we extend it to û :

[n+ 1] ³ R+ by setting ûn+1 ÿ 0. We define accordingly Û i ÿ p
P

kgiûk=(1ÿ (1ÿ p)k) and note that Ui ÿ Û i for i f n 

and Ûn+1 ÿ 0. Using a coupling argument, from any policy for utilities Û with n+1 candidates, we can construct a 
policy for utilities U, with n candidates, where both policies collect the same utility. Thus, the utility collected by 
the optimal policy for U upper bounds the utility collected by an optimal policy for Û. The conclusion follows 
because γ7n+1 is a lower bound for the latter value.

Given that γ7n * [0, 1] and (γ7n)n is a monotone sequence in n, limn³>γ7n must exist. In the next section, we show 
that the limit corresponds to the value of a continuous LP.

5. The Continuous LP
In this section, we introduce the continuous linear program (CLP), and we show that its value γ7> corresponds to 
the limit of γ7n when n tends to infinity. We also state Proposition 2, which allows us to construct feasible solutions 
of (CLP) using any set of times 0 < t1 f t2 f ⋯ f 1. In the finite model, the solution constructed in this section has 
the natural interpretation of segmenting time: for a candidate arriving between times tin and ti+1n, we make an 
offer if the candidate has partial rank i or better. In the remainder of the section, finite model refers to the SP-UA 
with n < > candidates, whereas the infinite model refers to SP-UA when n ³>.

We assume p * (0, 1] fixed. The continuous LP (CLP) is an infinite linear program with variables given by a func-
tion α : [0, 1] × N ³ [0, 1] and a scalar γ g 0. Intuitively, if in the finite model we interpret xt, s as weights and the 
sums of xt, s over t as Riemann sums, then the limit of the finite model should have a robust ratio computed by the 
continuous LP (CLP)

sup
α :[0, 1]×N³[0, 1]

γg0

γ�

s:t: (CLP)p tα(t, s) f 1ÿ p

Z t

0

X

σg1

α(τ,σ)dτ ∀t * [0, 1], s g 1, (10) 

γ f
p
R 1

0

P
sg1α(t, s)Pk

ℓÿs

ÿ
ℓÿ 1

sÿ 1

ÿ
ts(1ÿ t)ℓÿs dt

(1ÿ (1ÿ p)k)
∀k g 1: (11) 

We denote by γ7> ÿ γ7>(p) the objective value of (CLP)p. The following result formalizes the fact that the value of the 
continuous LP (CLP)p is, in fact, the robust ratio of the infinite model. The proof is similar to other continuous 
approximations (Chan et al. [16]); a small caveat in the proof is the restriction of the finite LP to the top (log n)=p 
candidates, as they carry most of the weight in the objective function. The proof is deferred to Appendix C.

Lemma 2. Let γ7n be the optimal robust ratio for n candidates, and let γ7> be the value of the continuous LP (CLP)p. Then, 
|γ7n ÿ γ7> | f O((log n)2=(p

ooo
n

:
)).
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The following proposition gives a recipe to find feasible solutions for (CLP)p. We use it to construct lower bounds 
in the following sections.

Proposition 2. Consider 0 f t1 f t2 f ⋯ f 1, and consider the function α : [0, 1] × N ³ [0, 1] defined such that for 
t * [ti, ti+1)

α(t, s) ÿ Ti=ti·p+1 s f i

0 s > i,

(

where Ti ÿ (t1 ⋯ ti)p. Then, α�satisfies Constraint (10).

Proof. We verify that Inequality (10) holds. We only need to verify it for t * [ti, ti+1) with i g 1 because α(t, s) ÿ 0 
for t * [0, t1). We define t0 ÿ 0 and T0 ÿ 0. For t * [ti, ti+1), we have

1ÿ p

Z t

0

X

σg1

α(τ,σ)dτ ÿ 1ÿ p
Xjÿ1

jÿ1

Z tj+1

tj

j
Tj

τjp+1
dτ

0

@

1

A
ÿ p

Z t

ti

i
Ti

τip+1
dτ

ÿ 1ÿ p
Xiÿ1

jÿ1

j ·Tj ·
1

ÿpj
(tÿjp

j+1 ÿ t
ÿjp
j )ÿ pi ·Ti ·

1

ÿip
(tÿip

ÿ t
ip
i )

ÿ 1+
Xiÿ1

jÿ1

Tj(tÿjp
j+1 ÿ t

ÿjp
j ) +Ti(tÿip

ÿ t
ip
i )

ÿ 1+
Xiÿ1

jÿ1

Tj+1t
ÿ(j+1)p
j+1 ÿTjt

ÿjp
j

0

@

1

A+Ti(tÿip
ÿ t

ÿip
i ) (Since Tjt

ÿjp
j+1 ÿ Tj+1t

ÿ(j+1)p
j+1 )

ÿ 1+Tit
ÿip
i ÿT1t

ÿp
1 +Ti(tÿip

ÿ t
ÿip
i )

ÿ Tit
ÿip g tα(t, s), 

for any s g 1. This concludes the proof. w

We use this result to show lower bounds for γ7>. For instance, if 1=k g p > 1=(k+ 1) for some integer k, and we set 
t1 ÿ 1=e and t2 ÿ t3 ÿ⋯ÿ 1, we can show that γ7>(p) is at least 1=e. Thus, in combination with Lemma 1, we have 
that γ7n(p) g 1=e for any n and p>0; we skip this analysis for brevity. In Section 7, we use Proposition 2 to show exact 
solutions of γ7> for large p.

6. Upper Bounds for the Continuous LP
We now consider upper bounds for (CLP) and prove Theorem 3, which states that γ7>(p) f min{pp=(1ÿp), 1=β}, for 
any p * (0, 1], where 1=β j 0:745 and β�is the unique solution of 

R 1
0 (y(1ÿ logy) + βÿ 1)ÿ1dy ÿ 1 (Kertz [48]).

We show that γ7> is bounded by each term in the minimum operator. For the first bound, we have

γ7n ÿ max
P

min
k*[n]

P(P collects a top k candidate)
1ÿ (1ÿ p)k

f max
P

P(P collects the top candidate)
p

:

The probability of collecting the highest candidate in SP-UA is shown by Smith [66] to be p1=(1ÿp) + o(1), where 
o(1) ³ 0 as n ³>. Thus, by Lemma 1, we have

γ7>(p) f γ7n(p) f pp=(1ÿp) + o(1)=p:

Taking the limit n ³>, we conclude γ7>(p) f pp=(1ÿp).
For the second bound, we use the following technical result; its proof is deferred to Appendix D, but we give a 

short explanation here. A γ-robust algorithm A for the SP-UA, in expectation, has pn candidates to choose from 
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and (1ÿ p)n candidates from which the algorithm can learn about candidate quality. We give an algorithm A2 that 
solves the i.i.d. prophet inequality for any m j pn i.i.d. random variables X1, : : : , Xm, for m large. The algorithm A2

runs a utility version of A in n values sampled from the distribution X1 (see the discussion before Proposition 1), 
guaranteeing at least a factor γ�of the maximum of m j pn of these samples, which is the value of the prophet. A2 is 
the capped utility version of A, where no more than m j pn offers can be made. Using concentration bounds, we 
show that the loss of these restrictions is minimal. Kaplan et al. [47] use a similar argument, with the difference that 
their sampling is a fixed fraction of the input and is done in advance, whereas in our case, the sampling is online 
and might deviate from the expectation, implying the need for concentration bounds. The following result sum-
marizes the reduction and the upper bound.

Theorem 6. Let p * (0, 1) and A be any algorithm that is γ-robust for the SP-UA for any n. Then, γ f 1=β, where β j
1:34 is the unique solution of the integral equation 

R 1
0 (y(1ÿ log y) + (βÿ 1))ÿ1 dr ÿ 1.

The proof of Theorem 6 uses the reduction mentioned in the previous paragraph. The use of concentration 
bounds guarantees a (1ÿ o(1))γ�multiplicative approximation with eÿΘ(n

2) additive error for the i.i.d. prophet 
inequality problem. Specifically, for any distribution D over [0, 1], we can guarantee

E[Val(A2)] + eÿΘ(n
2) g γ(1ÿ o(1))E max

ifm
Xi

ÿ ÿ
, (12) 

where X1, : : : , Xm distribute according to D and Val(A2) is the value collected by A2, the algorithm described in the 
previous paragraph, where no more than m j pn offers are made. Here o(1) is a term that can be chosen arbitrarily 
close to 0 for n large enough. Unfortunately, we cannot conclude that γ f 1=β�immediately from this bound 
because this bound only holds for multiplicative error in the i.i.d. prophet problem. We bypass this technical chal-
lenge as follows. A combination of results by Hill and Kertz [43] and Kertz [48] shows that, for any m and for ε2 > 0 
small enough, there is an i.i.d. instance X1, : : : , Xm with support in [0, 1] such that

E max
ifm

Xi

ÿ ÿ
g (am ÿ ε2)sup{E[Xτ] : τ * Tm}, 

where Tm is the class of stopping times for X1, : : : , Xm, and am ³ β. Thus, using Inequality (12), we must have

γ(1ÿ o(1)) f 1

am ÿ ε2
+ eÿΘ(n

2)

E[maxifm Xi]
, 

for m j pn. A slight reformulation of Hill and Kertz’s result allows us to set ε2 ÿ 1=m3 and E[maxifmXi] g 1=m3 (see 
the discussion at the end of Appendix D). Thus, as n ³>, we have m ³> and so eÿΘ(n

2)=E[maxifmXi] ³ 0. In the 
limit, we obtain γ(1ÿ o(1)) f 1=β, which implies our stated result.

An algorithm that solves (LP)n, p and implements the policy given by the solution is γ7>-robust (Theorem 2 and 
the fact that γ7n g γ7>) for any n. Thus, by the previous analysis, we obtain γ7> f 1=β j 0:745.

7. Lower Bounds for the Continuous LP
In this section, we consider lower bounds for (CLP)p and prove Theorem 4. We first give optimal solutions of 
(CLP)p for large values of p. For p g p7 j 0:594, the optimal value of (CLP)p is γ7>(p) ÿ pp=(1ÿp), and the optimal strat-
egy is to observe p1=(1ÿp) fraction of the candidates and then make offers to the best observed candidate so far. We 
then show that for p f p7, γ7>(p) g (p7)p7=(1ÿp7) j 0:466. At the end of the section, we show that γ7>(p) g 0:51 when 
p ³ 0.

7.1. Exact Solution for Large p
We now show that for p g p7, γ7>(p) ÿ pp=(1ÿp), where p7 j 0:594 is the solution of (1ÿ p)2 ÿ p(2ÿp)=(1ÿp). Thanks to the 
upper bound γ7>(p) f pp=(1ÿp) for any p * (0, 1], it is enough to exhibit feasible solutions (α,γ) of the continuous LP 
(CLP)p with γ g pp=(1ÿp).

Let t1 ÿ p1=(1ÿp), t2 ÿ t3 ÿ⋯ÿ 1, and consider the function α�defined by t1, t2, : : : in Proposition 2. That is, for t *
[0, p1=(1ÿp)), α(t, s) ÿ 0 for any s g 1 and for t * [p1=(1ÿp), 1], we have

α(t, s) ÿ pp=(1ÿp)=t1+p s ÿ 1

0 s > 1:

(
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Let γÿ: infkg1p(1ÿ (1ÿ p)k)ÿ1R 1
p1=(1ÿp)

pp=(1ÿp)

t1+p

Pk
ℓÿ1 t(1ÿ t)ℓÿ1dt. Then, (α,γ) is feasible for the continuous LP (CLP)p, 

and we aim to show that γ g pp=(1ÿp) when p g p7. The result follows by the following lemma.

Lemma 3. For any p g p7 and any ℓ g 0,
R 1

p1=(1ÿp)(1ÿ t)ℓtÿp dt g (1ÿ p)ℓ.
We defer the proof of this lemma to Appendix E. Now, we have

γ ÿ inf
kg1

p

1 ÿ (1 ÿ p)k

Z 1

p1=1ÿp

pp=(1ÿp)

t1+p

Xk

ℓÿ1

t(1 ÿ t)ℓÿ1dt

ÿ pp=(1ÿp) inf
kg1

Pk
ℓÿ1

R 1
p1=(1ÿp) tÿp(1 ÿ t)ℓÿ1 dt
Pk
ℓÿ1 (1 ÿ p)ℓÿ1

g pp=(1ÿp) inf
kg1

inf
ℓ*[k]

Z 1

0

1

tp

(1 ÿ t)ℓÿ1

(1 ÿ p)ℓÿ1
dt g pp=(1ÿp), 

where we use the known inequality 
Pm
ℓÿ1 aℓ=

Pm
ℓÿ1 bℓ g minℓ*[m]aℓ=bℓ�for aℓ, bℓ > 0, for any ℓ, and the lemma. This 

shows that γ7> g pp=(1ÿp) for p g p7.

Remark 1. Our analysis is tight. For kÿ 2, constraint

p

1 ÿ (1 ÿ p)2
Z 1

p1=(1ÿp)

pp=(1ÿp)

t1+p

Xk

ℓÿ1

t(1 ÿ t)ℓÿ1 dt g pp=(1ÿp), 

holds if and only if p g p7.

7.2. Lower Bounds for Small p
In this subsection, we present two lower bounds for γ7>(p) when p f p7, with p7 j 0:594 as obtained in the previ-

ous subsection. The first bound guarantees γ7>(p) g (p7)p7=(1ÿp7) j 0:466; the second guarantees γ7>(p) g 0:51 when p 
approaches 0. We present details for the first bound, as it includes a mechanism to transform the solution of 
(CLP)p7 into a solution of (CLP)p for p f p7. We defer some details of the latter bound, as it uses a construction sim-
ilar to Correa et al. [22] with a different limit argument.

Let ε * [0, 1) satisfy p ÿ (1ÿ ε)p7. For the argument, we take the solution α7 for (CLP)p7 that we obtained in the 
last subsection, and we construct a feasible solution for (CLP)p with objective value at least (p7)p7=(1ÿp7). For simplic-
ity, we denote τ7 ÿ (p7)1=(1ÿp7).

From the previous subsection, we know that the optimal solution α7 of (CLP)p7 has the following form. For t *
[0,τ7), α7(t, s) ÿ 0 for any s, whereas for t * [τ7, 1], we have

α7(t, s) ÿ (p7)p7=(1ÿp7)=tp7+1 s ÿ 1

0 s > 1:

(

For (CLP)p, we construct a solution α�as follows. Let α(t, s) ÿ εsÿ1α7(t, 1) for any t * [0, 1] and s g 1; for example, 
α(t, 1) ÿ α7(t, 1). If we interpret α7 as a policy, it only makes offers to the highest candidate observed. By contrast, in 
(CLP)p, the policy implied by α�makes offers to more candidates (after time τ7), with a probability geometrically 
decreasing according to the relative ranking of the candidate.

Lemma 4. The solution α�satisfies Constraints (10),

tα(t, s) f 1 ÿ p

Z t

0

X

σg1

α(τ,σ)dτ, 

for any t * [0, 1], s g 1.
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Proof. Indeed,

1 ÿ p

Z t

0

X

σg1

α(τ,σ)dτ ÿ 1 ÿ p7(1 ÿ ε)
Z t

0

X

σg1

εσÿ1α7(τ, 1)dτ

ÿ 1 ÿ p7
Z t

0

α7(τ, 1)dτ Since
X

σg1

εσÿ1 ÿ 1=(1 ÿ ε)
 !

ÿ 1 ÿ p7
Z t

0

X

σg1

α7(τ, σ)dτ (Since α7(τ, σ) ÿ 0 for σ > 1)

g tα7(t, 1): (By feasibility of α7)
Given that α(t, s) ÿ εsÿ1α7(t, 1) f α7(t, 1), we conclude that α�satisfies (10) for any t and s. w

We now define γ ÿ infkg1p(1ÿ (1ÿ p)k)ÿ1R 1
0

P
sg1α(t, s)Pk

ℓÿs

ÿ
ℓÿ 1
sÿ 1

ÿ
ts(1ÿ t)ℓÿsdt. Using the claim, we know that 

(α,γ) is feasible for (CLP)p and need to verify that γ g (p7)p7=(1ÿp7). Similar to the analysis in the previous section, the 
result follows by the following result.

Lemma 5. For any ℓ g 0,
R 1
τ7(1ÿ (1ÿ ε)t)ℓtÿp7 dt g (1ÿ p)ℓ.

Before proving the claim, we establish the bound:

γ ÿ inf
kg1

1
Pk
ℓÿ1 (1 ÿ p)ℓÿ1

Z 1

0

Xk

sÿ1

εsÿ1α7(s, 1)
Xk

ℓÿs

ℓ ÿ 1

s ÿ 1

 !

ts(1 ÿ t)ℓÿs dt (Using definition of α)

ÿ (p7)p7=(1ÿp7) inf
kg1

1
Pk
ℓÿ1 (1 ÿ p)ℓÿ1

Z 1

τ7

1

tp7+1

Xk

ℓÿ1

Xℓ

sÿ1

εsÿ1
ℓ ÿ 1

s ÿ 1

 !

ts(1 ÿ t)ℓÿs dt

(Using the definition of α7 and changing order of summmation)

ÿ (p7)p7=(1ÿp7) inf
kg1

1
Pk
ℓÿ1 (1 ÿ p)ℓÿ1

Z 1

τ7

1

tp7

Xk

ℓÿ1

(1 ÿ (1 ÿ ε)t)ℓÿ1 dt (Using the binomial expansion)

ÿ (p7)p7=(1ÿp7) inf
kg1

Pk
ℓÿ1

R 1
τ7 t

ÿp7(1 ÿ (1 ÿ ε)t)ℓÿ1 dt
Pk
ℓÿ1 (1 ÿ p)ℓÿ1

g (p7)p7=(1ÿp7):

We again used the inequality 
Pm
ℓÿ1 aℓ=

Pm
ℓÿ1 bℓ g minℓ*[m]aℓ=bℓ�for aℓ, bℓ > 0, for any ℓ, and the claim.

Proof of Lemma 5. We have 1ÿ (1ÿ ε)t ÿ (1ÿ ε)(1ÿ t) + ε. Therefore,

Z 1

τ7

1

tp7
(1ÿ (1ÿ ε)t)ℓdt ÿ

Z 1

τ7

1

tp7

Xℓ

jÿ0

ℓ

j

 !

(1ÿ ε)ℓÿj(1ÿ t)ℓÿjεjdt (Binomial expansion)

ÿ
Xℓ

jÿ0

ℓ

j

 !

(1ÿ ε)ℓÿjεj

Z 1

τ7

1

tp7
(1ÿ t)ℓÿj dt

g
Xℓ

jÿ0

ℓ

j

 !

(1ÿ ε)ℓÿjεj(1ÿ p7)ℓÿj dt (Using Lemma 3 for p7)

ÿ (ε+ (1ÿ ε)(1ÿ p7))ℓ (Using binomial expansion)

ÿ (1ÿ (1ÿ ε)p7)ℓ ÿ (1ÿ p)ℓ, 

where we used p ÿ (1ÿ ε)p7. From this inequality the claim follows. w

7.2.1. Improved Bound for p Close to 0. Now we present a better bound for γ7>(p), for p close to 0, using an explicit 
construction of a solution α�for (CLP)p.
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The following proposition gives a sufficient condition to ensure lower bounds over γ7>(p).
Proposition 3. Let 0 f t1 f t2 f t3 f ⋯ f 1. If for all k g 1 we have

Tk

t
1ÿkp
k+1 ÿ t

1ÿkp
k

1ÿ kp

 !

g γp(1ÿ p)kÿ1, 

where Tk ÿ (t1 ⋯ tk)p, then, γ7>(p) g γ.

Proof. Let α(t, s) be defined as follows. For i g 1, if t * [ti, ti+1), then

α(t, s) ÿ Ti=ti·p+1 s f i

0 s > i:

(

Then, by Proposition 2, we know that α�defines a feasible solution to (CLP)p. Now, using α(t, s) g α(t, ℓ) for any 
s f ℓ, we obtain

p

Z 1

0

X

sg1

α(t, s)
Xk

ℓÿs

ℓÿ 1

sÿ 1

 !

ts(1ÿ t)ℓÿs dt g p

Z 1

0

Xk

ℓÿ1

α(t, ℓ)t dt

ÿ p
X>

iÿ1

min k, i{ }Ti
t
1ÿip
i+1 ÿ t

1ÿip
i

1ÿ ip

 !

ÿ p
Xk

jÿ1

X>

iÿi

Ti
t
1ÿip
i+1 ÿ t

1ÿip
i

1ÿ ip

 !

g p
Xk

jÿ1

X>

iÿj

γp(1ÿ p)jÿ1

ÿ γp
Xk

jÿ1

(1ÿ p)jÿ1 ÿ γ(1ÿ (1ÿ p)k):

This holds for any k; thus, γ7>(p) g γ. w

We now present an iterative method to generate a sequence t1, t2, : : : as in Proposition 3. Fix t1 * [0, 1] and γ > 0, 
and define Ak ÿ t1(1ÿ p)ÿk + γpk for k g 1. Note that Ak is increasing in k. Define t2 ÿ t1(1+ γp(1ÿ p)=t1)1=(1ÿp), and 
for k g 2, define tk+1 as follows:

tk+1

tk

ÿ ÿ1ÿkp

ÿ Ak(1ÿ p)
Akÿ1

: (13) 

Lemma 6. The sequence t1, : : : defined above satisfies tk f tk+1 for each k g 1. Moreover, for any k g 1,

Tk

t
1ÿkp
k+1 ÿ t

1ÿkp
k

1ÿ kp

 !

ÿ γp(1ÿ p)kÿ1, 

where Tk ÿ (t1 ⋯ tk)p.

Proof. The first part follows from the fact that k < 1=p if and only if Ak(1ÿ p) g Akÿ1. For the second part, let

Bk ÿ Tk

t
1ÿkp
k+1 ÿ t

1ÿkp
k

1ÿ kp

 !

:

It is easy to verify that B1 ÿ γp using the definition of t2. Now, for k g 2,

Bk+1

Bk
ÿ t

p
k+1

t
1ÿ(k+1)p
k+2 ÿ t

1ÿ(k+1)p
k+1

t
1ÿkp
k+1 ÿ t

1ÿkp
k

 !
1ÿ kp

1ÿ (k+ 1)p

ÿ ÿ
:
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Using Identity (13) and Aj(1ÿ p)ÿAjÿ1 ÿ γp(1ÿ jp), we obtain

Bk+1

Bk
ÿ t

p
k+1

Akÿ1

Ak

t
1ÿ(k+1)p
k+1

t
1ÿkp
k

ÿ (1ÿ p):

Then, inductively, we can show that Bk ÿ γp(1ÿ p)kÿ1. w

Our goal is to give t1 * [0, 1] and γ * [0, 1] as large as possible such that limktk f 1, with tk defined via (13).

Lemma 7. We have

lim
k³>

log tk ÿ log t1 +
Z >

0

γ

t1ex + γx
dx, 

for p ³ 0.

The proof of the lemma is technical and borrows a strategy used by Correa et al. [22]. The main insight is to apply 
logarithms to both sides of Identity (13) and find an expression for log tk+1 as a sum of terms only involving Aj, γ, 
and p. In the limit in k, and then in p, we can reinterpret the sums as Riemann sums that later translate into the inte-
gral term given in the lemma. We defer the details of this proof to Appendix E.

We find numerically that the combination of t1 j 0:228 and γ j 0:511 ensures limk³>log tk ÿ 0. Thus, γ7>(p) g
0:51 for p close to 0; note that t1 remains bounded away from 0. This means that the policy given by the values 
t1, t2, : : : spends the first t1 fraction of time “exploring” before “exploiting,” and the fraction of exploration time 
remains a constant.

8. Computational Experiments
In this section, we aim to empirically test our policy; to do so, we focus on utility models. Recall from Proposition 1
that a γ-robust policy ensures at least γ�fraction of the optimal offline utility, for any utility function that is consis-
tent with the ranking—that is, Uj<Ui if and only if i ï j. This is advantageous for practical scenarios, where a can-
didate’s “value” may be unknown to the decision maker.

We evaluate the performance of two groups of solutions. The first group includes policies that are computed 
without the knowledge of any utility function: 

" Robust policy (Rob-Pol(n, p)) corresponds to the optimal policy obtained by solving (LP)n, p.
" Tamaki’s policy (Tama-Pol(n, p)), which maximizes the probability of selecting the best candidate willing to 

accept an offer. To be precise, Tamaki [68] studies two models of availability: MODEL 1, where the availability of 
the candidate is known after an offer has been made; and MODEL 2, where the availability of the candidate is 
known upon the candidate’s arrival. MODEL 2 has higher values and is computationally less expensive to com-
pute; we use this policy. Note that in SP-UA, the expected value obtained by learning the availability of the candi-
date after making an offer is the same value obtained in the model that learns the availability upon arrival. 
Therefore, MODEL 2 is a better model to compare our solutions to than MODEL 1.

In the other group, we have policies that are computed with knowledge of the utility function. 
" The expected optimal offline value (E[U(OPT(U, n, p))]), which knows the outcome of the offers and the utility 

function. It can be computed via 
Pn

iÿ1 Uip(1ÿ p)iÿ1. For simplicity, we write OPT when the parameters are clear 
from the context.

" The optimal rank-based policy if the utility function is known in advance, (Util-Pol(U, n, p)), computed by 
solving the optimality equation

v(t, s) ÿ max Ut(s) +
1ÿ p

t+ 1

Xt+1

σÿ1

v(t+1,σ),
1

t+ 1

Xt+1

σÿ1

v(t+1,σ),

( )

, 

with boundary condition v(n+1,σ) ÿ 0 for any σ. We write Util-Pol(n, p) when U is clear from the context. We use a 
rank-based policy as opposed to a value-based policy for computational efficiency.

Note that E[U(Rob-Pol)], E[U(Tama-Pol)] f E[U(Util-Pol)] f E[U(OPT)] and by Proposition 1, E[U(Rob-Pol)]
g γ7nE[U(A)] for any A of the aforementioned policies.

We consider the following decreasing utility functions: 
" Top k candidates are valuable (top-k). For k * [n], we consider utility functions of the form Ui ÿ 1+ εi for i * [k]

and Ui ÿ εi for i> k with ε ÿ 1=n. Intuitively, we aim to capture the notion of an elite set of candidates, where 
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candidates outside the top k are not nearly as appealing to the decision maker. For instance, renowned brands like to 
target certain members of a population for their ads. We test k ÿ 1, 2, 3, 4.

" Power law population. Ui ÿ iÿ1=(1+δ) for i g 1 and small δ > 0. Empirical studies have shown that the distribu-
tion of individual performances in many areas follows a power law or Pareto distribution (Clauset et al. [20]). If we 
select a random person from [n], the probability that this individual has a performance score of at least t is propor-
tional to tÿ(1+δ). We test δ * {10ÿ2, 10ÿ1, 2 · 10ÿ1}.

We run experiments for nÿ 200 candidates and range the probability of acceptance p from p ÿ 10ÿ2 to 
p ÿ 9 · 10ÿ1.

8.1. Results for Top-k Utility Function
In this subsection, we present the results for utility function that has largest values in the top k candidates, where 
k ÿ 1, 2, 3, 4. In Figure 2, we plot the ratio between the value collected by A and E[U(OPT)], for A being 
Util-Pol, Rob-Pol, and Tama-Pol.

Naturally, of all sequential policies, Util-Pol attains the largest approximation factor of E[U(OPT)]. We observe 
empirically that Rob-Pol collects larger values than Tama-Pol for smaller values of k. Interestingly, we observe in 
the four experiments that the approximation factor for Rob-Pol is always better than Tama-Pol for small values of p. 
In other words, robustness helps online selection problems when the probability of acceptance is relatively low. In 
general, for this utility function, we observe in the experiments that Rob-Pol collects at least 50% of the optimal off-
line value, except for the case kÿ1. As n increases (not shown in the figures), we observe that the approximation fac-
tors of all three policies decrease; this is consistent with the fact that γ7n, the optimal robust ratio, is decreasing in n.

8.2. Results for Power-Law Utility Function
In this subsection, we present the result of our experiments for the power-law utility function Ui ÿ iÿ(1+δ) for 
δ ÿ 10ÿ2, 10ÿ1, and 2 · 10ÿ1. In Figure 3, we display the approximation factors of the three sequential policies.

Again, we note that Util-Pol collects the largest fraction of all sequential policies. We also observe a similar 
behavior as in the case of the top-k utility function. For small values of p, Rob-Pol empirically collects more value 

Figure 2. (Color online) Approximation factors for the top k utility function, for k ÿ 1, 2, 3, 4. 
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than Tama-Pol. As p increases, the largest valued candidate is more willing to accept an offer; hence, Tamaki’s 1991 
policy is able to capture that candidate.

In general, our experiments suggests that Rob-Pol is better than Tama-Pol for smaller values of p. This may be of 
interest in applications where the probability of acceptance is small, say, 20% or less. For instance, some sources 
state that click-through rates (the fraction of time that an ad is clicked on) are typically less than 1% (Farahat and 
Bailey [31]). Therefore, ad display policies based on Rob-Pol may be more appropriate than other alternatives.

9. Concluding Remarks
We have studied the SP-UA, which models an online selection problem where candidates can reject an offer. We 
introduced the robust ratio as a metric that tries to simultaneously maximize the probability of successfully 
selecting one of the best k candidates, given that at least one of these will accept an offer, for all values of k. This 
objective captures the worst-case scenario for an online policy against an offline adversary that knows in advance 
which candidates will accept an offer. We also demonstrated a connection between this robust ratio and online 
selection with utility functions. We presented a framework based on MDP theory to derive a linear program that 
computes the optimal robust ratio and its optimal policy. This framework can be generalized and used in other 
secretary problems (Section 4.1), for instance, by augmenting the state space. Furthermore, using the MDP frame-
work, we were able to show that the robust ratio γ7n is a decreasing function in n. This enabled us to make connec-
tions between early works in secretary problems and recent advances. To study our LP, we allow the number of 
candidates to go to infinity and obtain a continuous LP. We provide bounds for this continuous LP and optimal 
solutions for large p.

We empirically observe that the robust ratio γ7n(p) is convex and decreasing as a function of p, and, thus, we 
expect the same behavior from γ>(p), though this remains to be proved (see Figure 1). Based on numerical values 
obtained by solving (LP)n, p, we conjecture that limp³0γ

7
>(p) ÿ 1=β j 0:745. This limit is also observed in a similar 

model Correa et al. [21], where a fraction of the input is given in advance to the decision maker as a sample. In our 
model, if we interpret the rejection from a candidate as a sample, then in the limit, both models might behave 

Figure 3. (Color online) Approximation factor for the power law utility function. The function has the form Ui ÿ iÿ(1+δ). Experi-
ments are run for δ * {10ÿ2, 10ÿ1, 2 · 10ÿ1}. 
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similarly. Numerical comparisons between our policies and benchmarks suggest that our proposed policies per-
form especially well in situations where the probability of acceptance is small, say, less than 20%, as in the case of 
online advertisement.

A natural extension is the value-based model, where candidates reveal numerical values instead of partial rank-
ings. Our algorithms are rank-based and guarantee an expected value at least a fraction γ7n(p) of the optimal offline 
expected value (Proposition 1). Nonetheless, algorithms based on numerical values may attain higher expected 
values than the ones guaranteed by our algorithm. In fact, a threshold algorithm based on sampling may perhaps 
be enough to guarantee better values, although this requires an instance-dependent approach. The policies we con-
sider are instance-agnostic, can be computed once, and used for any input sequence of values. In this value-based 
model, we would like to consider other arrivals processes. A popular arrival model is the adversarial arrival, where 
an adversary constructs values and the arrival order in response to the DM’s algorithm. Unfortunately, a construc-
tion similar to the one in Marchetti-Spaccamela and Vercellis [57] for the online knapsack problem shows that it is 
impossible to attain a finite competitive ratio in an adversarial regime.

Customers belonging to different demographic groups may have different willingness to click on ads (Cheng 
and Cantú-Paz [17]). In this work, we considered a uniform probability of acceptance, and our techniques do not 
apply directly in the case of different probabilities. In ad display, one way to cope with different probabilities, 
depending on customers’ demographic group, is the following. Upon observing a customer, a random variable 
(independent of the ranking of the candidate) signals the group of the customer. The probability of acceptance of a 
candidate depends on the candidate’s group. Assuming independence between the rankings and the demographic 
group allows us to learn nothing about the global quality of the candidates beyond what we can learn from the par-
tial rank. Using the framework presented in this work, with an augmented state space (time, partial rank, group 
type), we can write an LP that solves this problem exactly. Nevertheless, understanding the robust ratio in this new 
setting and providing a closed-form policy are still open questions.

Another interesting extension is the case of multiple selections. In practice, platforms can display the same ad to 
more than one user, and some job posts require more than one person for a position. In this setting, the robust ratio 
is less informative. If k is the number of possible selections, one possible objective is to maximize the number of top 
k candidates selected. We can apply the framework from this work to obtain an optimal LP. Although there is an 
optimal solution, no simple closed-form strategies have been found even for pÿ 1; see, for example, Buchbinder 
et al. [13]).

Appendix A. Missing Proofs from Section 3

Proof of Proposition 1. Let ALG be a γ-robust algorithm. Fix any algorithm ALG and any U1 g⋯g Un g 0. Let ε > 0 and let 
Û i ÿ Ui + εi. Thus, Ûi > Ûi+1, and so rank and utility are in one-to-one correspondence. Then,

E[Û(ALG)]
E[Û(OPT)]

g min
x*{Û1, : : : , Ûn}

P(Û(ALG) g x)
P(Û(OPT) g x)

ÿ min
kfn

P(ALG collects a top k candidate)
P(A top k candidate accepts) g γ�

where we used the fact that ALG is γ-robust. Notice that E[U(OPT)] f E[Û(OPT)], and also E[Û(ALG)] f E[U(ALG)] + ε. Thus, 
doing ε³ 0 we obtain

E[U(ALG)]
E[U(OPT)] g γ, (A.1) 

for any nonzero vector U with U1 g U2 g⋯g Un g 0. This finishes the first part. For the second part, let

γn ÿ min
ALG

max
E[U(ALG)]
E[U(OPT)] : U : [n] ³ R+, U1 g⋯g Un

ÿ ÿ
:

Note that the right-hand side (RHS) of Inequality (A.1) is independent of U, thus minimizing in U in the left-hand side (LHS) 
and, then, maximizing in ALG on both sides, we obtain γn g γ7n.

To show the reverse inequality, fix k * [n] and let Û : [n] ³ R+ given by Û i ÿ 1 for i f k and Û i ÿ 0 for i>k. Then,

P(ALG collects a top k candidate)
P(A top k candidate accepts) ÿ E[Û(ALG)]

E[Û(OPT)]
g min

U : [n]³R+
U1g⋯gUn

E[U(ALG)]
E[U(OPT)] :

This bound holds for any k, thus minimizing over k and then maximizing over ALG on both sides, we obtain γ7n g γn, which 
finishes the second part. w

Appendix B. Missing Proofs from Section 4
Here, we present a detailed derivation of Theorem 1 and Theorem 2 by revisiting Section 4.

Perez-Salazar, Singh, and Toriello: Robust Online Selection 

Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2024 INFORMS 19 



As stated in Section 4, we are going to proceed in two stages: (1) First, using a generic utility function, we uncover the space of 
policies POL. (2) Second, we show that our objective is a concave linear function of the variables of the space of policies that 
allows us to optimize it over POL.

B.1. Stage 1: The Space of Policies

Let U : [n] ³ R+ be an arbitrary utility function, and suppose that a DM makes decisions based on partial rankings and her goal 
is to maximize the utility obtained, where she gets Ui if she is able to collect a candidate of ranking i. Let v7(t, s) be the optimal value 
obtained by a DM in {t, t+ 1, : : : , n} if she is currently observing the t-th candidate and this candidate has partial ranking rtÿ s— 
that is, the current state of the system is st ÿ (t, s). The function v7(t, s) is called the value function. We define v7(n+1,σ) for any 
σ * [n+ 1]. Then, by optimality equations (Puterman [62]), we must have

v7(t, s) ÿ max pUt(s) + (1ÿ p) 1

t+ 1

Xt+1

σÿ1

v7(t+1,σ),
1

t+ 1

Xt+1

σÿ1

v7(t+1,σ)

( )
, (B.1) 

with v7(n+1, s) ÿ 0 for any s * [n+ 1]. The first part in the max operator corresponds to the expected value obtained by selecting 
the current candidate, whereas the second part in the operator corresponds to the expected value collected by passing to 
the next candidate. Here, Ut(s) ÿ

Pn
iÿ1 UiP(Rt ÿ i |rt ÿ s) is the expected value collected by the DM, given that the current can-

didate has partial ranking rtÿ s and accepts the offer. Although an optimal policy for this arbitrary utility function can be 
computed via the optimality equations, we are more interested in all the possible policies that can be obtained via these for-
mulations. For this, we are going to use linear programming. This has been used in MDP theory (Altman [4], Puterman 
[62]) to study the space of policies.

The following proposition shows that the solution of the optimality Equations (B.1) solves the LP (D):

max
vg0

v(1, 1)

(D) v(t, s) g pUt(s) +
1 ÿ p

t + 1

Xt+1

σÿ1

v(t+1,σ), ∀t * [n], s * [t], (B.2) 

v(t, s) g
1

t + 1

Xt+1

σÿ1

v(t+1, σ), ∀t * [n], s * [t], (B.3) 

which has as a dual the LP (P):

min
x, yg0

Xn

tÿ1

Xt

sÿ1

Ut(s)xt, s 

(P) x1, 1 + y1, 1 f 1, (B.4) 

xt, s + yt, s f 1

t

Xtÿ1

σÿ1

ytÿ1,σ + (1 ÿ p)xtÿ1,σ

 !

∀t * [n], s * [t]: (B.5) 

We denote by v(D) the value of the LP (D).

Proposition B.1. Let v7 ÿ (v7
(t, s))t, s be a solution of (B.1); then, v7 is an optimal solution of the problem of (D) in Equations (B.2)–(B.5).

Proof. Given that v7 satisfies the optimality Equation (B.1), then it clearly satisfies Constraints (B.2) and (B.3). Thus, v7 is feasible 
and so v7(1, 1) g v(D).

To show the optimality of v7, we show that any solution v of the LP is an upper bound for the value function: v7 f v. To show 
this, we proceed by backward induction in t ÿ n+ 1, n, : : : , 1 and we prove that v7

(t, s) f v(t, s) for any s * [t].
We start with the case t ÿ n+ 1. In this case, v7(n+1, s) ÿ 0 for any s, and, because v(n+ 1, s) g 0 for any s, then the result 

follows.
Suppose the result is true for t ÿ τ+ 1, : : : , n+ 1 and let us show it for t ÿ τ. Using Constraints (B.2)–(B.3), we must have

v(τ, s) g max pUτ(s) + (1ÿ p) 1

τ+ 1

Xτ+1

σÿ1

v(τ+1,σ),
1

τ+ 1

Xτ+1

σÿ1

v(τ+1,σ)

( )

g max pUτ(s) + (1ÿ p) 1

τ+ 1

Xτ+1

σÿ1

v7(τ+1,σ),
1

τ+ 1

Xτ+1

σÿ1

v7(τ+1,σ)

( )

ÿ v7(τ, s),

(backward induction) 

where the last line follows by the Optimality Equations (B.1). Thus, v(D) ÿ v(1, 1) g v7
(1, 1). w

Perez-Salazar, Singh, and Toriello: Robust Online Selection 

20 Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2024 INFORMS 



The dual of the LP (D) is depicted in Equations (B.2)–(B.5) and named (P). The crucial fact to notice here is that the feasible 
region of (P) is oblivious of the utility function (or rewards) given initially to the MDP. This suggests that the region

POL ÿ (x, y) g 0 : x1, 1 + y1, 1 ÿ 1, xt, s + yt, s ÿ
1

t

Xtÿ1

σÿ1

ytÿ1, σ + (1 ÿ p)xtÿ1,σ, ∀t * [n], s * [t]
( )

, 

codifies all possible policies. The following two propositions formalize this.

Proposition B.2. For any policy P for the SP-UA, consider

xt, s ÿ P(P reaches state (t, s), selects candidate)

and

yt, s ÿ P(P reaches state (t, s), does not select candidate):
Then, (x, y) belongs to POL.

Proof. Consider the event Dt ÿ {t-th candidate turns down offer}. Then, p ÿ P(Dt). Consider also the events

Ot ÿ {P reaches t-th candidate and extends an offer}, 

and

Ot ÿ {P reaches t-th candidate and does not extend offer}:

Then, Ot and Ot are disjoint events and Ot * Ot equals the event of P reaching stage t. Thus

1Ot+{Stÿ(t, s)} + 1
O t+{Stÿ(t, s)} ÿ 1{P reaches state Stÿ(t, s)}: (B.6) 

Note that xt, s ÿ P(Ot + {St ÿ (t, s)}) and yt, s ÿ P(Ot + {St ÿ (t, s)}). For tÿ1, then S1 ÿ (1, 1) and {P reaches state S1 ÿ (1, 1)} occurs 
with probability 1. Thus,

x1, 1 + y1, 1 ÿ 1:

For t> 1, by the dynamics of the system, the only way that P reaches state t is by reaching stage tÿ1 and not extending an offer 
to the tÿ1 candidate or extending an offer, but this was turned down. Thus,

1{P reaches state Stÿ(t, s)} ÿ
Xtÿ1

σÿ1

1O tÿ1+{Stÿ1ÿ(tÿ1,σ)}+{Stÿ(t, s)} + 1Otÿ1+{Stÿ1ÿ(tÿ1,σ)}+D tÿ1+{Stÿ(t, s)}: (B.7) 

Note that

P(Otÿ1 + {Stÿ1 ÿ (t ÿ 1, σ)} + {St ÿ (t, s)})

ÿ P(Otÿ1 + {Stÿ1 ÿ (t ÿ 1, σ)} |St ÿ (t, s))P(St ÿ (t, s))

ÿ P(Otÿ1 + Stÿ1 ÿ (t ÿ 1, σ){ }) 1

t

ÿ 1

t
ytÿ1,σ:

Note that we use that P’s action at stage tÿ1 only depends on Stÿ1 and not what is observed in the future. Likewise, we obtain

P(Otÿ1 + {Stÿ1 ÿ (tÿ 1,σ)} + Dtÿ1 + {St ÿ (t, s)})

ÿ P(Dtÿ1)P(Otÿ1 + {Stÿ1 ÿ (tÿ 1,σ)} + {St ÿ (t, s)})

ÿ (1ÿ p)P(Otÿ1 + {Stÿ1 ÿ (tÿ 1,σ)} + {St ÿ (t, s)})

ÿ 1ÿ p

t
xtÿ1,σ:

Using the equality between (B.6) and (B.7) and taking expectation, we obtain

xt, s + yt, s ÿ
Xtÿ1

σÿ1

1

t
ytÿ1,σ +

1 ÿ p

t
xtÿ1,σ, 

which shows that (x, y) * POL. w
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Conversely,

Proposition B.3. Let (x, y) be a point in POL. Consider the (randomized) policy P that in state (t, s) makes an offer to the candidate t with 
probability x1, 1 if tÿ1 and

txt, sPtÿ1
σÿ1 ytÿ1,σ + (1ÿ p)xtÿ1,σ

, 

if t>1. Then, P is a policy for SP-UA such that xt, s ÿ P(P reaches state (t, s), selects candidate) and yt, s ÿ P(P reaches state (t, s), 
does not select candidate) for any t * [n] and s * [t].

Proof. We use the same events Ot, Ot and Dt as defined in the previous proof. Thus, we need to show that xt, s ÿ P(Ot + {St ÿ
(t, s)}) and yt, s ÿ P(Ot + {St ÿ (t, s)}) are the right marginal probabilities. For this, it is enough to show that

P(Ot |St ÿ (t, s)) ÿ txt, s and P(Ot |St ÿ (t, s)) ÿ tyt, s, 

for any t * [n] and for any s * [t]. We prove this by induction in t * [n]. For tÿ1, the result is true by definition of the acceptance 
probability and the fact that x1, 1 + y1, 1 ÿ 1. Let us assume the result is true for tÿ1, and let us show it for t. First, we have

P(Ot |St ÿ (t, s)) ÿ P(Reach t,P(St) ÿ offer |St ÿ (t, s))

ÿ P(Reach t |St ÿ (t, s))P(P(St) ÿ offer |St ÿ (t, s))

ÿ P(Reach t |St ÿ (t, s)) · txt, sÿPtÿ1
σÿ1 ytÿ1,σ + (1ÿ p)xtÿ1, s

ÿ :

Now, we have

P(Reach t |St ÿ (t, s))

ÿ P((Otÿ1 + Dtÿ1) * Otÿ1 |St ÿ (t, s))

ÿ (1 ÿ p)
Xtÿ1

σÿ1

P(Otÿ1 |Stÿ1 ÿ (t ÿ 1, σ), St ÿ (t, s))P(Stÿ1 ÿ (t ÿ 1, σ) |St ÿ (t, s))

+
Xtÿ1

σÿ1

P(Otÿ1 |Stÿ1 ÿ (t ÿ 1, σ), St ÿ (t, s))P(Stÿ1 ÿ (t ÿ 1, σ) |St ÿ (t, s))

ÿ (1 ÿ p)
Xtÿ1

σÿ1

P(Otÿ1 |Stÿ1 ÿ (t ÿ 1, σ)) 1

t ÿ 1

+
Xtÿ1

σÿ1

P(Otÿ1 |Stÿ1 ÿ (t ÿ 1, σ)) 1

t ÿ 1
(P only makes decisions at stage t ÿ 1 based on Stÿ1)

ÿ (1 ÿ p)
Xtÿ1

σÿ1

xtÿ1,σ + ytÿ1,σ (induction):

Note that we used

P(Stÿ1 ÿ (t ÿ 1, σ) |St ÿ (t, s)) ÿ P(St ÿ (t, s) |Stÿ1 ÿ (t ÿ 1, σ))P(Stÿ1 ÿ (t ÿ 1, σ))
P(St ÿ (t, s))

ÿ 1

t ÿ 1
:

Thus, the induction holds for P(Ot |St ÿ (t, s)) ÿ txt, s. Similarly, for

P(Ot |St ÿ (t, s)) ÿ P(Reach t,P(St) ÿ pass |St ÿ (t, s))

ÿ P(Reach t |St ÿ (t, s))P(P(St) ÿ pass |St ÿ (t, s))

ÿ
Xtÿ1

σÿ1

ytÿ1,σ + (1ÿ p)xtÿ1,σ

 !
1ÿ

txt, sÿPtÿ1
σÿ1 ytÿ1,σ + (1ÿ p)xtÿ1, s

ÿ

0

@

1

A

ÿ tyt, s, 

where we used the fact that (x, y) * POL. w
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B.2. Stage 2: The Robust Objective

Proposition B.4. Let P be any policy for SP-UA and let (x, y) * POL be its corresponding vector as in Proposition B.2. Then, for any 
k * [n],

P(P collects a top k candidate) ÿ
Xn

tÿ1

Xt

sÿ1

pxt, sP(Rt f k |rt ÿ s):

Proof. We use the same events as in the proof of Proposition B.2. Then,

P(P collects a top k candidate) ÿ
Xn

tÿ1

Xt

sÿ1

P(Ot + Dt + {St ÿ (t, s)} + {Rt f k})

ÿ
Xn

tÿ1

Xt

sÿ1

pxt, sP(Rt f k |Ot + Dt + {St ÿ (t, s)})

ÿ
Xn

tÿ1

Xt

sÿ1

pxt, sP(Rt f k |rt ÿ s):

Note that Rt only depends on St, and St ÿ (t, s) is equivalent to rtÿ s. w

We are ready to prove of Theorem 2.

Theorem B.1 (Theorem 2 Restated). The largest robust ratio γ7n corresponds to the optimal value of the LP

max
xg0
γ

s:t:

(LP)n, p xt, s f 1

t
1ÿ p

Xtÿ1

τÿ1

Xτ

σÿ1

xτ,σ

 !

∀t * [n], s * [t]

γ f p

1ÿ (1ÿ p)k
Xn

tÿ1

Xt

sÿ1

xt, sP(Rt f k |rt ÿ s) ∀k * [n]:

Moreover, given an optimal solution (x7,γ7n) of (LP)n, p, the (randomized) policy P7 that at state (t, s) makes an offer with probability 
tx7t, s=(1ÿ p

Ptÿ1
τÿ1

Pτ
σÿ1 x7τ,σ) is γ7n-robust.

Proof. We have

γ7n ÿ max
P

min
k*[n]

P(P collects a candidate with rank f k)
1 ÿ (1 ÿ p)k

ÿ max
(x, y)* POL

min
k*[n]

p
Pn

tÿ1

Pt
sÿ1 xt, sP(Rt f k |rt ÿ s)
1 ÿ (1 ÿ p)k

(Propositions B:2, B:3 and B:4)

Now note that the function γ : (x, y) ¢³ mink*[n]
p
Pn

tÿ1

Pt

sÿ1
xt, sP(Rt f k | rtÿs)

1ÿ(1ÿp)k is constant in y. Thus any point (x, y) satisfying Con-

straints (B.4) and (B.5) has an equivalent point in (x2, y2) * POL with x2 ÿ x, y2 g y so all constraints tighten and the objective of γ�
is the same for both points. Thus, γ7n equals the optimal value of the LP (P2):

max
xg0
γ

s:t:

(P2) x1, 1 + y1, 1 f 1

xt, s + yt, s f 1

t

Xtÿ1

σÿ1

ytÿ1,σ + (1ÿ p)xtÿ1,σ

 !
∀t * [n], s * [t]

γ f p
Pn

tÿ1

Pt
sÿ1 xt, sP(Rt f k |rt ÿ s)
1ÿ (1ÿ p)k

∀k * [n], 

where we linearized the objective with the variable γ. By projecting the feasible region of (P2) onto the variables (x,γ), we obtain 
(LP)n, p. This is a routine procedure that can be carried out using Fourier-Motzkin (Schrijver [65], but we skip it here for brevity.

For the second part, we can take an optimal solution (x7,γ7n) and its corresponding point (x7, y7) * POL. A routine calculation 
shows that 1ÿ p

P
τ< t

Pτ
σÿ1 x7τ,σ ÿ

Ptÿ1
σÿ1 y7tÿ1,σ + (1ÿ p)x7

tÿ1,σ. Thus, by Proposition B.3, we obtain the optimal policy. w

Perez-Salazar, Singh, and Toriello: Robust Online Selection 

Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2024 INFORMS 23 



B.3. Missing Proofs from Section 4: g7
n Is Decreasing in n

Proof of Lemma 1. We know that γ7n equals the value

min
u :[n]³R+P

iuig1

v(1, 1)

(DLP) s:t:

v(t, s) ÿ max pUt(s) +
1ÿ p

t+ 1

Xtÿ1

σÿ1

v(t+1,σ),
1

t+ 1

Xtÿ1

σÿ1

v(t+1,σ)

( )

∀t * [n], s * [t]

v(n+1, s) ÿ 0 ∀s * [n+ 1], 

where Ut(s) ÿ
Pn

iÿ1
uk

1ÿ(1ÿp)kP(Rt * [k] |rt ÿ s) ÿPn
jÿ1

P
kgj

ÿ
uk

1ÿ(1ÿp)k

ÿ
P(Rt ÿ j |rt ÿ s). Thus, the utility collected by the policy if it col-

lects a candidate with rank i is Ui ÿ
P

kgi
uk

1ÿ(1ÿp)k. Let u : [n] ³ [0, 1] such that 
Pn

iÿ1 ui ÿ 1 and extend u to û : [n+ 1] ³ [0, 1] by 

ûn+1 ÿ 0 and define Ût(s) accordingly. Consider the optimal policy that solves the program

v̂(t, s) ÿ max pÛt(s) +
1ÿ p

t+ 1

Xt+1

σÿ1

v̂(t+1σ),
1

t+ 1

Xt+1

σÿ1

v̂(t+1,σ)

( )

, ∀t * [n+ 1], s * [t]

with the boundary condition v̂(n+2, s) ÿ 0 for all s * [n+ 2]. Call this policy bP . Note that when policy bP collects a candidate with 
rank i, then it gets a utility of

Û i ÿ
X

kgi

ûk

1ÿ (1ÿ p)k
ÿ
X

kgi

uk

1ÿ (1ÿ p)k
ÿ Ui, 

for i f n and Ûn+1 ÿ 0. By the choice of bP , the expected utility collected by bP is val(bP) ÿ v̂(1, 1). We can obtain a policy P for n ele-
ments out of bP by simulating an entry of n+1 elements as follows. Policy P randomly selects a time t7 * [n+ 1] and its availabil-
ity b: we set bÿ0 (unavailable) with probability 1ÿ p and bÿ1 (available) with probability p. Now, on a input of length n, the 
policy P will squeeze an item of rank n+1 in position t7 and it will run the policy bP in this input, simulating appropriately the 
new partial ranks. That is, before stage t7, policy P behaves exactly as bP in the original input of P. When the policy leaves 
the stage t7 ÿ 1 to transition to stage t7, then the policy P simulates the simulated candidate t7 (with real rank n+1) that bP would 
have received and does the following: ignores the candidate and moves to stage t7 if the simulated candidate is unavailable 

(bÿ0) or if bP((t7, t7)) ÿ pass, whereas if bP((t7, t7)) ÿ offer and the simulated candidate accepts (bÿ1), then the policy P accepts 
any candidate from that point on.

Coupling the input of length n+ 1 for bP and the input of length n with the random stage t7 for P, we can see that the utilities 

collected by P and bP coincide. Thus, the optimal utility v(1, 1) collected by a policy for n candidates and utilities given by 
U : [n] ³ R+, hold v(1, 1) g v̂(1, 1). Given that v̂(1, 1) g γ7n+1, by minimizing over u we obtain γ7n g γ7n+1. w

Appendix C. Missing Proofs from Section 5
In this subsection, we show that |γ7n ÿ γ7> | f O((log n)2=

ooo
n

:
) for fixed p (Lemma 2). The proof is similar to other infinite approxi-

mation of finite models, and we require some preliminary results before showing the result. First, we introduce two relaxations, 
one for (LP) and one for (CLP). We show that the relaxations have values close to their nonrelaxed versions. After these prelimi-
naries have been introduced, we present the proof of Lemma 2.

Consider the relaxation of (LP)n, p to the top q candidate constraints:

γ7n, q ÿ max
xg0

γ�

(LP)n, p, q xt, s f
1

t
1ÿ p

X

τ<t

Xτ

s2ÿ1

xτ, s2

 !
∀t, s, (C.1) 

γ f p

(1ÿ (1ÿ p)k)
Xn

tÿ1

Xt

sÿ1

xt, sP(Rt * [k] |rt ÿ s) ∀k * [q]: (C.2) 

Note that γ7n f γ7n, q because (LP)n, p, q is a relaxation of (LP)n, p. The following result gives a bound on γ7n compared with γ7n, q.

Proposition C.1. For any q * [n], γ7n g (1ÿ (1ÿ p)q)γ7n, q.

Proof. Let (x,γ7n, q) be an optimal solution of (LP)n, p, q. Let fk ÿ p

1ÿ(1ÿp)k
Pn

tÿ1

Pt
sÿ1 xt, sP(Rt * [k] |rt ÿ s). Then, γ7n, q ÿ minkÿ1, : : : , q fi. It 

is enough to show that fi g
ÿ 1ÿ(1ÿp)q

1ÿ(1ÿp)n
ÿ
fq for i g q because γ7n g miniÿ1, : : : , n fi

ÿ 1ÿ(1ÿp)q

1ÿ(1ÿp)n
ÿ
miniÿ1, : : : , q fi g (1ÿ (1ÿ p)q)γ7n, q.
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For any j we have

fj+1 ÿ p

1 ÿ (1 ÿ p)j+1

Xn

tÿ1

Xt

sÿ1

xt, sP(Rt * [j + 1] |rt ÿ s) g 1 ÿ (1 ÿ p)j

1 ÿ (1 ÿ p)j+1

 !

fj:

Thus, iterating this for j> q, we get fj g 1ÿ(1ÿp)q
1ÿ(1ÿp)j

ÿ ÿ
fq, and we obtain the desired result. w

Likewise, we consider the relaxation of (CLP)p to the top q candidates:

γ7>, q ÿ max
α :[0, 1]×N³[0, 1]

γg0

γ�

(CLP)p, q α(t, s) f 1

t
1ÿ p

Z t

0

X

σg1

α(τ,σ)dτ

 !

, ∀t * [0, 1], s g 1, (C.3) 

γ f
p
R 1

0

P
sg1α(t, s)Pk

ℓÿs
ℓÿ 1

sÿ 1

ÿ ÿ
ts(1ÿ t)ℓÿs dt

(1ÿ (1ÿ p)k)
, ∀k * [q]: (C.4) 

We have γ7>, q g γ7> and we have the approximate converse

Proposition C.2. For any q g 1, γ7> g (1ÿ (1ÿ p)q)γ7>, q.

Proof. Let (α,γ>, q) be a feasible solution of (CLP)p, q. Let

fk ÿ
p

1ÿ (1ÿ p)k

Z 1

0

X

sg1

α(t, s)
Xk

ℓÿs

ℓÿ 1

sÿ 1

ÿ ÿ
ts(1ÿ t)ℓÿs dt 

Assume that γ>, q f minkfq fk. As in the previous proof, we aim to show that fi g (1ÿ (1ÿ p)q)fq for i g q, because this will imply 

γ7> g (1ÿ (1ÿ p)q)γ>, q for any (α,γ>, q) feasible for (CLP)p, q.

Now, for any j, we have

fj+1 ÿ p

1 ÿ (1 ÿ p)j+1

Z 1

0

X

sg1

α(t, s)
Xj+1

ℓÿs

ℓ ÿ 1

s ÿ 1

 !

ts(1 ÿ t)ℓÿs dt

g p

1 ÿ (1 ÿ p)j+1

Z 1

0

X

sg1

α(t, s)
Xj

ℓÿs

ℓ ÿ 1

s ÿ 1

 !

ts(1 ÿ t)ℓÿs dt

ÿ 1 ÿ (1 ÿ p)j

1 ÿ (1 ÿ p)j+1

 !

fj:

Iterating the inequality until reaching q, we deduce that for any j g q, we have fj g 1ÿ(1ÿp)q
1ÿ(1ÿp)j

ÿ ÿ
fq. From here, the result follows. w

Remark C.1. If we set q ÿ (logn)=p, both results imply that γ7n g (1ÿ 1=n)γ7n, q and γ7> g (1ÿ 1=n)γ7>, q. Thus, we lose at most 1=n 
by restricting the analysis to the top q candidates.

Proposition C.3. There is n0 such that for n g n0, for any t such that 
ooo
n

:
logn f t f nÿ

ooo
n

:
log n, ℓ f log(n)=p and ℓ g s it holds that 

for any τ * [t=n, (t+ 1)=n] we have

1ÿ
10

p
ooo
n

: f
ℓÿ 1

sÿ 1

ÿ ÿ
nÿ ℓ

tÿ s

ÿ ÿ
=

n

t

ÿ ÿ

ℓÿ 1

sÿ 1

ÿ ÿ
τs(1ÿ τ)ℓÿs

f 1+ 10

p
ooo
n

: :

Proof. We only need to show that

1 ÿ

10

p
ooo
n

: f
n ÿ ℓ

t ÿ s

ÿ ÿ
=

n

t

ÿ ÿ

τs(1 ÿ τ)ℓÿs
f 1 + 10

p
ooo
n

: :
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We have
ÿ

n ÿ ℓ

t ÿ s

ÿ

ÿ
n

t

ÿ

ÿ t!

(t ÿ s)!
1

n!

(n ÿ ℓ)!(n ÿ t)!
(n ÿ t ÿ (ℓÿ s))!

ÿ t · (t ÿ 1) ⋯ (t ÿ s + 1)
n · (n ÿ 1) ⋯ (n ÿ s + 1)

ÿ ÿ (n ÿ t)(n ÿ t ÿ 1) ⋯ (n ÿ t ÿ (ℓÿ s) + 1)
(n ÿ s)(n ÿ s ÿ 1) ⋯ (n ÿ s ÿ (ℓÿ s) + 1)

ÿ ÿ

ÿ t

n

ÿ ÿs

1 ÿ

t

n

ÿ ÿℓÿs

|nnnnnnnnnnnnnn{znnnnnnnnnnnnnn}
A

1 · 1 ÿ

1
t

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
t

ÿ ÿ

1 · 1 ÿ

1
n

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
n

ÿ ÿ

0

@

1

A

|nnnnnnnnnnnnnnnnnnnnnnnnnn{znnnnnnnnnnnnnnnnnnnnnnnnnn}
B

1 · 1 ÿ

1
nÿt

ÿ ÿ
⋯ 1 ÿ

(ℓÿs)ÿ1
nÿt

ÿ ÿ

1 ÿ

s
n

ÿ ÿ
· 1 ÿ

(s+1)
n

ÿ ÿ
⋯ 1 ÿ

(s+(ℓÿs)ÿ1)
n

ÿ ÿ

0

@

1

A

|nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn{znnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn}
C

:

We bound terms A, B, and C separately. Given that s f ℓ�and we are assuming that ℓ f (log n)=p and t g
ooo
n

:
log n for n large, then 

we will implicitly use that s, ℓ f min{t=2, n=2}.

Claim C.1. It holds (1ÿ 4=(p
ooo
n

:
))τs(1ÿ τ)ℓÿs f A ÿ (t=n)s(1ÿ t=n)ℓÿs f (1+ 4=(p

ooo
n

:
))τs(1ÿ τ)ℓÿs.

Proof. For the upper bound, we have

t

n

ÿ ÿs

1 ÿ

t

n

ÿ ÿℓÿs

f τs 1 ÿ τ + 1

n

ÿ ÿℓÿs

(τ * [t=n, (t + 1)=n])

ÿ τs(1 ÿ τ)ℓÿs 1 + 1

(1 ÿ τ)n

ÿ ÿℓÿs

f τs(1 ÿ τ)ℓÿse(ℓÿs)=((1ÿτ)n)

f τs(1 ÿ τ)ℓÿseℓ=(nÿtÿ1)

f τs(1 ÿ τ)ℓÿs 1 + 2
ℓ

n ÿ t ÿ 1

ÿ ÿ
(Using ex f 1 + 2x for x * [0, 1]):

The upper bound now follows by using the information over ℓ�and t and that (1+ 2ℓ=(nÿ tÿ 1)) f 1+ 2(log n)pÿ1(
ooo
n

:
log n 

ÿ 1)ÿ1 f 1+ 4=(p ooo
n

: ) for n large.
For the lower bound, we have

t

n

ÿ ÿs

1 ÿ

t

n

ÿ ÿℓÿs

g τÿ
1

n

ÿ ÿs

(1 ÿ τ)ℓÿs

ÿ τs(1 ÿ τ)ℓÿs 1 ÿ

1

τn

ÿ ÿs

g τs(1 ÿ τ)ℓÿseÿ
s
τnÿ1

g τs(1 ÿ τ)ℓÿs(1 ÿ s=(τn ÿ 1)):
Given that s=(τnÿ 1) f log(n)=(p(tÿ 1)) f 2=(p ooo

n
: ) for n large, the lower bound follows. w

Claim C.2. We have 1ÿ 2s2=t f B f 1+ 2s2=n.

Proof. For the upper bound, we upper bound the denominator

1 · 1 ÿ

1
t

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
t

ÿ ÿ

1 · 1 ÿ

1
n

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
n

ÿ ÿ

0

@

1

A f 1

1 · 1 ÿ

1
n

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
n

ÿ ÿ

f e
Psÿ1

kÿ1
k=(nÿk)

f es2=(nÿs) (Function x ¢³ x=(n ÿ x) is increasing)

f 1 + 2
s2

n
:
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For the lower bound, we lower bound the numerator:

1 · 1 ÿ

1
t

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
t

ÿ ÿ

1 · 1 ÿ

1
n

ÿ ÿ
⋯ 1 ÿ

(sÿ1)
n

ÿ ÿ

0

@

1

A g 1 · 1 ÿ

1

t

ÿ ÿ
⋯ 1 ÿ

(s ÿ 1)
t

ÿ ÿ

g eÿ
Psÿ1

kÿ1
k=(tÿk) (Using 1 ÿ k=t ÿ (1 + k=(t ÿ k))ÿ1 g eÿk=(tÿk))

g 1 ÿ

s2

t ÿ s
g 1 ÿ 2

s2

t
: w 

Claim C.3. We have 1ÿ 2ℓ2=(nÿ t) f C f 1+ 2ℓ2=n.

Proof. Similar to the previous claim, we bound denominator for an upper bound and numerator for a lower bound.

1 · 1 ÿ

1
nÿt

ÿ ÿ
⋯ 1 ÿ

(ℓÿs)ÿ1
nÿt

ÿ ÿ

1 ÿ

s
n

ÿ ÿ
· 1 ÿ

(s+1)
n

ÿ ÿ
⋯ 1 ÿ

(s+(ℓÿs)ÿ1)
n

ÿ ÿ

0

@

1

A f 1

1 ÿ

s
n

ÿ ÿ
· 1 ÿ

(s+1)
n

ÿ ÿ
⋯ 1 ÿ

(s+(ℓÿs)ÿ1)
n

ÿ ÿ

f e
Pℓÿsÿ1

kÿ0
(k+s)=(nÿk) f 1 + 2

ℓ2

n
, 

and

1 · 1 ÿ

1
nÿt

ÿ ÿ
⋯ 1 ÿ

(ℓÿs)ÿ1
nÿt

ÿ ÿ

1 ÿ

s
n

ÿ ÿ
· 1 ÿ

(s+1)
n

ÿ ÿ
⋯ 1 ÿ

(s+(ℓÿs)ÿ1)
n

ÿ ÿ

0

@

1

A g 1 · 1 ÿ

1

n ÿ t

ÿ ÿ
⋯ 1 ÿ

(ℓÿ s)ÿ 1

n ÿ t

ÿ ÿ

g eÿ
Pℓÿsÿ1

kÿ0
k=(nÿtÿk) g 1 ÿ 2

ℓ2

n ÿ t
: w 

We can now upper bound ABC as

ABC f τs(1 ÿ τ)ℓÿs 1 + 4

p
ooo
n

:
ÿ ÿ

1 + 2
s2

n

ÿ ÿ
1 + 2

ℓ2

n

 !

f τs(1 ÿ τ)ℓÿs 1 + 4

p
ooo
n

:
ÿ ÿ

1 + 2
(log n)2

p2n

 !2

(Using t f n ÿ

ooo
n

:
log n and s f ℓ f (log n)=p)

f τs(1 ÿ τ)ℓÿs 1 + 4

p
ooo
n

:
ÿ ÿ

1 + 6
(log n)2

p2n

 !
(Using (1 + x)2 f 1 + 3x if x * [0, 1])

f τs(1 ÿ τ)ℓÿs 1 + 10

p
ooo
n

:
ÿ ÿ

:

Recall that we are assuming p constant and n large; thus, the dominating term is 1=
ooo
n

:
. Similarly, we can lower bound ABC as

ABC g τs(1ÿ τ)ℓÿs 1ÿ
4

p
ooo
n

:
ÿ ÿ

1ÿ 2
s2

t

ÿ ÿ
1ÿ 2

ℓ2

nÿ t

 !

g τs(1ÿ τ)ℓÿs 1ÿ
4

p
ooo
n

:
ÿ ÿ

1ÿ 2
(log n)2

p2t

 !
1ÿ 2

(logn)2
p2(nÿ t)

 !

g τs(1ÿ τ)ℓÿs 1ÿ
4

p
ooo
n

:
ÿ ÿ

1ÿ 2
(log n)
p2

ooo
n

:
ÿ ÿ2

g τs(1ÿ τ)ℓÿs 1ÿ
10

p
ooo
n

:
ÿ ÿ

: w 

Proof of Lemma 2. We are going to show |γ7n ÿ γ7> | f O((log n)2=
ooo
n

:
). As we can only guarantee good approximation of the 

binomial terms in Proposition C.3 for ℓ f (log n)=p, we need to restrict our analysis to γ7n, q and γ7>, q for q ÿ (log n)=p. This is 
enough because these values are withing 1=n of γ7n and γ7>, respectively, due to Propositions C.1 and C.2 (see Remark C.1).

Before proceeding, we give two technical results that allow us to control an error for values of t not considered by Proposition 
C.3. The deduction is a routine calculation and it is skipped for brevity.

Claim C.4. For any x feasible for Constraints (C.1) and such that xt, s ÿ 0 for s>q, we have for k f q 

" P
oo
n

:
logn

tÿ1

Pt
sÿ1 xt, sP(Rt * [k] |rt ÿ s) f 10(log n)2=(p

ooo
n

:
).

" Pn
tÿnÿ

oo
n

:
logn

Pt
sÿ1 xt, sP(Rt * [k] |rt ÿ s) f 10(log n)2=(p

ooo
n

:
).
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Claim C.5. For any α�feasible for Constraints (C.3), we have for k f q 

"
R 1

1ÿ(log n)=
oo
n

:
Pk

sÿ1 α(τ, s)Pk
ℓÿs

ÿ
ℓÿ 1
sÿ 1

ÿ
τs(1ÿ τ)ℓÿsdτ f (logn)2=(p

ooo
n

:
).

"
R (logn)=

oo
n

:

0

Pk
sÿ1 α(τ, s)Pk

ℓÿs

ÿ
ℓÿ 1
sÿ 1

ÿ
τs(1ÿ τ)ℓÿsdτ f (logn)2=(p ooo

n
: ).

First, we show that γ7n, q g γ7> ÿ 40(logn)2=(p ooo
n

: ). Let (α,γ) be a feasible solution of the continuous LP (CLP)p. We construct a 
solution of the (LP)n, p, q as follows. Define

xt, s ÿ
tÿ (1ÿ p)

t

Z t=n

(tÿ1)=n

α(τ, s)dτ ∀t * [n], ∀s * [t], 

and γn, q ÿ minkfq
p

1ÿ(1ÿp)k

Pn
tÿ1

Pt
sÿ1 xt, sP(Rt * [k] |rt ÿ s). Let us show that (x,γn, q) is feasible for (LP)n, q—that is, it satisfies Con-

straints (C.1) and (C.2). First, for τ * [(tÿ 1)=n, t=n] we have

τα(τ, s) + p

Z τ

(tÿ1)=n

α(τ2, s)dτ2 f 1ÿ p

Z τ

0

X

σg1

α(τ2,σ) dτ2 + p

Z τ

(tÿ1)=n

α(τ2, s) dτ2

f 1ÿ p

Z (tÿ1)=n

0

X

σg1

α(τ2,σ)dτ2 f 1ÿ p
Xtÿ1

τ2ÿ1

Xτ2

σÿ1

xτ2 ,σ:

We now integrate in [(tÿ 1)=n, t=n] on both sides of the inequality. After integration, the RHS equals (1ÿ p
Pt
τÿ1

Pτ
σÿ1 xτ,σ)=n. 

On the LHS, we obtain,
Z t=n

(tÿ1)=n

ÿ
τα(τ, s) + p

Z τ

(tÿ1)=n

α(τ2, s)dτ2
ÿ

dτ

ÿ t

n

Z t=n

(tÿ1)=n

α(τ, s)dτÿ (1ÿ p)
Z t=n

(tÿ1)=n

t

n
ÿ τ

ÿ ÿ
α(τ, s)dτ

g (tÿ (1ÿ p))
n

Z t=n

(tÿ1)=n

α(τ, s)dτ (Using t=nÿ τ f 1=n)

ÿ t

n
xt, s:

Thus, Constraints (C.1) hold. By definition of γn, q, Constraints (C.2) also hold.
Now, note that for t g ooo

n
:

logn, we have

xt, s g 1ÿ
1ooo

n
:

log n

ÿ ÿZ t=n

(tÿ1)=n

α(τ, s)dτ:

Then,

γn, q ÿ min
kfq

p

1 ÿ (1 ÿ p)k

Xn

tÿ1

Xt

sÿ1

xt, s

Xk∧(nÿt+s)

ℓÿs

ÿ
ℓÿ 1

s ÿ 1

ÿÿ
n ÿ ℓ

t ÿ s

ÿ

ÿ
n

t

ÿ (Definition of P(Rt * [k] |rt ÿ s))

g min
kfq

p

1 ÿ (1 ÿ p)k

Xnÿ
oo
n

:
log n

tÿ
oo
n

:
log n

Xt

sÿ1

Z t=n

(tÿ1)=n

α(τ, s)dτ
Xk∧(nÿt+s)

ℓÿs

ÿ
ℓ ÿ 1

s ÿ 1

ÿÿ
n ÿ ℓ

t ÿ s

ÿ

ÿn

t

ÿ 1 ÿ

1ooo
n

:
log n

ÿ ÿ

g min
kfq

p

1 ÿ (1 ÿ p)k

Xnÿ
oo
n

:
log n

tÿ
oo
n

:
log n

Xk

sÿ1

Z t=n

(tÿ1)=n

α(τ, s)
Xk

ℓÿs

ℓ ÿ 1

s ÿ 1

ÿ ÿ
τs(1 ÿ τ)ℓÿs dτ 1 ÿ

20

p
ooo
n

:
ÿ ÿ

(Since n ÿ t + s g
ooo
n

:
log n g k and t f k and using Proposition C:3)

ÿ min
kfq

p

1 ÿ (1 ÿ p)k

Xnÿ
oo
n

:
log n

tÿ
oo
n

:
log n

Z t=n

(tÿ1)=n

Xk

ℓÿ1

Xℓ

sÿ1

α(τ, s) ℓ ÿ 1

s ÿ 1

ÿ ÿ
τs(1 ÿ τ)ℓÿs dτ 1 ÿ

20

p
ooo
n

:
ÿ ÿ

g min
kfq

p

1 ÿ (1 ÿ p)k

Z 1

0

Xk

ℓÿ1

Xℓ

sÿ1

α(τ, s) ℓ ÿ 1

s ÿ 1

ÿ ÿ
τs(1 ÿ τ)ℓÿs dτÿ 2

(log n)2

p
ooo
n

:
 !

1 ÿ

20

p
ooo
n

:
ÿ ÿ

(Claim C:5)

g γÿ 2
(log n)2

p
ooo
n

:
 !

1 ÿ

10

p
ooo
n

:
ÿ ÿ

g γÿ 20

p
ooo
n

: ÿ 2
log nooo

n
: :
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With this, we have proved that (x,γn, q) is a feasible solution of (LP)n, p, q with an objective value γn, q at least γÿ 20=p
ooo
n

:

ÿ2 logn=
ooo
n

:
. Hence, the optimal value of (LP)n, p, q, γ7n, q is at least γÿ 20=p

ooo
n

:
ÿ 2 log n=

ooo
n

:
. Given that (α,γ) is any feasible solu-

tion of (CLP)p, q, and γ7>, q g γ7>, we obtain γ7n, q g γ7> ÿ 40log(n)=(p
ooo
n

:
) for n large.

Now, we show that γ7>, q g γ7n, q ÿ 40(log n)2=(p
ooo
n

:
). Let (x,γn, q) be a solution of (LP)n, p, q. Let us construct a solution of (CLP)p, q. 

Note that we can assume xt, s ÿ 0 for s>q, as (LP)n, p, q does not improve its objective function by allocating any mass to these vari-
ables. Consider α�defined as follows: for τ * [0, 1], let

α(τ, s) ÿ nxt, s(1ÿ log(n)= ooo
n

: ) t ÿ +τn+ g ooo
n

:
, s f min{t, logn=p}

0 t ÿ +τn+ < ooo
n

:
or s >min{t, logn=p}:

(

Let γ>, q ÿ minkfq
p

1ÿ(1ÿp)k
R 1

0

P
sg1α(τ, s)Pk

ℓÿs

ÿ
ℓÿ 1
sÿ 1

ÿ
τs(1ÿ τ)ℓÿs dτ. We show first that (α,γ>, q) is feasible for (CLP)p, q, and for this, 

it is enough to show that α�holds Constraints (C.1). For τ < 1=
ooo
n

:
, we have α(τ, s) ÿ 0 for any s; thus, Constraint (C.3) is satisfied 

in this case. Let us verify that for τ g 1=
ooo
n

:
, the constraint also holds. Let t ÿ +τn+ and s g 1. Then,

τα(τ, s) + p

Z τ

0

X

σg1

α(τ2,σ)dτ2

f τα(τ, s) + p
Xtÿ1

t2ÿ1

Z t2
n

t2ÿ1
n

Xt2

sÿ1

α(τ2, s)dτ2 + p

Z τ

tÿ1
n

X
log n

p

σÿ1

α(τ2,σ) dτ2

f 1ÿ
lognooo

n
:

ÿ ÿ
txt, s + p

Xtÿ1

t2ÿ1

Xt2

sÿ1

xt2, s + p
log n

pt

 !

Since xt, s f
1

t
always

ÿ ÿ

f 1ÿ
lognooo

n
:

ÿ ÿ
1+ log n

t

ÿ ÿ

f 1ÿ
lognooo

n
:

ÿ ÿ
1+ log nooo

n
:

ÿ ÿ
: (t g

ooo
n

:
)

The last term is< 1. Thus, (α,γ>, q) is feasible for (CLP)p, q. Now,

γ>, q ÿ min
kfq

p

1ÿ (1ÿ p)k
Z 1

0

X

sg1

α(τ, s)
Xk

ℓÿs

ℓÿ 1

sÿ 1

 !

τs(1ÿ τ)ℓÿs dτ

g min
kfq

p

1ÿ (1ÿ p)k
Xnÿ
oo
n

:
logn

tÿ
oo
n

:
log n

Z t
n

tÿ1
n

X

sg1

α(τ, s)
Xk

ℓÿs

ℓÿ 1

sÿ 1

 !
τs(1ÿ τ)ℓÿs dτ

g min
kfq

p

1ÿ (1ÿ p)k
Xnÿ
oo
n

:
logn

tÿ
oo
n

:
log n

Z t
n

tÿ1
n

X

sg1

α(τ, s)
Xk

ℓÿs

ℓÿ 1

sÿ 1

ÿ ÿ
nÿ ℓ

tÿ s

ÿ ÿ

ÿ
n

t

ÿ dτ 1ÿ
10

p
ooo
n

:
ÿ ÿ

(Proposition C:3)

g min
kfq

p

1ÿ (1ÿ p)k
Xnÿ
oo
n

:
logn

tÿ
oo
n

:
log n

Xt

sÿ1

xt, s

Xk

ℓÿs

ℓÿ 1

sÿ 1

ÿ ÿ
nÿ ℓ

tÿ s

ÿ ÿ

ÿ
n

t

ÿ dτ 1ÿ
log nooo

n
:

ÿ ÿ
1ÿ

10

p
ooo
n

:
ÿ ÿ

g min
kfq

p

1ÿ (1ÿ p)k

Xn

tÿ1

Xt

sÿ1

xt, s

Xk

ℓÿs

ℓÿ 1

sÿ 1

ÿ ÿ
nÿ ℓ

tÿ s

ÿ ÿ

ÿ
n

t

ÿ dτÿ 20
(log n)2

p
ooo
n

:

0

BB@

1

CCA 1ÿ
lognooo

n
:

ÿ ÿ
1ÿ

10

p
ooo
n

:
ÿ ÿ

(Claim 4:5)

g γn, q ÿ 40
(log n)2

p
ooo
n

: :

With this, we have formed a feasible solution (α,γ>, q) of (CLP)p, q. Hence, γ7>, q g γn, q ÿ 40(log n)2=p
ooo
n

:
. Given that (x,γn, q) is any 

feasible solution of (LP)n, p, q, we can optimize over (x,γn, q) and obtain the inequality γ7>, q g γ7n, q ÿ 40(log n)2=(p ooo
n

: ).
Using Propositions C.1 and C.2, we can conclude that, for n large, γ7> ÿ 50(log n)2=(p

ooo
n

:
) f γ7n f γ7> + 50(logn)2=(p

ooo
n

:
), where 

the additional constant factors appear as a by-product of choosing q ÿ logn=p in both propositions. w

Appendix D. Missing Proofs from Section 6
The following result is the reduction from SP-UA to i.i.d. prophet inequality problem
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Lemma D.1. Then, there is an algorithm A2 for the i.i.d. prophet inequality problem that for any ε,δ > 0 satisfying

(1+ ε)p < 1, n g 2

pε2
log

2

δ

ÿ ÿ
, m ÿ +(1+ ε)pn+, 

ensures

E[Val(A2)] + δ g γ(1ÿ 4εÿ δ)E max
ifm

Xi

ÿ ÿ
, 

for any X1, : : : , Xm sequence of i.i.d. random variables with support in [0, 1], where Val(A2) is the profit obtained by A2 from the sequence of 
values X1, : : : , Xm in the prophet problem.

Proof. The input of the i.i.d. prophet inequality problem corresponds to a known distribution D with support in [0, 1]. The DM 
sequentially accesses at most m samples from D, and, upon observing one of these values, she has to decide irrevocably whether 
to take it and stop the process or continue. We are going to use A to design a strategy for the prophet problem. We assume that 
the samples from D are all distinct. Indeed, we can add some small Gaussian noise to the distribution and consider a continuous 
distribution D2 instead.

Note that A runs on an input of size n where a fraction p of the candidates accept an offer. We interpret pn j m as the set 
of samples for the prophet inequality problem, while the remaining (1ÿ p)n items are used as additional information for 
the algorithm. By concentration bounds, we are going to argue that we only need to run A in at most (1+ ε)pn positive 
samples.

Formally, we proceed as follows. Fix n and ε > 0 and consider the algorithm B that receives an online input of n numbers 
x1, : : : , xn. The algorithm flips n coins with probability of heads p and marks item i as available if the corresponding coins turn 
out heads. Algorithm B feeds algorithm A with the partial rankings given by the ordering given by x1, : : : , xn. If A selects a candi-
date, but the candidate is marked as unavailable, then B moves to the next item. If A selects a candidate i and it is marked as 
available, then the process ends with B collecting the value xi. Let us denote by Val(B, x1, : : : , xn) the value collected by B in the 
online input x1, : : : , xn. Then, we have the following claim.

Claim D.1. EX1 , : : : , Xn

S

[Val(B, X1, : : : , Xn)] g γEX1 , : : : , Xn

S 

[maxi*SXi], where S is the random set of items marked as available and X1, : : : , Xn 

are n i.i.d. random variables with common distribution D.

Proof. Fix x1, : : : , xn points in the support of D. Then, a simple application of Proposition 1 shows

ES,π[Val(B, xπ(1), : : : , xπ(n))]
ES[maxi*S xi]

g γ, 

Note that we need to feed B with all permutations of x1, : : : , xn in order to obtain the guarantee of A. From here, we obtain 
ES,π[Val(B, xπ(1), : : : , xπ(n))] g γES[maxi*Sxi] and the conclusion follows by taking expectation in X1 ÿ x1, : : : , Xn ÿ xn. w

For ease of notation, we will refer by Val(·) to Val(·, X1, : : : , Xn). We modify slightly B. Consider B2 that runs normally B if 
|S | f (1+ ε)pn or simply return 0 value if |S | > (1+ ε)pn. Then, we have

Claim D.2. Let ε,δ > 0. For n g 2 log(2=δ)=(pε2), we have EX1 , : : : , Xn

S

[maxi*SXi] g (1ÿ δ)E[maxif(1ÿε)pnXi] and E[Val(B2)] + δ g
E[Val(B)].

Proof. Using standard Chernoff concentration bounds (see, for instance, Boucheron et al. [11]), we get PS( | |S | ÿ pn | g εpn) f
2eÿpnε2=2 ÿ δ: Hence, for n g 2 log(2=δ)=(pε2), we can guarantee that

E X1 , : : : , Xn
S

max
i*S

Xi

ÿ ÿ
g (1ÿ δ)E max

if(1ÿε)pn
Xi

ÿ ÿ
:

For the second part we have E[Val(B)] f δ+E[Val(B) | |S | f (1+ ε)pn] ÿ δ+E[Val(B2)]. w

Claim D.3. For any ε > 0, we have E[maxif(1ÿε)pnXi] g (1ÿ ε)2E[maxif(1+ε)pnXi].

Proof. Given that P(maxifkXi f x) ÿ P(X1 f x)k, then we have

E[maxif(1ÿε)pnXi]
E[maxif(1+ε)pnXi]

ÿ
R>

0 (1ÿP(X1 f x)pn(1ÿε))dx
R>

0 (1ÿP(X1 f x)pn(1+ε))dx
g infxg0

1ÿP(X1 f x)pn(1ÿε)

1ÿP(X1 f x)pn(1+ε) g inf
v*[0,1)

f (v), 

where f (v) ÿ (1ÿ v1ÿε)=(1ÿ v1+ε). Now, the conclusion follows by using the fact that the function f is nonincreasing and that 
infv*[0, 1)f (v) ÿ limv³1 f (v) ÿ (1ÿ ε)=(1+ ε) g (1ÿ ε)2. w
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Putting together these two claims, we obtain an algorithm that checks at most (1+ ε)pn items and guarantees

γ(1ÿ ε)2(1ÿ δ)E max
if(1+ε)pn

Xi

ÿ ÿ
f E[Val(B2)] + δ:

Now, fix ε > 0 small enough such that (1+ ε)p < 1. We know that the set {+(1+ ε)pn+}ng1 contains all nonnegative integers. Thus, 
for n g 2 log(2=δ)=(pε2) algorithm B2 in an input of length m ÿ +(1+ ε)pn+ guarantees

γ(1ÿ ε)2(1ÿ δ)E max
ifm

Xi

ÿ ÿ
f E[Val(B2)] + δ, 

for any distribution D with support in [0, 1]. This finishes the proof. w

The next result uses notation from the work by Hill and Kertz. For the details we refer the reader to the work, Hill and Kertz 
[43]. The result states that there is a hard instance for the i.i.d. prophet inequality problem where E[maxifmXi] is away from 0 by 
a quantity at least 1=m3. The importance of this reformulation of the result by Hill and Kertz is that eÿΘ(n)=E[maxifmXi] ³ 0, 
which is what we needed to show that γ f 1=β. Recall that β j 1:341 is the unique solution of the integral equation 

R 1
0 (y(1ÿ

logy) + βÿ 1)ÿ1dy ÿ 1 (Kertz [48]).

Proposition D.1 (Reformulation of by Hill and Kertz [43, Proposition 4.4]). Let am be the sequence constructed by Hill and Kertz— 
that is, such that am ³ β, and for any sequence of i.i.d. random variables X1, : : : , Xm with support in [0, 1] we have

E max
ifm

Xi

ÿ ÿ
f amsup{E[Xt] : t * Tm}, 

where Tm is the set of stopping rules for X1, : : : , Xm. Then, for m large enough, there is a sequence of i.i.d. random variables X̂1, : : : , X̂m with 
support in [0, 1] such that 

" E[maxifmX̂i] g 1=m3, and
" E[maxifmX̂i] g (am ÿ 1=m3)sup{E[X̂t] : t * Tm}.

Proof. In Hill and Kertz [43, proposition 4.4], it is shown that that for any ε2 sufficiently small, there is a random variable X̂ with 

p̂0 ÿ P(X̂ ÿ 0), p̂j ÿ P(X̂ ÿ Vj(X̂)) for j ÿ 0, : : : , mÿ 2, P(X̂ ÿ Vmÿ1(X̂)) ÿ p̂mÿ1 ÿ ε
2 and P(X̂ ÿ 1) ÿ ε2 such that E[maxifmX̂i] g

(am ÿ ε2)sup{E[X̂t] : t * T̂m}, where X̂1, : : : , X̂m are m independent copies of X̂. Here, Vj(X̂) ÿ E[X̂ ∧ E[Vjÿ1(X̂)]] corresponds to 
the optimal value computed via dynamic programming, and one can show that sup{E[X̂t] : t * T̂m} ÿ Vm(X̂) (see Hill and Kertz 
[43, lemma 2.1]). We only need to show that we can choose ε2 ÿ 1=m3. The probabilities p̂0, : : : , p̂mÿ1 are computed as follows: Let 
ŝ j ÿ (ηj, m(αm))1=m for j ÿ 1, : : : , nÿ 2, where αm * (0, 1) is the (unique) solution of ηmÿ1, m(αm) ÿ 1, then p̂0 ÿ ŝ0, p̂j ÿ ŝj ÿ ŝjÿ1 for j ÿ
1, : : : , nÿ 2 and p̂nÿ1 ÿ 1ÿ ŝnÿ2. One can show that ŝmÿ2 ÿ (1ÿ 1=m)1=(mÿ1)(1ÿαm=m)1=(mÿ1) and αm hold 1=(3e) f αm f 1=(eÿ 1)
(see Hill and Kertz [43, proposition 3.6]). For m large, we have

eÿ1=(mÿ1) f ŝmÿ2 f eÿ1=(3em2), 

then p̂mÿ1 ÿ 1ÿ ŝmÿ2 g 1ÿ eÿ1=(mÿ1) g 1=m2 for m large. Thus, we can set ε2 ÿ 1=m3 and p̂mÿ1 ÿ ε
2
> 0, and the rest of the proof fol-

lows. Furthermore, E[maxifmXi] g ε2 · 1 g 1=m3. w

Appendix E. Missing Proofs from Section 7

Proof of Lemma 3. For p g p7 and ℓ ÿ 0, 1, : : : , 4, we calculate tight lower bounds for the expression in the left-hand side of the 
inequality in the claim, and we show that these lower bounds are at least 1, with the lower bound attaining equality with 1 for 
ℓ ÿ 1, 2. For ℓ g 5, we can generalize the previous bounds and show a universal lower bound of at least 1. 

" For ℓ ÿ 0, we have

Z 1

p1=(1ÿp)

1

tp
dt ÿ 1

1ÿ p
(1ÿ p) ÿ 1 ÿ (1ÿ p)0:

" For ℓ ÿ 1, we have

Z 1

p1=(1ÿp)

(1ÿ t)
tp

dt ÿ 1ÿ

Z 1

p1=(1ÿp)
t1ÿp dt ÿ 1ÿ

1

2ÿ p
(1ÿ p(2ÿp)=(1ÿp)):

The last value is at least 1ÿ p if and only if (iff) p(2ÿ p) g 1ÿ p(2ÿp)=(1ÿp) iff p(2ÿp)=(1ÿp) g (1ÿ p)2. The last inequality holds iff 
p g p7 j 0:594134, where p7 is computed numerically by solving (1ÿ p)2 ÿ p(2ÿp)=(1ÿp).
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" For ℓ ÿ 2, we use the approximation p1=(1ÿp) f (1+ p)=(2e) that follows from the concavity of the function p1=(1ÿp) and the 
first-order approximation of the function at pÿ1. With this, we can lower bound the integral
Z 1

p1=(1ÿp)

(1ÿ t)2
tp

dt g
Z 1

(1+p)=(2e)

(1ÿ t)2
tp

dt

ÿ
Z 1ÿ(1+p)=(2e)

0

u2(1ÿ u)ÿp du (change of variable u ÿ 1ÿ t)

g
Z 1ÿ(1+p)=(2e)

0

u2 1+ pu+ p(p+ 1)u2

2

ÿ ÿ
du

Using the series (1ÿ u)ÿp ÿ
X

kg0

ÿp

k

 !

(ÿu)k

 !

ÿ 1

3
1ÿ

1+ p

2e

ÿ ÿ3

+ p

4
1ÿ

1+ p

2e

ÿ ÿ4

+ p(p+ 1)
10

1ÿ
1+ p

2e

ÿ ÿ5

:

By solving the polynomial, we see that the last expression is g (1ÿ p)2 if and only if p g 0:585395; thus, the inequality holds for 
p g p7.

" For ℓ ÿ 3, 4, we can use a similar approach to get

Z 1

p1=(1ÿp)

(1ÿ t)ℓ
tp

dt g 1

ℓ+ 1
1ÿ

1+ p

2e

ÿ ÿℓ+1

+ p

ℓ+ 2
1ÿ

1+ p

2e

ÿ ÿℓ+2

:

The last expression is g (1ÿ p)ℓ�for ℓ ÿ 3, 4 if and only if p g 0:559826.
" For ℓ g 5, we have

Z 1

p1=(1ÿp)

(1ÿ t)ℓ
tp

dt g (1ÿ (1+ p)=(2e))ℓ+1

ℓ+ 1
:

We show that (1ÿ (1+ p)=(2e))ℓ+1=(ℓ+ 1) g (1ÿ p)ℓ. This is equivalent to

1ÿ (1+ p)=(2e)
1ÿ p

ÿ ÿℓ
1ÿ

1+ p

2e

ÿ ÿ
g ℓ+ 1:

Note that the function f (p) ÿ (1ÿ (1+ p)=(2e))=(1ÿ p) is increasing because f 2(p) ÿ (1ÿ 1=e)=(1ÿ p)2 > 0. For p ÿ (2eÿ 1)=(4eÿ 3)
j 0:56351, we have f (p) ÿ 2ÿ 1=e. Thus, for p g p7

> p and ℓ ÿ 5 we have f (p)5(1ÿ (1+ p)=(2e)) g (2ÿ 1=e)5(1ÿ 1=e) g 7:32 g 6. 

By an inductive argument, we can show that f (p)ℓ(1ÿ (1+ p)=(2e)) g ℓ+ 1 for any ℓ g 5, and this finishes the proof. w

Proof of Lemma 7. During the proof, we assume that 1=p ∉N. This is an assumption that is easy to remove with a density 
argument. We divide the proof into a series of propositions and lemmas.

Taking logarithm on both sides of Identity (13), we obtain

log tk+1 ÿ log tk ÿ
1

1 ÿ kp
log

Ak(1 ÿ p)
Akÿ1

ÿ ÿ
:

From here, we obtain

log t+1=p++1 ÿ log t2 ÿ
X+1=p+

jÿ2

1

1 ÿ jp
log

Aj(1 ÿ p)
Ajÿ1

ÿ ÿ

ÿ
X+1=p+

jÿ2

1

1 ÿ jp

Z (1ÿp)Aj

Ajÿ1

1

x
dx:, 

and also

log tk+1 ÿ log t+1=p++1 ÿ
Xk

jÿ+1=p+

1

jp ÿ 1
log

Ajÿ1

Aj(1 ÿ p)

ÿ ÿ

ÿ
Xk

jÿ+1=p+

1

jp ÿ 1

Z Aj

Aj(1ÿp)

1

x
dx:
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Proposition E.1. We have 
1. For k < 1=p,

γp(1ÿ kp)
Ak(1ÿ p) f

Z Ak(1ÿp)

Akÿ1

1

x
dx f γp(1ÿ kp)

Akÿ1 

2. For k > 1=p,

γp(kpÿ 1)
Akÿ1

f
Z Akÿ1

Ak(1ÿp)

1

x
dx f γp(kpÿ 1)

Ak(1ÿ p) :

Proof. Both results follow by using the monotonicity of 1=x and that

Ak(1ÿ p)ÿAkÿ1 ÿ t1(1ÿ p)ÿk+1 + γpk(1ÿ p)ÿ t1(1ÿ p)ÿk+1
ÿ γp(kÿ 1) ÿ γp(1ÿ kp): w 

The next result shows bound over log tk+1. We use this result to interpret the bounds as Riemann sums.

Proposition E.2 (Bounds on log tk+1). For k g 1=p, we have

Xkÿ1

jÿ2

γp

Aj
f log tk+1 ÿ log t2 f

Xk

jÿ1

γp

Aj
+ p

1ÿ p

Xk

jÿ+1=p++1

γp

Aj
:

Proof. For the upper bound, we have

log tk+1 f log t2 +
X+1=p+

jÿ2

γp

Ajÿ1
+ 1

1 ÿ p

Xk

jÿ+1=p++1

γp

Aj

f log t2 +
Xk

jÿ1

γp

Aj
+ p

1 ÿ p

Xk

jÿ+1=p++1

γp

Aj
:

For the lower bound, we have

log tk+1 g log t2 +
1

1 ÿ p

X+1=p+

jÿ2

γp

Aj
+

Xk

jÿ+1=p++1

γp

Ajÿ1
g log t2 +

Xkÿ1

jÿ2

γp

Aj
: w 

For p> 0 but small enough, t1ejp + γpj f Aj f t1ejp=(1ÿp) + γpj. Using this in the bounds of the previous proposition, we obtain
Z >

2

γp

t1exp=(1ÿp) + γxp
dx f lim

k³>
log tk+1 ÿ log t2

f γp

A1
+
Z >

1

γp

t1exp + γxp
dx+ p

1ÿ p

Z >

+1=p+

γp

t1epx + γpx
dx:

Note that

p

1 ÿ p

Z k

+1=p+

γp

t1epx + γpx
dx f p

1 ÿ p

Z >

1

γ

t1
eÿx dx ÿ p

1 ÿ p

γ

t1
eÿ1:

Then, taking p ³ 0, we obtain

Z >

0

γ

t1ex + γx
dx ÿ lim

k³>
log tk ÿ log t1, 

where we used that t2 ÿ t1(1+ γp(1ÿ p)=t1)1=(1ÿp) ³ t1 when p ³ 0. This concludes the proof of Lemma 7. w

References
0[1] Adelman D (2007) Dynamic bid prices in revenue management. Oper. Res. 55(4):647–661.
0[2] Agrawal S, Wang Z, Ye Y (2014) A dynamic near-optimal algorithm for online linear programming. Oper. Res. 62(4):876–890.
0[3] Alaei S, Hajiaghayi M, Liaghat V (2012) Online prophet-inequality matching with applications to ad allocation. Proc. 13th ACM Conf. Elec-

tronic Commerce (Association for Computing Machinery, New York), 18–35.
0[4] Altman E (1999) Constrained Markov Decision Processes, vol. 7 (CRC Press, Boca Raton, FL).
0[5] Babaioff M, Hartline J, Kleinberg R (2008) Selling banner ads: Online algorithms with buyback. Fourth Workshop Ad Auctions (Chicago, IL).
0[6] Babaioff M, Immorlica N, Kempe D, Kleinberg R (2007) A knapsack secretary problem with applications. Charikar M, Jansen K, Reingold 

O, Rolim JDP, eds. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Springer, Berlin), 16–28.

Perez-Salazar, Singh, and Toriello: Robust Online Selection 

Mathematics of Operations Research, Articles in Advance, pp. 1–35, © 2024 INFORMS 33 



0[7] Babaioff M, Immorlica N, Kempe D, Kleinberg R (2008) Online auctions and generalized secretary problems. ACM SIGecom Exchanges 
7(2):1–11.

0[8] Bateni M, Hajiaghayi M, Zadimoghaddam M (2013) Submodular secretary problem and extensions. ACM Trans. Algorithms 9(4):1–23.
0[9] Beyhaghi H, Golrezaei N, Leme RP, Pál M, Sivan B (2021) Improved revenue bounds for posted-price and second-price mechanisms. 

Oper. Res. 69(6):1805–1822.
[10] Borodin A, El-Yaniv R (2005) Online Computation and Competitive Analysis (Cambridge University Press, Cambridge, UK).
[11] Boucheron S, Lugosi G, Massart P (2013) Concentration Inequalities: A Nonasymptotic Theory of Independence (Oxford University Press, 

Oxford, UK).
[12] Bruss FT (1987) On an optimal selection problem of Cowan and Zabczyk. J. Appl. Probab. 24(4):918–928.
[13] Buchbinder N, Jain K, Singh M (2014) Secretary problems via linear programming. Math. Oper. Res. 39(1):190–206.
[14] Campbell G, Samuels SM (1981) Choosing the best of the current crop. Adv. Appl. Probab. 13(3):510–532.
[15] Cesa-Bianchi N, Lugosi G (2006) Prediction, Learning, and Games (Cambridge University Press, Cambridge, UK).
[16] Chan T-HH, Chen F, Jiang SH-C (2014) Revealing optimal thresholds for generalized secretary problem via continuous LP: Impacts on 

online K-item auction and bipartite K-matching with random arrival order. Proc. Twenty-Sixth Annu. ACM-SIAM Sympos. Discrete Algo-
rithms (Society for Industrial and Applied Mathematics, Philadelphia), 1169–1188.
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