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1. Introduction

The growth of online platforms has spurred renewed interest in online selection problems, auctions, and stopping
problems (Alaei et al. [3], Devanur and Hayes [24], Edelman et al. [29], Lucier [55], Mehta et al. [58]). Online adver-
tising has particularly benefited from developments in these areas. As an example, in 2005, Google reported about
$6 billion in revenue from advertising, roughly 98% of the company’s total revenue at that time; in 2020, Google’s
revenue from advertising grew to almost $147 billion. Targeting users is crucial for the success of online advertis-
ing. Studies suggest that targeted campaigns can double click-through rates in ads (Farahat and Bailey [31]), despite
the fact that internet users have acquired skills to navigate the web while ignoring ads (Cho and Cheon [18], Dreze
and Hussherr [26]). Therefore, it is natural to expect that not every displayed ad will be clicked on by a user, even if
the user likes the product on the ad, whereas the platform and advertiser’s revenue depend on this event (Pujol
et al. [61]). An ignored ad misses the opportunity of being displayed to another user willing to click on it and
decreases the return on investment for the advertiser, especially in cases where the platform uses methods like
pay-for-impression to charge the advertisers. At the same time, the ignored ad uses the space of another, possibly
more suitable ad for that user. In this work, we take the perspective of a single ad, and we aim to understand the
right time to begin displaying the ad to users as a function of the ad’s probability of being clicked.

We model the interaction between the platform and the users using a general online selection problem. We refer
to it as the secretary problem with uncertain acceptance (SP-UA for short). Using the terminology of candidate and deci-
sion maker, the general interaction is as follows:

1. Similar to other secretary problems, a finite sequence of candidates of known length arrives online, in a ran-
dom order. In our motivating application, candidates represent platform users.

2. Upon an arrival, the decision maker (DM) is able to assess the quality of a candidate compared with previ-
ously observed candidates and has to irrevocably decide whether to extend an offer to the candidate or move on to
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the next candidate. This captures the online dilemma the platform faces: the decision of displaying an ad to a user
is based solely on information obtained up to this point.

3. When the DM extends an offer, the candidate accepts with a known probability p € (0,1], in which case the
process ends, or turns down the offer, in which case the DM moves on to the next candidate. This models the users,
who can click on the ad or ignore it.

4. The process continues until either a candidate accepts an offer or the DM has no more candidates to assess.

A DM that knows in advance that at least one of the top k candidates is willing to accept the offer would like to
maximize the probability of making an offer to one of these candidates. In reality, the DM does not know k; hence,
the best she can do is maximize the minimum of all these scenario-based probabilities. We call the minimum of
these scenario-based probabilities the robust ratio and our max-min objective the optimal robust ratio (see Subsection
1.2 for a formal description). Suppose that the DM implements a policy that guarantees a robust ratio y € (0,1].
This implies the DM will succeed with probability at least y in obtaining a top k candidate, in any scenario where a
top k candidate is willing to accept the DM’s offer. This is an ex ante guarantee when the DM knows the odds for
each possible scenario, but the policy is independent of k and offers the same guarantee for any of these scenarios.
Moreover, if the DM can assign a numerical valuation to the candidates, a policy with robust ratio y can guarantee
a factor at least y of the optimal offline value. Tamaki [68] also studies the SP-UA and considers the objective of
maximizing the probability of selecting the best candidate willing to accept the offer. Applying Tamaki’s policy to
value settings can also guarantee an approximation factor of the optimal offline cost; however, the policy with the
optimal robust ratio attains the largest approximation factor of the optimal offline value among rank-based policies
(see Proposition 1).

SP-UA captures the inherent unpredictability in online selection, as other secretary problems do, but also the
uncertainty introduced by the possibility of candidates turning down offers. SP-UA is broadly applicable; the fol-
lowing are additional concrete examples.

1.1. Data-Driven Selection Problems

When selling an item in an auction, buyers’ valuations are typically unknown beforehand. Assuming valuations
follow a common distribution, the aim is to sell the item at the highest price possible; learning information about
the distribution is crucial for this purpose. In particular auction settings, the auctioneer may be able to sequentially
observe the valuations of potential buyers and can decide in an online manner whether to sell the item or continue
observing valuations. Specifically, the auctioneer decides to consider the valuation of a customer with probability
p, and, otherwise, the auctioneer moves on to see the next buyer’s valuation. The auctioneer’s actions can be inter-
preted as an exploration-exploitation process, which is often found in bandit problems and online learning (Cesa-
Bianchi and Lugosi [15], Freund and Schapire [35], Hazan [42]). This setting is also closely related to data-driven
online selection and the prophet inequality problem (Campbell and Samuels [14], Kaplan et al. [47], Kertz [48]);
some of our results also apply in these models (see Section 6).

1.2. Human Resource Management

As its name suggests, the original motivation for the secretary problem is in hiring for a job vacancy. Screening
resumes can be a time-consuming task that shifts resources away from the day-to-day job in Human Resources.
Since the advent of the internet, several elements of the hiring process can be partially or completely automated;
for example, multiple vendors offer automated resume screening (Salem and Gupta [64]), and machine learning
algorithms can score and rank job applicants according to different criteria. Of course, a highly ranked applicant
may nevertheless turn down a job offer. Although we consider the rank of a candidate as an absolute metric of their
capacities, in reality, resume screening may suffer from different sources of bias (Salem and Gupta [63]), but
addressing this goes beyond our scope. See also Smith [66], Tamaki [68], and Vanderbei [72] for classical treat-
ments. Similar applications include apartment hunting (Bruss [12], Cowan and Zabczyk [23], Presman and Sonin
[60]), among others.

1.3. Our Contributions

(1) We propose a framework and a robust metric to understand the interaction between a DM and competing can-
didates, when candidates can reject the DM’s offer. (2) We state a linear program (LP) that computes the optimal
robust ratio and the best strategy. We provide a general methodology to derive our LP, and this technique is gener-
alizable to other online selection problems. (3) We provide bounds for the optimal robust ratio as a function of the
probability of acceptance p € (0, 1]. (4) We present a family of policies based on simple threshold rules; in particular,
for p > p* ~ 0.594, the optimal strategy is a simple threshold rule that skips the first p'/1=7) fraction of candidates
and then makes offers to the best candidate observed so far. We remark that as p — 1, we recover the guarantees of



Perez-Salazar, Singh, and Toriello: Robust Online Selection
Mathematics of Operations Research, Articles in Advance, pp. 1-35, © 2024 INFORMS 3

the standard secretary problem and its optimal threshold strategy. (5) Finally, for the setting where candidates also
have nonnegative numerical values, we show that our solution is the optimal approximation among rank-based
algorithms of the optimal offline value, where the benchmark knows the top candidate willing to accept the offer.
The optimal approximation factor equals the optimal robust ratio.

1.4. Problem Formulation

A problem instance is given by a fixed probability p € (0, 1] and the number of candidates 1. These are ranked by a
total order, 1 < 2 < --- < n, with 1 being the best or highest-ranked candidate. The candidate sequence is given by a
random permutation 7 = (Ry,...,R,) of [n]={1,2,...,n}, where any permutation is equally likely. At time ¢, the
DM observes the partial rank r; € [f] of the t-th candidate in the sequence compared with the previous t — 1 candi-
dates. The DM either makes an offer to the t-th candidate or moves on to the next candidate, without being able to
make an offer to the ¢-th candidate ever again. If the ¢-th candidate receives an offer from the DM, she accepts the
offer with probability p, in which case the process ends. Otherwise, if the candidate refuses the offer (with probabil-
ity 1 — p), the DM moves on to the next candidate and repeats the process until she has exhausted the sequence. A
candidate with rank in [k] is said to be a top k candidate. The goal is a policy that maximizes the probability of
extending an offer to a highly ranked candidate that will accept the offer. However, because the DM does not know
which candidate will accept the offer, the DM would like to be robust against any possible scenario. To measure
the quality of a policy P, we use the robust ratio

P(P selects a top k candidate, candidate accepts offer)

yp=7p(p)= min )

k=1,...,n P(At least one of the top k candidates accepts offer)
The k-th term in the minimization operator, y;, ,(p), is the probability that policy P successfully selects a top k can-
didate, given that some top k candidate will accept the offer. Then, the robust ratio y, = mini-y, .., nVp, «(p) captures
the situation where policy P has the worst possible performance over all such scenarios. When every candidate
accepts an offer with certainty, p =1, the robust ratio y,, equals the probability of selecting the highest-ranked can-
didate, thus, we recover the standard secretary problem and y,(1) = 1/e for the optimal policy P. The goal is to
find a policy that maximizes this robust ratio, y;, =sup,) . We say the policy P is y-robust if y < y .

1.4.1. The Robust Ratio and Related Objectives. The SP-UA has been studied before under different objectives.
Smith [66] studied the SP-UA with the objective of maximizing the probability of selecting the top candidate and
having that candidate accept the offer. This is the unconditional version of Vpk for k=1; however, the top candidate
may not accept the offer, and the objective does not plan for this contingency. This is particularly inadequate when
p is small, as in many of our motivating applications.

Tamaki [68] instead studied the SP-UA with the objective of maximizing the probability of choosing the top can-
didate willing to accept the offer. Despite being more realistic than Smith [66], this objective is often overly selective
and may not make an offer, hoping to encounter a better candidate in the future. Our objective overcomes this
selectiveness and makes an offer to a candidate as long as their rank is high compared with other candidates will-
ing to accept the offer. A further distinction between Tamaki’s objective and the robust ratio emerges when values
are assigned to the candidates. In this case, a value-driven DM would like to maximize the value obtained from a
candidate that accepts the offer. The robust ratio turns out to be the optimal approximation ratio of any rank-based
algorithm in this setting (see Proposition 1). In Section 8, we provide extensive numerical experiments for the value
version of the problem. Our policy consistently yields better results for small acceptance probabilities, p < 0.2,
demonstrating its effectiveness compared with Tamaki [68].

1.5. Our Technical Contributions

Recent works have studied secretary models using linear programming methods (Buchbinder et al. [13], Chan et al.
[16], Correa et al. [21], Diitting et al. [27]). We also give an LP formulation that computes the best robust ratio and
the optimal policy for our model. Whereas these recent approaches derive an LP formulation using ad hoc argu-
ments, our first contribution is to provide a general framework to obtain LP formulations that give optimal bounds
and policies for different variants of the secretary problem. The framework is based on Markov decision process
(MDP) theory (Altman [4], Puterman [62]). This is surprising because early literature on secretary problem used
MDP techniques—for example, Dynkin [28] and Lindley [54]—though typically not LP formulations. In that sense,
our results connect the early algorithms based on MDP methods with the recent literature based on LP methods.
Specifically, we provide a mechanical way to obtain an LP using a simple MDP formulation (Section 4). Using this
framework, we present a structural result that completely characterizes the space of policies for the SP-UA:
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Theorem 1. Any policy P for the SP-UA can be represented as a vector in the set
=
Por = {(x,y) >0 X5+ Yt,s = ;Z(yH,a +(1—p)xi-1,0), VE>1s€[t]x1,1+y1,1 =1 }
o=1

Conversely, any vector (x,y) € PoL represents a policy 73 The policy P makes an offer to the first candidate with probabzlzty
x1,1 and to the t-th candidate with probability tx; s/ (Z(7 1YVi—1,0 + (1L —p)xi_1,¢) if the t-th candidate has partial rank ry=

The variables x; ; represent the probability of reaching candidate f and making an offer to that candidate when
that candidate has partial rank s € [t]. Likewise, variables y; ; represent the probability of reaching candidate t and
not making an offer when this candidate’s partial rank is s € [t]. We note that although the use of LP formulations
in MDP is a somewhat standard technique—see, for example, Puterman [62]—the recent literature in secretary pro-
blems and related online selection models does not appear to make an explicit connection between LPs used in
analysis and the underlying MDP formulation.

Problems solved via MDP can typically be formulated as reward models, where each action taken by the DM
generates some immediate reward. Objectives in classical secretary problems fit in this framework, as the reward
(e.g., the probability of selecting the top candidate) depends only on the current state (the number t of observed
candidates so far and the current candidate’s partial rank 7, =s), and on the DM’s action (make an offer or not); see
Section 4.1 for an example. Our robust objective, however, cannot be easily written as a reward depending only on
1 =s. Thus, we split the analysis into two stages. In the first stage, we deal with the space of policies and formulate
an MDP for our model with a generic utility function. The feasible region of this MDP’s LP formulation corre-
sponds to PoL and is independent of the utility function chosen; therefore, it characterizes all possible policies for
the SP-UA. In the second stage, we use the structural result in Theorem 1 to obtain a linear program that finds the
largest robust ratio.

Theorem 2. The best robust ratio 'y, for the SP-UA equals the optimal value of the linear program

E
S.t.
(LP)n,p Xt,s <- (1 pzzx’[ (7) Vte [Tl],S S [t]
=1 0=1
Yy = (1 )k szt sP(Ry < k|1 =35) Vk € [n],
- t=1 s=1

where P(Ry < k|ry=s) = ZM(" #+s) ( -1 ) (n B Z) / (n> is the probability the t-th candidate is ranked in the top k given
s—1/\t—s t
that her partial rank is s.
Moreover, given an optzmal solutzon (x, ;) of (LP),, ,, the (randomized) policy P" that at state (t, s) makes an offer with

probability tx; /(1 — p> s, Xy ;) is y;-robust.

We show that y,, can be written as the minimum of # linear functions on the x variables in Por, where these vari-
ables correspond to a policy’s probability of making an offer in a given state. Thus, our problem can be written as
the maximum of a concave piecewise linear function over PoL, which we linearize with the variable y. By projecting
the feasible region onto the (x, y) variables, we obtain (LP),, ,.

As a by-product of our analysis via MDP, we show that ), is nonincreasing in n for fixed p € (0,1] (Lemma 1),
and, thus, lim, )}, = )%, exists. We show that this limit corresponds to the optimal value of an infinite version of
(LP),,, from Theorem 2, where 1 tends to infinity and we replace sums at time ¢ with integrals (see Section 5). This
allows us to show upper and lower bounds for )}, by analyzing y;_. Our first result in this vein gives upper bounds

ony:.
Theorem 3. For any p € (0,1], v, (p) < min{p?/'=7),1/B}, where 1/ ~ 0.745 and B is the (unique) solution of the equa-
tion [;(y(1—logy)+p—1)""dy=1.

To show y*, < pP/17P), we relax all constraints in the robust ratio except k=1. This becomes the problem

of maximizing the probability of hiring the top candidate, which has a known asymptotic solution of p'/(1=*)
(Smith [66]). For y% (p) < 1/B, we show that any y-robust ordinal algorithm can be used to construct an algorithm
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Figure 1. (Color online) Bounds for )%, as a function of p. The solid line represents the theoretical upper bound given in Theo-
rem 3. The dashed-dotted line corresponds to the theoretical lower bound given in Theorem 4; for p close to 0, the guarantee rises
to 0.51. In dashed line we present numerical results by solving (LP),, , for n = 200 candidates.

Robust ratio bounds
0.8 1

=== (LP)y,) for n =200
074 S —— Upper bound

~ —-= Lower bound

0.0 0.2 0.4 0.6 0.8 1.0

for independent and identically distributed (i.i.d.) prophet inequality problems with a multiplicative loss of (1 +
0(1))y and an additional o(1) additive error. Using a slight modification of the impossibility result by Hill and
Kertz [43] for the i.i.d. prophet inequality, we conclude that y., cannot be larger than 1/p.

By constructing solutions of the infinite LP, we can provide lower bounds for y;. For 1/k >p >1/(k+1) with
integer k, the policy that skips the first 1/e fraction of candidates and then makes an offer to any top k candidate
afterward obtains a robust ratio of at least 1/e. The following result gives improved bounds for y_(p).

Theorem 4. Let p* ~0.594 be the solution of p~P/\=P) = (1 — p)*. There is a solution of the infinite LP for p > p* that
guarantees y*, >y (p) = p”/\P). For p < p*, we have y*,(p) > (p")’ /" 7 ~ 0.466. Moreover, for p — 0, we obtain y(p)
>0.51.

To prove this result, we use the following general procedure to construct feasible solutions for the infinite LP.
For any numbers 0 < t; < f, <. <t <. < 1, there is a policy that makes offers to any candidate with partial
rank 7 € [k] when a fraction f; of the total number of candidates has been observed (Proposition 2). For p > p*, the
policy corresponding to t; = p'/1=") and t, = t; =---=1 has a robust ratio of at least p”/1="). For p < p*, we show
how to transform the solution for p* into a solution for p with an objective value at least as good as the value
v () = @Y /07 For values of p close to 0, we construct a feasible solution of the infinite LP that guarantees
Veo(p) 2 0.51.

Figure 1 depicts the various theoretical bounds we obtain. For reference, we also include numerical results for y;,
computed by solving (LP), , in Theorem 2 for n =200 and with p ranging from p = 1072 to p=1, with increments of
1073, Given that ), is nonincreasing in 1, the numerical values obtained by solving (LP),,, also provide an upper
bound over y:..

We follow this introduction with a brief literature review. In Section 3, we present preliminaries, including MDP
notation and an alternative characterization of the robust ratio in terms of utility functions. In Section 4, we present
the MDP framework and use it to prove Theorems 1 and 2. In Section 5, we introduce the infinite relaxation of (LP),
then prove Theorem 3 in Section 6. In Section 7, we prove Theorem 4. In Section 8, we present a numerical compari-
son between the policies obtained by solving (LP),, , and other benchmarks policies. We conclude in Section 9, and
Appendices A-E include proofs and analysis omitted from the main article.

2. Related Work

2.1. Online Advertising and Online Selection

Online advertising has been extensively studied from the viewpoint of two-sided markets: advertisers and plat-
form. There is extensive work in auction mechanisms to select ads (e.g. second-price auctions, the VCG mechanism,
etc.), and the payment systems between platforms and advertisers (pay-per-click, pay-for-impression, etc.) (Deva-
nur and Kakade [25], Edelman et al. [29], Fridgeirsdottir and Najafi-Asadolahi [36]); see also Choi et al. [19] for a
review. On the other hand, works relating the platform, advertisers, and web users have been studied mainly from
a learning perspective, to improve ad targeting (Devanur and Kakade [25], Farahat and Bailey [31], Hlynka and
Sheahan [42]. In this work, we also aim to display an ad to a potentially interested user. Multiple online selection
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problems have been proposed to display ads in online platforms—for example, packing models (Babaioff et al.
[6], Korula and Pal [52]), secretary problems and auctions (Babaioff et al. [7]), prophet models (Alaei et al. [3]),
and online models with “buyback” (Babaioff et al. [5]). In our setting, we add the possibility that a user ignores
the ad; see, for example, Cho and Cheon [18] and Dreze and Hussherr [26]. Failure to click on ads has been con-
sidered in full-information models (Goyal and Udwani [38]); however, our setting considers only partial informa-
tion, where the rank of an incoming customer can only be assessed relative to previously observed customers—a
typical occurrence in many online applications. Our model is also disaggregated and looks at each ad individu-
ally. Our goal is to understand the right time to display an ad /make offers via the SP-UA and the robust ratio for
each individual ad.

2.2. Online Algorithms and Arrival Models

Online algorithms have been extensively studied for adversarial arrivals (Borodin and El-Yaniv [10]). This worst-
case viewpoint gives robust algorithms against any input sequence, which tend to be conservative. Conversely,
some models assume distributional information about the inputs (Kertz [48], Kleywegt and Papastavrou [51],
Lucier [55]). The random order model lies in between these two viewpoints, and perhaps the most studied example
is the secretary problem (Dynkin [28], Gilbert and Mosteller [37], Lindley [54]). Random order models have also
been applied in Adword problems (Devanur and Hayes [24]), online LPs (Agrawal et al. [2]), and online knapsacks
(Babaioff et al. [6], Kesselheim et al. [49]), among others.

2.3. Secretary Problems

Martin Gadner popularized the secretary problem in his 1960 Mathematical Games column; for a historical review,
see Ferguson et al. [33] and also the classical survey by Freeman [34]. For the classical secretary problem, the opti-
mal strategy that observes the first /e candidates and thereafter selects the best candidate was computed by Lind-
ley [54] and Gilbert and Mosteller [37]. The model has been extensively studied in ordinal/ranked-based settings
(Buchbinder et al. [13], Gusein-Zade [39], Lindley [54], Vanderbei [71]), as well as cardinal/value-based settings
(Bateni et al. [8], Kleinberg [50]).

A large body of work has been dedicated to augment the secretary problem. Variations include cardinality con-
straints (Buchbinder et al. [13], Kleinberg [50], Vanderbei [71]), knapsack constraints (Babaioff et al. [6]), and
matroid constraints (Feldman et al. [32], Lachish [53]), and Soto [67]. Model variants also incorporate different
arrival processes, such as Markov chains (Hlynka and Sheahan [44]) and more general processes (Diitting et al.
[27]). Closer to our problem are the data-driven variations of the model (Correa et al. [21], Correa et al. [22], Kaplan
etal. [47]), where samples from the arriving candidates are provided to the decision maker. Our model can be inter-
preted as an online version of sampling, where a candidate rejecting the decision maker’s offer is tantamount to a
sample. This also bears similarity to the exploration-exploitation paradigm often found in online learning and ban-
dit problems (Cesa-Bianchi and Lugosi [15], Freund and Schapire [35], Hazan [42]).

2.4. Uncertain Availability in Secretary Problems

The SP-UA is studied by Smith [66] with the goal of selecting the top candidate—k =1 in (1)—who gives an asymp-
totic probability of success of p'/(1-P). If the top candidate rejects the offer, this leads to zero value, which is perhaps
excessively pessimistic in scenarios where other competent candidates could accept. Tamaki [68] considers maxi-
mizing the probability of selecting the top candidate among the candidates that will accept the offer. Although
more realistic, this objective still gives zero value when the top candidate that accepts is missed because she arrives
early in the sequence. In our approach, we make offers to candidates, even if we have already missed the top candi-
date that accepts the offer; this is also appealing in utility /value-based settings (see Proposition 1). We also further
the understanding of the model and our objective by presenting closed-form solutions and bounds. See also Bruss
[12], Presman and Sonin [60], and Cowan and Zabczyk [23].

2.5. Linear Programs in Online Selection

Linear programming has been used extensively in online selection (Agrawal et al. [2], Beyhaghi et al. [9], Epstein
and Ma [30], Kesselheim et al. [49]). Typically, the LP is used as a structured bound over a benchmark that the
algorithm designer can compare with. Our approach is different, as we provide an exact formulation of our
robust objective. In secretary problems, early work used mostly MDPs (Lindley [54], Smith [66], Tamaki [68]),
whereas LP formulations were recently introduced by Buchbinder et al. [13]; subsequently, multiple formula-
tions have been used to solve variants of the secretary problem (Chan et al. [16], Correa et al. [21], Diitting et al.
[27]). We extend this line of work and use an MDP to derive the exact polyhedron that encodes policies for the
SP-UA,; this helps explain why some LP formulations in secretary problems are exact (see Subsection 4.1). Jiang
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et al. [46], Jiang et al. [45], and Perez-Salazar et al. [59] are closer to our work, as these studies characterize the
optimal policies for prophet inequalities. Further connections between MDP and LPs in related models have
been studied mostly in approximate regimes (Adelman [1], Torrico and Toriello [69], Torrico et al. [70]) and parti-
cularly in constrained MDPs (Altman [4], Haskell and Jain [40], Haskell and Jain [41]. To the best of the authors’
knowledge, there was previously no explicit connection between the MDP formulation and the exact LP formula-
tion in secretary problems.

3. Preliminaries

To discuss our model, we use standard MDP notation for secretary problems (Dynkin [28], Freeman [34], Lindley
[54]). An instance is characterized by the number of candidates 1 and the probability p € (0,1] that an offer is
accepted. For t € [nn] and s € [t], a state of the system is a pair (t, 5) indicating that the candidate currently being evalu-
ated is the f-th and the corresponding partial rank is 7, = s. To simplify notation, we add the states (1 +1,5), s € [n + 1],
and the state ® as absorbing states where no decisions can be made. For t <, transitions from a state (¢, s) to a state
(t+1,0) are determined by the random permutation 7t = (Ry, ..., R;). We denote by S; € {(£,5)};¢[) the random vari-
able indicating the state in the ¢-th stage. A simple calculation shows

P(St11=(t+1,0)|S:=(t,5) =P(rs1 =0|rr=5)=P(Sp1 = (t+1,0) =1/(t+1),
for t<n, s € [t] and o € [t + 1]. In other words, partial ranks at each stage are independent. For notational conve-

nience, we assume the equality also holds for t =n. Let A = {offer, pass} be the set of actions. For t € [n], given a state
(t,s) and an action A; = a € A, the system transitions to a state S;,; with the following probabilities:

l-p _ -
T a=offer,T1=t+1,0€[1]
P((frs)lﬂ),(’f,(f) = P(SH—l = (T/ G)Ist = (t,S),At = ﬂ) =3P a = offer, (T/ 0) =0
1

1 a=pass,T=t+1,0¢€(t].

The randomness is over the permutation 7 and the random outcome of the ¢-th candidate’s decision. We utilize
states (1 + 1,0) as end states and the state © as the state indicating that an offer is accepted from the state S;. A policy
P:{(t,s):te[n],se[t]} - Aisa function that observes a state (¢, s) and decides to extend an offer (P(¢,s) = offer)
or move to the next candidate (P(t,s) = pass). The policy specifies the actions of a decision maker at any point in
time. The initial state is S; = (1,1), and the computation (of a policy) is a sequence of state and actions (1,1),41,
(2,52),a2,(3,53), ... where the states transitions according to P ) a), (t+1,0) and a; = P(t,s;). Note that the computa-
tion always ends in a state (1 + 1, 0) for some o or the state ©, either because the policy was able to go through all
candidates or because some candidate t accepted an offer.

We say that a policy reaches stage t or reaches the ¢-th stage if the computation of a policy contains a state s; =
(t,5) for some s € [t]. We also refer to stages as times.

A randomized policy is a function P: {(t,s) : t € [n],s € [t]} — Aa, where Ap ={(9,1 —¢g) : g € [0,1]} is the proba-
bility simplex over A = {offer, pass} and P(s;) = (4,1 — q¢) means that P selects the offer action with probability g;
and otherwise selects pass.

We could also define policies that remember previously visited states and at state (¢,s;) make decisions based on
the history, (1,s1), ..., (t,s;). However, MDP theory guarantees that it suffices to consider Markovian policies, which
make decisions based only on (f,s;); see Puterman [62].

We say that a policy P collects a candidate with rank k if the policy extends an offer to a candidate that has rank k
and the candidate accepts the offer. Thus, our objective is to find a policy that solves

. . P(P collects a candidate with rank < k)
y, =max min .
P keln] 1-(1-p)

= max }’(n[lr]l P(P collects a top k candidate|a top k candidate accepts).
€ln

The following result is an alternative characterization of y;, based on utility functions. We use this result to relate
SP-UA to the i.i.d. prophet inequality problem; the proof appears in Appendix A. Consider a nonzero utility func-
tion U : [n] — Ry with Uy > Up >---> U, > 0 and any rank-based algorithm ALG for the SP-UA—that is, ALG only
makes decisions based on the relative ranking of the values observed. In the value setting, if ALG collects a candi-
date with overall rank i, it obtains value U;. We denote by U(ALG) the value collected by such an algorithm.
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Proposition 1. Let ALG be a y-robust algorithm for SP-UA. For any U : [n] — Ry, we have E[U(ALG)] > yE[U(OPT)],
where OPT is the maximum value obtained from candidates that accept. Moreover,

E[U(ALG)]

EI(OPT : > ee > > .

. .
= max min
Vn =T {

4. The LP Formulation

In this section, we present the proofs of Theorems 1 and 2. Our framework is based on MDP and can be used to
derive similar LPs in the literature—for example, Buchbinder et al. [13], Chan et al. [16], and Correa et al. [21]. As a
by-product, we also show that y; is a nonincreasing sequence in n (Lemma 1). For ease of explanation, we first pre-
sent the framework for the classical secretary problem, then we sketch the approach for our model. Technical
details are deferred to Appendix B.

4.1. Warm-Up: MDP to LP in the Classical Secretary Problem

We next show how to derive an LP for the classical secretary problem (Buchbinder et al. [13]) using an MDP frame-
work. In this model, the goal is to maximize the probability of choosing the top candidate, and there is no offer
uncertainty.

Theorem 5 (Buchbinder et al. [13]). The maximum probability of choosing the top-ranked candidate in the classical secre-
tary problem is given by

max{Z;xt X < (12361) Vt € [n], x>0}

t=1

We show this as follows:

1. First, we formulate the secretary problem as a Markov decision process, where we aim to find the highest—
ranked candidate. Let o], ., be the maximum probability of selecting the highest-ranked candidate in t +1,.
given that the current state is (, s). We define v, ,, ) = 0 for any s. The value v" is called the value function, and 1t can
be computed via the optimality equations (Puterman [62])

% 1 t %
Vips) = maX{P(Rt =1|r =5s), m;v(fﬂ,ﬁ) } )

The first term in the max operator corresponds to the expected value when the offer action is chosen in state (f, s).
The second corresponds to the expected value in stage t + 1 when we decide to pass in (¢, s). Note that P(R; = 1|r; =)
=t/nif s=1and P(R; = 1|r; = s) = 0 otherwise. The optimality Equations (2) can be solved via backward recursion,
and v, ;) ~ 1/e (for large n). An optimal policy can be obtained from the optimality equations by choosing at each
state an action that attains the maximum, breaking ties arbitrarily.

2. Using a standard argument (Manne [56]), it follows that v" = (v’(*t’ 5))t,s is an optimal solution of the linear pro-
gram (D):

1’1’11%)’1 0(1,1)
(D) v, 2 P(Ry=1|r;=5) Vt<n, Vs <t €)
t+1
Utt,s) 2 m;?’(m,a) Vt <n,s <t 4)

3. Taking the dual of (D), we obtain (P):

Lt
max E —X¢1
x,y>0 =1 n

(P) X1,1 +Y1,1 < 1, )

IA
-

1
xt,s + yt,s < ?Zytfl,a Vit < n,s (6)
o=1
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Variables x; ; are associated with Constraints (3) and y; s with Constraints (4). Take any solution (x,y) of the prob-
lem (P) and note that the objective does not depend on y. Incrementing y to tighten all constraints does not alter the
feasibility of the solution, and the objective does not change; thus, we can assume that all constraints are tight in
(P). Here, x; ; is the probability that a policy (determined by x,y) reaches the state (f, s) and makes an offer, whereas
Y4 s is the probability that the same policy reaches state (t, s), but decides to not to make an offer.

4. Finally, projecting the feasible region of (P) onto the variables (x; 1), —for example, via Fourier-Motzkin
elimination (see Schrijver [65] for a definition)—gives us Theorem 5. We skip this for brevity.

The same framework can be applied to obtain the linear program for the secretary problem with rehire (Buchbin-
der et al. [13]) and the formulation for the (J, K)-secretary problem (Buchbinder et al. [13], Chan et al. [16]). It can also
be used to derive an alternative proof of the result by Smith [66]. Besides secretary problems, this approach using
MDP has been applied for prophet problems (Jiang et al. [46]) and in online bipartite matching (Torrico and Tor-
iello [69], Torrico et al. [70]).

4.2. Framework for the SP-UA

Next, we sketch the proof of Theorem 1 and use it to derive Theorem 2. Technical details are deferred to Appendix B.
In the classical secretary problem, the objective is to maximize the probability of choosing the top candidate, which we

can write in the recursion of the value function v*. For our model, the objective y,, corresponds to a multiobjective criteria,

and it is not clear a priori how to write the objective as a reward. We present a two-step approach: (1) First, we follow the

previous subsection’s argument to uncover the polyhedron of policies; and (2) second, we show that our objective func-

tion can be written in terms of variables in this polyhedron, and we maximize this objective in the polyhedron.

4.2.1. The Polyhedron of Policies via a Generic Utility Function. When we obtained the dual LP (P) (step 3 in the
above framework), anything related to the objective of the MDP is moved to the objective value of the LP, while any-
thing related to the actions of the MDP remained in Constraints (5) and (6). This suggests using a generic utility function
to uncover the space of policies. Consider any vector U : [n] — R, and suppose that our objective is to maximize the
utility collected, where choosing a candidate of rank i means obtaining U; > 0 value. Let vj,  be the maximum value col-
lected in times t,t + 1, .. ., n, given that the current state is (¢, s), where vzn i) = 0. Then, the optimality equations yield

1 t+1 1 t+1
0,5y = maxq pUi(s) + (1 — P)m; U(441,0)7 m; Vit+1,0) (7 @)

where Uy(s) = Y"1 U/P(R; = i|r: = 5). The term in the left side of the max operator is the expected value obtained by
an offer action, whereas the term in the right corresponds to the expected value of the pass action. Using an
approach similar to the one used in steps 2 and 3 from the previous subsection, we can deduce that

=
Por = {(X/Y) 20:x,1+y,1 =1, X s+ = ?Z(]/tfl,a +(1—p)xi_1,6), VE>1,5€ [t]},
o=1

contains all policies (Theorem 1). A formal proof is presented in Appendix B.

4.2.2. The Linear Program. Next, we consider Theorem 2. Given a policy P, we define x; ; to be the probability of
reaching state (t, s) and making an offer to the candidate and y; s to be the probability of reaching (¢, s) and passing.
Then, (x,y) belongs to PoL. Moreover,

n t
P(P collects a top k candidate) = pz Z xt sP(Ry < k|ry=s). (8)

t=1 s=1

Conversely, any point (x,y) € PoL defines a policy P: At state (¢, s), it extends an offer to the ¢-th candidate with
probability x; 1 if t =1, or probability tx; ¢ /(3. 2y yi- 1,0 + (1 — p)x;_1,4) if £ > 1. Also, P satisfies (8). Thus,

. . P(P collects a top k candidate)

), =max min -

P keln] 1-(1-p)
_ P D oemt X1, sP(Re < k|7 =35)
(x,y)ePoL ke[n] 1— (1 — P)k
n t P(R, < —
pzt=1 2521 Xts ( t k— k|rt S), Vk e [7’1] ) (9)
1-(1-p)

= max{y :(x,y) € PoL,y <
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Projecting the feasible region of (9) as in step 4 onto the (x,y)-variables gives us Theorem 2. The details appear in
Appendix B.
Our MDP framework also allows us to show the following monotonicity result.

Lemma 1. For a fixed p € (0,1], we have y;, >y}, forany n > 1.

We sketch the proof of this result here and defer the details to Appendix B.3. The dual of the LP (9) can be refor-
mulated as

min 0(1, 1)

u:[n]-R,
izl
1_pid =
(DLP) s.t. ovyq 2 max{Ut(s) + tTf;U(HLU), m;v(mm Vte[n], sel[t]

Uin1,s) = 0 Vse[n+1],

where U;(s) = pZ]” 1kt /(1= (1= p)k))P(Rt =f|r; =s). The variables uy,...,u, correspond to the constraints
involving y in the LP (9). Note that (DLP) is the minimum value that an MDP can attain when the utility functions
are given by U; = sz>1uk/ (1—(1—p)"). Taking any weighting u: [n] — R, w1th > i =1, we extend it to il :
[n+1] — R, by setting il,.+1 = 0. We define accordingly U, = P2 isitte/ (1= (1 - p)") and note that U; = U, fori < n
and U,,; = 0. Using a coupling argument, from any policy for utilities (I with 1+ 1 candidates, we can construct a
policy for utilities U, with n candidates, where both policies collect the same utility. Thus, the utility collected by
the optimal policy for U upper bounds the utility collected by an optimal policy for U. The conclusion follows
because y; ,, is a lower bound for the latter value.

Given that y; €[0,1] and (y}), is a monotone sequence in #, lim,_,,)’;, must exist. In the next section, we show
that the limit corresponds to the value of a continuous LP.

5. The Continuous LP

In this section, we introduce the continuous linear program (CLP), and we show that its value y  corresponds to
the limit of /; when n tends to infinity. We also state Proposition 2, which allows us to construct feasible solutions
of (CLP) using any set of times 0 < t; < f, < .-+ < 1. In the finite model, the solution constructed in this section has
the natural interpretation of segmenting time: for a candidate arriving between times t;n and t;;11, we make an
offer if the candidate has partial rank i or better. In the remainder of the section, finite model refers to the SP-UA
withn < co candidates, whereas the infinite model refers to SP-UA when n — co.

We assume p € (0, 1] fixed. The continuous LP (CLP) is an infinite linear program with variables given by a func-
tion a: [0,1] x N — [0,1] and a scalar y > 0. Intuitively, if in the finite model we interpret x; ; as weights and the
sums of x; ; over t as Riemann sums, then the limit of the finite model should have a robust ratio computed by the
continuous LP (CLP)

sup )4
a:[0,1]xN—[0,1]
y=0
t
s.t. (CLP), ta(t;s) <1 —P/ Zoc(T,o) drt Vte[0,1],s>1, (10)
o>1
b (L
a f Vk>1. (11)
(1-@1-p))

We denote by 7, = 7, (p) the objective value of (CLP),. The following result formalizes the fact that the value of the
continuous LP (CLP),, is, in fact, the robust ratio of the infinite model. The proof is similar to other continuous
approximations (Chan et al. [16]); a small caveat in the proof is the restriction of the finite LP to the top (logn)/p
candidates, as they carry most of the weight in the objective function. The proof is deferred to Appendix C.

Lemma 2. Let y; be the optimal robust ratio for n candidates, and let y;, be the value of the continuous LP (CLP),. Then,
1y; = Vil < O((logn)*/(pyn)).
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The following proposition gives a recipe to find feasible solutions for (CLP),. We use it to construct lower bounds
in the following sections.

Proposition 2. Consider 0 < t; < t, <--- <1, and consider the function a:[0,1] X N — [0,1] defined such that for

t e[t tiv1)
T;/tPHl s < i
aftys)= 4 |
0 s>,

where T; = (t; -+ t;). Then, a satisfies Constraint (10).

Proof. We verify that Inequality (10) holds. We only need to verify it for ¢ € [t;, t;41) with i > 1 because a(t,s) =0
for t € [0,t1). We define tg =0 and Ty = 0. For ¢ € [t;,t;,1), we have

t/+l‘ T] t’ Ti
1—p/ Za(r oydt=1-p Z/ s dt —p/tle.erl dt
o>1 j i

i—1

) 1 _ ) 1 ,

=1-p) :]'Tf'_ t;ff_tjjp)—Pl'Tf'_—ip(f P —t))
=1

=1+ TN -t + Tt 7 —#)
i=1

=1+ (ZT]-+1t]+({+1)p Tjt; ”’) +T(7 — %) (Since Tit ) = Tpat §7)
=1

=1+ Tit;i’7 ~Tit, P+ Ti(t7 — t;ip)
=Tt 7 > ta(t,s),

for any s > 1. This concludes the proof. O

We use this result to show lower bounds for y7,. For instance, if 1/k > p > 1/(k + 1) for some integer k, and we set
t1=1/e and t, =t3 =---=1, we can show that y:_(p) is at least 1/e. Thus, in combination with Lemma 1, we have
that 7} (p) > 1/e for any n and p > 0; we skip this analysis for brevity. In Section 7, we use Proposition 2 to show exact
solutions of y%, for large p.

6. Upper Bounds for the Continuous LP
We now consider upper bounds for (CLP) and prove Theorem 3 which states that y*_(p) < min{p?/-7),1/ B}, for
any p € (0,1], where 1/ ~ 0.745 and § is the unique solution of f o(y(1 —logy)+p—1) ofdy =1 (Kertz [48]).

We show that y?_ is bounded by each term in the minimum operator. For the first bound, we have

. P(P collects a top k candidate)
y, =max min

P keln] 1—(1—p)
ax P(P collects the top candidate)
p .

The probability of collecting the highest candidate in SP-UA is shown by Smith [66] to be p'/=") + (1), where
0(1) = 0as n — co. Thus, by Lemma 1, we have

Velp) < vi(p) < PP +0(1) /p.

Taking the limit n — oo, we conclude y7_(p) < p?/0-7).
For the second bound, we use the following technical result; its proof is deferred to Appendix D, but we give a
short explanation here. A y-robust algorithm A for the SP-UA, in expectation, has pn candidates to choose from
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and (1 — p)n candidates from which the algorithm can learn about candidate quality. We give an algorithm A’ that
solves the i.i.d. prophet inequality for any m ~ pn ii.d. random variables Xj, ..., X,,, for m large. The algorithm A’
runs a utility version of A in n values sampled from the distribution X; (see the discussion before Proposition 1),
guaranteeing at least a factor y of the maximum of m ~ pn of these samples, which is the value of the prophet. A’ is
the capped utility version of .4, where no more than m =~ pn offers can be made. Using concentration bounds, we
show that the loss of these restrictions is minimal. Kaplan et al. [47] use a similar argument, with the difference that
their sampling is a fixed fraction of the input and is done in advance, whereas in our case, the sampling is online
and might deviate from the expectation, implying the need for concentration bounds. The following result sum-
marizes the reduction and the upper bound.

Theorem 6. Let p € (0,1) and A be any algorithm that is y-robust for the SP-UA for any n. Then, y < 1/, where =
1.34 is the unique solution of the integral equation fé (y(1 —logy)+(B—1) 'dr=1.

The proof of Theorem 6 uses the reduction mentioned in the previous paragraph. The use of concentration
bounds guarantees a (1 —o(1))y multiplicative approximation with e~®) additive error for the ii.d. prophet
inequality problem. Specifically, for any distribution D over [0, 1], we can guarantee

E[Val(A')] +e ©") > (1 — 0(1))E {rirgz( Xz], (12)

where X3, ..., X, distribute according to D and Val(A") is the value collected by .A’, the algorithm described in the
previous paragraph, where no more than m = pn offers are made. Here o(1) is a term that can be chosen arbitrarily
close to 0 for n large enough. Unfortunately, we cannot conclude that y < 1/ immediately from this bound
because this bound only holds for multiplicative error in the i.i.d. prophet problem. We bypass this technical chal-
lenge as follows. A combination of results by Hill and Kertz [43] and Kertz [48] shows that, for any m and for ¢’ > 0
small enough, there is ani.i.d. instance Xj, . .., X, with supportin [0, 1] such that

E [nlax Xl} > (ay, — &")sup{E[X] : T € T),,},

where T, is the class of stopping times for Xj, ..., X,,, and a,, — . Thus, using Inequality (12), we must have

—0(n?)
Y —o()) < ¢

+ ,
& E[max;<,; Xi]

for m ~ pn. A slight reformulation of Hill and Kertz’s result allows us to set ¢’ = 1/m® and E[max;<,,X;] > 1/m® (see
the discussion at the end of Appendix D). Thus, as n — oo, we have m — oo and so e—©0r) /E[max; <, X;] — 0. In the
limit, we obtain (1 —o(1)) < 1/B, which implies our stated result.

An algorithm that solves (LP),, , and implements the policy given by the solution is )¢ -robust (Theorem 2 and
the fact that )}, > y%.) for any n. Thus, by the previous analysis, we obtain y% < 1/ ~ 0.745.

7. Lower Bounds for the Continuous LP

In this section, we consider lower bounds for (CLP), and prove Theorem 4. We first give optimal solutions of
(CLP), for large values of p. For p > p* ~ 0.594, the optimal value of (CLP), is y;,(p) = p?/1P), and the optimal strat-
egy is to observe p!/1=P) fraction of the candidates and then make offers to the best observed candidate so far. We
then show that for p < p*, ¥ (p) = (")’ /"7 ~ 0.466. At the end of the section, we show that y*_(p) > 0.51 when
p—0.

7.1. Exact Solution for Large p
We now show that for p > p*, ¥, (p) = p"/17), where p* ~ 0.5% is the solution of (1 — p)* = p@»/0-P)_ Thanks to the
upper bound y?,(p) < p?”/0=P for any p € (0,1], it is enough to exhibit feasible solutions (a,y) of the continuous LP
(CLP), with y > pr/(=7),

Lett; = pl/ A-P) t, =t; =---=1, and consider the function a defined by t1,t,,... in Proposition 2. That is, for t €
[0,p/0=P)), a(t,s) = 0 forany s > 1 and for t € [p'/1~7),1], we have

p/(=p) /fl+p g =
Mh@={§ fee o=
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pﬁ/(lﬂ’)

Let y=infio1p(1 — (1 — ]o)k)_1 I ;1 Jap WZL #1— )" dt. Then, (a, y) is feasible for the continuous LP (CLP),,
and we aim to show that y > p?/1=") when p > p*. The result follows by the following lemma.
Lemma 3. For any p > p* and any £ > 0, f;l/(l,m(l —tirrdt>(1 - p)f.

We defer the proof of this lemma to Appendix E. Now, we have

1 p/(-p) K
y =inf P P > H1 -1 dt
=1

Tkl — (1— p)k iy P

1, _
— pP/=P) inf >ber Jant P = B dt
rRTT LA

1 -1
> pp/(l—p) inf inf l(l—t)fl
k>1 te[k] Jo tP (1- P) -

dt > pr/-p),

where we use the known inequality > ;. a¢/>y_; be > mingepyae/be for ag,be > 0, for any ¢, and the lemma. This
shows that y*, > p?/=P) for p > p*.

Remark 1. Our analysis is tight. For k=2, constraint

p 1 pp/(lfp) k

t(1 — )t de > /0P,
1— 1 —p)yJpon H ; ( ) P

holds if and only if p > p*.

7.2. Lower Bounds for Small p

In this subsection, we present two lower bounds for y; (p) when p < p*, with p* = 0.594 as obtained in the previ-
ous subsection. The first bound guarantees y*_(p) = (p*)/ /7 ~ 0.466; the second guarantees y*_(p) > 0.51 when p
approaches 0. We present details for the first bound, as it includes a mechanism to transform the solution of
(CLP)p* into a solution of (CLP)p forp < p*. We defer some details of the latter bound, as it uses a construction sim-
ilar to Correa et al. [22] with a different limit argument.

Let € €[0,1) satisfy p = (1 — ¢)p". For the argument, we take the solution a” for (CLP),, that we obtained in the
last subsection, and we construct a feasible solution for (CLP)F with objective value at least (p*)’ /A=) For simplic-
ity, we denote * = (p*)/ 7",

From the previous subsection, we know that the optimal solution a* of (CLP),. has the following form. For t €
[0,7%), a*(t,s) = 0 for any s, whereas for f € [t*,1], we have

PP pprel o
a(ts) =1 ) [ s=1
0 s>1.

For (CLP)p, we construct a solution a as follows. Let a(t,s) = e 'a*(t, 1) for any t€[0,1] and s > 1; for example,
a(t, 1) = a*(t,1). If we interpret a* as a policy, it only makes offers to the highest candidate observed. By contrast, in
(CLP),, the policy implied by @ makes offers to more candidates (after time 7°), with a probability geometrically
decreasing according to the relative ranking of the candidate.

Lemma 4. The solution a satisfies Constraints (10),

¢
ta(t,s) <1 —p/ Za(f, o)dr,
0

o>1

foranyte[0,1],s>1.
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Proof. Indeed,

1p/t2a(f,a)dlep(1£)/ e tar(r,1)dr
a>1

o>1

=1- p*/ota*(’c,l)d’[ (Since Z el =1/(1- e))

o1
t
=1- P*/ Z(X*(T, o)drt (Since a*(t,0) =0 for o > 1)
0 521
> ta’(£1).

(By feasibility of a”)
Given that a(t,s) = e~ 1a*(t,1) < a*(t,1), we conclude that «a satisfies (10) for any t and s. [
We now define y = infio1p(1 — (1 — p) ) fo Yoeralt, S)Zf:s (s 1 ) £(1— Hisde. Using the claim, we know that

(a,) is feasible for (CLP), and need to verify thaty > (p*)’ /079 Similar to the analysis in the previous section, the
result follows by the following result.

Lemma 5. For any £ >0, le*(l A=)t P di>1-p).

Before proving the claim, we establish the bound:

1 1 k
=inf————— / e lat(s,1) £l -1 dt (Using definition of a)
! k=1 Z?:l (1- P)H 0 s=1 Z &
1 - :
p/=p)e 2 s—1 s(1 _ p\l—s
= /zz ( Jra-oa
(Using the definition of a* and changing order of summmation)
1
p/=p)se L L 1 -1 . . . .
=) }{r;lf Z —~ /T * tV;(l (1—¢))y  dt (Using the binomial expansion)

) <o Db f“’(lf(lfe)t)fldt
(p)p ’ }cl;lf : Z[l(l_ )fl

We again used the inequality Y., a¢/> -, by > mingemae/be for ag, by > 0, for any ¢, and the claim.
Proof of Lemma 5. We have 1 — (1 — ¢)t = (1 — ¢)(1 — ) + €. Therefore,

( )7’/(1 P

1 1 t (¢ . o
/ :7(1 —(1—e))dt= / t%z < ‘>(1 —e)f T —pTddr (Binomial expansion)
™ T j=0 ]

14 ool 1 )
Z( ) s)fffsf/ —(1-t"Tdt
= o 1P

¢
Z( )(1 —o) T —pH) T dt (Using Lemma 3 for p")

=0

(e+(1—-e)1 - p*))g (Using binomial expansion)
=(1-(1-ep) =(1-p),

where we used p = (1 — ¢)p”*. From this inequality the claim follows. O

7.2.1. Improved Bound for p Close to 0. Now we present a better bound for y7, (p), for p close to 0, using an explicit
construction of a solution & for (CLP),,.
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The following proposition gives a sufficient condition to ensure lower bounds over y%_(p).

Proposition 3. Let 0 < t; <t < t3 <--- < 1. If for all k > 1 we have
1-kp 1K

T tk+1 tk ' > (1 _ )k—l
k 1 _ kp = yp p 4
where Ty = (t1 - &), then, v (p) > .
Proof. Let a(t,s) be defined as follows. For i > 1, if t € [t;,t;11), then

Ti tz’-p+1 <i
a(t,S) — {0 / S 1

s> 1.

Then, by Proposition 2, we know that a defines a feasible solution to (CLP)p. Now, using a(t,s) > a(t, {) for any
s < ¢, we obtain

1 kK /-1 1 k
S _ {—s
p/o E a(t,s)g (s— )t(l t) dt2p/0 E a(t, O)t dt

1

s>1 t=s =1
0 tlfz'p _ tlfip
- e [ Tl
= p;mm{k,z}T,< T i}; )
koo t?fip o t}—ip
=p Tz' i+1 '1 )
5o

k © .
>p> Y yp—p) !

=1 i

k
=yp>_(1—p) " =y1-(1-p)).
j=1

This holds for any k; thus, y% (p) = y. O

We now present an iterative method to generate a sequence f1,f,, ... as in Proposition 3. Fix t; € [0,1] and y > 0,
and define Ay = t;(1 — p)_k + ypk for k > 1. Note that Ay is increasing in k. Define t, = #1(1 + yp(1 — p)/t1)1/<1_” ,and
for k > 2, define t;4 as follows:

(tk_+1) 17kP :Ak(l_p) (13)
tx A1

Lemma 6. The sequence ty, ... defined above satisfies t; < ti.q for each k > 1. Moreover, for any k> 1,
by — b k-1
Te| =——— | =yp(1—p) ",
3 yp(L—p)

where Ty = (t; - ).

Proof. The first part follows from the fact that k < 1/p if and only if Ax(1 — p) > Ay_;. For the second part, let

tl—kp tl—kp
B, =T k1 "tk
k k 1_ kP .

It is easy to verify that B; = yp using the definition of f,. Now, for k > 2,

1—(k+1)p 1-(k+1)p
Biw = ) — b 1—kp
Bk k+1 tl—kp . tl—kp 1— (k + 1)p :

k+1 k
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Using Identity (13) and A;(1 —p) — A;_1 = yp(1 — jp), we obtain

1—(k+1

= Yk+1 —
By +Ak tikp

Then, inductively, we can show that By, = yp(1 — p oo
Our goalis to give t; € [0,1] and y € [0, 1] as large as possible such that lim;f; < 1, with ¢, defined via (13).
Lemma 7. We have

_r
t1e¥ + yx

7

lim log ty = log t; + /
k—o0 0

forp — 0.

The proof of the lemma is technical and borrows a strategy used by Correa et al. [22]. The main insight is to apply
logarithms to both sides of Identity (13) and find an expression for log t.1 as a sum of terms only involving A;, y,
and p. In the limit in k, and then in p, we can reinterpret the sums as Riemann sums that later translate into the inte-
gral term given in the lemma. We defer the details of this proof to Appendix E.

We find numerically that the combination of #; = 0.228 and y ~ 0.511 ensures limy_,.,log tx = 0. Thus, y: (p) >
0.51 for p close to 0; note that t; remains bounded away from 0. This means that the policy given by the values
t1,ty, ... spends the first t; fraction of time “exploring” before “exploiting,” and the fraction of exploration time
remains a constant.

8. Computational Experiments

In this section, we aim to empirically test our policy; to do so, we focus on utility models. Recall from Proposition 1
that a y-robust policy ensures at least y fraction of the optimal offline utility, for any utility function that is consis-
tent with the ranking—that is, U; < U; if and only if i < j. This is advantageous for practical scenarios, where a can-
didate’s “value” may be unknown to the decision maker.

We evaluate the performance of two groups of solutions. The first group includes policies that are computed
without the knowledge of any utility function:

e Robust policy (Rob-Pol(n,p)) corresponds to the optimal policy obtained by solving (LP),, ,,.

e Tamaki’s policy (Tama-Pol(n,p)), which maximizes the probability of selecting the best candidate willing to
accept an offer. To be precise, Tamaki [68] studies two models of availability: MODEL 1, where the availability of
the candidate is known after an offer has been made; and MODEL 2, where the availability of the candidate is
known upon the candidate’s arrival. MODEL 2 has higher values and is computationally less expensive to com-
pute; we use this policy. Note that in SP-UA, the expected value obtained by learning the availability of the candi-
date after making an offer is the same value obtained in the model that learns the availability upon arrival.
Therefore, MODEL 2 is a better model to compare our solutions to than MODEL 1.

In the other group, we have policies that are computed with knowledge of the utility function.

e The expected optimal offline value (E[U(OPT(U, n,p))]), which knows the outcome of the offers and the utility
function. It can be computed via 37, U;p(1 — p)"". For simplicity, we write OPT when the parameters are clear
from the context.

e The optimal rank-based policy if the utility function is known in advance, (Util-Pol(U, n,p)), computed by
solving the optimality equation

t+1

1-p 1 &l
V(t,5) = maxy U(s) + m; O(t+1,0)s m; O(t+1,0)7 (7

with boundary condition v,11,5 = 0 for any 0. We write Util-Pol(1,p) when U is clear from the context. We use a
rank-based policy as opposed to a value-based policy for computational efficiency.

Note that E[U(Rob-Pol)], E[U(Tama-Pol)] < E[U(Util-Pol)] < E[U(OPT)] and by Proposition 1, E[U(Rob-Pol)]
>y E[U(A)] for any A of the aforementioned policies.

We consider the following decreasing utility functions:

e Top k candidates are valuable (top-k). For k € [n], we consider utility functions of the form U; =1+ ¢’ for i € [k]
and U; = ¢’ for i>k with ¢ =1/n. Intuitively, we aim to capture the notion of an elite set of candidates, where
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candidates outside the top k are not nearly as appealing to the decision maker. For instance, renowned brands like to
target certain members of a population for their ads. We testk = 1,2, 3,4.

e Power law population. U; =i~/ for i > 1 and small 6 > 0. Empirical studies have shown that the distribu-
tion of individual performances in many areas follows a power law or Pareto distribution (Clauset et al. [20]). If we
select a random person from [n], the probability that this individual has a performance score of at least ¢ is propor-
tional to =149, We test € {1072,107%,2-1071}.

We run experiments for n=200 candidates and range the probability of acceptance p from p =107 to
p=9-10"".

8.1. Results for Top-k Utility Function

In this subsection, we present the results for utility function that has largest values in the top k candidates, where
k=1,2,3,4. In Figure 2, we plot the ratio between the value collected by A and E[U(OPT)], for A being
Util-Pol, Rob-Pol, and Tama-Pol.

Naturally, of all sequential policies, Util-Pol attains the largest approximation factor of E[U(OPT)]. We observe
empirically that Rob-Pol collects larger values than Tama-Pol for smaller values of k. Interestingly, we observe in
the four experiments that the approximation factor for Rob-Pol is always better than Tama-Pol for small values of p.
In other words, robustness helps online selection problems when the probability of acceptance is relatively low. In
general, for this utility function, we observe in the experiments that Rob-Pol collects at least 50% of the optimal off-
line value, except for the case k=1. As n increases (not shown in the figures), we observe that the approximation fac-
tors of all three policies decrease; this is consistent with the fact that )}, the optimal robust ratio, is decreasing in 7.

8.2. Results for Power-Law Utility Function
In this subsection, we present the result of our experiments for the power-law utility function U; =i~1*9 for
6=107%,10"",and 2 10". In Figure 3, we display the approximation factors of the three sequential policies.

Again, we note that Util-Pol collects the largest fraction of all sequential policies. We also observe a similar
behavior as in the case of the top-k utility function. For small values of p, Rob-Pol empirically collects more value

Figure 2. (Color online) Approximation factors for the top k utility function, for k =1,2,3, 4.
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Figure 3. (Color online) Approximation factor for the power law utility function. The function has the form U; = i~1*9. Experi-
ments are run for 0 € {10’2, 10712 10’1}.
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than Tama-Pol. As p increases, the largest valued candidate is more willing to accept an offer; hence, Tamaki’s 1991
policy is able to capture that candidate.

In general, our experiments suggests that Rob-Pol is better than Tama-Pol for smaller values of p. This may be of
interest in applications where the probability of acceptance is small, say, 20% or less. For instance, some sources
state that click-through rates (the fraction of time that an ad is clicked on) are typically less than 1% (Farahat and
Bailey [31]). Therefore, ad display policies based on Rob-Pol may be more appropriate than other alternatives.

9. Concluding Remarks

We have studied the SP-UA, which models an online selection problem where candidates can reject an offer. We
introduced the robust ratio as a metric that tries to simultaneously maximize the probability of successfully
selecting one of the best k candidates, given that at least one of these will accept an offer, for all values of k. This
objective captures the worst-case scenario for an online policy against an offline adversary that knows in advance
which candidates will accept an offer. We also demonstrated a connection between this robust ratio and online
selection with utility functions. We presented a framework based on MDP theory to derive a linear program that
computes the optimal robust ratio and its optimal policy. This framework can be generalized and used in other
secretary problems (Section 4.1), for instance, by augmenting the state space. Furthermore, using the MDP frame-
work, we were able to show that the robust ratio y} is a decreasing function in n. This enabled us to make connec-
tions between early works in secretary problems and recent advances. To study our LP, we allow the number of
candidates to go to infinity and obtain a continuous LP. We provide bounds for this continuous LP and optimal
solutions for large p.

We empirically observe that the robust ratio y; (p) is convex and decreasing as a function of p, and, thus, we
expect the same behavior from y_ (p), though this remains to be proved (see Figure 1). Based on numerical values
obtained by solving (LP),, ,, we conjecture that lim,, )%, (p) = 1/p ~ 0.745. This limit is also observed in a similar
model Correa et al. [21], where a fraction of the input is given in advance to the decision maker as a sample. In our
model, if we interpret the rejection from a candidate as a sample, then in the limit, both models might behave
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similarly. Numerical comparisons between our policies and benchmarks suggest that our proposed policies per-
form especially well in situations where the probability of acceptance is small, say, less than 20%, as in the case of
online advertisement.

A natural extension is the value-based model, where candidates reveal numerical values instead of partial rank-
ings. Our algorithms are rank-based and guarantee an expected value at least a fraction ), (p) of the optimal offline
expected value (Proposition 1). Nonetheless, algorithms based on numerical values may attain higher expected
values than the ones guaranteed by our algorithm. In fact, a threshold algorithm based on sampling may perhaps
be enough to guarantee better values, although this requires an instance-dependent approach. The policies we con-
sider are instance-agnostic, can be computed once, and used for any input sequence of values. In this value-based
model, we would like to consider other arrivals processes. A popular arrival model is the adversarial arrival, where
an adversary constructs values and the arrival order in response to the DM’s algorithm. Unfortunately, a construc-
tion similar to the one in Marchetti-Spaccamela and Vercellis [57] for the online knapsack problem shows that it is
impossible to attain a finite competitive ratio in an adversarial regime.

Customers belonging to different demographic groups may have different willingness to click on ads (Cheng
and Cantd-Paz [17]). In this work, we considered a uniform probability of acceptance, and our techniques do not
apply directly in the case of different probabilities. In ad display, one way to cope with different probabilities,
depending on customers’ demographic group, is the following. Upon observing a customer, a random variable
(independent of the ranking of the candidate) signals the group of the customer. The probability of acceptance of a
candidate depends on the candidate’s group. Assuming independence between the rankings and the demographic
group allows us to learn nothing about the global quality of the candidates beyond what we can learn from the par-
tial rank. Using the framework presented in this work, with an augmented state space (time, partial rank, group
type), we can write an LP that solves this problem exactly. Nevertheless, understanding the robust ratio in this new
setting and providing a closed-form policy are still open questions.

Another interesting extension is the case of multiple selections. In practice, platforms can display the same ad to
more than one user, and some job posts require more than one person for a position. In this setting, the robust ratio
is less informative. If k is the number of possible selections, one possible objective is to maximize the number of top
k candidates selected. We can apply the framework from this work to obtain an optimal LP. Although there is an
optimal solution, no simple closed-form strategies have been found even for p=1; see, for example, Buchbinder
etal. [13]).

Appendix A. Missing Proofs from Section 3
Proof of Proposition 1. Let ALG be a y-robust algorithm. Fix any algorithm ALG and any Uy >---> U, > 0. Let ¢ > 0 and let
U; =U; + ¢ Thus, U; > U1, and so rank and utility are in one-to-one correspondence. Then,

E[UI(ALG)] > min P(U(ALG) > x) ~ min P(ALG collects a top k candidate) o

E[U(OPT)] ~ xe(y,..., 0,y P(U(OPT) >x) ksn  P(A top k candidate accepts)

where we used the fact that ALG is y-robust. Notice that E[U(OPT)] < E[U(OPT)], and also E[U(ALG)] < E[U(ALG)] + €. Thus,
doing ¢ — 0 we obtain

E[U(ALG)]

E[U(OPT)] =" (A1)

for any nonzero vector U with Uy > Uy >--- > U, > 0. This finishes the first part. For the second part, let

E[U(ALG)]
E[U(OPT)]
Note that the right-hand side (RHS) of Inequality (A.1) is independent of U, thus minimizing in U in the left-hand side (LHS)

and, then, maximizing in ALG on both sides, we obtainy, > .
To show the reverse inequality, fix k € [n] and let U : [n] — R, givenby U; = 1 fori < kand U; = 0 for i >k. Then,

P(ALG collects a top k candidate) E[U(ALG)] > min E[U(ALG)]

P(A top k candidate accepts) E[U(OPT)] ~ u:lnl—Rr, E[U(OPT)]’
Uy 22U,

771:%%1 max{ :U:[n] >Ry, U4 z---zun}.

This bound holds for any k, thus minimizing over k and then maximizing over ALG on both sides, we obtain y; >7,, which
finishes the second part. 0O

Appendix B. Missing Proofs from Section 4
Here, we present a detailed derivation of Theorem 1 and Theorem 2 by revisiting Section 4.
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As stated in Section 4, we are going to proceed in two stages: (1) First, using a generic utility function, we uncover the space of
policies PoL. (2) Second, we show that our objective is a concave linear function of the variables of the space of policies that
allows us to optimize it over POL.

B.1. Stage 1: The Space of Policies

Let U : [n] — R, be an arbitrary utility function, and suppose that a DM makes decisions based on partial rankings and her goal
is to maximize the utility obtained, where she gets U; if she is able to collect a candidate of ranking i. Let v, , be the optimal value
obtained by a DM in {t,t +1,...,n} if she is currently observing the {-th candidate and this candidate has partlal ranking r;=s—
that is, the current state of the system is s; = (£,s). The function vj, , is called the value function. We define vf,,, , for any
0 € [+ 1]. Then, by optimality equations (Puterman [62]), we must have

i 1 t+1 i 1 t+1 ,
Uits) = maX{Put(S) +(1- P)it 1 Zl Uerror 747 Zl Uitat,0) (7 (B.1)
o= o=
with V1) =0 for any s € [nn + 1]. The first part in the max operator corresponds to the expected value obtained by selecting

the current candidate, whereas the second part in the operator corresponds to the expected value collected by passing to
the next candidate. Here, Uy(s) = >, U;P(R; = i|r; = 5) is the expected value collected by the DM, given that the current can-
didate has partial ranking r;=s and accepts the offer. Although an optimal policy for this arbitrary utility function can be
computed via the optimality equations, we are more interested in all the possible policies that can be obtained via these for-
mulations. For this, we are going to use linear programming. This has been used in MDP theory (Altman [4], Puterman
[62]) to study the space of policies.

The following proposition shows that the solution of the optimality Equations (B.1) solves the LP (D):

max  va,1
t+l

(D) 9 2 pUL(s) + I Z Ve, 01 vte[n]selt], (B.2)

t+1
Ut,s) = m;%ﬂ,a)/ vt e [n],s €[t], (B.3)

which has as a dual the LP (P):
n t
x/Y>0 — ;Ut(s)Xt’s

(P) X1,1 +Y1,1 < 1, (B4)

=
Xis +Yrs < n Zy,,hf + (A =pxi—1,0 | Vte[n]selt] (B.5)

o=1

We denote by vp) the value of the LP (D).
Proposition B.1. Let v* = (v], ), ; be a solution of (B.1); then, v* is an optimal solution of the problem of (D) in Equations (B.2)~(B.5).

Proof. Given that v" satisfies the optimality Equation (B.1), then it clearly satisfies Constraints (B.2) and (B.3). Thus, v* is feasible
and so V(1,1) 2 V(D)-

To show the optimality of v*, we show that any solution @ of the LP is an upper bound for the value function: v* < . To show
this, we proceed by backward inductionint =n+1,#,...,1 and we prove that Vi) < Ult9) foranys € [t].

We start with the case t =n+ 1. In this case, vzn = 0 for any s, and, because 7(n+1,s) >0 for any s, then the result
follows.

Suppose the resultis true fort =t +1,...,n+ 1 and let us show it for t = 7. Using Constraints (B.2)—(B.3), we must have

1 T+1 T+1
'U(-[ s) >maX{Pu (S)+(1 P) +1Z (t+1,0)s +1Zv T+1, U)}

T+l o+l (backward induction)
> max{pu (s)+(1 - F’) 1 Z R Z (c+1, 0)}

.
=g,

where the last line follows by the Optimality Equations (B.1). Thus, v(p) = 0,1) 2 vf; ;). O
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The dual of the LP (D) is depicted in Equations (B.2)-(B.5) and named (P). The crucial fact to notice here is that the feasible
region of (P) is oblivious of the utility function (or rewards) given initially to the MDP. This suggests that the region

1 t—1
PoL = {(x,y) 2000+ 11 =%+ Yo =D Yero+ (=P, Vien]se [t]},
o=1

codifies all possible policies. The following two propositions formalize this.
Proposition B.2. For any policy P for the SP-UA, consider
Xt s = P(P reaches state (t,s), selects candidate)
and
Yt,s = P(P reaches state (t,s), does not select candidate).
Then, (x,y) belongs to PoL.

Proof. Consider the event D; = {t-th candidate turns down offer}. Then, p = P(D;). Consider also the events
O; = {P reaches t-th candidate and extends an offer},
and
O; = {P reaches t-th candidate and does not extend offer}.

Then, O; and Oy are disjoint events and O; U O; equals the event of P reaching stage t. Thus

IO,O{Stz(t,s)} + lafﬁ{sf:(f/s)} = 1{7’ reaches state S;=(t,s)} - (B6)

Note that x; s = P(O; N {S; = (t,5)}) and y; s = P(O; N {S; = (t,5)}). For t=1, then S; = (1,1) and {P reaches state S; = (1,1)} occurs
with probability 1. Thus,

X1,1+Y1,1 = 1.

For t > 1, by the dynamics of the system, the only way that P reaches state t is by reaching stage t — 1 and not extending an offer
to the t — 1 candidate or extending an offer, but this was turned down. Thus,

t—1
1”’ reaches state Sy=(t,s)} = Z 16,,10{&4:(t—l,a)}n{s,:(t,s)} + 10171ﬁ{spl:(fflro)}mﬁf—lﬂ{Sr:(er)}' (B7)
o=1
Note that
P(O;—1 N {Si—1 = (t—1L,0)} N {S; = (t,9)})

=P(Or1 N{Si-1 = (t = 1,0)}|S; = (£,9))P(S; = (t,9))

= PO, N {51 = (- Lo}

1
= ?yt—l,n-

Note that we use that P’s action at stage t — 1 only depends on S;_; and not what is observed in the future. Likewise, we obtain
P(O; 1 N{St-1=(t=1,0)} ND; 1 N{S; = (t,5)})
=P(Di-1)P(Or1 N{Stc1 = (t—1,0)} N{S: = (1,9)})
=1 =p)P(Or1 N{St1 = (t—=1,0)} N{S; = (t,9)})

1-p
t

xt—l,ﬁ-

Using the equality between (B.6) and (B.7) and taking expectation, we obtain

1—
t

t—
1
? xt—l,m

1
Xt s + Yt s = Yt-1,06 T
1

o=

which shows that (x,y) €e PoL. O
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Conversely,

Proposition B.3. Lef (x,y) be a point in Por. Consider the (randomized) policy P that in state (t, s) makes an offer to the candidate t with
probability x;,1 ift=1and

Xt s
ny;l] ]/t—l,a + (1 - p)xtfl,u

if t>1. Then, P is a policy for SP-UA such that x; s = P(P reaches state (t,s), selects candidate) and y; ; = P(P reaches state (¢,s),
does not select candidate) for any t € [n] and s € [t].

Proof. We use the > same events Oy, 0, and D; as defined in the previous proof. Thus, we need to show that x; ; = P(O; N {S; =
(t,5)}) and y; s = P(O; N {S; = (t,5)}) are the right marginal probabilities. For this, it is enough to show that

P(O:|Si = (t,s)) =tx,s and P(O¢|S; = (t,5)) = tyss,

for any t € [n] and for any s € [f]. We prove this by induction in ¢ € [n]. For t =1, the result is true by definition of the acceptance
probability and the fact that x1,1 + 1,1 = 1. Let us assume the result is true for f — 1, and let us show it for t. First, we have

P(O;|S; = (t,5)) = P(Reach t, P(S;) = offer|S; = (t,5))
=P(Reach t|S; = (t,5))P(P(S;) = offer|S; = (¢,5))

t
=P(Reach t|S; = (t,5)) - e

t—1

(20:1 Y10+ (1 p)xt—l,s> .
Now, we have
P(Reach ¢t|S; = (t,5))
=P((Or—1 N Dy_1) U O41|S; = (t,9))

1
=(1- p)ZP(Ot—l [Si1=(t—1,0),5 = (t8)P(S1 = (t—1,0)[S = (t,5))
o=1

t—1

+> P(O;1]Si1 = (t=1,0),S¢ = (£9))P(St1 = (¢ — 1,0)|S; = (£,5))

o=1

-1
=(1- p);P(Ot—l |Se-1 = (t— 1"7))15_%

-1
_ 1
+ ZP(Ot,l |Si1=(t—1,0)) =] (P only makes decisions at stage ¢ — 1 based on S;_1)
o=1
-1
=(1- p)th,l,g +Yi-1,0 (induction).
o=1

Note that we used

P(S; = (£,9)[St-1 = (t = 1,0))P(S;-1 = (t — 1,0))
P(S; = (t,9))

P(S;_1 =(t—1,0)|S: = (t,9) =

1
=T

Thus, the induction holds for P(O;|S; = (f,s)) = tx; ;. Similarly, for

P(O;|S; = (t,5)) = P(Reach t, P(S;) = pass|S; = (t,5))
=P(Reach t|S; = (t,5))P(P(S;) = pass|S; = (t,5))

t—1 txt’s
= Z}/t—l,o +(A—pxiie || 1- -
o=1 (Zg:l Yi-1,6 + (1 - p)xt—l,s)

= tyt,S/

where we used the fact that (x,y) € Po. O
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B.2. Stage 2: The Robust Objective

Proposition B.4. Let P be any policy for SP-UA and let (x,y) € PoL be its corresponding vector as in Proposition B.2. Then, for any
ke [n],

n t
P(P collects a top k candidate) = Z Z pxsP(Ry < k|ry =5s).

t=1 s=1

Proof. We use the same events as in the proof of Proposition B.2. Then,

n t
P(P collects a top k candidate) = ZZP(Ot ND;N{S; =(t,8)} N{R; < k})
t=1 s=1

n t
= Zszt,sP(Rf < k|Or N Dy N {S; = (t,5)})

t=1 s=1

not
= Zszt,SP(Rt < klri = s).

t=1 s=1

Note that R; only depends on S, and S; = (¢,s) is equivalent tor,=s. O
We are ready to prove of Theorem 2.

Theorem B.1 (Theorem 2 Restated). The largest robust ratio ), corresponds to the optimal value of the LP

gy
s.t.
(Lp)n,p Xts S <1 PZZXT g) Vte [1’1],5 € [t]
=1 0=1
Yy < (1 )kZZXt sP(R; < k|ry=5) Vk € [n].
- t=1 s=1

Moreover, gwen an optzmal solution (x*,y;) of (LP),, ,, the (randomized) policy P" that at state (t, s) makes an offer with probability
txp /(1 — P X; ;) isy;-robust.

Proof. We have

. P(P collects a candidate with rank < k)

Y, = max min

P keln] 1-(1-pf
n t
P(R; < k|ry =
= max minpz;t:1 2o %15 [k_ I =9) (Propositions B.2, B.3 and B.4)
(x,y)e PoL ke[n] 1— (1 — P)
Z: 125 X SP(R,<k|n s) .

Now note that the function y : (x,y) F> mine[y is constant in y. Thus any point (x,y) satisfying Con-

1—(1-p)f
straints (B.4) and (B.5) has an equivalent point in (x’,y’) € PoL w1th x’ =x,y’ >y so all constraints tighten and the objective of y
is the same for both points. Thus, ;, equals the optimal value of the LP (P"):

max
x>0 4

s.t.
(P) x1+y1 <1

1/
Xis +Yps < n (;ytm +(1- P)xtl,a> Vte[n],s€|t]

PYi 3t X sP(Ry < ki =)
1-(-pf

where we linearized the objective with the variable y. By projecting the feasible region of (P’) onto the variables (x, ), we obtain

(LP),, - This is a routine procedure that can be carried out using Fourier-Motzkin (Schrijver [65], but we skip it here for brevity.

For the second part, we can take an optimal solution (x*,)}) and its corresponding point (x*,y*) € PoL. A routine calculation
shows that1 —p>> >0 x; = =y 1o+ (1 —=p)x;_, .. Thus, by Proposition B.3, we obtain the optimal policy. O

)< Vk e [n],



Perez-Salazar, Singh, and Toriello: Robust Online Selection
24 Mathematics of Operations Research, Articles in Advance, pp. 1-35, © 2024 INFORMS

B.3. Missing Proofs from Section 4: v}, Is Decreasing in n
Proof of Lemma 1. We know that )}, equals the value

min 9,3
u:[n] >Ry

Soui=1
(DLP) s.t.

1 t=1
Vits) = maX{PUt(S) f U(Hl ey Z (t+1,0) } Vie[n],se[t]

Uns1,s) =0 Vse[n+1],
where U;(s) =>4 - (1 P(R[ [K]|ri=s)= Z/ 1 Zk>/(1 o )P(R[ jlri = s). Thus, the utility collected by the policy if it col-
lects a candidate with rank iis Ui =) 4, T

5 Letu:[n] — [0 1] such that "%, u; =1 and extend u to 1 : [n + 1] — [0,1] by
{41 = 0 and define U,(s) accordingly. C0n51der the optimal policy that solves the program

1 t+1 1 t+1
Bits) = maX{pUt(S) +—Zv(t+1a)/ - 120 t1,0) o VEE M+ 1] s €[]

with the boundary condition 9,4 5y = 0 for all s € [ +2]. Call this policy P. Note that when policy P collects a candidate with
rank i, then it gets a utility of

V7 L o —

= 1-(1-p) E1-01-p)

fori < nand U, = 0. By the choice of P, the expected utility collected by Pis Val(73) =1?1,1)- We can obtain a policy P for n ele-
ments out of P by simulating an entry of 11+ 1 elements as follows. Policy P randomly selects a time #* € [11 + 1] and its availabil-
ity b: we set b=0 (unavailable) with probability 1 — p and b=1 (available) with probability p. Now, on a input of length n, the
policy P will squeeze an item of rank n+1 in position #* and it will run the policy P in this input, simulating appropriately the
new partial ranks. That is, before stage t*, policy P behaves exactly as P in the original input of P. When the policy leaves
the stage t* — 1 to transition to stage t*, then the policy P simulates the simulated candidate #* (with real rank n + 1) that P would
have received and does the following: ignores the candidate and moves to stage t* if the simulated candidate is unavailable
(b=0) or if 73((t* ) = pass, whereas if 73((1‘*, t*)) = offer and the simulated candidate accepts (b=1), then the policy P accepts
any candidate from that point on.

Coupling the 1nput of length 1+ 1 for P and the input of length 1 with the random stage ' for P, we can see that the utilities

collected by P and P coincide. Thus, the optimal utility v, 1) collected by a policy for n candidates and utilities given by
U:[n] — Ry, hold v(y,1) > 9,1). Given that ;1) > },,,, by minimizing over u we obtain y;, > y;,,. O

Appendix C. Missing Proofs from Section 5
In this subsection, we show that |y, —y%,| < O((logn)*/+/n) for fixed p (Lemma 2). The proof is similar to other infinite approxi-
mation of finite models, and we require some preliminary results before showing the result. First, we introduce two relaxations,
one for (LP) and one for (CLP). We show that the relaxations have values close to their nonrelaxed versions. After these prelimi-
naries have been introduced, we present the proof of Lemma 2.

Consider the relaxation of (LP), , to the top g candidate constraints:

*
= max
yn q >0 Y

(LP)y,p,q Xps < — <l pz ZXT s/> Vt,s, (C1

<t §'=

P =
S 11 p)k);;xt,sP(Rt €lkllr=s) Vk e [q]. (C2)

Note that y;, <y}, g because (LP) is a relaxation of (LP),, »- The following result gives a bound on y;, compared with y;, ¢

P,
Proposition C.1. Foranyq € [n], y;, > (1 - (1—p)")y;, .

Proof. Let (x,y;, q) be an optimal solution of (LP), , .. Let fi = - (1 TaoF S S %1 sP(R; € [K]| 7 = ). Then, Vg =Miny, . qfi It

(1(lrl

is enough to show thatf; > (3 e )fq fori > g because y;, > min;—, ., ,,fl(i 8 z)" Jmini—y, . ofi > (1—(1— v, .
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For any j we have

n

fj+1 =

’ 1-(1-py/
Wh ;xtsP(Rf [j+1lrn=s)> <W>f;

Thus, iterating this for j > g, we get f; > (1 ((1 2 ) f;, and we obtain the desired result. O

Likewise, we consider the relaxation of (CLP), to the top g candidates:

Voo = a:[o,lfgﬁ)(—» [0,1] 7
r20
(CLP),, alt;s)<- (1 p / > alr, U)d’l’) vie[0,1],5>1, (C3)
a>1

_ pﬁ)lzszla(t,s)zl{ﬁzs (::1)1}5(1 — t)f—s d
- (1—(1—p))

Wehave y;, . 27, and we have the approximate converse

, vkeql. (C4)

Proposition C.2. Foranyg>1,y! >(1—(1- p)”)y;rq.
Proof. Let (@, 7, q) be a feasible solution of (CLP)W. Let

- p)/Za( s)Z( )tS(l £ dt

s>1

Assume that y, . < minfi. As in the previous proof, we aim to show that f; > (1 — (1 — p)Nf; for i > g, because this will imply
Ve = (1=1-p)y,, g forany (a,y,, ) feasible for (CLP), ,.
Now, for any j, we have

j+1 -1 .
fir1 = y+1/ ;a(t s)Z( B 1>t5(1 -t

t=s

-1 t
s(1-pd
W/Zaus)z( o

s>1

1-(1-p)
(ﬂ)f

Iterating the inequality until reaching g, we deduce that for any j > g, we have f; > (%) f5- From here, the result follows. O

Remark C.1. If we set g = (logn)/p, both results imply that y}, > (1—1/n)y;, ,and y;, > (1 —1/n)y;, .. Thus, welose at most 1/n
by restricting the analysis to the top g candidates.

Proposition C.3. There is ng such that for n > no, for any t such that \/n logn <t <n —+/nlogn, { <log(n)/p and € > s it holds that

forany T € [t/n,(t +1)/n] we have
1 —£<w< 1 +£

pVn~ (fj)’[s(l—’[)[_s_ pvn

Proof. We only need to show that

0 (2)/0) 10

Vi e(1—0 T pyn
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ot 1 (n—0)in—t)
T—s)nl(n—t—(L—s))

Sttt —=1) - (t—s+1) m—tHn—t—=1) - m—t—(—-s5)+1)
B <n-(n71) (nfs+1))((nfs)(nfsfl) (nfsf([fs)+1))

N A e R e \ W AR B (=
= (E) (1—5) (1.(1 — %) (1 _ (5—1)>) ((1_ é) . (1 _ @) <1 _ (s+(€;s)—1)>> .

n n n

B C

We bound terms A, B, and C separately. Given that s < £ and we are assuming that £ < (logn)/p and t > v/n logn for n large, then
we will implicitly use thats, £ < min{t/2,1/2}.

Claim C.1. It holds (1 —4/(pyn))t*(1 — 1) < A= (t/n)* (1 — t/n)"* < (1 +4/(p\n))T5(1 — 7).

Proof. For the upper bound, we have

<£) = T (1-e+2) - (¢ € [t/n,(t + 1)/n])

_ S t—s 1 s
=71 —1) (1+(171)n)

<71 - T)"*Se(é’—&‘)/((l—f)ﬂ)

< TS(l _ T)[—sel’/(n—t—l)
<1 —1) (1 + 21177?—1) (Using e* < 1+ 2x for x € [0, 1]).
The upper bound now follows by using the information over ¢ and t and that (1+2¢/(n —t—1)) <1+ 2(logn)p~!(y/n logn

— 1) <1+4/(pyn) for nlarge.
For the lower bound, we have
s {—s s
() (-3) = (-a) a0
n n n
S
=r(1-1)"° (1 - i)
™

>°(1— 1) fea

> (1 —1) %1 —s/(tn — 1)).
Given thats/(tn — 1) <log(n)/(p(t — 1)) < 2/(p+/n) for n large, the lower bound follows. O
Claim C.2. We have 1 — 2%/t <B <1+2s%/n.

Proof. For the upper bound, we upper bound the denominator

1-0_%)m(1_gg) .
(1.(1;) (1(snl))) S1.(17%) <1,(s;71)>

< ez: k/(n—k)

< /(9 (Function x — x/(n — x) is increasing)

2

<1+2%.
n
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For the lower bound, we lower bound the numerator:
(1= 1) ... _ 6
(1=} - (1-52) 21'(171> (17(5—1)>
1-(1- 1) . (1_@) t t

s—1
>e 2 WP (Using 1—k/t = (1+k/(t — k)" > e ¥/t-h)

s2 s

—>1-2—.
t—s t

N

>1- O

Claim C.3. Wehave 1 — 262 /(n —t) < C <1+ 2% /n.

Proof. Similar to the previous claim, we bound denominator for an upper bound and numerator for a lower bound.

s (k) Y. 1
(-9 (1-&0) (1 S | =g (1 e (1 G
< o2 o)) (k) < q ¢ /
n

) - (1 -9~
((1_ %)(1_(%1)) ( (1_ (S+(£’>HS)1))> =1 (1_%> (1_%>

l—s—1
> D MBS 9 9

and

n—t

We can now upper bound ABC as

. {—s 4 52 52
ABC < 7°(1 — 1) 1+—)(1+2—)|1+2—
pVn n n
4 (logn)*\”
s(1 _ ~\{—s o L : _
<71 —1) <1+p\/ﬁ) <1+2 i > (Using t <n — ynlogn and s < € < (logn)/p)
s(1 _ ~\{—s 4 (log”)z . 2 .
<7’(1-r1) (1 + p_\/fl) (1 +6 o (Using (1+x)°<1+3xifxel0,1])
_ 10
<7r(1-1) S(l +—).
pvn

Recall that we are assuming p constant and 7 large; thus, the dominating term is 1/+/n1. Similarly, we can lower bound ABC as

s {—s 4 SZ 52
s s 4 (log n) (logn)2
=e-o(1-00) (-5 )(“%zm—»)

>T(1-1)"° (1 - %) (1 - 2(;‘2’5/’%))2 >T(1-1)"° (1 — p%) .0

Proof of Lemma 2. We are going to show |y —y7,| < O((logn)*/y/i1). As we can only guarantee good approximation of the
binomial terms in Proposition C.3 for ¢ < (logn)/p, we need to restrict our analysis to y; . and 7, g for g = (logn)/p. This is
enough because these values are withing 1/ of )}, and Y., respectively, due to Proposmons C.1and C.2 (see Remark C.1).

Before proceeding, we give two technical results that allow us to control an error for values of t not considered by Proposition
C.3. The deduction is a routine calculation and it is skipped for brevity.

Claim C.4. For any x feasible for Constraints (C.1) and such that x; s = 0 for s > g, we have fork < q

o SVHoBn S~ (PR, € [K]|ry =) < 10(log )/ (pyi).
° Zt:n—\/ﬁlogn S % sP(Ry € [K]|rs =) < 10(10g”)2/(19‘/ﬁ)'
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Claim C.5. For zmy a feasible for Cmgstr%ints (C.3), we have for k < q

NN SETID) 3l ( ) (1 - 1) *dr < (logn)* /(pVn).

o SRS a(e st (47 ) ©(1 - 1) dr < (logn)/(pyn).

First, we show that y; - 40(log n)?* /(p\/n). Let (a,y) be a feasible solution of the continuous LP (CLP)p We construct a
solution of the (LP),, , , as follows. Define
t—(1-p)

a(t,s)dt Vte[n], Vse(t],
t (t-1)/n

Xts =

and y, g = MiNkgg #Lp)kz:?:l S % sP(R; € [k]|r; = 5). Let us show that (x, Vn, q) is feasible for (LP), ,—that is, it satisfies Con-
straints (C.1) and (C.2). First, for t € [(t — 1)/n,t/n] we have

T

ta(t,s)+p a(t’,s)dt’ <1 - p/ Za(r o) drt’ +p/ a(t’,s) dt’

(t=1)/n o>1
(t=1)/n -1 v
Stop[ Sa,odr $1-pY Y e
0 o>1 v=1o0=1

We now integrate in [(t — 1)/n,t/n] on both sides of the inequality. After integration, the RHS equals (1 —p>_t_, 327, x. 0)/n.
On the LHS, we obtain,

T

t/n
/ (m(T,s) +p a(T’,s)dT’> dt
(t=1)/n (t=1)/n

_t / " awsde—a—p [ (5 _ T> a(r,s)dr
t

1 Je—1)/n (t=1)/n \1
t—(1- tn
> (t—(1-p) a(t,s)dt (Using t/n —1t<1/n)
n (t=1)/n
t
=—Xis-
n

Thus, Constraints (C.1) hold. By definition of y, o Constraints (C.2) also hold.
Now, note that for t > y/n logn, we have

1 t/n
Xpe> (11— / a(t,s)dr.
g ( \/HIOgn) (t=1)/n
Then,

t kn(n—t+s) ( 1) (” _€>
Vg = kzzxts Yo VAL (Definition of P(R; € [k]| 7 = 5)
k<'71 (1*)t1s1 = (';)

Vil / knuetss) (1) (11
- n— ogn t /-tn a(q;,s)d’[ nzjrs (sl)(t5>(1_ 1 )
(t

U (1_p) t\/‘lognSl (=s (1’1) \/ﬁlog”
t
n— \/ﬁlog“ k  pt/n korp—1
>min— / a(T,s)Z( )Ts(l —1)*d (1 - £>
e (17p) t= \/_logn (t (=s s—1 p\/ﬁ

(Since n — t +s > v/n logn > k and ¢ < k and using Proposition C.3)
n—+/n logn

—min— P /:/" 33 (e, s)( ! )75(1 —od (1 - %)

(1 - ﬂogn D/ S

> k};‘( “a_pf /0;; a(r, s)( 1)15(17:)“d12(1;§/%1)2> (17;92_\(/)_>

(Claim C.5)
(logn) (17 10) 20 7210gn
2<y p«/‘) i) 27 e S
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With this, we have proved that (x,y, /) is a feasible solution of (LP), ,, with an objective value y, = at least y —20/p\n
—2 logn/+/n. Hence, the optimal value of (LP), by Vh,q is atleasty — 20/ pyn —2logn/+/n. Given that (a,y) is any feasible solu-
tion of (CLP),, ,,and y, , > yw, weobtainy;  >7:, — 4010g(n)/(p\f‘) for n large.

Now, we show that yoo a0 Z Vg~ 40(log n) /(py/n). Let (x, Vg ) be a solution of (LP),, ,, .. Let us construct a solution of (CLP), .
Note that we can assume x; s = 0 for s >¢, as (LP),, , , does not 1mpr0ve its objective function by allocating any mass to these vari-
ables. Consider « defined as follows: for t € [0,1], let

(1,5) = nxy (1 —log(n)/vn) t=[tn]>+n,s<min{t, logn/p}
ans= 0 t =[wn] < /n or s > min{t,logn/p}.

Lety,, , = ming (1 TooF fo Sqa(t,8)3 5, (‘ChTa- )7 d. We show first that (a, Veo,q) 18 feasible for (CLP), ., and for this,
it is enough to show that @ holds Constraints (C.1). For T < 1/+/n, we have a(1,s) = 0 for any s; thus, Constraint (C.3) is satisfied
in this case. Let us verify that for 7 > 1/+/n, the constraint also holds. Let t = [tn] and s > 1. Then,

ta(t, s)+p/ ZD((T o)dt’

o>1

l(gn

<1a(t, s)+pZ/ Za(’[ s)dt’ +p/ Za(’c’,a) dt’
o=l

= o s=1
log r logn 1
< txts+pZfo stp Since x; s < — always
f '=1s=1 t
logn logn
<(1-55) (1+°F)
logn logn
<{(1T-——22)(1+—=2-). t>
< () () (t2+n)

The last term is < 1. Thus, (@, y, q) is feasible for (CLP)p q- Now,

Fon= r&?ﬁ/ Sood(,y Jro-of e
n— \/'logn k —
/ Za(”( S)Z < >TS(1 —7)dr

B k<q 1- (1 P) t= \/—lﬂg" 7 s>1 {=s

n— \/—logn
mei /]Za(’[ s)

(Proposition C.3)
kSl] ]‘ (1 p) t= \/vlogn nos>1 l=s

M»
7N

v: ~

H L
[

p n—ynlogn k <f7 1) )
>min— -~ NN
B s ()

> | min-— kzz tsf: Ci?f "‘)d 20(125/’;)2 (1,1‘i>%ﬁn> <1f%) (Claim 4.5)

(1 p)tlsl =5

(log n)*

pvn
With this, we have formed a feasible solution (¢, ), q) of (CLP),, ,. Hence, y¢, 0= Vg —40(log n)?/ py/n. Given that (x, Vn, q) is any
feasible solution of (LP),, , ,, we can optimize over (x, Vn,q) and obtaln the 1nequa11ty Veorq 2 Vg — 40(log n)*/ (p\/_ ).

Using Propositions C.1 and C.2, we can conclude that, for 1 large, y%, — 50(logn)* /(pv/in) <y, < %, +50(log n)* /(p/n), where
the additional constant factors appear as a by-product of choosing g = logn/p in both propositions. [

g — 40—

Appendix D. Missing Proofs from Section 6
The following result is the reduction from SP-UA to i.i.d. prophet inequality problem
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Lemma D.1. Then, there is an algorithm A’ for the i.i.d. prophet inequality problem that for any ,6 > 0 satisfying
I+ep<1 n>ilo 2 m=[(1+e)pn]
p 7 = pgz g (3 7 - P 7
ensures
E[Val(A)]+ 06> y(1 —4e —O)E [nlax X,} ,

forany Xa, ..., Xy sequence of i.i.d. random variables with support in [0, 1], where Val(A’) is the profit obtained by A’ from the sequence of
values X1, ..., Xy, in the prophet problem.

Proof. The input of the i.i.d. prophet inequality problem corresponds to a known distribution D with support in [0,1]. The DM
sequentially accesses at most i samples from D, and, upon observing one of these values, she has to decide irrevocably whether
to take it and stop the process or continue. We are going to use A to design a strategy for the prophet problem. We assume that
the samples from D are all distinct. Indeed, we can add some small Gaussian noise to the distribution and consider a continuous
distribution D’ instead.

Note that A runs on an input of size n where a fraction p of the candidates accept an offer. We interpret pn = m as the set
of samples for the prophet inequality problem, while the remaining (1 — p)n items are used as additional information for
the algorithm. By concentration bounds, we are going to argue that we only need to run A in at most (1 + ¢)pn positive
samples.

Formally, we proceed as follows. Fix n and ¢ > 0 and consider the algorithm 5 that receives an online input of n numbers
X1,...,%;. The algorithm flips n coins with probability of heads p and marks item i as available if the corresponding coins turn
out heads. Algorithm B feeds algorithm A with the partial rankings given by the ordering given by x4, ..., x,,. If A selects a candi-
date, but the candidate is marked as unavailable, then B moves to the next item. If A selects a candidate i and it is marked as
available, then the process ends with B collecting the value x;. Let us denote by Val(B3,x1,...,x,) the value collected by B in the
online input xy, ..., x,,. Then, we have the following claim.

Claim D.1. EX|,---,XH [Val(B,X1, .. ,Xn)] > ')/Exl

.. S . .S
are n i.i.d. random variables with common distribution D.

x, [MmaxesX;], where S is the random set of items marked as available and X, . .., Xy,

Proof. Fix xy,...,x, points in the support of D. Then, a simple application of Proposition 1 shows

Es, <[ Val(B, xx1), - - -, X(m))] >y
Es[max;es x;] B

7

Note that we need to feed B with all permutations of x;, ..., x, in order to obtain the guarantee of A. From here, we obtain
Es »[Val(B,xx(1),...,x:(n))] > yEs[max;esx;] and the conclusion follows by taking expectationin X; =xy,..., X, =x,. O

For ease of notation, we will refer by Val(-) to Val(-, Xy, ..., X,). We modify slightly B. Consider 5’ that runs normally B if
|S| < (1 + ¢)pn or simply return 0 value if |S| > (1 + &)pn. Then, we have

Claim D.2. Let ¢,6>0. For n>210g(2/6)/(pe*), we have Ex, . x, [maxiesX;] > (1 — 6)E[maxic_¢ypm X;] and E[Val(B')]+6>
E[Val(B)]. S

Proof. Using standard Chernoff concentration bounds (see, for instance, Boucheron et al. [11]), we get Ps(||S| —pn| > epn) <
2¢-¢*/2 = §. Hence, for n > 2 log(2/68)/(pe?), we can guarantee that

1> (1 — il.
EXLg,Xn {I?e?sxxl] 2 (1-0)E Lsgli?)(nnxl

For the second part we have E[Val(B)] < 6 + E[Val(B)||S| < (1 + ¢)pn] =6 + E[Val(B')]. O
Claim D.3. Forany & > 0, we have E[max;<1_¢)pn Xi] = (1 — E)ZE[maXis(1+£)anj].

Proof. Given that P(max;X; < x) = P(X; < x)k, then we have

E[max; _e X; 0 1-P(X;<x pn(l—¢) dx 1-P(X; < pn(l—¢)
[ i<(1—¢)pn il _ fooo( (X1 ) — ) > inf,s0 (X1 <x) > inf f(o),
E[maXig(1+e)ani] fO (1 — P(Xl < x)pn( +é))dx 1_ P(X1 < x)pn( +ée) vef0,1)

where f(v) = (1 — 0v17¢)/(1 — v1*¢). Now, the conclusion follows by using the fact that the function f is nonincreasing and that
infyepo, 11 f(0) = limy 1 f(0) = (1 — &) /(1 +¢) > (1 - e O
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Putting together these two claims, we obtain an algorithm that checks at most (1 + ¢)pn items and guarantees

y(1—e)*(1— 5)15[ max X,} < E[Val(B')] +6.
i<(1+e)pn

Now, fix € > 0 small enough such that (1 + ¢)p < 1. We know that the set {| (1 + ¢)pn]},», contains all nonnegative integers. Thus,

forn > 21og(2/6)/(pe?) algorithm B’ in an input of length m = [ (1 + €)pn] guarantees

y(1—e)*(1 - O)E {Igz;lnx Xl} <E[Val(B)]+6

for any distribution D with support in [0, 1]. This finishes the proof. O

The next result uses notation from the work by Hill and Kertz. For the details we refer the reader to the work, Hill and Kertz
[43]. The result states that there is a hard instance for the i.i.d. prophet inequality problem where E[max;<,,X;] is away from 0 by
a quantity at least 1/m®. The importance of this reformulation of the result by Hill and Kertz is that e~ ©" /E[max;<,, X, ] -0,
which is what we needed to show that y <1/B. Recall that f ~ 1.341 is the unique solution of the integral equation fo (y(1 -
logy) +B —1)"'dy = 1 (Kertz [48]).

Proposition D.1 (Reformulation of by Hill and Kertz [43, Proposition 4.4]). Let a,, be the sequence constructed by Hill and Kertz—
that is, such that a,, — P, and for any sequence of i.i.d. random variables X1, . . ., X, with support in [0, 1] we have

E {nlax X,-] <a,sup{E[X,] : t € Ty},
<m

where T, is the set of stopping rules for X, ..., X,,. Then, for m large enough, there is a sequence of i.i.d. random variables Xy, ..., X, with
support in [0, 1] such that

e E[max;c,X;] >1/m?, and

o E[maxi<,X;] > (@, — 1/m3)sup{E[X,] :te Tyt

Proof. In Hill and Kertz [43, proposition 4.4], it is shown that that for any ¢’ sufficiently small, there is a random variable X with
Po= P(X =0), p =PX =V, (X)) for j= m—2,PX=V,1(X)) = Py — € and P(X 1)=¢ such that E[max;<,X:]>
(am —¢ )sup{E[ |]:te Tm} where X, ... Xm are m independent copies of X. Here, V; (X) E[X ~NE[V 1(X)]] corresponds to
the optimal value computed via dynamic programming, and one can show that sup{E[X i]:t€ Ty} = Vu(X) (see Hill and Kertz
[43 lemma 2. 1]) We only need to show that we can choose ¢’ = 1/m>. The probabilities p,, ..., p,,_; are computed as follows: Let

(17] m(am))l "forj=1,...,n—2, where a, € (0,1) is the (unique) solution of 17, _ 1m(@m) =1, thenp, =3y, p =8 —8§j1forj=
1 ,n—2and p, ; =1—8,_». One can show that §,_» = (1— 1/m)Y V(1 — /m)l/("1 Y and a,, hold 1/(36) <an<1/(e—1)
(see Hill and Kertz [43, proposition 3.6]). For m large, we have

o~ 1/(m=1) <8y < e—l/(3emz),

thenp, ;=1-5§,0>1— e~ 1/(m=1) > 1/m? form large. Thus, we can set ¢’ = 1/m® and Pm_1 — € >0, and the rest of the proof fol-
lows. Furthermore, E[max;<,; X;] > ¢’ -12>1/m3. O

Appendix E. Missing Proofs from Section 7

Proof of Lemma 3. Forp >p*and £=0,1,...,4, we calculate tight lower bounds for the expression in the left-hand side of the
inequality in the claim, and we show that these lower bounds are at least 1, with the lower bound attaining equality with 1 for
¢=1,2.For { > 5, we can generalize the previous bounds and show a universal lower bound of at least 1.

e For ¢ =0, we have

1 1 0
/l/a p)ipdtzﬁ(l p)=1=(1-p).
-

e For{=1,wehave

1 1
/ A=D1 / AP df =1 — (1 — pC-P/1p),
! Pt 2 —-p

fa-p  tP /a-p)

The last value is at least 1 —p if and only if (iff) p(2 — p) = 1 — p@P/0=9) iff p@-P)/1-P) > (1 — p)*. The last inequality holds iff
p = p* ~0.594134, where p* is computed numerically by solving (1 — p)* = p@-»/1-p),
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e For (=2, we use the approximation p'/1~7) < (1 +p)/(2¢) that follows from the concavity of the function p'/1~7) and the
first-order approximation of the function at p =1. With this, we can lower bound the integral

/1 @d»/l L
pron B Jape ¥

1=(14p)/(2¢)
= / (1 —u) Pdu (change of variable u =1—1t)
0

1-(1+p)/(2¢) W2
2/ u2<1+pu+p(p+1)7> du
0

(Using the series (1 —u)™? = Z < _kp) (u)k>

k>0

1 1+p 3 p 1+p 4 plp+1) 1+p 5
-5<1“zr> +z(1‘ 2 ) 10 Ut )

By solving the polynomial, we see that the last expression is > (1 — p)” if and only if p > 0.585395; thus, the inequality holds for
pzp.
e For { = 3,4, we can use a similar approach to get

1 ¢ +1 +2
/ a ﬂﬁsz(_;Eﬂ) +JL(L£iQ _
pU/ap) tP +1 2e {+2 2e

The last expression is > (1 — p)’ for £ = 3,4 if and only if p > 0.559826.
e For (¢ >5, we have

/1 -1, A=0+p)/Ce)™
P

1/(1-p) tP - +1

We show that (1 — (1 + p)/(2@))“1/(€ +1)>(1- p)(. This is equivalent to

¢

(1 -1 +p)/(2€)) (1 1 +p) S e+l
1-p 2e

Note that the function f(p) = (1 — (1 +p)/(2¢))/(1 — p) is increasing because f'(p) = (1 — 1/e) /(1 — p)2 >0.Forp=(2e—1)/(4e —3)

~ 0.56351, we have f(p) =2 —1/e. Thus, for p>p* >p and £ =5 we havef(p)5(1 —(1+p)/2e)=(2—- 1/e)’(1—1/e)>7.32>6.

By an inductive argument, we can show that f()'(1 — (1 +p)/(2¢)) > £+ 1 for any ¢ > 5, and this finishes the proof. [J

Proof of Lemma 7. During the proof, we assume that 1/p ¢ N. This is an assumption that is easy to remove with a density

argument. We divide the proof into a series of propositions and lemmas.
Taking logarithm on both sides of Identity (13), we obtain

1 Ar(1—
log ts1 —logtk=1_kp10g( kz(4k 1;7))

From here, we obtain

L1/p]

1 A1l —p)

log t1/p1+1 — logtr = Zl - log( i P)
=2

—jr Aj
el q /(l—p)Ajl
= — —dx.,
=2 1 —JpP Aj X

and also

k
1 A
log tis1 —logt1 /1 = flog( 4 )
) s j:%;mm— 1o\A (1 —p)
k A
= L ] 1(ix
P~ Vaapx
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Proposition E.1. We have
1. Fork<1/p,

yp(—kp) _ /Ak(l”’)l &

A(l=p) = Ja, x

2. Fork>1/p,

yplp—1) /“‘
A1 T Ak(l—p)

Proof. Both results follow by using the monotonicity of 1/x and that

A1 —p) = A =t (1 —p) ! +ypk(1 —p) — (1 —p)

The next result shows bound over log fi,1. We use this result to interpret the bounds as Riemann sums.

Proposition E.2 (Bounds onlogt1). For k > 1/p, we have

k- k
Z 7P < <logtys1 —logt, <
j=2 A =1
j
Proof. For the upper bound, we have

1
[1/p] p

logtk+1<logt2+2—+T 2
Pj=lijpsn 2

5 Aj1

k
)44
< s
<logt, + Z Y +
=11
For the lower bound, we have

L1/p)
1
log tys1 > logts + — Z 7/;7

Pi= AJ =L /pl
For p >0 but small enough, 1 + ypj < A; < 1e#"/1~7) + ypj. Using this in the bounds of the previous proposition, we obtain

/ de < khm log tyy1 —logts
2 —00

ty exp/(l—p) + yxp

Y

< yp(—kp)

Ar

cypkp—1)

Ak(l p)

p

P

P > logty + Z)/P.

1

yp

Ay

-1

p

—yplk=1)=yp(l —kp). O

A1 )i teP+yxp

Note that

Pt P

- dx <
L —=pJayp e + ypx 1-ph

Then, taking p — 0, we obtain

t

—X
Yo x qy = 7;3 L
e dx=1"

1

/ de = klim logt; —logty,
0 —00

tre¥ +yx

where we used that t, = t;(1+yp(1 —p)/ )P 5+, when p — 0. This concludes the proof of Lemma 7. O
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