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Nanocapacitors hold promise for energy-storage and microcircuit
applications

nanocapacitor arrays: 1o

high power density, optimal recovery, cycling stability — eff = 2(U)

miniaturization alleviates electric breakdown concerns
Experiments atd = 0(10%)nm): > 5 fold increase of breakdown field
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polarization in nanoconfined electrolyte: dominated by
the solvent |
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Tensorial permittivity of interfacial water (or other polar liquids):
nonuniform and highly anisotropic - weaker polarization response to
perpendicular field
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This work concerns a less known 1o
feature: effect of background field é@
on AC responses 3
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Important for nanosized systems:

nanocapacitors, ion channels, 0 2 4 6
membrane hydration... z/ A
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115, 22393 (2011)



Pp>09P<o0 Charge density profiles for different voltages
U between insulated plates ranging from U=0

(black) to 2.3V (magenta)

- Pq(2) X py(z)—2po(2) Q;

z ! !
model system: SPC/E water m(z) = = |_,, pq(z')dz
between graphene sheets Mgy, = LyL, J'Zb m(z")dz’

Za

N. Mulpuri, D. Bratko, J. Chem. Phys. — e / /
158, 134716 (2023) M = LyL, f_oo m(z')dz



DC: Interval averaging: inverse dielectric difference constant.
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Interval—averaged differential dielectric constant from dipole
fluctuations in a single layer system (no periodicity in z direction):
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DC: Interval averaging: inverse dielectric difference constant.
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AC: frequency-dependent permittivity

GL(][) — 1 . Lif(_d)J_) Gekle, Netz, J.Chem. Phys.
GL(f) cokg TV 137, 104704 (2012)

DPap(t) = < Mgp(O)M(1) > — < Mgp>< M>

Accurate calculation of @, (t) represents the central
computational challenge
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g’(v = 0) real part, (solid symbols)
”(v = v,,,4,) IMmaginary part (open
symbols)
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Valuable for the development of compact pulsed power systems,

e.g. In cancer treatment, where water is the principal dielectric medium:
Minatami, Y. et al. IEEE Trans. Diel. Electronic. Diel. Insul. 14 ,894 (2007)
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5-20 fold change in V___ can single
MilX

out the targeted region in compact-
pulsed-power therapy etc:
Minatami, Y. et al. /EEE Trans. Diel.
Electronic. Diel. Insul.14 894 (2007)

Microwave power: P = 2nve, ¢”(E,v)E?V
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€ and Vg in nanoporous particles permeated by water can

be tuned using ionic functionalization so heating can be limited to the
region where the particles are planted.



In summary

Coupling of confinement & electric field effects profoundly influences
water’s dielectric behavior:

Dielectric responses of confined water are markedly nonlinear under
intense electric fields, especially in interfacial layers, where nonlinear
field effects are nonmonotonic and strongly depend on the polarity of
static (DC) field.

The real and imaginary components of AC permittivity in interfacial
water show prominent and non-monotonic spectral shifts in the
presence of concurrent DC field.

The magnitude of the shift is a predictable consequence of changes
of the static pemittivity, while it is not significantly affected by
rotational relaxation rates modified under the orienting field.
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Thank you!



