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Abstract
In this case study we explored how a mathematician’s teaching of the Cauchy-Riemann (CR) equations actualized the virtual 
aspects of the equations. Using videotaped classroom data, we found that in a three-day period, this mathematician used 
embodiment to animate and bind formal aspects of the CR equations (including conformality), metaphors, himself, and his 
students. We found that the mathematician’s creative introduction of matrices led to a discussion of transformations which 
made the CR equations mobile and hence gave him a space to virtualize the CR equations. In our results we summarize 
how the mathematician's assemblage of unusual, unexpected, and unscripted, and without given content creative acts with 
materials embedded in algebraic and geometric inscriptions and metaphors introduced or catalyzed the new—the virtuality 
of the CR equations. In our discussion, we highlight how the mathematician bridged the virtual with the abstract via his 
conceptualizations of the CR equations. Didactic implications include adopting the mathematician’s conceptualizations and 
asking students to bind them. This could stress the mobility of conformal maps which are generally not taught in an under-
graduate class. We propose offering professional development for educators focused on learning how to engineer didactic 
practices that showcase mobility, support binding, and exhibit animation of mathematical concepts.
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1  Introduction

Nathan (2021) summarizes embodiment as “body-based 
resources to make meaning and to connect new ideas and 
representations to prior experiences” (p. 4). In his work, he 
summarizes four types of embodiments, including gestures, 
defined as “movements of our hands and arms, as well as 
other body parts, that we make spontaneously as we talk 
with others and think to ourselves, including pointing and 
tracing actions” (p. 89). Most gesture research focuses on 
grades K-12 (e.g., Alibali & Nathan, 2012; Alibali et al., 
2019) or mathematicians’ gestures in research settings as 
they explain their understanding of abstract concepts, prove 
a statement, or solve a mathematical task (e.g., Marghetis 
et al., 2014; Oehrtman et al., 2019; Soto-Johnson et al., 
2016). The purpose of our research is to contribute to the 
literature on embodiment in a way that rethinks the “body 
in and of mathematics” (de Freitas & Sinclair, 2014, p. 
200) specifically in the didactic practice of undergraduate 
mathematics because such research is sparse (e.g., Keene 
et al., 2012; Stewart et al., 2019; Weinberg et al., 2015). 
In teaching and learning, de Freitas and Sinclair argue that 
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mathematical concepts, humans, the visible such as boards 
and technology, and the non-visible such as metaphors serve 
as material agents that become body-assemblages defined as 
“a set of material relations that … structures other material 
relations around it” (p. 34).

In their work de Freitas & Sinclair (2014) adopt Châte-
let’s (1993/2000) notion of the virtual which “binds the 
mathematical and physical together” (p. 201) because the 
“virtual dimension … animates the mathematical concept” 
(p. 202). Perceiving the virtual as both physical and math-
ematical and thus, movable, allows researchers “to study … 
a [mathematical] concept in terms of the kind of work it can 
do” (p. 200). Thus, mathematical concepts are material 
objects with “virtual and actual dimensions” (p. 202) which 
one can engage with via gestures, diagrams, materials, and 
metaphors. For example, we commonly showcase ideas in 
the Euclidean plane with our hands when we pick up a point, 
extend it to form a ray, or take two points to form their vec-
tor. This is how “mathematical concepts engage in a process 
of becoming, a process that binds them to” (p. 202) mathe-
maticians’ actions and how body-assemblages come to be. 
Châtelet’s examples for virtual and actual components of 
mathematical concepts tend to omit concepts that are theo-
retical or relate to areas of mathematics such as algebra and 
analysis. In this descriptive case study (Merriam, 1998) we 
attempt to contribute to this gap and explore how a mathe-
matician virtualizes the Cauchy-Riemann (CR) equations as 
he teaches an undergraduate complex analysis course. Our 
research question is: How does a mathematician use embodi-
ment to animate and bind the CR equations and illustrate 
the virtual dimensions of the material world as they relate 
to the CR equations? Recall the theorem: “Suppose 
f (z) = u(x, y) + iv(x, y) is differentiable at a point z = x + iy. 
Then at z the first-order partial derivative of the function u 
and v exist and satisfy the Cauchy-Riemann equations 
�u

�x
=

�v

�y
 and �u

�y
= −

�v

�x
 ” (Zill & Shanahan, 2015, p. 131). Our 

results indicate that this mathematician’s introduction of 
matrices to teach the CR equations allowed him to discuss 
transformations which made the equations mobile and gave 
him space to virtualize the CR equations by binding and 
animating their formal aspects (including conformality), 
metaphors, himself, and his class. Didactic implications of 
this work include adopting the mathematicians’ virtuality of 
the CR equations that avoids the definition-theorem-proof 
(DTP) model (e.g., Alcock, 2009).

2 � Literature review

In this section we summarize Lakoff & Núñez’ (2000) work 
as it relates to metaphors because metaphors can be agents of 
body-assemblages. Similarly, because gesture plays a large 

part in the virtuality of mathematics, we summarize relevant 
gesture literature. Finally, we summarize the literature on 
mathematicians’ understanding of complex analysis con-
cepts as it is our setting.

2.1 � Metaphors

In their seminal work on embodiment and mathematics, 
Lakoff & Núñez (2000) describe four conceptual mecha-
nisms that humans portray as they engage with mathematics: 
(a) image schemas, (b) aspectual schemas, (c) conceptual 
blends, and (d) conceptual metaphors. Image schemas are 
perceptual and conceptual in nature, link language and spa-
tial perception, and are frequently used when one reasons 
spatially. Aspect schemas refer to how our bodily movements 
convey the structure of mathematical objects. A conceptual 
blend combines two distinct structures with a fixed corre-
spondence between them (e.g., relating algebraic and geo-
metric structures). Finally, conceptual metaphors are meta-
phors whose structure maps from one entity to another but 
in different domains. Lakoff and Núñez use the language 
of “source” and “target” where the source (the concrete) 
implies the target (the abstract). Conceptual metaphors 
are “used unconsciously, effortlessly, and automatically 
… [and] arise naturally from … our commonplace experi-
ence,” (p. 41) especially childhood experiences and mirror 
the structure of image schemas. Thus, conceptual metaphors 
resemble the animating aspect of the virtual but they fail to 
account for the binding as described in the introduction. As 
such, a significant difference between conceptual mecha-
nisms and virtuality is that conceptual mechanisms “rein-
force the divide between the mathematically abstract and the 
physically concrete” (de Freitas & Sinclair, 2014, p. 200). 
In this study we describe how body-assemblage emerged as 
the professor used metaphors to animate and bind the math-
ematical and the physical of the CR equations.

2.2 � Teachers’ gestures

McNeill (2005) categorized gestures as beat, deictic, meta-
phoric, and iconic. Beat gestures coincide with the rhythm 
of speech and metaphoric gestures indicate images of an 
abstract concept such as holding a function in one’s hand. 
Deictic or pointing gestures occur when one points to 
something physically present or imagined and iconic ges-
tures “present images of concrete entities and/or actions” 
(p. 39). Alibali & Nathan (2012) merged iconic and meta-
phoric gestures to coin the term representational gestures, 
dichotomizing gestures into pointing and representational 
gestures. Research on teachers’ gestures in instructional 
settings shows that gestures are an integral part of peda-
gogical communication (Alibali et al., 2014). Teachers pro-
duce gestures to help convey mathematical ideas (Alibali 
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& Nathan, 2012; Font et al., 2010), to scaffold material 
(Alibali & Nathan, 2007), to maintain or shift focus (Ali-
bali et al., 2019), to establish and maintain common ground 
(Alibali, et al., 2013), to confirm the correct interpretation 
of verbal utterances from students, or to develop a shared 
understanding in the classroom (Alibali et al., 2019). Such 
gestures are important when an instructor introduces new 
concepts with specialized language because gestures link 
verbiage to the physical world (Alibali & Nathan, 2007, 
2012; Alibali, et al., 2013; Valenzeno et al., 2003). Interest-
ingly, Châtelet (1993/2000) did not attend to speech in his 
work; he was only interested in gesture/diagram interplay. 
de Freitas & Sinclair’s (2014) notions of body-assemblages 
view speech like gestures and diagrams as mathematical 
material.

While research on the use of teachers’ gestures in the 
K-12 classroom has thrived, research on instructors’ use of 
gestures in undergraduate mathematics classrooms is sparse 
(Keene et al., 2012; Stewart et al., 2019; Weinberg et al., 
2015), but the findings are similar. For example, Wein-
berg et al. highlighted how an abstract algebra instructor’s 
gestures contribute to their opportunities to communicate 
abstract mathematical ideas. Others (Oehrtman et al., 2019; 
Soto-Johnson et al., 2016) documented how mathemati-
cians integrate gestures as they explain geometric interpre-
tations of complex analysis concepts in research settings. 
Our current work extends such research to a classroom set-
ting, which provides a space to explore how assemblages 
emerge organically, especially when students are part of the 
material.

2.3 � Mathematicians and complex analysis

Researchers have explored undergraduates’ and mathemati-
cians’ geometric interpretations of the continuity of com-
plex functions, complex contour integrals, and complex dif-
ferentiability (Hanke, 2020; Oehrtman et al., 2019; Soto & 
Oehrtman, 2022; Soto-Johnson et al., 2016; Troup, 2019; 
Troup et  al., 2023). Troup and colleagues showed how 
dynamic geometric environments help students discover 
the amplitwist geometric interpretation (Needham, 1997) 
of the complex derivative. Characteristics of the amplitwist 
are small discs (a) dilate by |f �(z)| , (b) rotate by Arg(f �(z)) , 
and (c) map to small discs. In their most recent work, Troup 
et al. (2023) found that technology did not fully aid students 
in discovering the amplitwist concept with the CR equa-
tions. Students struggled to coordinate the linear algebra and 
multivariable calculus notions embedded in the geometry of 
the CR equations, but they recognized conformal maps. In 
other words, the students struggled to bind the mathematical 
with the physical.

The works of Oehrtman et al. (2019) and Soto-Johnson 
et al. (2016) include the same five mathematicians who 

regularly teach complex analysis and conduct research in 
this field. For complex contour integrals, Oehrtman et al. 
found the mathematicians drew rich parallels from line 
integrals of real-valued functions as an accumulation of 
Riemann sums but struggled to conceptually interpret what 
was accumulated in the complex case, except for one of the 
mathematicians—Rafael (pseudonym). On the other hand, 
the mathematicians easily expressed the amplitwist concept 
with gestures. In terms of the geometric interpretation of the 
CR equations, three mathematicians expressed not think-
ing about such an interpretation. The fourth mathematician 
admitted to not having thought about the matter but cor-
rectly demonstrated and explained the conformal aspect of 
the CR equations. The last mathematician, Rafael, conveyed 
his geometric understanding of the CR equations via gesture/
diagram interplay and exhibited rich binding and animating 
of the physical with the actual world. His virtuality of the 
CR equations led to this case study in a classroom setting.

3 � Theoretical perspective

Châtelet (1993/2000) argues that the materiality of math-
ematical invention is born from a mathematician’s hand 
when they make a diagram before introducing formal math-
ematics. Châtelet’s interest is not in static diagrams; rather, 
his interest is in mathematician’s diagrams that bring new 
spaces into being. Moreover, he focuses on the relation-
ship between the actual and virtual because mathemati-
cal concepts can be actualizations of the virtuality of the 
world. Adopting these notions, de Freitas & Sinclair (2014) 
introduced the inclusive materialism framework which (a) 
views aesthetics and affect as instigators of mathematical 
activity, (b) attends to how material practices shape and are 
shaped by socio-political concerns, (c) pursues descriptions 
of phenomena that privilege differences, and (d) acknowl-
edges that surprise and creativity “are linked to the virtuality 
and vitality of matter” (p. 43). We elaborate on the last two 
elements as they are most related to our research. Given 
that mathematical concepts tend to be perceived as inert, 
inanimate, and immaterial, the authors seek a different per-
spective where mathematical concepts are animated. Hence, 
interaction between a human and mathematics becomes 
intra-action through embodiment. In discussing creativity, 
de Freitas and Sinclair describe learning as the creation of 
something new and clarify that “it is not that individuals are 
creative or not creative, but rather that creativity flows across 
the … assemblage” (p. 86). They adopt Châtelet’s notions of 
inventiveness and creativity that can be viewed as a collec-
tive process of gesture/diagram/speech/technology/human 
interplay and argue that material intra-actions in the class-
room shift the actual/virtual relationship because they unveil 
new and unexpected mathematics. As such inventiveness is 
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a “dance between the gesturing and drawing hand, which 
expresses and captures the temporal and dynamic moment 
when the new or the original comes into the world at hand” 
(p. 88). With this in mind de Freitas and Sinclair interpret 
a creative act as a reassembling and reconfiguring of the 
world portrayed through four characteristics: (a) introduces 
or catalyzes the new, (b) is unusual, (c) is unexpected or 
unscripted, and (d) is without given content.

The first characteristic refers to the transformation of 
the actual/virtual relationship which emerges through body 
movement intra-actions with material. The second charac-
teristic refers to actions that do not align with the norms of 
a particular context. The unexpected or unscripted charac-
teristic refers to acts that occur unintentionally and the last 
characteristic signals how actions change the way language, 
signs, and meanings are used in a situation; one might inter-
pret this as creating shared meaning. de Freitas and Sinclair 
stress that mathematical inventiveness is not restricted to an 
individual body but rather is “a relationship between learn-
ers/teachers and the material world” (2014, p. 89), which 
includes material interplay. We note that geometric or alge-
braic symbols, as those found in the CR equations, develop 
from mathematical operations where one acts on inscriptions 
such as graphs, equations, and manipulatives and hence, 
constitute a material. In the analysis section, we describe 
how we adopted the elements of animating mathematical 
objects and creativity from the framework of inclusive mate-
rialism for our research.

4 � Methods

4.1 � Participant and setting

This study employed a case study design (Merriam, 1998), 
where we studied our research participant, Rafael, a Ph.D. 
mathematician with over 20 years of experience teaching 
undergraduate complex analysis. He served as a research 
participant for several of the lead author’s research when 
investigating how mathematicians reason geometrically 
about complex analysis concepts. This study set out to 
explore if Rafael provided rich and novel explanations of 
the CR equations in a classroom setting, as he did in a 
research setting. This aligns with Merriam’s philosophy 
that “a case study might be selected for its very unique-
ness, for what it can reveal about a phenomenon” (p. 33) 
and provide access to new knowledge that we may not have 
otherwise. For his complex analysis course, Rafael adopted 
an open resource textbook with few diagrams, which he 
supplemented with his notes and expertise. His affinity for 
geometric interpretations inspired a course schedule where 
Rafael documented the topic of the day, related concepts, 
homework, and visual explorations that he intended to 

implement as part of the lesson. For the CR equations, 
Rafael’s calendar indicated that he would spend one day on 
this topic, relate it to Laplace’s equation and harmonic con-
jugates, and introduce gradient vector fields and contour 
lines as visual explorations. His detailed course schedule 
with anticipated visual explorations suggests Rafael inten-
tionally illustrated the geometry behind the symbolism. 
During class Rafael used a document camera to project 
the notes that he wrote as he lectured and tended to move 
towards the projected material or the students to emphasize 
key points.

4.2 � Data collection and analysis

A third-party videotaped the first six weeks of Rafael’s 
course, focusing on Rafael’s teaching, and the lead 
researcher took field notes. In her field notes, the researcher 
documented students’ questions and responses to Rafael’s 
questions, as well as a detailed timeline of each class session. 
We began the analysis by watching different class sessions 
in teams of two and documenting where Rafael integrated 
embodiment via visuals, spatial sense, gesture, intuition, and 
metaphors. We focused on the CR equations lesson because 
although Rafael’s calendar indicated that he would dedi-
cate one class period to this topic, he spent three days on 
it: 20 min on the first day, 50 min on the second day, and 
35 min on the third day. We transcribed the video data using 
transcription software and split the data into 10-min seg-
ments for each researcher to provide an overall description 
of their assigned segment and clean the transcript. Using the 
revised transcripts, we broke the data into small, refined seg-
ments, and coded the refined segments. These segments were 
introduced if Rafael navigated between embodied, symbolic, 
or formal interpretations of the CR equations. This allowed 
us to analyze how Rafael exhibited evidence of animating 
mathematical objects or engaging in one of the four creative 
acts (de Freitas & Sinclair, 2014) with formal, symbolic, or 
embodied elements of the CR equations. Using fine-grained, 
“rich thick description[s] of the phenomenon” (Merriam, 
1998, p. 29) we coded instances of gesture/diagram/mate-
rial/speech interplay as evidence of animating mathematical 
objects. Instances when Rafael presented the CR equations 
in a unique or novel way compared to what is in traditional 
complex analysis texts were coded as unusual. It was impos-
sible to be certain when and if Rafael’s lesson was scripted 
ahead of time, but we were able to compare his lesson to his 
plans documented in his calendar and use this as evidence of 
unexpected or unscripted. Unique responses to student ques-
tions were also coded as unexpected or unscripted. Finally, 
segments where students or Rafael adopted or changed their 
language or signs in class were coded as without given con-
tent. Like de Freitas & Sinclair (2014) we did not code epi-
sodes where Rafael introduces or catalyzes the new, because 
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this creative act manifests as an assemblage of episodes from 
the other three categories.

Each researcher performed a first coding round for 
different parts of the lesson. We coded segments where 
Rafael implemented pointing or representational gestures 
(Alibali & Nathan, 2012) along with geometric or sym-
bolic inscriptions as embodied and the gestures served as 
evidence of animating mathematical objects. For all seg-
ments that we coded as embodied, we described Rafael’s 
gestures, inscriptions, or use of tangible materials. Seg-
ments where Rafael engaged in computations such as 
determining if a function satisfied the CR equations were 
coded as symbolic and such segments were not coded as 
evidence of a creative act. Similarly, we coded segments 
where Rafael stated a definition, proved something for-
mally, or stated a theorem, as formal and these segments 
were not coded as engaging in creative acts. Many seg-
ments have multiple codes because Rafael effortlessly 
changed explanations. A second researcher reviewed the 
first researcher's coding, and each group presented their 
coding to the research team. This process ensured that two 
researchers coded all the video segments and allowed for 
conversations with the entire team to ensure that we coded 
consistently. Such coding practices serve as a source of 
validity, reliability, and trustworthiness of results (Mer-
riam, 1998). Using a narrative analysis with rich thick 
descriptions we summarized Rafael’s verbiage, symbol-
ism, inscriptions, and embodiment and how he animated 
mathematical objects or engaged in one of the creative acts 
as described below.

5 � Results

Most complex analysis textbook authors devote approxi-
mately two pages to the CR equations and generally present 
them by stating the theorem, proving it, and providing two 
examples of how to use the CR equations (e.g., Brown & 
Churchill, 2009; Zill & Shanahan, 2015). These presenta-
tions are entirely algebraic in nature and do not illustrate 
characteristics of a creative act. Below we illustrate how 
Rafael engaged with and animated mathematical objects 
through unusual, unexpected, and unscripted, and without 
given content creative acts. Rafael’s assemblage of unusual, 
unexpected, and unscripted, and without given content crea-
tive acts with materials embedded in algebraic and geomet-
ric inscriptions and metaphors introduces or catalyzes the 
new – the virtuality of the CR equations. We elaborate on 
this in the Discussion section. In describing Rafael’s ver-
biage and written inscriptions, we also depict his gestures 
which are sometimes in parenthesis following the bolded 
verbiage to indicate the correspondence between the verbi-
age and gesture.

5.1 � Unusual

Three aspects of our data appear unusual because they 
are atypical of how the CR equations are presented in tra-
ditional textbooks or because it does not depict the DTP 
model. We illustrate the unusual way that Rafael taught 
the CR equations by (a) distinguishing between complex 
and real differentiation, (b) unifying three mathematical 
concepts, and (c) stressing conformal mappings through 
rich and diverse metaphors. Moreover, he engaged in this 
creative act by activating both algebraic and geometric 
inscriptions.

Rafael introduced complex differentiation by discuss-
ing the differentiability of functions that map from R2 to 

R2 using the equation 
[
Δy1
Δy2

]
=

[
M11 M12

M21 M22

][
Δx1
Δx2

]
 . The 

fact that he immediately used matrices to represent func-
tions was in itself unusual from what is found in text-
books. Rafael explained that values of such functions at 
reference points yield “numerical constants” (pointed to 
the corresponding entries in the matrix) and that those 
constants are the “partial derivatives of y with respect to 
x” as he pointed to the vector matrices in order. Rafael 
explained that he started with this dialogue because “ R2 
and C are planes” and can be viewed as the “same thing.” 
He reinforced this idea by stating that one could “strip 
down” a complex-valued function into its real and imagi-
nary parts and “write u as a function of x and y and write 
v as a function of x and y” and then ask if the function is 
differentiable as he pointed to Δy1 and Δy2 in his original 
equation. Rafael emphasized that real differentiation is 
“more inclusive” than complex differentiation as he drew 
a Venn diagram with complex differentiable functions as 
a subset of real differentiable functions and stated “if a 
function is complex differentiable then it is automatically 
real differentiable” as he pointed to each region of the 
diagram.

We also found it unusual that Rafael elaborated that the 
complex derivative unites three ideas: the real derivative of 
a single real variable, the complex derivative of a single 
complex variable, and the multivariable real derivative. To 
explain this unification, Rafael conveyed that they wanted to 
determine if the familiar difference quotient, f (z)−f (a)

z−a
, “could 

be expressed as some function Q̃(z) which is continuous at 
z = a. ” He stated that Δf  could be expressed as the product 
Q̃(z)Δz and that they had a function in terms of Δz , z, and a. 
To better explain the product Q̃(z)Δz, Rafael expanded the 
product Δu + iΔv = (A + iB)(Δx + iΔy) and clarified that 
“complex multiplication by a complex quantity could be 
modeled by a matrix of linear transformations” as he pointed 
to each of the factors. He then connected the various inscrip-
tions to a matrix inscription and asked students to fill in the 
matrix shown in Fig. 1. The students provided the correct 



	 H. Soto et al.

entries for the matrix; Rafael wrote ( A,−B,B,A) in the 
appropriate matrix entries and reminded the students that the 
entries are continuous functions. Rafael appeared to bind the 
symbolism Δu + iΔv = (A + iB)(Δx + iΔy) , with the words 
“multiplication,” matrix, and linear transformation, in order 
to view Δu + iΔv as movement. Moreover, he bound his stu-
dents with the material by engaging them with the 
material.

Interpreting the behavior of the symbolism, Rafael said, 
“complex differentiability is … equivalent to the ability to 
factor changes in the output vector (slid fingers over the 

vector 
(
Δu

Δv

)
 ) through changes in the input vector (slid 

fingers over the vector 
(
Δx

Δy

)
) using a linear [transforma-

tion] or matrix (pointed to each of the matrix entries).” 
Rafael explained that the entries are not random and exhibit 
a symmetry where the “diagonal elements are equal, and 
the off-diagonal elements are opposites.” He added that a 
random continuous matrix with entries without such sym-
metry meant the function is not complex-differentiable as 
he pointed to the matrix entries, but that it is real-differen-
tiable. Continuing with symbolic formal interpretations, 
Rafael uttered and wrote that w = f (z) is complex-differen-

tiable at the point z = a if and only if 
(
u

v

)
 is real differenti-

a b l e  a t  z0 = a  a n d  fo l l o w i n g  e q u a l i t i e s 

h o l d :
[
M11 M12

M21 M22

]
=

[
�u

�x

�u

�y
�v

�x

�v

�y

]
=

[
A −B

B A

]
, A = ux = vy  , 

andB = vx = −uy . He concluded with “these equations, the 
symmetries of this matrix, … are called the Cauchy-Rie-
mann equations.” As such, Rafael used matrices to distin-
guish between real and complex-differentiable and to illus-
trate the unification of the three mathematical concepts 
found in the CR equations. He explicitly compared the term 
complex differentiable with real differentiable and con-
cluded class by determining if the functions f (z) = z and 
f (z) = z are complex-differentiable using the usual 
“Cauchy-Riemann way.”

Readers might think that this is the end of the story of 
Rafael teaching the CR equations, but on the second day he 
described the equations via metaphors which he depicted 
through diagrams, imagination, and animation. This is unu-
sual because conformal mappings are usually introduced in 
a graduate-level complex analysis course. This could also 
be considered unexpected and unscripted because Rafael 
did not have it listed as a geometric exploration on his cal-
endar, but we are not sure if he changed his plans. Below 
we describe how Rafael animated his unusual metaphors 
consisting of elastic fabric, silly putty, rubber patch, and 
dough and how unusually effortlessly he navigated between 
metaphors and hence, bound his metaphors.

Rafael introduced the geometry of complex functions 
and their derivatives by drawing and projecting two copies 
of the complex plane and using a function, w = f (z), to go 
between them. Rafael described the planes as an “elastic fab-
ric” and the function as something that “warped” the plane 
onto the other plane. He further animated this metaphor by 
walking to the front of the class, positioning his hands in 
front of himself to make a warping motion, and “tossing” 
it towards the output plane while saying, “Pick it up off the 
plane. Stretch it out, do whatever we want to it. And then 
slap it down over on the other plane” (see Fig. 2).

After this enactment, Rafael symbolized his “elastic fab-
ric” metaphor by drawing a horizontal and vertical coor-
dinate system on the input plane about some point z0 and 
depicting the function as warping the coordinate system in 
the output plane. He described the horizontal lines in the 
input plane as “threads on the elastic fabric” that map to Fig. 1   Matrix of Linear Transformations

Fig. 2   Pick it Up, Stretch it Out, 
and Slap it Down
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curves in the output plane. As he uttered this description, 
he ran his fingers along the horizontal line (see Fig. 3) and 
conveyed the notion of conformality by saying that the per-
pendicular parts of the input coordinate system will be per-
pendicular in the output system. Here Rafael appeared to 
bind the notions of the elastic fabric metaphor, coordinate 
system, and conformality.

To illustrate the geometry behind complex differentiable 
mappings, Rafael drew a curved grid which represented the 
image around the image point w0 = f

(
z0
)
 (see Fig. 4). Rafael 

used his finger to trace the horizontal lines in the domain, 
which he referred to as “threads” and emphasized that only 
these horizontal lines mapped to the curved vertical lines 
in the image. Similarly, he explained that the family of ver-
tical curves in the domain all map to the curved horizon-
tal lines. He further described how the curved lines in the 
image are “perfectly perpendicular” and inscribed a square 
at their intersection. Using tick marks, he indicated that the 
length of the square from the domain was preserved in the 
warped square of the image. Rafael warned the students 
that a formal description of Fig. 4 would only be “literally 
true under infinite magnification” and waved his hand to 
represent a physical manifestation of a dynamic function. 
He also made a sweeping movement with his hand whilst 

pinching together his index finger and thumb as he said, 
“infinite magnification” to indicate the notion of looking at 
infinitesimally small neighborhoods around the image point. 
He then offered a silly putty metaphor for Fig. 4.

Rafael physically grounded the domain by comparing it to 
silly putty and gestured the function mapping as “pounding 
down on it,” with the silly putty “ooz[ing] out in all direc-
tions” as he spread his hands away from the location where 
he pounded (see Fig. 5) and produced an audible embodi-
ment. Rafael reinforced the conformality of complex differ-
entiable as he said, “anything that was orthogonal, when you 
pound on it, stretches out in equal amounts,” thereby staying 
orthogonal. He further embodied this geometric description 
as he crossed his hands on the projector to represent the 
domain (see Fig. 6) and then gestured the stretching along 
the same angles by separating his pinched thumb and index 
fingers from his two hands (see Fig. 7). These animations 
of the silly putty binded it with the conformal map and the 
elastic fabric metaphor.

After this discussion, Rafael pointed to the entries of the 
Jacobian matrix and explained that the vector Δw can be 
obtained from Δz by multiplication of the Jacobian of the 
function because f (x, y) = u(x, y) + iv(x, y) is a real differen-
tiable function. He clarified that he was interested 

Fig. 3   Threads on Elastic Fabric

Fig. 4   Geometry of Complex 
Differentiable Maps
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in situations where the mapping is described by a “dilation 
and a rotation” (i.e. an amplitwist) as he wrote the matrix [
a −b

b a

]
 underneath the Jacobian matrix. Rafael summarized 

how this gave a “visual, or geometrical, interpretation of 
what the complex derivative is good for. A function is com-
plex differentiable if and only if, when you look at it at a 
high magnification, it looks like a conformal map” and pro-
jected a 3D visualization of an arbitrary quadratic polyno-
mial created with Mathematica. Moving his hands from one 
side to the other, he explained how he visualized this “as a 
mapping from the z-plane to the w-plane and what we’re 
actually doing is taking a little disk, like a little rubber patch 
in the z-plane and mapping it to the w-plane.” He described 
“carving out … circular patches” and then switched the 
screen to the lecture notes to show how one takes circular 

patches in the z-plane and zoomed in on them in the w-plane. 
Again, he made use of Fig. 4 as he pointed from the z-plane 
to the w-plane. Rafael conveyed that when he makes the 
“patch bigger and bigger, [he is] carving out bigger and big-
ger pieces.” He gestured a patch by making a circle with his 
hands and explained that it was “like dough and [he’s] pull-
ing it out and also curving it around and then making a pir-
ouette, and laying it back on top of itself, and so some of the 
dough is overlapping other parts.” While describing this, 
Rafael gestured pulling out the dough by expanding his 
hands, curving them to represent the curving of the dough, 
and slapping his hands together while turning them to show 
the dough laying on top of itself. He then returned to the 
Mathematica visual and pointed to the part where the layers 
overlap in the image and proceeded to play with the sliders 
to dynamically illustrate different views of the overlap. 

Fig. 5   Pounding Down on It, 
Oozing Out, In All Directions

Fig. 6   Lines Intersecting at 
the Point z_0 and the Image 
f(z_0) = w_0

Fig. 7   Stretching the Lines 
Emanating from w_0 Along 
Same Angles as Angles in the 
Domain
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Again, we observed evidence of how Rafael’s animations 
bound his various metaphors, conformal map notion, and the 

matrix, 
[
a −b

b a

]
 which was unusual.

5.2 � Unexpected or unscripted

Two aspects of our data were unexpected or unscripted. The 
first was the amount of time that Rafael dedicated to teaching 
the CR equations. Based on Rafael’s calendar, we expected 
him to spend one day on the material and from experience 
and conversations with others we know that mathematicians 
spend at most one day on the equations. Furthermore, Rafael 
did not deviate from his calendar for other topics. As pre-
viously mentioned, the unexpected amount of time that he 
spent on this topic was one of the reasons for focusing our 
research on the CR equations. A second aspect that we coded 
as unexpected or unscripted was an episode where a student 
asked Rafael a question following Rafael’s explanation of 
conformal maps. The student asked whether Fig. 4 could 
be compared to an elastic fishing net, “where all the places 
where the nets tie together stay the same.” Rafael confirmed 
and elaborated on the student’s theory through embodiment 
with tangible material. He took the cap off his marker and 
used it and the marker itself to represent “tubes” that are 
perpendicular. Rafael explained that one could run ropes 
through these tubes as he gestured left and right and then 
up and down along the direction of the tubes. He explained 
how the intersection of the tubes, represented by the marker 
and its cap, would need to “transfer the tension” equally 
from one rope to the other. Using unscripted embodiment 
and language of a metaphor that emerged from a student, 
Rafael demonstrated the transfer of tension by running his 
finger left and right and up and down the marker and its 
cap. Rafael shared that this equal distribution of tension was 
the “same mechanism” that complex differentiable func-
tions have when they preserve stretching factors and angles. 
This episode demonstrates how students become part of the 
assemblages and Rafael’s perception of complex differenti-
able functions as objects that do something because of the 
machinery that is part of their assemblage.

After this unscripted act and conversation Rafael rein-
forced the idea that complex differentiable functions have 
constant stretching factors in all directions near a reference 
point and he asked the students if there are other properties 
that such functions enjoy. Specifically, he asked, “After it has 
done that stretching, we have a scaled-up copy of the origi-
nal, is there anything else that we could do to that image that 
would keep the size of it the same?” As he posed this ques-
tion, he animated an imaginary domain in front of him that 
represented the stretching done by the function. Maintaining 
the shape of his imagined stretched domain, he answered 
his question and said, “It could rotate (gestured rotation),” 
(see Fig. 8).

5.3 � Without given content

The creative act characteristic of without given content mani-
fests when acts modify the way language or signs are inte-
grated into a situation such as classroom shared meanings 
(Alibali et al., 2019). The student’s invention of the fishing 
net is an example of without given content, and another is 
how Rafael’s language of “rotate and dilate” permeated in 
his classroom. While illustrating the “mapping of a square 
at various reference points on the unit circle” under the 
function f (z) = z2 , using Mathematica, Rafael asked about 
the critical point and a student responded that it was zero. 
Rafael reminded the students that they must pick points on 
the periphery of the unit circle that are away from the origin 
and use those points to “march” around the unit circle to see 
the function behavior. As he said this, he brought his thumb 
and pointer finger together to pick an imaginary point from 
the air and then traversed his pointer finger around an imagi-
nary circle in the air. To illustrate his air gestures, Rafael 
drew a unit circle on the board with a “bad spot” at the origin 
(marked with a star) and smaller circles on the circumfer-
ence of the unit circle. Rafael showed the mapping of a small 
disk centered at (1,0) in the z-plane and demonstrated the 
“marching around like a clock hand” to depict how points 
get mapped (see Fig. 9). Pointing to (1,0), he asked “what 
happens if we multiply a displacement vector Δz by two?” 

Fig. 8   Imagined Domain, 
Stretched, and Rotated
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Several students correctly responded that the displacement 
vector dilates but does not rotate. Rafael then spread his 
hands out to depict the stretch. It appeared that Rafael’s ani-
mation of a dynamic visualization, imagined description, 
and a sketched metaphor binded him and geometric and 
mobile language about the CR equations with his students.

Before discussing our results, we share how Rafael used 
usual techniques to derive the CR equations on the last day. 
Verbally and in writing, he explained that f �

(
z0
)
=

f (z+Δz)−f (z)

Δz
 

and that the “limit has to exist regardless … of how Δz tends 
to zero.” Rafael gestured Δz approaching zero along “a hori-
zontal line, a vertical line, a spiral curve, a sequence of dots 
that hops around ….” He then sketched a point on the complex 
plane and an arrow approaching it from the horizontal direc-
tion and another from the vertical direction. He explained that 
in the horizontal limit the quotient Δf

Δz
 is evaluated only along 

Δx because “it’s a derivative only in the x variable and if the 
limit exists, it has to converge to ux plus ivx .” Rafael explained 
that the second case was more complicated because “we’re 
not changing x , but Δz then is going to be i times Δy .” He 
proceeded to compute the limit as iΔy approached 0. Rafael 
simplified the expression and computed an expression for the 
derivative in terms of uy and vy and compared it with the previ-
ous computations, which had the derivative in terms ux and vx. 
Rafael then wrote down the CR equations and 
f �(x, y) = A(x, y) + iB(x, y) in various ways. He wrote the CR 
equations as a matrix and compared the derivative to the 
matrix in terms of A and B. He stressed that the derivative 
could be written in four different ways depending on the par-
tials of u and v and for a third day in a row he informed the 
students that this procedure does not work if we pick a random 
function u because of the “extra conditions.” Instead of elabo-
rating on this formal statement, he used the matrix form of the 
CR equations to find v if u(x, y) = 2xy . At this juncture, Rafael 
gestured looking through imaginary binoculars while he 
uttered the importance of getting the partial pieces to be self-
consistent or come into focus as he stably displayed his hands 

in front of his face. The self-consistency animations could 
represent binding of the various symbolic representations 
indicating that the CR equations are satisfied.

6 � Discussion

Recall our research question: How does a mathematician 
use embodiment to animate and bind the CR equations and 
illustrate the virtual dimensions of the material world as 
they relate to the CR equations? Our results indicate that 
this mathematician’s introduction of matrices to teach the 
CR equations allowed him to discuss transformations which 
made the CR equations mobile. This mobility gave the math-
ematician a space to virtualize the CR equations by binding 
and animating the symbolic and formal aspects of the equa-
tions (especially conformality), metaphors, himself, and his 
class. Hence, our research illustrates how Rafael was the 
“body in and of mathematics” (de Freitas & Sinclair, 2014, 
p. 200) which engaged the CR equations in a process of 
becoming and how this process bound the equations with 
Rafael and his students.

Our results support de Freitas & Sinclair’s (2014) thesis 
that conceptual mechanisms (Lakoff & Núñez, 2000) under-
score the divide between the mathematically abstract and 
the physically concrete. On the other hand, virtuality binds 
the physical and the abstract and illustrates how a “body 
is a set of material relations that … structure[s] the other 
materials relations” (de Freitas & Sinclair, 2014, p. 34). It 
seems that virtuality binded Rafael’s various conceptualiza-
tions of the CR equations (see Table 1) to himself and to 
his class by introducing or catalyzing the new. Specifically, 
Rafael’s metaphors and animation braided his symbolism 
with his formal language through an assemblage of unusual, 
unexpected, and unscripted, and without given content crea-
tive acts and birthed the first creative act of introducing or 
catalyzing the new.

The unusual way of introducing the CR equations using 
matrices allowed Rafael to introduce the term transfor-
mation and immediately make the CR equations mobile. 
This introduction set the stage for Rafael to engage in a 
mathematical activity where he “actualized the virtual” 
(de Freitas & Sinclair, 2014) which occurs when we cre-
ate something that links different relations but does not 
resemble the virtual i.e., introducing or catalyzing the 
new. This allowed Rafael to bind between and within his 
different conceptualizations and his students via animated 
gestures.

For example, Rafael often integrated pointing gestures 
when he engaged with algebraic inscriptions via formal 
language or logic and deduction. In general, when Rafael 
uttered a formal statement, he also wrote it down and pointed 
to pieces that needed highlighting. This occurred when he 

Fig. 9   Marching Around Like a Clock Hand
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introduced the words CR equations and pointed to the par-
tials as he mentioned the symmetries of the matrix and the 
connection to complex differentiable. It also occurred when 
Rafael traced the vertical and horizontal lines in his input 
plane and then conveyed the notion of conformality. Like-
wise, when Rafael uttered and wrote the definition of com-
plex differentiable, he pointed to the part of the algebraic 
symbolism that was continuous. Moreover, via gestures 
Rafael distinguished between real and complex differenti-
ability, which he expressed was not generally distinguished. 
Thus, in an unusual way he bound and animated the formal 
and symbolic aspects of the CR equations (e.g., symmetries 
of the matrix, the words CR equations, conformal maps, 
definitions of real and complex differentiable, and multivari-
able calculus).

Rafael’s unusual metaphors also allowed him to bind the 
conformal aspect of the CR equations with the metaphors' 
virtual motions, which he animated through gesture. For 
example, in explaining the function, w = f (z), Rafael intro-
duced the “elastic fabric” metaphor to describe the z-plane 
and described how the function moved, warped, tossed, 
stretched, and slapped points or patches to obtain the output 
in the w-plane, as he gestured all the actions. He also intro-
duced the silly putty metaphor and viscerally described how 
it oozes out in all directions as he pounded on the desk and 
spread out his fingers to represent the oozing. With dough 
in hand, pulled, curved it around to make a pirouette, and 
laid it back on top of itself so that it overlapped. In an unex-
pected and unscripted way Rafael also bound and animated 
his student’s metaphor of a fishing net using markers as he 
gestured the action of “transfer” of tension. Thus, Rafael 
bound his animated metaphors which included sound (e.g., 
the pounding), to conformal mappings, the CR equations, 
and a student.

Besides animating his metaphors, Rafael also animated 
an idea that he presented with geometric inscriptions. 
For example, he moved his hand from one plane to the 
other to denote the dynamic aspect of a complex function, 

pinched his thumb and index finger to denote infinitesi-
mally close, positioned his hands to illustrate perpen-
dicular lines, illustrated carving out circular patches on 
his Mathematica image, used his pointer finger to march 
around a circle to depict how points get mapped locally, 
made a pinching gesture to denote the pointwise property 
of differentiability, and so forth. Rafael’s gestures ani-
mated the static and made it dynamic; Rafael had a talent 
for binding different mediums using representational ges-
tures to convey the same abstract concept. This was preva-
lent when he showcased the dynamism in Mathematica, 
followed by gesturing his imagined points, and conclud-
ing with the clock metaphor to paint a picture of how a 
function behaves around a given point. This last episode 
also showcased the creative act without given content 
because the students adopted the language of “rotate and 
dilate.” Thus, through animation Rafael bound geometric 
inscriptions, mathematical ideas embedded in the notion 
of conformal maps, and his students.

A hallmark of Rafael’s teaching was that he stayed 
close to the document camera or the projected content 
when he discussed symbolic or formal concepts. This 
allowed him to point to new and specialized content that 
aligns with other’s research (e.g., Alibali & Nathan, 2007, 
2012). On the other hand, Rafael moved closer to the 
students when he uttered informal explanations with an 
imagined object which prompted his animations—this 
seemed to be a strategy for binding the CR equations, his 
class, and himself. Thus, a possible theoretical contribu-
tion is that much of Rafael’s lesson could not be displayed 
with written materials (e.g., texts, board) because fun-
damentally mathematics is a human activity. This also 
highlights how “the body is an assemblage of human and 
non-human components, always in a process of becoming 
that belies any centralized control” (de Freitas & Sinclair, 
2014, p. 25). We acknowledge that there is a possibility 
that some students did not attend to Rafael’s gesture and 
hence resulted in missed opportunities to learn, as shown 

Table 1   Conceptualizations of 
CR equations

Examples

Symbolism [
Δy1
Δy2

]
=

[
M11 M12

M21 M22

][
Δx1
Δx2

]

 , 

[
M11 M12

M21 M22

]
=

[
�u

�x

�u

�y
�v

�x

�v

�y

]
=

[
A −B

B A

]

,
R2vsC

Metaphors & Animation Elastic fiber; silly putty; fishing net; rubber patch; dough; clock hand; pick 
it up, stretch it out, and slap it down; pound down on it, oozes out in all 
directions; carve circular patches, curve them around, make a pirouette, 
and lay it back on top of itself; march around unit circle; right angles map 
to right angles; not random; transfer of tension; rotation and dilation,

Formal Language Linear transformations; matrix multiplication; symmetric matrix; unification 
of real derivative of a single real variable, complex derivative of a single 
complex variable, and multivariable real derivative; conformal maps; 
hierarchy of differentiability (Venn diagram)
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in other work (Fukawa-Connelly, et al., 2017; Melhuish 
et al., 2022).

7 � Didactic implications

These data provided us with lessons where in an entangled 
but bound and creative manner, Rafael engaged in body-
assemblage with the CR equations. Through creative acts, 
animation, and binding Rafael told a story about the CR 
equations that does not and cannot appear in traditional 
texts or in his projected written sources. This further illus-
trates how mathematics is fundamentally a human activ-
ity. One might ask if students understood the CR equations 
better through Rafael’s virtuality of the CR equations, but 
our data do not offer an answer to such a question. Instead, 
our data illustrate how students may come to understand 
differently through Rafael’s virtuality of the CR equations 
because such teaching does not privilege the traditional 
DTP model and has the potential to support learning. This 
seems relevant especially because the work of de Freitas 
& Sinclair (2014) is with children and ours is with under-
graduate students.

Rafael’s virtuality of the CR equations did not privilege 
the formal and stagnant product view of mathematics which 
tends to be perceived as the ideal and which enforces a dis-
connect between abstract concepts (de Freitas & Sinclair, 
2014; Nemirovsky, 2020). Instead, Rafael’s binding and ani-
mation favor the tactile, the real-life dimensions, imagina-
tion, touch, and movement which give rise to new mathe-
matical ideas. Bunn et al. (2022) argue that such teaching/
learning provides a space to recognize that mathematics is 
everywhere and thus, has the potential to tap into the aesthet-
ics and affect domain of the inclusive materialism frame-
work. This phenomenon emerged in our data when the stu-
dent invented the fishing net metaphor for conformality; de 
Freitas & Sinclair (2014) argue that such inventiveness is an 
example of learning. As such a possible didactic implication 
of our work is to adopt Rafael’s conceptualizations of the 
CR equations in one’s classroom and ask students to bind 
them. This could allow students to engage in their own crea-
tive acts which attend to the aesthetics and affect domain of 
our framework, and which could produce instances of the 
without given content creative act. Moreover, it could further 
stress the mobility of conformal maps which are generally 
not taught in an undergraduate class. We believe these find-
ings are valuable as research generally portrays a deficit 
representation of mathematicians’ teaching. Furthermore, 
Rafael’s teaching methods have the potential to inform the 
revitalization of the teaching of complex analysis to be more 
geometric and dynamic in nature, especially because the 
course has not changed in decades (MAA, 2015) except for 
Needham’s (1997) book. Along with providing dynamic 

interpretations for concepts, authors may want to clearly 
distinguish between real and complex differentiability. For 
example, the CR equation theorem is more exact if stated as: 
A complex-valued function f (z) = u(x, y) + iv(x, y) is com-
plex differentiable at a point z = x + iy if and only if at (x, y) 
the first-order real partial derivative of the real-valued 
functions u and v exist and satisfy the Cauchy-Riemann 
equations �u

�x
=

�v

�y
 and �u

�y
= −

�v

�x
 . This version highlights the 

formal differences between real  and complex 
differentiability.

8 � Limitations and future work

One of the limitations of our work is that we did not mem-
ber-check (Merriam, 1998) because we had interviewed 
Rafael several times prior to videotaping him while he 
taught. Such a practice could have provided insight into the 
unexpected and unscripted. Interviewing students could have 
also provided evidence of the creative act, without given 
content, which was limited in our data. Given that classroom 
discourse and interactions are an integral binding component 
of virtuality, it is important that future work attend to this 
component. Other research could entail binding Rafael’s 
conceptualizations along with Troup et al.’s (2023) CR equa-
tions lab. Although the undergraduates from Troup et al. 
did not discover the amplitwist concept, they did discover 
the conformal aspects of the CR equations. The technology 
could serve as an added material to be bound with speech, 
gesture, tangible materials, inscriptions, and possibly unveil 
Rafael’s three unification pieces, which Troup et al.'s par-
ticipants failed to unify. Another line of inquiry is to offer 
professional development for educators to invent how math-
ematical concepts imbue mobility, learn about creative acts, 
recognize students’ embodiment that conveys mathematical 
concepts, and engineer didactic practices that support bind-
ing and animating mathematical concepts.
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