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Abstract

In this case study we explored how a mathematician’s teaching of the Cauchy-Riemann (CR) equations actualized the virtual
aspects of the equations. Using videotaped classroom data, we found that in a three-day period, this mathematician used
embodiment to animate and bind formal aspects of the CR equations (including conformality), metaphors, himself, and his
students. We found that the mathematician’s creative introduction of matrices led to a discussion of transformations which
made the CR equations mobile and hence gave him a space to virtualize the CR equations. In our results we summarize
how the mathematician's assemblage of unusual, unexpected, and unscripted, and without given content creative acts with
materials embedded in algebraic and geometric inscriptions and metaphors introduced or catalyzed the new—the virtuality
of the CR equations. In our discussion, we highlight how the mathematician bridged the virtual with the abstract via his
conceptualizations of the CR equations. Didactic implications include adopting the mathematician’s conceptualizations and
asking students to bind them. This could stress the mobility of conformal maps which are generally not taught in an under-
graduate class. We propose offering professional development for educators focused on learning how to engineer didactic
practices that showcase mobility, support binding, and exhibit animation of mathematical concepts.
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1 Introduction

Nathan (2021) summarizes embodiment as “body-based
resources to make meaning and to connect new ideas and
representations to prior experiences” (p. 4). In his work, he
summarizes four types of embodiments, including gestures,
defined as “movements of our hands and arms, as well as
other body parts, that we make spontaneously as we talk
with others and think to ourselves, including pointing and
tracing actions” (p. 89). Most gesture research focuses on
grades K-12 (e.g., Alibali & Nathan, 2012; Alibali et al.,
2019) or mathematicians’ gestures in research settings as
they explain their understanding of abstract concepts, prove
a statement, or solve a mathematical task (e.g., Marghetis
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mathematical concepts, humans, the visible such as boards
and technology, and the non-visible such as metaphors serve
as material agents that become body-assemblages defined as
“a set of material relations that ... structures other material
relations around it” (p. 34).

In their work de Freitas & Sinclair (2014) adopt Chate-
let’s (1993/2000) notion of the virtual which “binds the
mathematical and physical together” (p. 201) because the
“virtual dimension ... animates the mathematical concept”
(p. 202). Perceiving the virtual as both physical and math-
ematical and thus, movable, allows researchers “to study ...
a [mathematical] concept in terms of the kind of work it can
do” (p. 200). Thus, mathematical concepts are material
objects with “virtual and actual dimensions” (p. 202) which
one can engage with via gestures, diagrams, materials, and
metaphors. For example, we commonly showcase ideas in
the Euclidean plane with our hands when we pick up a point,
extend it to form a ray, or take two points to form their vec-
tor. This is how “mathematical concepts engage in a process
of becoming, a process that binds them to” (p. 202) mathe-
maticians’ actions and how body-assemblages come to be.
Chatelet’s examples for virtual and actual components of
mathematical concepts tend to omit concepts that are theo-
retical or relate to areas of mathematics such as algebra and
analysis. In this descriptive case study (Merriam, 1998) we
attempt to contribute to this gap and explore how a mathe-
matician virtualizes the Cauchy-Riemann (CR) equations as
he teaches an undergraduate complex analysis course. Our
research question is: How does a mathematician use embodi-
ment to animate and bind the CR equations and illustrate
the virtual dimensions of the material world as they relate
to the CR equations? Recall the theorem: “Suppose
(@ = u(x,y) + iv(x, y) is differentiable at a point z = x + iy.
Then at z the first-order partial derivative of the function u
and v exist and satisfy the Cauchy-Riemann equations
‘;—: = %andg—'y‘ = ‘Z_x (Zill & Shanahan, 2015, p. 131). Our
results indicate that this mathematician’s introduction of
matrices to teach the CR equations allowed him to discuss
transformations which made the equations mobile and gave
him space to virtualize the CR equations by binding and
animating their formal aspects (including conformality),
metaphors, himself, and his class. Didactic implications of
this work include adopting the mathematicians’ virtuality of
the CR equations that avoids the definition-theorem-proof
(DTP) model (e.g., Alcock, 2009).

2 Literature review
In this section we summarize Lakoff & Nuiiez’ (2000) work

as it relates to metaphors because metaphors can be agents of
body-assemblages. Similarly, because gesture plays a large
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part in the virtuality of mathematics, we summarize relevant
gesture literature. Finally, we summarize the literature on
mathematicians’ understanding of complex analysis con-
cepts as it is our setting.

2.1 Metaphors

In their seminal work on embodiment and mathematics,
Lakoff & Nuifiez (2000) describe four conceptual mecha-
nisms that humans portray as they engage with mathematics:
(a) image schemas, (b) aspectual schemas, (¢c) conceptual
blends, and (d) conceptual metaphors. Image schemas are
perceptual and conceptual in nature, link language and spa-
tial perception, and are frequently used when one reasons
spatially. Aspect schemas refer to how our bodily movements
convey the structure of mathematical objects. A conceptual
blend combines two distinct structures with a fixed corre-
spondence between them (e.g., relating algebraic and geo-
metric structures). Finally, conceptual metaphors are meta-
phors whose structure maps from one entity to another but
in different domains. Lakoff and Nufiez use the language
of “source” and “target” where the source (the concrete)
implies the target (the abstract). Conceptual metaphors
are “used unconsciously, effortlessly, and automatically
... [and] arise naturally from ... our commonplace experi-
ence,” (p. 41) especially childhood experiences and mirror
the structure of image schemas. Thus, conceptual metaphors
resemble the animating aspect of the virfual but they fail to
account for the binding as described in the introduction. As
such, a significant difference between conceptual mecha-
nisms and virtuality is that conceptual mechanisms “rein-
force the divide between the mathematically abstract and the
physically concrete” (de Freitas & Sinclair, 2014, p. 200).
In this study we describe how body-assemblage emerged as
the professor used metaphors to animate and bind the math-
ematical and the physical of the CR equations.

2.2 Teachers’ gestures

McNeill (2005) categorized gestures as beat, deictic, meta-
phoric, and iconic. Beat gestures coincide with the rhythm
of speech and metaphoric gestures indicate images of an
abstract concept such as holding a function in one’s hand.
Deictic or pointing gestures occur when one points to
something physically present or imagined and iconic ges-
tures “‘present images of concrete entities and/or actions”
(p- 39). Alibali & Nathan (2012) merged iconic and meta-
phoric gestures to coin the term representational gestures,
dichotomizing gestures into pointing and representational
gestures. Research on teachers’ gestures in instructional
settings shows that gestures are an integral part of peda-
gogical communication (Alibali et al., 2014). Teachers pro-
duce gestures to help convey mathematical ideas (Alibali
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& Nathan, 2012; Font et al., 2010), to scaffold material
(Alibali & Nathan, 2007), to maintain or shift focus (Ali-
bali et al., 2019), to establish and maintain common ground
(Alibali, et al., 2013), to confirm the correct interpretation
of verbal utterances from students, or to develop a shared
understanding in the classroom (Alibali et al., 2019). Such
gestures are important when an instructor introduces new
concepts with specialized language because gestures link
verbiage to the physical world (Alibali & Nathan, 2007,
2012; Alibali, et al., 2013; Valenzeno et al., 2003). Interest-
ingly, Chatelet (1993/2000) did not attend to speech in his
work; he was only interested in gesture/diagram interplay.
de Freitas & Sinclair’s (2014) notions of body-assemblages
view speech like gestures and diagrams as mathematical
material.

While research on the use of teachers’ gestures in the
K-12 classroom has thrived, research on instructors’ use of
gestures in undergraduate mathematics classrooms is sparse
(Keene et al., 2012; Stewart et al., 2019; Weinberg et al.,
2015), but the findings are similar. For example, Wein-
berg et al. highlighted how an abstract algebra instructor’s
gestures contribute to their opportunities to communicate
abstract mathematical ideas. Others (Oehrtman et al., 2019;
Soto-Johnson et al., 2016) documented how mathemati-
cians integrate gestures as they explain geometric interpre-
tations of complex analysis concepts in research settings.
Our current work extends such research to a classroom set-
ting, which provides a space to explore how assemblages
emerge organically, especially when students are part of the
material.

2.3 Mathematicians and complex analysis

Researchers have explored undergraduates’ and mathemati-
cians’ geometric interpretations of the continuity of com-
plex functions, complex contour integrals, and complex dif-
ferentiability (Hanke, 2020; Oehrtman et al., 2019; Soto &
Oehrtman, 2022; Soto-Johnson et al., 2016; Troup, 2019;
Troup et al., 2023). Troup and colleagues showed how
dynamic geometric environments help students discover
the amplitwist geometric interpretation (Needham, 1997)
of the complex derivative. Characteristics of the amplitwist
are small discs (a) dilate by [f/(z)|, (b) rotate by Arg(f/(z)),
and (c) map to small discs. In their most recent work, Troup
et al. (2023) found that technology did not fully aid students
in discovering the amplitwist concept with the CR equa-
tions. Students struggled to coordinate the linear algebra and
multivariable calculus notions embedded in the geometry of
the CR equations, but they recognized conformal maps. In
other words, the students struggled to bind the mathematical
with the physical.

The works of Oehrtman et al. (2019) and Soto-Johnson
et al. (2016) include the same five mathematicians who

regularly teach complex analysis and conduct research in
this field. For complex contour integrals, Oehrtman et al.
found the mathematicians drew rich parallels from line
integrals of real-valued functions as an accumulation of
Riemann sums but struggled to conceptually interpret what
was accumulated in the complex case, except for one of the
mathematicians—Rafael (pseudonym). On the other hand,
the mathematicians easily expressed the amplitwist concept
with gestures. In terms of the geometric interpretation of the
CR equations, three mathematicians expressed not think-
ing about such an interpretation. The fourth mathematician
admitted to not having thought about the matter but cor-
rectly demonstrated and explained the conformal aspect of
the CR equations. The last mathematician, Rafael, conveyed
his geometric understanding of the CR equations via gesture/
diagram interplay and exhibited rich binding and animating
of the physical with the actual world. His virtuality of the
CR equations led to this case study in a classroom setting.

3 Theoretical perspective

Chatelet (1993/2000) argues that the materiality of math-
ematical invention is born from a mathematician’s hand
when they make a diagram before introducing formal math-
ematics. Chatelet’s interest is not in static diagrams; rather,
his interest is in mathematician’s diagrams that bring new
spaces into being. Moreover, he focuses on the relation-
ship between the actual and virtual because mathemati-
cal concepts can be actualizations of the virtuality of the
world. Adopting these notions, de Freitas & Sinclair (2014)
introduced the inclusive materialism framework which (a)
views aesthetics and affect as instigators of mathematical
activity, (b) attends to how material practices shape and are
shaped by socio-political concerns, (c) pursues descriptions
of phenomena that privilege differences, and (d) acknowl-
edges that surprise and creativity “are linked to the virtuality
and vitality of matter” (p. 43). We elaborate on the last two
elements as they are most related to our research. Given
that mathematical concepts tend to be perceived as inert,
inanimate, and immaterial, the authors seek a different per-
spective where mathematical concepts are animated. Hence,
interaction between a human and mathematics becomes
intra-action through embodiment. In discussing creativity,
de Freitas and Sinclair describe learning as the creation of
something new and clarify that “it is not that individuals are
creative or not creative, but rather that creativity flows across
the ... assemblage” (p. 86). They adopt Chatelet’s notions of
inventiveness and creativity that can be viewed as a collec-
tive process of gesture/diagram/speech/technology/human
interplay and argue that material intra-actions in the class-
room shift the actual/virtual relationship because they unveil
new and unexpected mathematics. As such inventiveness is
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a “dance between the gesturing and drawing hand, which
expresses and captures the temporal and dynamic moment
when the new or the original comes into the world at hand”
(p- 88). With this in mind de Freitas and Sinclair interpret
a creative act as a reassembling and reconfiguring of the
world portrayed through four characteristics: (a) introduces
or catalyzes the new, (b) is unusual, (c) is unexpected or
unscripted, and (d) is without given content.

The first characteristic refers to the transformation of
the actual/virtual relationship which emerges through body
movement intra-actions with material. The second charac-
teristic refers to actions that do not align with the norms of
a particular context. The unexpected or unscripted charac-
teristic refers to acts that occur unintentionally and the last
characteristic signals how actions change the way language,
signs, and meanings are used in a situation; one might inter-
pret this as creating shared meaning. de Freitas and Sinclair
stress that mathematical inventiveness is not restricted to an
individual body but rather is “a relationship between learn-
ers/teachers and the material world” (2014, p. 89), which
includes material interplay. We note that geometric or alge-
braic symbols, as those found in the CR equations, develop
from mathematical operations where one acts on inscriptions
such as graphs, equations, and manipulatives and hence,
constitute a material. In the analysis section, we describe
how we adopted the elements of animating mathematical
objects and creativity from the framework of inclusive mate-
rialism for our research.

4 Methods
4.1 Participant and setting

This study employed a case study design (Merriam, 1998),
where we studied our research participant, Rafael, a Ph.D.
mathematician with over 20 years of experience teaching
undergraduate complex analysis. He served as a research
participant for several of the lead author’s research when
investigating how mathematicians reason geometrically
about complex analysis concepts. This study set out to
explore if Rafael provided rich and novel explanations of
the CR equations in a classroom setting, as he did in a
research setting. This aligns with Merriam’s philosophy
that “a case study might be selected for its very unique-
ness, for what it can reveal about a phenomenon” (p. 33)
and provide access to new knowledge that we may not have
otherwise. For his complex analysis course, Rafael adopted
an open resource textbook with few diagrams, which he
supplemented with his notes and expertise. His affinity for
geometric interpretations inspired a course schedule where
Rafael documented the topic of the day, related concepts,
homework, and visual explorations that he intended to
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implement as part of the lesson. For the CR equations,
Rafael’s calendar indicated that he would spend one day on
this topic, relate it to Laplace’s equation and harmonic con-
jugates, and introduce gradient vector fields and contour
lines as visual explorations. His detailed course schedule
with anticipated visual explorations suggests Rafael inten-
tionally illustrated the geometry behind the symbolism.
During class Rafael used a document camera to project
the notes that he wrote as he lectured and tended to move
towards the projected material or the students to emphasize
key points.

4.2 Data collection and analysis

A third-party videotaped the first six weeks of Rafael’s
course, focusing on Rafael’s teaching, and the lead
researcher took field notes. In her field notes, the researcher
documented students’ questions and responses to Rafael’s
questions, as well as a detailed timeline of each class session.
We began the analysis by watching different class sessions
in teams of two and documenting where Rafael integrated
embodiment via visuals, spatial sense, gesture, intuition, and
metaphors. We focused on the CR equations lesson because
although Rafael’s calendar indicated that he would dedi-
cate one class period to this topic, he spent three days on
it: 20 min on the first day, 50 min on the second day, and
35 min on the third day. We transcribed the video data using
transcription software and split the data into 10-min seg-
ments for each researcher to provide an overall description
of their assigned segment and clean the transcript. Using the
revised transcripts, we broke the data into small, refined seg-
ments, and coded the refined segments. These segments were
introduced if Rafael navigated between embodied, symbolic,
or formal interpretations of the CR equations. This allowed
us to analyze how Rafael exhibited evidence of animating
mathematical objects or engaging in one of the four creative
acts (de Freitas & Sinclair, 2014) with formal, symbolic, or
embodied elements of the CR equations. Using fine-grained,
“rich thick description[s] of the phenomenon” (Merriam,
1998, p. 29) we coded instances of gesture/diagram/mate-
rial/speech interplay as evidence of animating mathematical
objects. Instances when Rafael presented the CR equations
in a unique or novel way compared to what is in traditional
complex analysis texts were coded as unusual. It was impos-
sible to be certain when and if Rafael’s lesson was scripted
ahead of time, but we were able to compare his lesson to his
plans documented in his calendar and use this as evidence of
unexpected or unscripted. Unique responses to student ques-
tions were also coded as unexpected or unscripted. Finally,
segments where students or Rafael adopted or changed their
language or signs in class were coded as without given con-
tent. Like de Freitas & Sinclair (2014) we did not code epi-
sodes where Rafael introduces or catalyzes the new, because
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this creative act manifests as an assemblage of episodes from
the other three categories.

Each researcher performed a first coding round for
different parts of the lesson. We coded segments where
Rafael implemented pointing or representational gestures
(Alibali & Nathan, 2012) along with geometric or sym-
bolic inscriptions as embodied and the gestures served as
evidence of animating mathematical objects. For all seg-
ments that we coded as embodied, we described Rafael’s
gestures, inscriptions, or use of tangible materials. Seg-
ments where Rafael engaged in computations such as
determining if a function satisfied the CR equations were
coded as symbolic and such segments were not coded as
evidence of a creative act. Similarly, we coded segments
where Rafael stated a definition, proved something for-
mally, or stated a theorem, as formal and these segments
were not coded as engaging in creative acts. Many seg-
ments have multiple codes because Rafael effortlessly
changed explanations. A second researcher reviewed the
first researcher's coding, and each group presented their
coding to the research team. This process ensured that two
researchers coded all the video segments and allowed for
conversations with the entire team to ensure that we coded
consistently. Such coding practices serve as a source of
validity, reliability, and trustworthiness of results (Mer-
riam, 1998). Using a narrative analysis with rich thick
descriptions we summarized Rafael’s verbiage, symbol-
ism, inscriptions, and embodiment and how he animated
mathematical objects or engaged in one of the creative acts
as described below.

5 Results

Most complex analysis textbook authors devote approxi-
mately two pages to the CR equations and generally present
them by stating the theorem, proving it, and providing two
examples of how to use the CR equations (e.g., Brown &
Churchill, 2009; Zill & Shanahan, 2015). These presenta-
tions are entirely algebraic in nature and do not illustrate
characteristics of a creative act. Below we illustrate how
Rafael engaged with and animated mathematical objects
through unusual, unexpected, and unscripted, and without
given content creative acts. Rafael’s assemblage of unusual,
unexpected, and unscripted, and without given content crea-
tive acts with materials embedded in algebraic and geomet-
ric inscriptions and metaphors introduces or catalyzes the
new — the virtuality of the CR equations. We elaborate on
this in the Discussion section. In describing Rafael’s ver-
biage and written inscriptions, we also depict his gestures
which are sometimes in parenthesis following the bolded
verbiage to indicate the correspondence between the verbi-
age and gesture.

5.1 Unusual

Three aspects of our data appear unusual because they
are atypical of how the CR equations are presented in tra-
ditional textbooks or because it does not depict the DTP
model. We illustrate the unusual way that Rafael taught
the CR equations by (a) distinguishing between complex
and real differentiation, (b) unifying three mathematical
concepts, and (c) stressing conformal mappings through
rich and diverse metaphors. Moreover, he engaged in this
creative act by activating both algebraic and geometric
inscriptions.

Rafael introduced complex differentiation by discuss-
ing the differentiability of functions that map from R to
R? using the equation [Ayl ] = [M” Mu] [Axl ] The

Ay, My My, || Ax,
fact that he immediately used matrices to represent func-
tions was in itself unusual from what is found in text-
books. Rafael explained that values of such functions at
reference points yield “numerical constants” (pointed to
the corresponding entries in the matrix) and that those
constants are the “partial derivatives of y with respect to
x” as he pointed to the vector matrices in order. Rafael
explained that he started with this dialogue because “R?
and C are planes” and can be viewed as the “same thing.”
He reinforced this idea by stating that one could “strip
down” a complex-valued function into its real and imagi-
nary parts and “write u as a function of x and y and write
v as a function of x and y” and then ask if the function is
differentiable as he pointed to Ay, and Ay, in his original
equation. Rafael emphasized that real differentiation is
“more inclusive” than complex differentiation as he drew
a Venn diagram with complex differentiable functions as
a subset of real differentiable functions and stated “if a
function is complex differentiable then it is automatically
real differentiable” as he pointed to each region of the
diagram.

We also found it unusual that Rafael elaborated that the
complex derivative unites three ideas: the real derivative of
a single real variable, the complex derivative of a single
complex variable, and the multivariable real derivative. To
explain this unification, Rafael conveyed that they wanted to
determine if the familiar difference quotient, ’%, “could
be expressed as some function é(z) which is continuous at
z = a.” He stated that Af could be expressed as the product
é(z)Az and that they had a function in terms of Az, z, and a.
To better explain the product @(z)Az, Rafael expanded the
product Au + iAv = (A + iB)(Ax + iAy) and clarified that
“complex multiplication by a complex quantity could be
modeled by a matrix of linear transformations” as he pointed
to each of the factors. He then connected the various inscrip-
tions to a matrix inscription and asked students to fill in the
matrix shown in Fig. 1. The students provided the correct
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entries for the matrix; Rafael wrote (A, —B,B,A) in the
appropriate matrix entries and reminded the students that the
entries are continuous functions. Rafael appeared to bind the
symbolism Au + iAv = (A + iB)(Ax + iAy), with the words
“multiplication,” matrix, and linear transformation, in order
to view Au + iAv as movement. Moreover, he bound his stu-
dents with the material by engaging them with the
material.

Interpreting the behavior of the symbolism, Rafael said,
“complex differentiability is ... equivalent to the ability to
factor changes in the output vector (slid fingers over the

A . . .
vector " ) through changes in the input vector (slid

Ay

fingers over the Vector< 2; >) using a linear [transforma-

tion] or matrix (pointed to each of the matrix entries).”
Rafael explained that the entries are not random and exhibit
a symmetry where the “diagonal elements are equal, and
the off-diagonal elements are opposites.” He added that a
random continuous matrix with entries without such sym-
metry meant the function is not complex-differentiable as
he pointed to the matrix entries, but that it is real-differen-
tiable. Continuing with symbolic formal interpretations,
Rafael uttered and wrote that w = f(z) is complex-differen-

tiable at the point z = a if and only if ‘If is real differenti-

able at zy=a and following equalities
O NN SRV
PR ¢ 7>
o= (,\ 5§ e > C pxs \AV)
£ omAany OnA
PPN P AR V2V s

Fig. 1 Matrix of Linear Transformations

Fig.2 Pick it Up, Stretch it Out,
and Slap it Down
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My, M “%] [A-B

AMu M| o oy | = - - —
wore 2] <[ £ 5] <[ 7)==
andB = v, = —u,. He concluded with “these equations, the
symmetries of this matrix, ... are called the Cauchy-Rie-
mann equations.” As such, Rafael used matrices to distin-
guish between real and complex-differentiable and to illus-
trate the unification of the three mathematical concepts
found in the CR equations. He explicitly compared the term
complex differentiable with real differentiable and con-
cluded class by determining if the functions f(z) = z and
f(z) =z are complex-differentiable using the wusual
“Cauchy-Riemann way.”

Readers might think that this is the end of the story of
Rafael teaching the CR equations, but on the second day he
described the equations via metaphors which he depicted
through diagrams, imagination, and animation. This is unu-
sual because conformal mappings are usually introduced in
a graduate-level complex analysis course. This could also
be considered unexpected and unscripted because Rafael
did not have it listed as a geometric exploration on his cal-
endar, but we are not sure if he changed his plans. Below
we describe how Rafael animated his unusual metaphors
consisting of elastic fabric, silly putty, rubber patch, and
dough and how unusually effortlessly he navigated between
metaphors and hence, bound his metaphors.

Rafael introduced the geometry of complex functions
and their derivatives by drawing and projecting two copies
of the complex plane and using a function, w = f(z), to go
between them. Rafael described the planes as an “elastic fab-
ric” and the function as something that “warped” the plane
onto the other plane. He further animated this metaphor by
walking to the front of the class, positioning his hands in
front of himself to make a warping motion, and “tossing”
it towards the output plane while saying, “Pick it up off the
plane. Stretch it out, do whatever we want to it. And then
slap it down over on the other plane” (see Fig. 2).

After this enactment, Rafael symbolized his “elastic fab-
ric” metaphor by drawing a horizontal and vertical coor-
dinate system on the input plane about some point z, and
depicting the function as warping the coordinate system in
the output plane. He described the horizontal lines in the
input plane as “threads on the elastic fabric” that map to
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curves in the output plane. As he uttered this description,
he ran his fingers along the horizontal line (see Fig. 3) and
conveyed the notion of conformality by saying that the per-
pendicular parts of the input coordinate system will be per-
pendicular in the output system. Here Rafael appeared to
bind the notions of the elastic fabric metaphor, coordinate
system, and conformality.

To illustrate the geometry behind complex differentiable
mappings, Rafael drew a curved grid which represented the
image around the image point w, = f (zO) (see Fig. 4). Rafael
used his finger to trace the horizontal lines in the domain,
which he referred to as “threads” and emphasized that only
these horizontal lines mapped to the curved vertical lines
in the image. Similarly, he explained that the family of ver-
tical curves in the domain all map to the curved horizon-
tal lines. He further described how the curved lines in the
image are “perfectly perpendicular” and inscribed a square
at their intersection. Using tick marks, he indicated that the
length of the square from the domain was preserved in the
warped square of the image. Rafael warned the students
that a formal description of Fig. 4 would only be “literally
true under infinite magnification” and waved his hand to
represent a physical manifestation of a dynamic function.
He also made a sweeping movement with his hand whilst

Fig.3 Threads on Elastic Fabric

Fig.4 Geometry of Complex
Differentiable Maps

pinching together his index finger and thumb as he said,
“infinite magnification” to indicate the notion of looking at
infinitesimally small neighborhoods around the image point.
He then offered a silly putty metaphor for Fig. 4.

Rafael physically grounded the domain by comparing it to
silly putty and gestured the function mapping as “pounding
down on it,” with the silly putty “ooz[ing] out in all direc-
tions” as he spread his hands away from the location where
he pounded (see Fig. 5) and produced an audible embodi-
ment. Rafael reinforced the conformality of complex differ-
entiable as he said, “anything that was orthogonal, when you
pound on it, stretches out in equal amounts,” thereby staying
orthogonal. He further embodied this geometric description
as he crossed his hands on the projector to represent the
domain (see Fig. 6) and then gestured the stretching along
the same angles by separating his pinched thumb and index
fingers from his two hands (see Fig. 7). These animations
of the silly putty binded it with the conformal map and the
elastic fabric metaphor.

After this discussion, Rafael pointed to the entries of the
Jacobian matrix and explained that the vector Aw can be
obtained from Az by multiplication of the Jacobian of the
function because f(x,y) = u(x,y) + iv(x, y) is a real differen-
tiable function. He clarified that he was interested

- 2 t'!)
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Fig.5 Pounding Down on It,
Oozing Out, In All Directions

Fig.6 Lines Intersecting at
the Point z_0 and the Image
f(z_0)=w_0

Fig. 7 Stretching the Lines
Emanating from w_0 Along
Same Angles as Angles in the
Domain

in situations where the mapping is described by a “dilation
and a rotation” (i.e. an amplitwist) as he wrote the matrix

Z _ab ] underneath the Jacobian matrix. Rafael summarized

how this gave a “visual, or geometrical, interpretation of
what the complex derivative is good for. A function is com-
plex differentiable if and only if, when you look at it at a
high magnification, it looks like a conformal map” and pro-
jected a 3D visualization of an arbitrary quadratic polyno-
mial created with Mathematica. Moving his hands from one
side to the other, he explained how he visualized this “as a
mapping from the z-plane to the w-plane and what we’re
actually doing is taking a little disk, like a little rubber patch
in the z-plane and mapping it to the w-plane.” He described
“carving out ... circular patches” and then switched the
screen to the lecture notes to show how one takes circular
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patches in the z-plane and zoomed in on them in the w-plane.
Again, he made use of Fig. 4 as he pointed from the z-plane
to the w-plane. Rafael conveyed that when he makes the
“patch bigger and bigger, [he is] carving out bigger and big-
ger pieces.” He gestured a patch by making a circle with his
hands and explained that it was “like dough and [he’s] pull-
ing it out and also curving it around and then making a pir-
ouette, and laying it back on top of itself, and so some of the
dough is overlapping other parts.” While describing this,
Rafael gestured pulling out the dough by expanding his
hands, curving them to represent the curving of the dough,
and slapping his hands together while turning them to show
the dough laying on top of itself. He then returned to the
Mathematica visual and pointed to the part where the layers
overlap in the image and proceeded to play with the sliders
to dynamically illustrate different views of the overlap.
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Again, we observed evidence of how Rafael’s animations
bound his various metaphors, conformal map notion, and the

matrix, which was unusual.

a—
b
5.2 Unexpected or unscripted

Two aspects of our data were unexpected or unscripted. The
first was the amount of time that Rafael dedicated to teaching
the CR equations. Based on Rafael’s calendar, we expected
him to spend one day on the material and from experience
and conversations with others we know that mathematicians
spend at most one day on the equations. Furthermore, Rafael
did not deviate from his calendar for other topics. As pre-
viously mentioned, the unexpected amount of time that he
spent on this topic was one of the reasons for focusing our
research on the CR equations. A second aspect that we coded
as unexpected or unscripted was an episode where a student
asked Rafael a question following Rafael’s explanation of
conformal maps. The student asked whether Fig. 4 could
be compared to an elastic fishing net, “where all the places
where the nets tie together stay the same.” Rafael confirmed
and elaborated on the student’s theory through embodiment
with tangible material. He took the cap off his marker and
used it and the marker itself to represent “tubes” that are
perpendicular. Rafael explained that one could run ropes
through these tubes as he gestured left and right and then
up and down along the direction of the tubes. He explained
how the intersection of the tubes, represented by the marker
and its cap, would need to “transfer the tension” equally
from one rope to the other. Using unscripted embodiment
and language of a metaphor that emerged from a student,
Rafael demonstrated the transfer of tension by running his
finger left and right and up and down the marker and its
cap. Rafael shared that this equal distribution of tension was
the “same mechanism” that complex differentiable func-
tions have when they preserve stretching factors and angles.
This episode demonstrates how students become part of the
assemblages and Rafael’s perception of complex differenti-
able functions as objects that do something because of the
machinery that is part of their assemblage.

Fig.8 Imagined Domain,
Stretched, and Rotated

After this unscripted act and conversation Rafael rein-
forced the idea that complex differentiable functions have
constant stretching factors in all directions near a reference
point and he asked the students if there are other properties
that such functions enjoy. Specifically, he asked, “After it has
done that stretching, we have a scaled-up copy of the origi-
nal, is there anything else that we could do to that image that
would keep the size of it the same?” As he posed this ques-
tion, he animated an imaginary domain in front of him that
represented the stretching done by the function. Maintaining
the shape of his imagined stretched domain, he answered
his question and said, “It could rotate (gestured rotation),”
(see Fig. 8).

5.3 Without given content

The creative act characteristic of without given content mani-
fests when acts modify the way language or signs are inte-
grated into a situation such as classroom shared meanings
(Alibali et al., 2019). The student’s invention of the fishing
net is an example of without given content, and another is
how Rafael’s language of “rotate and dilate” permeated in
his classroom. While illustrating the “mapping of a square
at various reference points on the unit circle” under the
function f(z) = z2, using Mathematica, Rafael asked about
the critical point and a student responded that it was zero.
Rafael reminded the students that they must pick points on
the periphery of the unit circle that are away from the origin
and use those points to “march” around the unit circle to see
the function behavior. As he said this, he brought his thumb
and pointer finger together to pick an imaginary point from
the air and then traversed his pointer finger around an imagi-
nary circle in the air. To illustrate his air gestures, Rafael
drew a unit circle on the board with a “bad spot™ at the origin
(marked with a star) and smaller circles on the circumfer-
ence of the unit circle. Rafael showed the mapping of a small
disk centered at (1,0) in the z-plane and demonstrated the
“marching around like a clock hand” to depict how points
get mapped (see Fig. 9). Pointing to (1,0), he asked “what
happens if we multiply a displacement vector Az by two?”
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Fig. 9 Marching Around Like a Clock Hand

Several students correctly responded that the displacement
vector dilates but does not rotate. Rafael then spread his
hands out to depict the stretch. It appeared that Rafael’s ani-
mation of a dynamic visualization, imagined description,
and a sketched metaphor binded him and geometric and
mobile language about the CR equations with his students.

Before discussing our results, we share how Rafael used
usual techniques to derive the CR equations on the last day.
Verbally and in writing, he explained that f7 (ZO) = ﬂz++z_f(1)
and that the “limit has to exist regardless ... of how Az tends
to zero.” Rafael gestured Az approaching zero along “a hori-
zontal line, a vertical line, a spiral curve, a sequence of dots
that hops around ....” He then sketched a point on the complex
plane and an arrow approaching it from the horizontal direc-
tion and another from the vertical direction. He explained that
in the horizontal limit the quotient i—; is evaluated only along

Ax because “it’s a derivative only in the x variable and if the
limit exists, it has to converge to u, plus iv,.” Rafael explained
that the second case was more complicated because “we’re
not changing x, but Az then is going to be i times Ay.” He
proceeded to compute the limit as iAy approached 0. Rafael
simplified the expression and computed an expression for the
derivative in terms of u, and v and compared it with the previ-
ous computations, which had the derivative in terms «, and v,.
Rafael then wrote down the CR equations and
f1(x,y) = A(x,y) + iB(x, y) in various ways. He wrote the CR
equations as a matrix and compared the derivative to the
matrix in terms of A and B. He stressed that the derivative
could be written in four different ways depending on the par-
tials of u and v and for a third day in a row he informed the
students that this procedure does not work if we pick a random
function u because of the “extra conditions.” Instead of elabo-
rating on this formal statement, he used the matrix form of the
CR equations to find v if u(x, y) = 2xy. At this juncture, Rafael
gestured looking through imaginary binoculars while he
uttered the importance of getting the partial pieces to be self-
consistent or come into focus as he stably displayed his hands
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in front of his face. The self-consistency animations could
represent binding of the various symbolic representations
indicating that the CR equations are satisfied.

6 Discussion

Recall our research question: How does a mathematician
use embodiment to animate and bind the CR equations and
illustrate the virtual dimensions of the material world as
they relate to the CR equations? Our results indicate that
this mathematician’s introduction of matrices to teach the
CR equations allowed him to discuss transformations which
made the CR equations mobile. This mobility gave the math-
ematician a space to virtualize the CR equations by binding
and animating the symbolic and formal aspects of the equa-
tions (especially conformality), metaphors, himself, and his
class. Hence, our research illustrates how Rafael was the
“body in and of mathematics” (de Freitas & Sinclair, 2014,
p- 200) which engaged the CR equations in a process of
becoming and how this process bound the equations with
Rafael and his students.

Our results support de Freitas & Sinclair’s (2014) thesis
that conceptual mechanisms (Lakoff & Nuifiez, 2000) under-
score the divide between the mathematically abstract and
the physically concrete. On the other hand, virtuality binds
the physical and the abstract and illustrates how a “body
is a set of material relations that ... structure[s] the other
materials relations” (de Freitas & Sinclair, 2014, p. 34). It
seems that virtuality binded Rafael’s various conceptualiza-
tions of the CR equations (see Table 1) to himself and to
his class by introducing or catalyzing the new. Specifically,
Rafael’s metaphors and animation braided his symbolism
with his formal language through an assemblage of unusual,
unexpected, and unscripted, and without given content crea-
tive acts and birthed the first creative act of introducing or
catalyzing the new.

The unusual way of introducing the CR equations using
matrices allowed Rafael to introduce the term transfor-
mation and immediately make the CR equations mobile.
This introduction set the stage for Rafael to engage in a
mathematical activity where he “actualized the virtual”
(de Freitas & Sinclair, 2014) which occurs when we cre-
ate something that links different relations but does not
resemble the virtual i.e., introducing or catalyzing the
new. This allowed Rafael to bind between and within his
different conceptualizations and his students via animated
gestures.

For example, Rafael often integrated pointing gestures
when he engaged with algebraic inscriptions via formal
language or logic and deduction. In general, when Rafael
uttered a formal statement, he also wrote it down and pointed
to pieces that needed highlighting. This occurred when he
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Table 1 Conceptualizations of

- Examples
CR equations
Symbolism o ou
’ Ay | _ [ My My | | Ax [M“ Mlz] = [g)vf g{] = [A _B]
Ay, My My || Ax, | M Mz ox oy B A )
R*vsC

Metaphors & Animation Elastic fiber; silly putty; fishing net; rubber patch; dough; clock hand; pick
it up, stretch it out, and slap it down; pound down on it, oozes out in all
directions; carve circular patches, curve them around, make a pirouette,
and lay it back on top of itself; march around unit circle; right angles map

to right angles; not random; transfer of tension; rotation and dilation,

Formal Language Linear transformations; matrix multiplication; symmetric matrix; unification
of real derivative of a single real variable, complex derivative of a single
complex variable, and multivariable real derivative; conformal maps;

hierarchy of differentiability (Venn diagram)

introduced the words CR equations and pointed to the par-
tials as he mentioned the symmetries of the matrix and the
connection to complex differentiable. It also occurred when
Rafael traced the vertical and horizontal lines in his input
plane and then conveyed the notion of conformality. Like-
wise, when Rafael uttered and wrote the definition of com-
plex differentiable, he pointed to the part of the algebraic
symbolism that was continuous. Moreover, via gestures
Rafael distinguished between real and complex differenti-
ability, which he expressed was not generally distinguished.
Thus, in an unusual way he bound and animated the formal
and symbolic aspects of the CR equations (e.g., symmetries
of the matrix, the words CR equations, conformal maps,
definitions of real and complex differentiable, and multivari-
able calculus).

Rafael’s unusual metaphors also allowed him to bind the
conformal aspect of the CR equations with the metaphors'
virtual motions, which he animated through gesture. For
example, in explaining the function, w = f(z), Rafael intro-
duced the “elastic fabric” metaphor to describe the z-plane
and described how the function moved, warped, tossed,
stretched, and slapped points or patches to obtain the output
in the w-plane, as he gestured all the actions. He also intro-
duced the silly putty metaphor and viscerally described how
it oozes out in all directions as he pounded on the desk and
spread out his fingers to represent the oozing. With dough
in hand, pulled, curved it around to make a pirouette, and
laid it back on top of itself so that it overlapped. In an unex-
pected and unscripted way Rafael also bound and animated
his student’s metaphor of a fishing net using markers as he
gestured the action of “transfer” of tension. Thus, Rafael
bound his animated metaphors which included sound (e.g.,
the pounding), to conformal mappings, the CR equations,
and a student.

Besides animating his metaphors, Rafael also animated
an idea that he presented with geometric inscriptions.
For example, he moved his hand from one plane to the
other to denote the dynamic aspect of a complex function,

pinched his thumb and index finger to denote infinitesi-
mally close, positioned his hands to illustrate perpen-
dicular lines, illustrated carving out circular patches on
his Mathematica image, used his pointer finger to march
around a circle to depict how points get mapped locally,
made a pinching gesture to denote the pointwise property
of differentiability, and so forth. Rafael’s gestures ani-
mated the static and made it dynamic; Rafael had a talent
for binding different mediums using representational ges-
tures to convey the same abstract concept. This was preva-
lent when he showcased the dynamism in Mathematica,
followed by gesturing his imagined points, and conclud-
ing with the clock metaphor to paint a picture of how a
function behaves around a given point. This last episode
also showcased the creative act without given content
because the students adopted the language of “rotate and
dilate.” Thus, through animation Rafael bound geometric
inscriptions, mathematical ideas embedded in the notion
of conformal maps, and his students.

A hallmark of Rafael’s teaching was that he stayed
close to the document camera or the projected content
when he discussed symbolic or formal concepts. This
allowed him to point to new and specialized content that
aligns with other’s research (e.g., Alibali & Nathan, 2007,
2012). On the other hand, Rafael moved closer to the
students when he uttered informal explanations with an
imagined object which prompted his animations—this
seemed to be a strategy for binding the CR equations, his
class, and himself. Thus, a possible theoretical contribu-
tion is that much of Rafael’s lesson could not be displayed
with written materials (e.g., texts, board) because fun-
damentally mathematics is a human activity. This also
highlights how “the body is an assemblage of human and
non-human components, always in a process of becoming
that belies any centralized control” (de Freitas & Sinclair,
2014, p. 25). We acknowledge that there is a possibility
that some students did not attend to Rafael’s gesture and
hence resulted in missed opportunities to learn, as shown
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in other work (Fukawa-Connelly, et al., 2017; Melhuish
et al., 2022).

7 Didacticimplications

These data provided us with lessons where in an entangled
but bound and creative manner, Rafael engaged in body-
assemblage with the CR equations. Through creative acts,
animation, and binding Rafael told a story about the CR
equations that does not and cannot appear in traditional
texts or in his projected written sources. This further illus-
trates how mathematics is fundamentally a human activ-
ity. One might ask if students understood the CR equations
better through Rafael’s virtuality of the CR equations, but
our data do not offer an answer to such a question. Instead,
our data illustrate how students may come to understand
differently through Rafael’s virtuality of the CR equations
because such teaching does not privilege the traditional
DTP model and has the potential to support learning. This
seems relevant especially because the work of de Freitas
& Sinclair (2014) is with children and ours is with under-
graduate students.

Rafael’s virtuality of the CR equations did not privilege
the formal and stagnant product view of mathematics which
tends to be perceived as the ideal and which enforces a dis-
connect between abstract concepts (de Freitas & Sinclair,
2014; Nemirovsky, 2020). Instead, Rafael’s binding and ani-
mation favor the tactile, the real-life dimensions, imagina-
tion, touch, and movement which give rise to new mathe-
matical ideas. Bunn et al. (2022) argue that such teaching/
learning provides a space to recognize that mathematics is
everywhere and thus, has the potential to tap into the aesthet-
ics and affect domain of the inclusive materialism frame-
work. This phenomenon emerged in our data when the stu-
dent invented the fishing net metaphor for conformality; de
Freitas & Sinclair (2014) argue that such inventiveness is an
example of learning. As such a possible didactic implication
of our work is to adopt Rafael’s conceptualizations of the
CR equations in one’s classroom and ask students to bind
them. This could allow students to engage in their own crea-
tive acts which attend to the aesthetics and affect domain of
our framework, and which could produce instances of the
without given content creative act. Moreover, it could further
stress the mobility of conformal maps which are generally
not taught in an undergraduate class. We believe these find-
ings are valuable as research generally portrays a deficit
representation of mathematicians’ teaching. Furthermore,
Rafael’s teaching methods have the potential to inform the
revitalization of the teaching of complex analysis to be more
geometric and dynamic in nature, especially because the
course has not changed in decades (MAA, 2015) except for
Needham’s (1997) book. Along with providing dynamic

@ Springer

interpretations for concepts, authors may want to clearly
distinguish between real and complex differentiability. For
example, the CR equation theorem is more exact if stated as:
A complex-valued function f(z) = u(x,y) + iv(x, y) is com-
plex differentiable at a point z = x + iy if and only if at (x, y)
the first-order real partial derivative of the real-valued
functions u# and v exist and satisfy the Cauchy-Riemann

equations ’;" = ? and 3—: = —%. This version highlights the

ox oy
formal differences between real and complex
differentiability.

8 Limitations and future work

One of the limitations of our work is that we did not mem-
ber-check (Merriam, 1998) because we had interviewed
Rafael several times prior to videotaping him while he
taught. Such a practice could have provided insight into the
unexpected and unscripted. Interviewing students could have
also provided evidence of the creative act, without given
content, which was limited in our data. Given that classroom
discourse and interactions are an integral binding component
of virtuality, it is important that future work attend to this
component. Other research could entail binding Rafael’s
conceptualizations along with Troup et al.’s (2023) CR equa-
tions lab. Although the undergraduates from Troup et al.
did not discover the amplitwist concept, they did discover
the conformal aspects of the CR equations. The technology
could serve as an added material to be bound with speech,
gesture, tangible materials, inscriptions, and possibly unveil
Rafael’s three unification pieces, which Troup et al.'s par-
ticipants failed to unify. Another line of inquiry is to offer
professional development for educators to invent how math-
ematical concepts imbue mobility, learn about creative acts,
recognize students’ embodiment that conveys mathematical
concepts, and engineer didactic practices that support bind-
ing and animating mathematical concepts.
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