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Abstract

Recent studies have reported the experimental discovery that nanoscale specimens of even a
natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic
strain at room temperature without the onset of permanent damage or fracture. Computational
work combining ab initio calculations and machine learning algorithms has further demonstrated
that the bandgap of diamond can be altered significantly purely by reversible elastic straining.
These findings open up unprecedented possibilities for designing materials and devices with
extreme physical properties and performance characteristics for a variety of technological
applications. However, a general scientific framework to guide the design of engineering materials
through such elastic strain engineering has not yet been developed. By combining first-principles
calculations with machine learning, we present here a general approach to map out the entire
phonon stability boundary in six-dimensional strain space, which can guide the elastic strain
engineering (ESE) of a material without phase transitions. We focus on ESE of vibrational
properties, including harmonic phonon dispersions, nonlinear phonon scattering and thermal
conductivity. Whereas the framework presented here can be applied to any material, we show as
an example demonstration that the room-temperature lattice thermal conductivity of diamond can
be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering
phonon instabilities. Such a framework opens the door for tailoring of thermal-barrier,
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thermoelectric, and electro-optical properties of materials and devices through the purposeful
design of homogeneous or inhomogeneous strains.
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Significance statement

Vibrational properties, such as phonon dispersion and scattering, play a crucial role in a material’s
mechanical, thermal, and thermoelectric behavior. Knowledge of the phonon stability boundary in
the full strain tensor space, which gives the upper limit of elastic strain engineering (ESE), is
essential for engineering the electronic and thermal properties solely through strains. Here ab initio
calculations and machine learning are combined to develop a general framework that reveals the
phonon stability boundary in six-dimensional strain space. It is shown that the lattice thermal
conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely
by reversible elastic strain without the onset of phonon instabilities.



Introduction

The fundamental characteristics of semiconductors, such as electrical and thermal transport
properties, can be modified through the controlled introduction of elastic strain'. With an ever-
accelerating search for improved electrical and thermal characteristics of devices, tuning phonon
properties through mechanical strains offers a powerful pathway to enhance the performance of
microelectronic and optoelectronic devices. Just as the properties of silicon can be spatially tuned
on the same single-crystalline wafer by variable-concentration chemical doping?, it is also possible
to envision the tailoring of physical properties through the rational design of inhomogeneous
elastic strain distribution to achieve variable bandgap’, carrier mobility®, and thermal barrier
properties on the same chip. In this work, we consider elastic strains that are an order of magnitude
larger than those hitherto adopted by the semiconductor industry, which typically involve strains
on the order of one percent’ .

There exists an ideal strain limit (€;4¢41), Which is the theoretical upper bound for reversible elastic
deformation for a perfect crystal at the absolute zero temperature. Beyond €;4¢4], the onset of
relaxation by phonon instability at either kK = 0 (T point) or finite-k would occur, which would
inevitably lead to fracture, plasticity, or phase transition!®. In actual experiments, both zero-
temperature and defect-free conditions are impractical, and the fact that every real material must
have a surface, which is a defect, already renders €;4., uUnattainable. By including the effects of
temperature, microstructure, and defects present in materials, the more conservative €pqy
boundary may be found, and the six-dimensional (6D) strain space circumscribed by the five-
dimensional (5D) €., boundary is a subset of that by €;qeq.

A large dynamic range for €., has been discovered in recent studies in nano-scale materials at
room temperature without the onset of plasticity, phase transformation, or fracture for time periods
long enough for applications. Even for the hardest natural crystalline diamond, mechanical
bending experiments involving single crystal nanoscale needles have shown!! that local elastic
tensile strains of nearly 10% can be achieved prior to the onset of fracture, whereas nanoscale
polycrystalline diamond could be elastically strained to nearly 4%. Similar magnitudes of elastic
strains have subsequently been demonstrated in both synthetic and natural diamonds in the form
of nanoneedles and nanowires'>!3, and micro-bridged arrays'>. This is possible at the nanoscale,
where small characteristic dimensions and low defect populations in pure diamond make it
possible to approach €;4e, during mechanical deformation?. Silicon in the nanowire form can
withstand 15% uniaxial tension without the onset of plasticity'®, which is more than one order of
magnitude higher than that currently employed by the semiconductor industry for its strained
silicon technology. The realization of ultra-large elastic deformation in nanoscale dimensions of
semiconductor materials, together with the ultra-large levels of thermal conductivity in certain
semiconductors such as diamond, has created opportunities for the custom design of performance
characteristics through elastic strain engineering (ESE). These provide pathways to realizing a
dynamic and broad range of physical properties, i.e. from electronic insulator to conductor'®, or



from thermal conductor to thermal barrier, which may be achieved on the same single crystal by
7

varying the spatial distribution of strain'’.
In this work we focus on the upper bound of theoretical strain, €404, Which envelops the
practically attainable €., boundary. The mapping of the €404 hypersurface necessitates an
evaluation of phonon stability within the six-dimensional (6D) strain space represented by the
elastic strain tensor € = (&11, €22, €33, €23, €13, £12)- In the low-temperature and defect-free limit,
the mechanical stability of the crystal is preserved so long as the frequency w of each phonon
mode v is real (non-imaginary) for all wave vectors k throughout the Brillouin zone. If this
condition is violated, energy reduction can be achieved by following the eigenvector of the
unstable phonon (in unit cell if I'-point soft phonon, and in an enlarged supercell if finite-k soft
phonon), a barrierless relaxation that can happen even at T = 0 K. €;4¢04 can thus be regarded as a
strain hypersurface in 6D that corresponds to the onset of non-real phonon frequencies for arbitrary
k and v. Ordinarily, computation of phonon properties directly comparable with experimental data
from neutron or X-ray inelastic scattering requires first-principles calculations based on the finite
displacement method or density functional perturbation theory (DFPT)'8. To outline the intractable
computational burden of this task, consider the phonon band structure w, (g; K), which is a
function of wave vector K and crystal strain € where k € C3, € € R®, with 9 dependent variables
(10 when including the discrete phonon branch index v), for an arbitrary bulk semiconductor
crystal. Mapping the phonon band frequency space with a tabulation approach would then entail
many millions of first-principles calculations, with additional computational costs incurred to
include ESE effects on lattice thermal conductivity.

To overcome these difficulties, we present a general method that combines machine learning (ML)
and ab initio calculations to identify the theoretical ESE upper bound that defines the phonon
stability boundary and €;4e4. This method invokes artificial neural networks (NNs) to predict,
within a reasonable degree of accuracy, material properties as a function of strain while utilizing
minimally required input data. In analogy with the yield surface commonly used to describe plastic
deformation of metallic materials, we visualize the phonon stability boundary of a bulk
semiconductor crystal in the elastic strain €;404 O stress space. We demonstrate the potential of
our method for engineering phonon band structure, phonon density of states (DOS), and thermal
transport properties. Exemplifying the potential for semiconductor performance optimization
afforded by our method, we demonstrate that the lattice thermal conductivity of diamond can span
from sub-100 W-m™"-K ™' up to 6000 W-m-K™! solely through mechanical strain. The general
method developed in this work, with specific demonstrations of its application for the case of
diamond, is thus seen to provide a broad framework to guide elastic strain engineering of materials
to tailor their physical properties, such as phonon band structure and thermal conductivity.

Results

1. Machine-learning phonon band structure and DOS
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ML methods have become indispensable for solving problems with extensive parameter spaces
that are challenging to tackle through conventional analytical or numerical means. In the domain
of our concern, this challenge manifests prominently in the modeling of phonon dispersion as a
function of strain tensor. To address this, the present work employs two ML models: a feed-
forward neural network (FNN) and a convolutional neural network (CNN). In the study of
electronic properties, FNNs have been demonstrated to provide high accuracy for single-value
regression tasks, such as predicting the scalar-valued electronic bandgap. By contrast, drawing an
analogy between dispersion relations and RGB pixel color encoding of digital images, CNN can
be chosen as a base architecture to fit band structure. CNNs were found to excel at learning
multiple energy bands simultaneously with the inclusion of “intra/inter-band correlation”, and to
achieve state-of-the-art band curvature accuracy?®.

Two generic NN training processes to learn strain-dependent phonon-related properties are shown
in Figure 1. Both processes take the elastic strain state € as input to learn phonon dispersion and
DOS g(&; w). In contrast to the FNN method employed for learning 6 bands (3 acoustic and 3
optical) separately, a CNN method applies 3D convolution in reciprocal space and learns the band
structure w, (€; K) in its entirety. Similarly, CNN applies 1D convolution in the frequency domain
to learn the DOS, which is not feasible in the FNN model. The phonon stability can either be
directly machine-learned as a classification task (indicated by the orange arrow in Figure 1a) or
predicted by postprocessing the as-trained phonon DOS or band structure FNN/CNN models. The
results yielded from learning ~15,000 strain data for the phonon stability boundary, band structure,
and DOS in the general 6D strain space and two 3D subspaces are summarized in Table 1. A
detailed description of first-principles data acquisition and the NN architecture can be found in the
Method section.
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Figure 1. ML workflow for phonon-related properties with strain information used as input. When adopting
(a) FNN models, the phonon stability can either be learned by directly fitting the onset of imaginary
frequencies or analyzed from ML-predicted phonon band structure or DOS. The band structure, w(g; K; v),
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is treated as 6 separate bands. When (b) CNN models are used, the direct ML target can be band structure
or DOS. The band structure, w,, (g; K), is learned as a whole. The green, blue and orange arrows indicate
the procedural steps for learning band structure, DOS, and phonon stability, respectively.

Table 1. Summary of the ML accuracies reached for phonon stability boundary, DOS, and band structure
corresponding to strain states in the £;; —&,, —&33 normal strain space, the £,3—&;3—&;, shear strain space,
and general 6D hyperspace. The DOS results are expressed in mean absolute error (MAE). The band
structure results are given by a relative error range due to band dependence.

ML target €11—&xp—&33 normal strain space  €,3—&;3 — &, shear strain space  General 6D strain space
Stability boundary 97% 95% 94%
DOS 0.009 0.01 0.02
Band structure 1.1-2.5% 3.3-4.6% 4-4.5%

2. Analysis of the phonon stability boundary

The 6D strain space consists of mixed deformation states that combine standard hydrostatic,
uniaxial, and pure shear strains. Visualization of this space is important as it allows for the
delineation of the phonon stability boundary, defining an upper bound for the “safe” working limit
of applied strains.

We trained ML models to reveal the stability boundaries in two 3D subspaces by constraining
three of the six strain components. Figures 2a and 2b demonstrate the stability boundary in pure
compressive and tensile strain subspace (&,3 = &3 = &, = 0). Figures 2c and 2d show the
stability boundary in the shear strain subspace (€11 = &, = €33 = 0). Similar to the isosurfaces
used to assess the boundaries of bandgap modulation by recourse to ESE in our previous work>®,
the present study deals with phonon stability boundary signifying the onset of imaginary phonon
frequencies for a given strain state on the stability boundary at critical wave vectors K.

In general, there are three types of the critical wave vector in the strain spaces considered.
Following the notation rules introduced in S7 Appendix, Notation, they can be classified as:

* TheT type: k. = (0,0,0)

e The ‘A’ type: k. =(£,£,0),(£,0,&) 0r (0, &, &), where 0 < £ < 0.5

* The ‘L’ type: k. = (0, 0, 0.5), (0, 0.5, 0) or (0.5, 0, 0)
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Figure 2. 3D phonon stability boundaries. The stability boundaries for the £;;—&5, — €33 normal strain
subspace colored by (a) the elastic strain energy density h (unit: meV/A3) and partitioned by (b) critical
wave vector K.. The stability boundaries for the €,5 — £;3 — &;, shear strain subspace colored by (¢) h and
partitioned by (d) k.. The regions in light green, blue, red/crimson correspond to K. of the ‘A’, ‘L’°, ‘I
types, respectively.

In Figure 3, the general phonon stability boundary, a 5D surface denoted as
f (€11, €22, €33, €23, €13, €12) = 0, can be partially visualized through pair-plot slices of the 6D
space. The six pairwise-normal-strain subfigures in the top left corner can be thought of as origin-
crossing vertical or horizontal cuts of the 3D volume in Figure 2a or 2b, while the six pairwise-
shear-strain subfigures in the lower right corner can be thought of as origin-crossing vertical or
horizontal cuts of the 3D volume in Figure 2c¢ or 2d. Crystal deformation symmetries were enforced



when learning the stability boundary through ML models. When the strain state is composed of a
single strain type (either normal-normal or shear-shear), the stability boundary has higher
symmetry. The normal-normal strain stability boundaries on the top 3 x 3 left corner are phonon
boundary surfaces with 2mm symmetry, the shear-shear stability boundaries on the lower 3 x 3
right corner are quatrefoils with 4mm symmetry, while all other mixed strain states such as the
€12 —&33 normal-shear pair have only m symmetry with a “fish cracker” shaped stability boundaries.
Overall, structural instability is more easily initiated by shear strain than normal strain, as indicated
by the reduced shear strain axial extent and commensurate volume reduction.
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Figure 3. Phonon stability boundary pair-plots. The subfigures are 2D cuts of the 6D strain space with the
remaining 4 strain components fixed at zero. For instance, strains in the &, &, subfigure in the lowest-left
corner have €5, = €33 = €,3 = &3 = 0. The diagonal subfigures are histograms for strain states spanning
-0.4 to 0.4. Due to the symmetry in strain space, the 15 subfigures in the upper triangular region have a one-
to-one correspondence with the 15 subfigures in the lower triangular region at relative positions.



3. Deep ESE of lattice thermal conductivity

The thermodynamic and thermal transport properties of a solid due to lattice dynamics are directly
related to its phonon characteristics. By far, the largest contribution to thermal conductivity k of
dielectric solids comes from the lattice thermal conductivity k;, which arises from the combined
contribution of all phonon modes (with the dominant ones being acoustic). ML techniques
developed for providing k; of undeformed solids such as Si, MgO and LiCoO2 made possible an
reduction of the computational costs associated with high-order phonon scattering analysis'*2°.
Strain engineering of phononics?! is of interest in fields such as thermoelectricity, where achieving
low K is sought in order to increase the figure of merit for a thermoelectric material. In industrial
applications where thermal insulation is important, materials with low K values are used for
thermal barrier coatings®’. In electronic device applications, materials with high K values are
preferred in order to prevent damage from heat accumulation®>?4, while it may be preferable to
seek low kK values in some regions for thermal insulation purposes (from the hot regions) as well.

Effective control of k; through ESE therefore has potential technological applications.

For an ML method to accurately acquire the strain dependence of k; within the 6D strain space, it
is necessary to accumulate a sufficiently large collection of k; values under different strain states
to use as a training dataset. Recent advancements in the field have shown the feasibility of training
NNs? to solve the phonon Peierls-Boltzmann transport equation (BTE). For enhanced accuracy in
our study, we rely on the first-principles approach for solving the phonon BTE to determine k;.
High-throughput computations on ~10,000 strain states that are randomly distributed in the 6D
space were performed to build the training dataset. Additional computational details are included
in the Method section, with specifics on k; given in ST Appendix, Theoretical background of k;.

The average lattice thermal conductivity k;(€) and the elastic strain energy density h(€) as
functions of strain tensor € within the 6D strain space were obtained using the ML model, as shown
in Figure 4a. The values of scalar k; are obtained by taking the average of the three k; tensor
Tr(xy)

-
with darker tonal values indicating that a larger number of strain states are able to achieve a specific

eigenvalues, K; = The distribution of possible k; is indicated in Figure 4a by purple shading,

ic; value for a given h, where / denotes the elastic strain energy density in the unit of meV/A>. The
cumulative “density of states” of average thermal conductivity c(&;’; h") is defined as

c(i'; ) = f dses (i’ — fi(e)) = f de5(ic’ — m(©)o(h —h(e)) (1)

h(e)<h'

where §(+) and O(+) are the Dirac delta and Heaviside step functions, respectively, and de =
de dey,dessdeysde zde;, € RO is a volume element of the 6D strain space. The joint density of
states of K at h’ can then be expressed as



ac(ik; '
g(';h') = %z fdésa(;a' — i(8))8(h' — h(®)) (2)

g 1s found by considering all possible strain states and the resultant distribution of k; arising from
these states in the elastic strain energy density interval of (h — dz—h ,h + dz—h). The function g(i;"; h")

provides information for finding accessible thermal conductivity values at different energy costs.
A lower and upper envelope function rendered as the purple dashed and solid lines in Figure 4a
can also be defined based on g, respectively:

Ellower(h) = infx_l(g(,{l; h)), i "PPeT(h) = supk—l(g(fz; h)) (3)

By tracing i;'°Ve" and &;"PP®" in Figure 4a, it is found that diamond, as the best thermal conductor
present in nature, can have its lattice thermal conductivity either doubled, or shrunk to sub-100
W-m -K™! (i.e. decreasing by more than 95%), purely through reversible elastic strain. These
changes point to a very broad dynamic range in thermal transport properties as the strain tensor is
varied, while still staying in the potential energy basin of the diamond phase without any phase
transitions. What can also be deduced from Figure 4a is that the lower bound guides the strain
pathway, with the least elastic strain energy density (or “energy expenditure™) to realize a target
figure of merit (e.g., a lower thermal conductivity, if it is desirable to make a thermal barrier out
of diamond, which is typically a good thermal conductor). Thus, the &;'°"* (h) function could be
used as a blueprint for designing thermal barrier structures with minimal strain energy density.

To assess the structural robustness of deformed diamond in 6D, one can define a “phonon softness”
term by considering the integration of w2 over the Brillouin zone for each phonon branch v:

s= Z jwﬁdk (4)

VvV BZ

There exist other definitions of s as well, details of which can be found in Table S1 and Figure S1;
these different possibilities provide essentially similar results. Relative softness can then be
defined as the ratio between softness in deformed and undeformed states:

_ s(®)
Sr(S) = m (5)

In general, deformation causes the thermal conductivity to decrease, as indicated by the color
scheme for s, in Figure 4b. This trend can be more easily seen in Figure 4c, where the plot of s,
against k; is obtained from the projection of the data in the s,.-i;-h parameter space. As phonon
frequencies get smaller when s,.(€) < 1, larger wavevector phonons become dominant, and 3-
phonon scattering processes are more likely. When such processes occur, the sum of two phonon
wavevectors may exceed the first Brillouin zone, leading to Umklapp phonon-phonon scattering,
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where ki+ka-ks (net combination of the incoming and outgoing phonon wavevectors involved in
the nonlinear scattering) is a non-zero reciprocal vector of the host crystal. As seen in the cyan
color projection in Figure 4c, this generally results in smaller thermal conductivity. The brown
projection in Figure 4c corresponds to the relation between s,.(€) and h, which is not a bijective
trend. There are instances where s,.(€) < 1 and s,(€) > 1 for the same elastic strain energy
density h, as the same h can correspond to different strain states, e.g., compressive and tensile
deformations bearing the same elastic energy tend to have different effects on s,..

To evaluate the stability of a given strain state €, we define the smallest possible Euclidean distance
from € to the g;404 stability boundary hypersurface as d, (€), with a strain-space distance metric
of

d = \/(511 — &11)% + (&22 — &22)% + (33 — £33)% + 2(&23 — £23)% + 2(&13 — €13)% + 2(&12 — 512)2(6)

between any two strain tensors € and &, and d,(€) is the minimum of all d’s connecting € to a
point on the surface. The bigger the d,,, value, the farther it is from losing stability. The relation
among d,, h, and k; is illustrated in Figure 4d. In the blue projection, d,, is plotted against k;. It
shows that a given k; value can correspond to a range of different d,,, values. Thus, to modulate
thermal conductivity through ESE, one could always choose the strain states that have a relatively
large d,,, value to achieve a targeted k; through elastic deformation with higher safety factors. The
green projection in Figure 4d is the d,, vs h relation, which shows an increase in h is usually
accompanied by a reduction of d,,, i.e., with more strain energy stored in a material, it is more
likely to lose phonon stability.

11
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strain states within the sampled strain space are able to achieve a specific i; value at a given h. (b) Scatter
plot of i; and h. The color spectrum denotes relative softness values. Inset is a zoomed-in logscale plot of
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the small i; region, in comparison with other well-known components used in the electronics industry. (c)
Cross plots of h, ic;, and relative softness in 3D. (d) A plot of h, i;, and distance to the stability boundary
dm- The dy, — h and d,, — i; relations are illustrated by the 2D projections in green and blue, respectively.
Note that the purple projection on the h — i; plane in (c) and (d) is the same as in (a). A 2D plane cuts the
strain data points colored in black. Solid curve segments are on d;pper

Op vs. Q.

. (e) k; and (f) Debye temperature

A closer inspection of Figure 4d suggests that the upper boundaries of the two projections are of
particular interest as they correspond to strain states which are furthest from the ESE limit at given
values of k; or h. To accurately delimit these boundaries, one can adopt a similar workflow as in
Eqns. (1-3) to determine the “density of states” denoted as g(d,,) and then define the following
upper envelope functions:

4P () = supg,, (9 (i 7)) (7)
dp " () = supg,, (g(dm; 1)) (8)

As shown in Figure 4d, d,’**" (i5;) and d,,'**" (h) coincide with the line segments AB and CD
colored in blue and green, respectively. These two envelope functions can guide deep ESE. In
particular, dfnpper(iﬁ) describes the path in the 6D strain space with the highest safety factor to
reach a targeted k; from the undeformed state. For instance, one can apply the strains following as
close as possible the curve segment AB in Figure 4d to avoid the material from going through

strain states with smaller d,, values that are more likely to cause phonon instability. Note the slight

upper lower
m

difference between following d (i;) and following k; (h) as introduced in Figure 4a: the
former is a conservative way to conduct deep ESE and always keeps a long minimum distance
away from potential material failure during deformation; the latter is a more progressive way to
carry out deep ESE by emphasizing energy-efficient achievement of target figure of merit of a
material, regardless of how close it may get to the phonon stability boundary while undergoing
deformation along the strain path in 6D. Meanwhile, the dfnpper(h) function is useful for the
optimization of strain path in 6D to achieve a deformation with certain strain energy storage. For
example, to reach a target h value of 200 meV/A3, one can choose the states with the largest d,,,
value (Point D on the d,’*° (h) envelope), and segment CD delineates a path from the

undeformed state to this chosen point.

Figure 4e shows that when the volume of the crystal unit cell (£1) decreases, the thermal
conductivity of diamond generally increases. A molecular dynamics simulation qualitatively
showing this trend can be found in Figure S2. When the normal deformation is compressive,
decreasing € results in stronger covalent bonding with increased phonon frequencies w, and
greater phonon frequency dispersion. Such frequency dispersion enhancement due to reduced Q is
also reflected in the increased Debye temperature 0 (Figure 4f and Figure S3 in Appendix). The
occupancy f, of phonons with a greater w would decrease according to Bose-Einstein statistics,

13



hw
where fo = 1/ (e"B_T — 1). Small wavevector phonons will therefore become more abundant than

in an undeformed material at the same temperature (300 K). For a 3-phonon scattering process,
the sum of two small phonon wavevectors is less likely to exceed the first Brillouin zone and
satisfy momentum conservation relation k + K = K” — G. This results in fewer Umklapp and
more normal phonon scattering processes, and the interaction strength of such processes @, ;737
(A is shorthand for (w, j) which represents a phonon with frequency w and polarization j) will
decrease, leading to an increase in k;. For similar reasoning, a general decrease in k; can be found
when the deformation is of tensile nature when 3-phonon processes with more Umklapp processes

will play a major role. In this case @, will increase, the scattering rate I;(w;) will then
1

2T (wyp)

increase, which will impede phonon propagation and shorten the phonon lifetime, 7, =

Conclusion

First-principles calculations of the characteristics of phonons and physical properties such as
thermal conductivity of semiconductors can be computationally expensive and intractable with on-
the-fly computation. In this work, a unique and general approach involving neural networks is
developed to capitalize on the structured and highly correlated relationship between band
dispersion and strain to accurately perform a variety of tasks, including the prediction of phonon
band structure and DOS. The ML models employed here are sufficiently flexible to include
synergistic data sampling and active-learning cycles, which can further improve training accuracy.
Direct application of this scheme to diamond crystals is demonstrated by predicting the strain
hypersurface where the onset of phonon instability occurs. Employing deep ESE to modulate
fundamental phonon-related properties of materials, such as thermal conductivity or phonon band
structure, requires the identification of optimal actionable strain states within the 6D strain
hyperspace. The example provided in this work of tuning the thermal conductivity of diamond
lattice through deep ESE illustrates the opportunity for figure-of-merit optimization and
customizing device performance. In particular, the prediction that the lattice thermal conductivity
of diamond, nature’s most thermally conductive material, can be either doubled or decreased to
sub-100 W-m™!-K ™! values purely through elastic strain is a striking example of the application of
this method. This ultra-wide dynamic range for modulating physical properties through ESE offers
potential applications, as phonons control thermoelectric, superconductivity, and quantum

coherence?®?” properties as well.

Applications of such surrogate ML models are many. Just as the gradient of the electronic band
relates to group velocity, the gradient of the phonon band (Vyw,(K; €)) relates to the speed of
sound in the medium, which could be attained by invoking this model. Other important material
properties such as the Griineisen parameter (that characterizes the effect of volume change of a
crystal lattice on its vibrational properties and therefore, thermal expansion®®) could be derived
from postprocessing selected phonon band structures with certain strain states. Furthermore,
various properties of a material under different strain states might be seen as competing objectives

14



that need to be optimized simultaneously (Pareto analysis)®. For example, a balance between
thermal properties and electronic properties could be explored to identify the most efficient energy
conversion in a thermoelectric material. Lastly, owing to its accuracy and low computational cost,
it is appealing to explore adaptations of this joint ML-ab initio calculation framework for
simulating phononic functionalities to accelerate figure-of-merit acquisition for a variety of
semiconductors and to incorporate the method into technology computer-aided design (TCAD)*"
32 for industry-grade device application with deep ESE.

Method

First-principles data acquisition

Computational results for undeformed diamond were first calibrated against widely available
experimental values obtained from neutron/X-ray inelastic scattering, including lattice constant,
elastic properties, and phonon band structures. After the benchmark, ~15,000 Latin-Hypercube-
sampled strain points were fed into ab initio calculations to acquire the phonon stability, DOS,
band structures, and other related properties for each deformed structure.

For strain-deformed structure relaxation, density functional theory (DFT) simulations were carried
out using the projector augmented wave method®® with Perdew—Burke-Ernzerhof** exchange-
correlation functional following the implementation in the Vienna Ab initio Simulation Package
(VASP)*. For all computations, the electronic wavefunctions were expanded using a plane wave
basis set characterized by an energy cutoff of 600eV, and Brillouin zone integration was
performed using a 13 x 13 x 13 Monkhorst-Pack k-mesh. A maximum residual force of
5.0 X 10~*eV/A was permitted for atoms following structural relaxation. The Green-Lagrangian
strain measure was used |&;;| < 0.4 (i,j = 1, 2, 3), and the strain was sampled in a sufficient range
to capture the entire phonon stability boundary (main text Figure 3). Known crystal symmetries
were employed to further reduce the number of strain computations needed. The diamond phonon
calculations were carried out based on I'-only density functional perturbation theory (DFPT)
implemented in the VASP-Phonopy package*®3”. The force constant calculations were conducted
based on a 2 x 2 x 2 supercell of diamond and 3 x 3 x 3 k-point mesh. Given the coarseness of this
mesh, Phonopy’s “mesh sampling mode” was employed for the expansion/extrapolation of the
results onto a 25 x 25 x 25 grid. ML models were then trained upon learning this dense grid of
frequency eigenvalues. Phono3py package*®?’ was employed for deformed diamond lattice
thermal conductivity calculations through a direct solution of the linearized phonon Boltzmann
transport equation.

Model architecture

The input and output data structures of the FNN and CNN-based models used in this work are
illustrated in the main text Figure 1. The FNN models reaching the best accuracies for learning
phonon stability, DOS, and band structure all involve three hidden layers: 6—(256—128-64)—1, 6—
(2048-2048-4096)—w , and 6—(1024-1024-2048)—- 6m3 , respectively. Here, w dictates the
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resolution of the DOS plot, and m is the number of k-points sampled in the Brillouin zone. The
CNN-based model yielding the best learning result for the band structure fitting task consists of a
fully-connected part at the beginning to “unpack” the 6 x 1 vector denotation of € into an m x m
X m % 6 tensor representation in order to be fed into the subsequent convolutional part with three
blocks of convolution with a (3 x 3 x 3 x 3) kernel subsequently applied upon the floating-point
representation residually. It has been demonstrated in previous works regarding electronic band
structure in diamond that such convolutions account for the so-called “inter/intra-band
correlations”® with periodic boundary conditions and symmetry. Likewise, the CNN-based model
yielding the best outcomes for the DOS fitting task morphs the 6 x 1 representation of € into a w
x 1 vector by a series of fully connected layers, which is treated by two blocks of 1D convolution:
the first with a (7 x 1) kernel and the second with a (3 x 1) kernel. Each convolution comes with
16 channels. After that, we did channel-wise down-sampling and applied the result residually to
the original w x 1 vector. The Adam stochastic optimization algorithm was used to train the model,
together with the gradually reducing dropout rate for fully-connected layers to enhance learning
and prevent overfitting.

Molecular dynamics (MD) simulation

Thermal conductivity of diamond was computed via the equilibrium Green-Kubo formalism
a methodology that connects the ensemble average of heat flux auto-correlation to thermal
conductivity. Heat flux vectors were calculated based on atomic contributions (from atomic
energies, velocities, and stresses). Thermal conductivity calculations require a sufficiently large
simulation box to address the large mean free path of phonons, which is critical for high lattice
thermal conductivity materials such as diamond. We first tested both sample size and correlation
length dependencies to ensure the convergence of the thermal conductivity calculation. The
convergence was established at a correlation length of at least 30 ps and a sample size of at least

38,39
2

60x60x60 ao®, where ao is the equilibrium lattice constant at 300 K. For production MD runs, we
first equilibrated all samples, inclusive of those exposed to varying hydrostatic strains, for 100 ps
under NVT conditions. Then heat flux auto-correlation was determined over an additional 1 ns
NVT MD run. The final thermal conductivity corresponding to a specific hydrostatic strain was
obtained by time-averaging across the 1 ns period. All MD simulations were based on Tersoff
potential obtained from the NIST repository*’ to provide qualitative trends.
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Notation

During a general three-dimensional deformation involving three normal strains, the original point
group of the diamond crystal, denoted as O, turns into a D2x point group. The corresponding
Brillouin zone would not be a regular truncated octahedron with equilateral hexagonal and square
faces anymore. The center of the Brillouin zone is labeled as I' following the tradition. In an
undeformed diamond, the centers of the square and regular hexagonal surfaces on the Brillouin
zone boundary both degenerate, which are referred to as X and L, respectively. For the sake of
comparison and simplicity, we adhere to this convention by considering the ‘X’-type points as the
centers of tetragonal surfaces and the ‘L’-type points as the centers of regular or non-regular
hexagonal surfaces. Connecting the I point to the ‘X’-type points results in lines labeled as ‘A’-
type. Consequently, while the six ‘X’- and ‘L’-type points are no longer degenerate, they maintain
the correct fractional coordinates of (0.5, 0, 0.5)-type and (0.5, 0, 0)-type. Moreover, the k-points
situated along the I'-*X” line all possess coordinates of the ({, 0, {)-type, where 0 < { <0.5.

Theoretical background of k;,

The Hamiltonian of a crystal system can be written as

H=Wy+T+H,+Hy+ - (9)
where W, is a constant potential, T the kinetic energy of ions, and H,, the n-body crystal potentials.
H, is the harmonic potential and does not contribute to the lattice thermal resistance. The H; term
describes three-phonon scattering processes and is the main contribution to k;™!. In the form of
second quantization, these can be expressed as °

1
H, = Z how, (E + alal) (10)
A

Hy= ) 0p(al, +a2)(@l, +ay) (@ + @) (11)
AR

where A = (q, j) represents the wave vector q, and polarization j of the phonon mode, and a} and
a, are the phonon creation and annihilation operators. The interaction strength of three-phonon
scattering processes is given by @,;s; and is the determinative factor for the value of k;. The
procedures for computing k; were implemented in Phonopy and Phono3py software packages, and
employed a supercell approach *%*!, with individual supercells computed using VASP “>*. The
full form of the k; tensor can be expressed as

1
K, = WZ CAT)Lv)l@vA (12)

where V' is the volume of the computed unit cell, N is the number of unit cells employed, v; is the
group velocity of a phonon mode with wave vector q and polarization j, and 7, is the lifetime of

each phonon mode. The lifetime can be computed as 7; = if‘l(a),l), with T} (w,) the phonon
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linewidth or phonon “self-energy” and is proportional to |®_,;/,7|%. The detailed expression for
I} (w,) is in the form of the selection rule of 3-phonon process *® and can be obtained from H,.

Table S1. Mathematical definitions of phonon softness (s) in addition to Eqn. (4). Considerations

are given based on convergence. ¢ is a constant.

Definition Bands involved k-point involved

2
Z wv, k
vKIK[Z + ¢ All All

Zv,k 1

2
v=3 wv,k

v=1k#0 |K|2 v=1,2,3 noTl

v=3
v=1k=+0 1

2
wv, k

Livjcx0 k|2 All noT
Zv,k;to 1

2
v=3 wv,k
v=1k k|2 v=1,2,3 All

v=3
v=1k 1

v=3
Z jwﬁdk v=1,2,3 All
v=1
BZ
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Figure S1. Thermal conductivity as a function of elastic strain energy density. The colors
correspond to the relative softness derived from the definitions in Table S1.
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Figure S2. Alternations in the lattice thermal conductivity in response to varying hydrostatic
strains by molecular dynamics (MD) simulations, utilizing a system of ~2.17 million C atoms
governed by a Tersoff potential®’. The unevenness in the curve arises from the inherent
randomness of one-shot MD simulations. While the Tersoff potential itself does not explicitly
model phonon interactions, the behavior that emerges from this potential can result in phonon
scattering events such as 3-phonon scattering due to atomic interactions dictated by the potential.
Therefore, despite the quantitative disparity in k; at a zero-strain condition, the qualitative trend
of delineating the strain-dependent evolution of aligns coherently with the results in the main text.
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Figure S3. Debye temperature calculation and results. (a) A plot of the fitting function (%)E used,

where a is a fitting parameter, and wp is the Debye frequency. The DOS from 0 to 1/4 of the
maximum phonon frequency is used for fitting, and the Debye temperature is calculated as Op =

h e _
- Wp. (b) 3D scatter plot of strain distribution in the () — 8 — k; parameter space.
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