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Abstract 

Recent studies have reported the experimental discovery that nanoscale specimens of even a 
natural material, such as diamond, can be deformed elastically to as much as 10% tensile elastic 
strain at room temperature without the onset of permanent damage or fracture. Computational 
work combining ab initio calculations and machine learning algorithms has further demonstrated 
that the bandgap of diamond can be altered significantly purely by reversible elastic straining. 
These findings open up unprecedented possibilities for designing materials and devices with 
extreme physical properties and performance characteristics for a variety of technological 
applications. However, a general scientific framework to guide the design of engineering materials 
through such elastic strain engineering has not yet been developed. By combining first-principles 
calculations with machine learning, we present here a general approach to map out the entire 
phonon stability boundary in six-dimensional strain space, which can guide the elastic strain 
engineering (ESE) of a material without phase transitions. We focus on ESE of vibrational 
properties, including harmonic phonon dispersions, nonlinear phonon scattering and thermal 
conductivity. Whereas the framework presented here can be applied to any material, we show as 
an example demonstration that the room-temperature lattice thermal conductivity of diamond can 
be increased by more than 100% or reduced by more than 95% purely by ESE, without triggering 
phonon instabilities.  Such a framework opens the door for tailoring of thermal-barrier, 
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thermoelectric, and electro-optical properties of materials and devices through the purposeful 
design of homogeneous or inhomogeneous strains. 
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Significance statement 

Vibrational properties, such as phonon dispersion and scattering, play a crucial role in a material’s 
mechanical, thermal, and thermoelectric behavior. Knowledge of the phonon stability boundary in 
the full strain tensor space, which gives the upper limit of elastic strain engineering (ESE), is 
essential for engineering the electronic and thermal properties solely through strains. Here ab initio 
calculations and machine learning are combined to develop a general framework that reveals the 
phonon stability boundary in six-dimensional strain space. It is shown that the lattice thermal 
conductivity of diamond can be increased by more than 100% or reduced by more than 95% purely 
by reversible elastic strain without the onset of phonon instabilities.  
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Introduction 

The fundamental characteristics of semiconductors, such as electrical and thermal transport 
properties, can be modified through the controlled introduction of elastic strain1–3. With an ever-
accelerating search for improved electrical and thermal characteristics of devices, tuning phonon 
properties through mechanical strains offers a powerful pathway to enhance the performance of 
microelectronic and optoelectronic devices. Just as the properties of silicon can be spatially tuned 
on the same single-crystalline wafer by variable-concentration chemical doping4, it is also possible 
to envision the tailoring of physical properties through the rational design of inhomogeneous 
elastic strain distribution to achieve variable bandgap5, carrier mobility6, and thermal barrier 
properties on the same chip. In this work, we consider elastic strains that are an order of magnitude 
larger than those hitherto adopted by the semiconductor industry, which typically involve strains 
on the order of one percent7–9. 

There exists an ideal strain limit (𝛆𝛆ideal), which is the theoretical upper bound for reversible elastic 
deformation for a perfect crystal at the absolute zero temperature. Beyond 𝛆𝛆ideal, the onset of 
relaxation by phonon instability at either 𝐤𝐤 = 𝟎𝟎 (Γ point) or finite-𝐤𝐤 would occur, which would 
inevitably lead to fracture, plasticity, or phase transition10. In actual experiments, both zero-
temperature and defect-free conditions are impractical, and the fact that every real material must 
have a surface, which is a defect, already renders 𝛆𝛆ideal unattainable. By including the effects of 
temperature, microstructure, and defects present in materials, the more conservative 𝛆𝛆real 
boundary may be found, and the six-dimensional (6D) strain space circumscribed by the five-
dimensional (5D)  𝛆𝛆real boundary is a subset of that by 𝛆𝛆ideal.  

A large dynamic range for 𝛆𝛆real  has been discovered in recent studies in nano-scale materials at 
room temperature without the onset of plasticity, phase transformation, or fracture for time periods 
long enough for applications. Even for the hardest natural crystalline diamond, mechanical 
bending experiments involving single crystal nanoscale needles have shown11 that local elastic 
tensile strains of nearly 10% can be achieved prior to the onset of fracture, whereas nanoscale 
polycrystalline diamond could be elastically strained to nearly 4%. Similar magnitudes of elastic 
strains have subsequently been demonstrated in both synthetic and natural diamonds in the form 
of nanoneedles and nanowires12,13, and micro-bridged arrays13. This is possible at the nanoscale, 
where small characteristic dimensions and low defect populations in pure diamond make it 
possible to approach 𝛆𝛆ideal  during mechanical deformation2. Silicon in the nanowire form can 
withstand 15% uniaxial tension without the onset of plasticity15, which is more than one order of 
magnitude higher than that currently employed by the semiconductor industry for its strained 
silicon technology. The realization of ultra-large elastic deformation in nanoscale dimensions of 
semiconductor materials, together with the ultra-large levels of thermal conductivity in certain 
semiconductors such as diamond, has created opportunities for the custom design of performance 
characteristics through elastic strain engineering (ESE). These provide pathways to realizing a 
dynamic and broad range of physical properties, i.e. from electronic insulator to conductor16, or 
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from  thermal conductor to thermal barrier, which may be achieved on the same single crystal by 
varying the spatial distribution of strain17. 

In this work we focus on the upper bound of theoretical strain, 𝛆𝛆ideal , which envelops the 
practically attainable 𝛆𝛆real boundary. The mapping of the 𝛆𝛆ideal  hypersurface necessitates an 
evaluation of phonon stability within the six-dimensional (6D) strain space represented by the 
elastic strain tensor 𝛆𝛆 ≡ (𝜀𝜀11, 𝜀𝜀22, 𝜀𝜀33, 𝜀𝜀23, 𝜀𝜀13, 𝜀𝜀12). In the low-temperature and defect-free limit, 
the mechanical stability of the crystal is preserved so long as the frequency 𝜔𝜔 of each phonon 
mode 𝜈𝜈  is real (non-imaginary) for all wave vectors 𝐤𝐤  throughout the Brillouin zone. If this 
condition is violated, energy reduction can be achieved by following the eigenvector of the 
unstable phonon (in unit cell if Γ-point soft phonon, and in an enlarged supercell if finite-𝐤𝐤 soft 
phonon), a barrierless relaxation that can happen even at 𝑇𝑇 = 0 K. 𝛆𝛆ideal can thus be regarded as a 
strain hypersurface in 6D that corresponds to the onset of non-real phonon frequencies for arbitrary 
𝐤𝐤 and 𝜈𝜈. Ordinarily, computation of phonon properties directly comparable with experimental data 
from neutron or X-ray inelastic scattering requires first-principles calculations based on the finite 
displacement method or density functional perturbation theory (DFPT)18. To outline the intractable 
computational burden of this task, consider the phonon band structure 𝜔𝜔𝜈𝜈(𝛆𝛆;  𝐤𝐤) , which is a 
function of wave vector 𝐤𝐤 and crystal strain 𝛆𝛆 where 𝐤𝐤 ∈ ℂ3, 𝛆𝛆 ∈ ℝ6, with 9 dependent variables 
(10 when including the discrete phonon branch index ν), for an arbitrary bulk semiconductor 
crystal. Mapping the phonon band frequency space with a tabulation approach would then entail 
many millions of first-principles calculations, with additional computational costs incurred to 
include ESE effects on lattice thermal conductivity.  

To overcome these difficulties, we present a general method that combines machine learning (ML) 
and ab initio calculations to identify the theoretical ESE upper bound that defines the phonon 
stability boundary and 𝛆𝛆ideal. This method invokes artificial neural networks (NNs) to predict, 
within a reasonable degree of accuracy, material properties as a function of strain while utilizing 
minimally required input data. In analogy with the yield surface commonly used to describe plastic 
deformation of metallic materials, we visualize the phonon stability boundary of a bulk 
semiconductor crystal in the elastic strain 𝛆𝛆ideal or stress space. We demonstrate the potential of 
our method for engineering phonon band structure, phonon density of states (DOS), and thermal 
transport properties. Exemplifying the potential for semiconductor performance optimization 
afforded by our method, we demonstrate that the lattice thermal conductivity of diamond can span 
from sub-100 W·m−1·K−1 up to 6000 W·m−1·K−1 solely through mechanical strain. The general 
method developed in this work, with specific demonstrations of its application for the case of 
diamond, is thus seen to provide a broad framework to guide elastic strain engineering of materials 
to tailor their physical properties, such as phonon band structure and thermal conductivity. 

Results 

1. Machine-learning phonon band structure and DOS 
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ML methods have become indispensable for solving problems with extensive parameter spaces 
that are challenging to tackle through conventional analytical or numerical means. In the domain 
of our concern, this challenge manifests prominently in the modeling of phonon dispersion as a 
function of strain tensor. To address this, the present work employs two ML models: a feed-
forward neural network (FNN) and a convolutional neural network (CNN). In the study of 
electronic properties, FNNs have been demonstrated to provide high accuracy for single-value 
regression tasks, such as predicting the scalar-valued electronic bandgap5. By contrast, drawing an 
analogy between dispersion relations and RGB pixel color encoding of digital images, CNN can 
be chosen as a base architecture to fit band structure. CNNs were found to excel at learning 
multiple energy bands simultaneously with the inclusion of “intra/inter-band correlation”, and to 
achieve state-of-the-art band curvature accuracy6. 

Two generic NN training processes to learn strain-dependent phonon-related properties are shown 
in Figure 1. Both processes take the elastic strain state 𝛆𝛆 as input to learn phonon dispersion and 
DOS 𝑔𝑔(𝛆𝛆;𝜔𝜔). In contrast to the FNN method employed for learning 6 bands (3 acoustic and 3 
optical) separately, a CNN method applies 3D convolution in reciprocal space and learns the band 
structure 𝜔𝜔𝜈𝜈(𝛆𝛆;𝐤𝐤) in its entirety. Similarly, CNN applies 1D convolution in the frequency domain 
to learn the DOS, which is not feasible in the FNN model. The phonon stability can either be 
directly machine-learned as a classification task (indicated by the orange arrow in Figure 1a) or 
predicted by postprocessing the as-trained phonon DOS or band structure FNN/CNN models. The 
results yielded from learning ~15,000 strain data for the phonon stability boundary, band structure, 
and DOS in the general 6D strain space and two 3D subspaces are summarized in Table 1. A 
detailed description of first-principles data acquisition and the NN architecture can be found in the 
Method section.  
 

Figure 1. ML workflow for phonon-related properties with strain information used as input. When adopting 
(a) FNN models, the phonon stability can either be learned by directly fitting the onset of imaginary 
frequencies or analyzed from ML-predicted phonon band structure or DOS. The band structure, 𝜔𝜔(𝛆𝛆;𝐤𝐤; 𝜈𝜈), 
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is treated as 6 separate bands. When (b) CNN models are used, the direct ML target can be band structure 
or DOS. The band structure, 𝜔𝜔𝜈𝜈(𝛆𝛆;𝐤𝐤), is learned as a whole. The green, blue and orange arrows indicate 
the procedural steps for learning band structure, DOS, and phonon stability, respectively. 
 
 
 
Table 1. Summary of the ML accuracies reached for phonon stability boundary, DOS, and band structure 
corresponding to strain states in the 𝜀𝜀11−𝜀𝜀22−𝜀𝜀33 normal strain space, the 𝜀𝜀23−𝜀𝜀13−𝜀𝜀12 shear strain space, 
and general 6D hyperspace. The DOS results are expressed in mean absolute error (MAE). The band 
structure results are given by a relative error range due to band dependence.  

ML target 𝜀𝜀11−𝜀𝜀22−𝜀𝜀33 normal strain space 𝜀𝜀23−𝜀𝜀13 − 𝜀𝜀12 shear strain space General 6D strain space 
Stability boundary 97% 95% 94% 

DOS 0.009 0.01 0.02 
Band structure 1.1-2.5% 3.3-4.6% 4-4.5% 

 

 
2. Analysis of the phonon stability boundary 

The 6D strain space consists of mixed deformation states that combine standard hydrostatic, 
uniaxial, and pure shear strains. Visualization of this space is important as it allows for the 
delineation of the phonon stability boundary, defining an upper bound for the “safe” working limit 
of applied strains.   

We trained ML models to reveal the stability boundaries in two 3D subspaces by constraining 
three of the six strain components. Figures 2a and 2b demonstrate the stability boundary in pure 
compressive and tensile strain subspace (𝜀𝜀23 =  𝜀𝜀13 = 𝜀𝜀12 = 0). Figures 2c and 2d show the 
stability boundary in the shear strain subspace (𝜀𝜀11 =  𝜀𝜀22 = 𝜀𝜀33 = 0). Similar to the isosurfaces 
used to assess the boundaries of bandgap modulation by recourse to ESE in our previous work5,6, 
the present study deals with phonon stability boundary signifying the onset of imaginary phonon 
frequencies for a given strain state on the stability boundary  at critical wave vectors 𝐤𝐤c.  

In general, there are three types of the critical wave vector in the strain spaces considered. 
Following the notation rules introduced in SI Appendix, Notation, they can be classified as: 

• The Γ type: 𝐤𝐤c = (0, 0, 0) 
• The ‘Δ’ type: 𝐤𝐤c = (𝜉𝜉, 𝜉𝜉, 0), (𝜉𝜉, 0, 𝜉𝜉) or (0, 𝜉𝜉, 𝜉𝜉), where 0 < 𝜉𝜉 < 0.5 
• The ‘L’ type: 𝐤𝐤c = (0, 0, 0.5), (0, 0.5, 0) or (0.5, 0, 0) 
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Figure 2. 3D phonon stability boundaries. The stability boundaries for the 𝜀𝜀11−𝜀𝜀22 − 𝜀𝜀33 normal strain 
subspace colored by (a) the elastic strain energy density ℎ (unit: meV/Å3) and partitioned by (b) critical 
wave vector 𝐤𝐤c. The stability boundaries for the 𝜀𝜀23 − 𝜀𝜀13 − 𝜀𝜀12 shear strain subspace colored by (c) ℎ and 
partitioned by (d) 𝐤𝐤c. The regions in light green, blue, red/crimson correspond to 𝐤𝐤c of the ‘Δ’, ‘L’, ‘Γ’ 
types, respectively.  
 
In Figure 3, the general phonon stability boundary, a 5D surface denoted as 
𝑓𝑓(𝜀𝜀11, 𝜀𝜀22, 𝜀𝜀33, 𝜀𝜀23, 𝜀𝜀13, 𝜀𝜀12) = 0, can be partially visualized through pair-plot slices of the 6D 
space. The six pairwise-normal-strain subfigures in the top left corner can be thought of as origin-
crossing vertical or horizontal cuts of the 3D volume in Figure 2a or 2b, while the six pairwise-
shear-strain subfigures in the lower right corner can be thought of as origin-crossing vertical or 
horizontal cuts of the 3D volume in Figure 2c or 2d. Crystal deformation symmetries were enforced 
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when learning the stability boundary through ML models. When the strain state is composed of a 
single strain type (either normal-normal or shear-shear), the stability boundary has higher 
symmetry. The normal-normal strain stability boundaries on the top 3 × 3 left corner are phonon 
boundary surfaces with 2mm symmetry, the shear-shear stability boundaries on the lower 3 × 3 
right corner are quatrefoils with 4mm symmetry, while all other mixed strain states such as the 
𝜀𝜀12−𝜀𝜀33 normal-shear pair have only m symmetry with a “fish cracker” shaped stability boundaries. 
Overall, structural instability is more easily initiated by shear strain than normal strain, as indicated 
by the reduced shear strain axial extent and commensurate volume reduction.  

 
Figure 3. Phonon stability boundary pair-plots. The subfigures are 2D cuts of the 6D strain space with the 
remaining 4 strain components fixed at zero. For instance, strains in the 𝜀𝜀11𝜀𝜀12 subfigure in the lowest-left 
corner have 𝜀𝜀22 = 𝜀𝜀33 = 𝜀𝜀23 = 𝜀𝜀13 = 0. The diagonal subfigures are histograms for strain states spanning 
-0.4 to 0.4. Due to the symmetry in strain space, the 15 subfigures in the upper triangular region have a one-
to-one correspondence with the 15 subfigures in the lower triangular region at relative positions.  
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3. Deep ESE of lattice thermal conductivity 

The thermodynamic and thermal transport properties of a solid due to lattice dynamics are directly 
related to its phonon characteristics. By far, the largest contribution to thermal conductivity 𝜿𝜿 of 
dielectric solids comes from the lattice thermal conductivity 𝜿𝜿𝑙𝑙, which arises from the combined 
contribution of all phonon modes (with the dominant ones being acoustic). ML techniques  
developed for providing 𝜿𝜿𝑙𝑙 of undeformed solids such as Si, MgO and LiCoO2 made possible an 
reduction of the computational costs associated with high-order phonon scattering analysis19,20. 
Strain engineering of phononics21 is of interest in fields such as thermoelectricity, where achieving 
low 𝜿𝜿 is sought in order to increase the figure of merit for a thermoelectric material. In industrial 
applications where thermal insulation is important, materials with low 𝜿𝜿 values are used for 
thermal barrier coatings22. In electronic device applications, materials with high 𝜿𝜿 values are 
preferred in order to prevent damage from heat accumulation23,24, while it may be preferable to 
seek low 𝜿𝜿 values in some regions for thermal insulation purposes (from the hot regions) as well. 
Effective control of 𝜿𝜿𝑙𝑙 through ESE therefore has potential technological applications. 

For an ML method to accurately acquire the strain dependence of 𝜿𝜿𝑙𝑙 within the 6D strain space, it 
is necessary to accumulate a sufficiently large collection of 𝜿𝜿𝑙𝑙 values under different strain states 
to use as a training dataset. Recent advancements in the field have shown the feasibility of training 
NNs25 to solve the phonon Peierls-Boltzmann transport equation (BTE). For enhanced accuracy in 
our study, we rely on the first-principles approach for solving the phonon BTE to determine 𝜿𝜿𝑙𝑙. 
High-throughput computations on ~10,000 strain states that are randomly distributed in the 6D 
space were performed to build the training dataset. Additional computational details are included 
in the Method section, with specifics on 𝜿𝜿𝑙𝑙 given in SI Appendix, Theoretical background of 𝜿𝜿𝑙𝑙.  

The average lattice thermal conductivity 𝜅𝜅𝑙𝑙(𝛆𝛆)  and the elastic strain energy density ℎ(𝛆𝛆)  as 
functions of strain tensor 𝛆𝛆 within the 6D strain space were obtained using the ML model, as shown 
in Figure 4a. The values of scalar 𝜅𝜅𝑙𝑙�  are obtained by taking the average of the three 𝜿𝜿𝑙𝑙  tensor 

eigenvalues, 𝜅𝜅𝑙𝑙� ≡ Tr(𝜿𝜿𝑙𝑙)
3

. The distribution of possible 𝜅𝜅𝑙𝑙�  is indicated in Figure 4a by purple shading, 
with darker tonal values indicating that a larger number of strain states are able to achieve a specific 
𝜅𝜅𝑙𝑙�  value for a given ℎ, where h denotes the elastic strain energy density in the unit of meV/Å3. The 
cumulative “density of states” of average thermal conductivity 𝑐𝑐(𝜅𝜅𝑙𝑙� ′;  ℎ′) is defined as 

𝑐𝑐(𝜅𝜅𝑙𝑙� ′;ℎ′) ≡  � 𝑑𝑑6𝜺𝜺𝛿𝛿�𝜅𝜅𝑙𝑙� ′ −  𝜅𝜅𝑙𝑙� (𝛆𝛆)�
ℎ(𝛆𝛆)<ℎ′

=  �𝑑𝑑6𝛆𝛆𝛿𝛿�𝜅𝜅𝑙𝑙� ′ −  𝜅𝜅𝑙𝑙� (𝛆𝛆)�Θ�ℎ′ − ℎ(𝛆𝛆)� �1� 

where 𝛿𝛿(⋅) and Θ(⋅) are the Dirac delta and Heaviside step functions, respectively, and 𝑑𝑑6𝛆𝛆 ≡
𝑑𝑑𝜀𝜀11𝑑𝑑𝜀𝜀22𝑑𝑑𝜀𝜀33𝑑𝑑𝜀𝜀23𝑑𝑑𝜀𝜀13𝑑𝑑𝜀𝜀12 ∈ ℝ6 is a volume element of the 6D strain space. The joint density of 
states of  𝜅𝜅𝑙𝑙�  at ℎ′ can then be expressed as 
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𝑔𝑔(𝜅𝜅𝑙𝑙� ′;ℎ′) ≡  
𝜕𝜕𝜕𝜕(𝜅𝜅𝑙𝑙� ′;ℎ′)

𝜕𝜕ℎ′
=  �𝑑𝑑6𝛆𝛆𝛿𝛿�𝜅𝜅𝑙𝑙� ′ −  𝜅𝜅𝑙𝑙� (𝛆𝛆)�𝛿𝛿�ℎ′ − ℎ(𝛆𝛆)� �2� 

𝑔𝑔 is found by considering all possible strain states and the resultant distribution of 𝜅𝜅𝑙𝑙�  arising from 
these states in the elastic strain energy density interval of (ℎ − 𝑑𝑑ℎ

2
,ℎ + 𝑑𝑑ℎ

2
). The function 𝑔𝑔(𝜅𝜅𝑙𝑙� ′;ℎ′) 

provides information for finding accessible thermal conductivity values at different energy costs. 
A lower and upper envelope function rendered as the purple dashed and solid lines in Figure 4a 
can also be defined based on 𝑔𝑔, respectively:   

𝜅𝜅𝑙𝑙� lower(ℎ) ≡ inf𝜅𝜅𝑙𝑙����𝑔𝑔(𝜅𝜅𝑙𝑙� ;ℎ)�,         𝜅𝜅𝑙𝑙� upper(ℎ) ≡ sup𝜅𝜅𝑙𝑙����𝑔𝑔(𝜅𝜅𝑙𝑙� ; ℎ)� �3� 

By tracing 𝜅𝜅𝑙𝑙� lower and 𝜅𝜅𝑙𝑙� upper in Figure 4a, it is found that diamond, as the best thermal conductor 
present in nature, can have its lattice thermal conductivity either doubled, or shrunk to sub-100 
W·m−1·K−1 (i.e. decreasing by more than 95%), purely through reversible elastic strain. These 
changes point to a very broad dynamic range in thermal transport properties as the strain tensor is 
varied, while still staying in the potential energy basin of the diamond phase without any phase 
transitions. What can also be deduced from Figure 4a is that the lower bound guides the strain 
pathway, with the least elastic strain energy density (or “energy expenditure”) to realize a target 
figure of merit (e.g., a lower thermal conductivity, if it is desirable to make a thermal barrier out 
of diamond, which is typically a good thermal conductor). Thus, the 𝜅𝜅𝑙𝑙� lower(ℎ) function could be 
used as a blueprint for designing thermal barrier structures with minimal strain energy density.   

To assess the structural robustness of deformed diamond in 6D, one can define a “phonon softness” 
term by considering the integration of 𝜔𝜔𝜈𝜈2 over the Brillouin zone for each phonon branch 𝜈𝜈: 

𝑠𝑠 ≡  � �𝜔𝜔𝜈𝜈2𝑑𝑑𝐤𝐤
BZ𝜈𝜈

�4� 

There exist other definitions of 𝑠𝑠 as well, details of which can be found in Table S1 and Figure S1; 
these different possibilities provide essentially similar results. Relative softness can then be 
defined as the ratio between softness in deformed and undeformed states: 

𝑠𝑠𝑟𝑟(𝛆𝛆) ≡
𝑠𝑠(𝛆𝛆)

𝑠𝑠(𝛆𝛆 = 𝟎𝟎) �5� 

In general, deformation causes the thermal conductivity to decrease, as indicated by the color 
scheme for 𝑠𝑠𝑟𝑟 in Figure 4b. This trend can be more easily seen in Figure 4c, where the plot of 𝑠𝑠𝑟𝑟 
against 𝜅𝜅𝑙𝑙�  is obtained from the projection of the data in the 𝑠𝑠𝑟𝑟-𝜅𝜅𝑙𝑙� -ℎ parameter space. As phonon 
frequencies get smaller when 𝑠𝑠𝑟𝑟(𝛆𝛆) < 1, larger wavevector phonons become dominant, and 3-
phonon scattering processes are more likely. When such processes occur, the sum of two phonon 
wavevectors may exceed the first Brillouin zone, leading to Umklapp phonon-phonon scattering, 
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where k1+k2-k3 (net combination of the incoming and outgoing phonon wavevectors involved in 
the nonlinear scattering) is a non-zero reciprocal vector of the host crystal. As seen in the cyan 
color projection in Figure 4c, this generally results in smaller thermal conductivity. The brown 
projection in Figure 4c corresponds to the relation between 𝑠𝑠𝑟𝑟(𝛆𝛆) and ℎ, which is not a bijective 
trend. There are instances where 𝑠𝑠𝑟𝑟(𝛆𝛆) < 1  and 𝑠𝑠𝑟𝑟(𝛆𝛆) > 1  for the same elastic strain energy 
density ℎ, as the same ℎ can correspond to different strain states, e.g., compressive and tensile 
deformations bearing the same elastic energy tend to have different effects on 𝑠𝑠𝑟𝑟.  

To evaluate the stability of a given strain state 𝛆𝛆, we define the smallest possible Euclidean distance 
from 𝛆𝛆 to the 𝛆𝛆ideal stability boundary hypersurface as 𝑑𝑑m(𝛆𝛆), with a strain-space distance metric 
of 

𝑑𝑑 ≡  �(𝜀𝜀11 − 𝜀𝜀1̃1)2 + (𝜀𝜀22 − 𝜀𝜀2̃2)2 + (𝜀𝜀33 − 𝜀𝜀3̃3)2 + 2(𝜀𝜀23 − 𝜀𝜀2̃3)2 + 2(𝜀𝜀13 − 𝜀𝜀1̃3)2 + 2(𝜀𝜀12 − 𝜀𝜀1̃2)2�6� 

between any two strain tensors 𝛆𝛆 and 𝛆𝛆�, and 𝑑𝑑m(𝛆𝛆) is the minimum of all d’s connecting 𝛆𝛆 to a 
point on the surface. The bigger the 𝑑𝑑m value, the farther it is from losing stability. The relation 
among 𝑑𝑑m, ℎ, and 𝜅𝜅𝑙𝑙�  is illustrated in Figure 4d. In the blue projection, 𝑑𝑑m is plotted against 𝜅𝜅𝑙𝑙� . It 
shows that a given 𝜅𝜅𝑙𝑙�  value can correspond to a range of different 𝑑𝑑m values. Thus, to modulate 
thermal conductivity through ESE, one could always choose the strain states that have a relatively 
large 𝑑𝑑m value to achieve a targeted 𝜅𝜅𝑙𝑙�  through elastic deformation with higher safety factors. The 
green projection in Figure 4d is the 𝑑𝑑m vs ℎ relation, which shows an increase in ℎ is usually 
accompanied by a reduction of 𝑑𝑑m, i.e., with more strain energy stored in a material, it is more 
likely to lose phonon stability.  
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Figure 4. Deep ESE of thermal conductivity. (a) Distribution of average lattice thermal conductivity (𝜅𝜅𝑙𝑙� ) 
over different elastic strain energy density (ℎ) values. Darker tonal values indicate that a larger number of 
strain states within the sampled strain space are able to achieve a specific 𝜅𝜅𝑙𝑙�  value at a given ℎ. (b) Scatter 
plot of 𝜅𝜅𝑙𝑙�  and ℎ. The color spectrum denotes relative softness values. Inset is a zoomed-in logscale plot of 
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the small 𝜅𝜅𝑙𝑙�  region, in comparison with other well-known components used in the electronics industry. (c) 
Cross plots of ℎ, 𝜅𝜅𝑙𝑙� , and relative softness in 3D. (d) A plot of ℎ, 𝜅𝜅𝑙𝑙� , and distance to the stability boundary 
𝑑𝑑m. The 𝑑𝑑m − ℎ and 𝑑𝑑m − 𝜅𝜅𝑙𝑙�  relations are illustrated by the 2D projections in green and blue, respectively. 
Note that the purple projection on the ℎ − 𝜅𝜅𝑙𝑙�  plane in (c) and (d) is the same as in (a). A 2D plane cuts the 
strain data points colored in black. Solid curve segments are on 𝑑𝑑𝑚𝑚

upper. (e) 𝜅𝜅𝑙𝑙�  and (f) Debye temperature 
θD vs. Ω. 

 

A closer inspection of Figure 4d suggests that the upper boundaries of the two projections are of 
particular interest as they correspond to strain states which are furthest from the ESE limit at given 
values of 𝜅𝜅𝑙𝑙�  or ℎ. To accurately delimit these boundaries, one can adopt a similar workflow as in 
Eqns. (1-3) to determine the “density of states” denoted as 𝑔𝑔(𝑑𝑑𝑚𝑚) and then define the following 
upper envelope functions:  

 
𝑑𝑑𝑚𝑚
upper(𝜅𝜅𝑙𝑙� ) ≡ sup𝑑𝑑𝑚𝑚�𝑔𝑔(𝑑𝑑𝑚𝑚; 𝜅𝜅𝑙𝑙� )� �7� 

𝑑𝑑𝑚𝑚
upper(ℎ) ≡ sup𝑑𝑑𝑚𝑚�𝑔𝑔(𝑑𝑑𝑚𝑚;ℎ)� �8� 

As shown in Figure 4d, 𝑑𝑑𝑚𝑚
upper(𝜅𝜅𝑙𝑙� ) and 𝑑𝑑𝑚𝑚

upper(ℎ) coincide with the line segments AB and CD 
colored in blue and green, respectively. These two envelope functions can guide deep ESE. In 
particular, 𝑑𝑑𝑚𝑚

upper(𝜅𝜅𝑙𝑙� ) describes the path in the 6D strain space with the highest safety factor to 
reach a targeted 𝜅𝜅𝑙𝑙�  from the undeformed state. For instance, one can apply the strains following as 
close as possible the curve segment AB in Figure 4d to avoid the material from going through 
strain states with smaller 𝑑𝑑m values that are more likely to cause phonon instability. Note the slight 
difference between following 𝑑𝑑𝑚𝑚

upper(𝜅𝜅𝑙𝑙� ) and following 𝜅𝜅𝑙𝑙� lower(ℎ) as introduced in Figure 4a: the 
former is a conservative way to conduct deep ESE and always keeps a long minimum distance 
away from potential material failure during deformation; the latter is a more progressive way to 
carry out deep ESE by emphasizing energy-efficient achievement of target figure of merit of a 
material, regardless of how close it may get to the phonon stability boundary while undergoing 
deformation along the strain path in 6D. Meanwhile, the 𝑑𝑑𝑚𝑚

upper(ℎ) function is useful for the 
optimization of strain path in 6D to achieve a deformation with certain strain energy storage. For 
example, to reach a target ℎ value of 200 meV/Å3, one can choose the states with the largest 𝑑𝑑m 
value (Point D on the 𝑑𝑑𝑚𝑚

upper(ℎ)  envelope), and segment CD delineates a path from the 
undeformed state to this chosen point.   

Figure 4e shows that when the volume of the crystal unit cell (Ω ) decreases, the thermal 
conductivity of diamond generally increases. A molecular dynamics simulation qualitatively 
showing this trend can be found in Figure S2. When the normal deformation is compressive, 
decreasing Ω results in stronger covalent bonding with increased phonon frequencies 𝜔𝜔 , and 
greater phonon frequency dispersion. Such frequency dispersion enhancement due to reduced Ω is 
also reflected in the increased Debye temperature θD (Figure 4f and Figure S3 in Appendix). The 
occupancy 𝑓𝑓0 of phonons with a greater 𝜔𝜔 would decrease according to Bose-Einstein statistics, 
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where 𝑓𝑓0 = 1 �𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘B𝑇𝑇 − 1�� . Small wavevector phonons will therefore become more abundant than 

in an undeformed material at the same temperature (300 K). For a 3-phonon scattering process, 
the sum of two small phonon wavevectors is less likely to exceed the first Brillouin zone and 
satisfy momentum conservation relation 𝐤𝐤 +  𝐤𝐤’ =  𝐤𝐤’’ −  𝐆𝐆. This results in fewer Umklapp and 
more normal phonon scattering processes, and the interaction strength of such processes Φ𝜆𝜆𝜆𝜆′𝜆𝜆′′ 
(𝜆𝜆 is shorthand for (𝜔𝜔, 𝑗𝑗) which represents a phonon with frequency 𝜔𝜔 and polarization 𝑗𝑗) will 
decrease, leading to an increase in 𝜅𝜅𝑙𝑙� . For similar reasoning, a general decrease in 𝜅𝜅𝑙𝑙�  can be found 
when the deformation is of tensile nature when 3-phonon processes with more Umklapp processes 
will play a major role. In this case Φ𝜆𝜆𝜆𝜆′𝜆𝜆′′  will increase, the scattering rate Γ𝝀𝝀(𝜔𝜔𝝀𝝀) will then 
increase, which will impede phonon propagation and shorten the phonon lifetime, 𝜏𝜏𝝀𝝀 = 1

2Γ𝝀𝝀(𝜔𝜔𝝀𝝀).  

Conclusion  

First-principles calculations of the characteristics of phonons and physical properties such as 
thermal conductivity of semiconductors can be computationally expensive and intractable with on-
the-fly computation. In this work, a unique and general approach involving neural networks is 
developed to capitalize on the structured and highly correlated relationship between band 
dispersion and strain to accurately perform a variety of tasks, including the prediction of phonon 
band structure and DOS. The ML models employed here are sufficiently flexible to include 
synergistic data sampling and active-learning cycles, which can further improve training accuracy. 
Direct application of this scheme to diamond crystals is demonstrated by predicting the strain 
hypersurface where the onset of phonon instability occurs. Employing deep ESE to modulate 
fundamental phonon-related properties of materials, such as thermal conductivity or phonon band 
structure, requires the identification of optimal actionable strain states within the 6D strain 
hyperspace. The example provided in this work of tuning the thermal conductivity of diamond 
lattice through deep ESE illustrates the opportunity for figure-of-merit optimization and 
customizing device performance. In particular, the prediction that the lattice thermal conductivity 
of diamond, nature’s most thermally conductive material, can be either doubled or decreased to 
sub-100 W·m−1·K−1 values purely through elastic strain is a striking example of the application of 
this method. This ultra-wide dynamic range for modulating physical properties through ESE offers 
potential applications, as phonons control thermoelectric, superconductivity, and quantum 
coherence26,27 properties as well. 

Applications of such surrogate ML models are many. Just as the gradient of the electronic band 
relates to group velocity, the gradient of the phonon band (𝛁𝛁𝐤𝐤𝜔𝜔𝜈𝜈(𝐤𝐤; ε)) relates to the speed of 
sound in the medium, which could be attained by invoking this model. Other important material 
properties such as the Grüneisen parameter (that characterizes the effect of volume change of a 
crystal lattice on its vibrational properties and therefore, thermal expansion28) could be derived 
from postprocessing selected phonon band structures with certain strain states. Furthermore,  
various properties of a material under different strain states might be seen as competing objectives 
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that need to be optimized simultaneously (Pareto analysis)6. For example, a balance between 
thermal properties and electronic properties could be explored to identify the most efficient energy 
conversion in a thermoelectric material. Lastly, owing to its accuracy and low computational cost, 
it is appealing to explore adaptations of this joint ML-ab initio calculation framework for 
simulating phononic functionalities to accelerate figure-of-merit acquisition for a variety of 
semiconductors and to incorporate the method into technology computer-aided design (TCAD)29–

32 for industry-grade device application with deep ESE. 

Method 

First-principles data acquisition 
Computational results for undeformed diamond were first calibrated against widely available 
experimental values obtained from neutron/X-ray inelastic scattering, including lattice constant, 
elastic properties, and phonon band structures. After the benchmark, ~15,000 Latin-Hypercube-
sampled strain points were fed into ab initio calculations to acquire the phonon stability, DOS, 
band structures, and other related properties for each deformed structure.  

For strain-deformed structure relaxation, density functional theory (DFT) simulations were carried 
out using the projector augmented wave method33 with Perdew–Burke-Ernzerhof34 exchange-
correlation functional following the implementation in the Vienna Ab initio Simulation Package 
(VASP)35. For all computations, the electronic wavefunctions were expanded using a plane wave 
basis set characterized by an energy cutoff of 600 eV, and Brillouin zone integration was 
performed using a 13 × 13 × 13 Monkhorst-Pack k-mesh. A maximum residual force of 
5.0 × 10−4eV/Å was permitted for atoms following structural relaxation. The Green-Lagrangian 
strain measure was used |𝜀𝜀𝑖𝑖𝑖𝑖| ≤ 0.4 (𝑖𝑖, 𝑗𝑗 = 1, 2, 3), and the strain was sampled in a sufficient range 
to capture the entire phonon stability boundary (main text Figure 3). Known crystal symmetries 
were employed to further reduce the number of strain computations needed. The diamond phonon 
calculations were carried out based on Γ-only density functional perturbation theory (DFPT) 
implemented in the VASP-Phonopy package36,37. The force constant calculations were conducted 
based on a 2 × 2 × 2 supercell of diamond and 3 × 3 × 3 k-point mesh. Given the coarseness of this 
mesh, Phonopy’s “mesh sampling mode” was employed for the expansion/extrapolation of the 
results onto a 25 × 25 × 25 grid. ML models were then trained upon learning this dense grid of 
frequency eigenvalues. Phono3py package36,37 was employed for deformed diamond lattice 
thermal conductivity calculations through a direct solution of the linearized phonon Boltzmann 
transport equation.  
 
Model architecture 
The input and output data structures of the FNN and CNN-based models used in this work are 
illustrated in the main text Figure 1. The FNN models reaching the best accuracies for learning 
phonon stability, DOS, and band structure all involve three hidden layers: 6–(256–128–64)–1, 6–
(2048–2048–4096)– 𝑤𝑤 , and 6–(1024–1024–2048)– 6𝑚𝑚3 , respectively. Here, 𝑤𝑤  dictates the 
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resolution of the DOS plot, and 𝑚𝑚 is the number of k-points sampled in the Brillouin zone. The 
CNN-based model yielding the best learning result for the band structure fitting task consists of a 
fully-connected part at the beginning to “unpack” the 6 × 1 vector denotation of 𝛆𝛆 into an 𝑚𝑚 × 𝑚𝑚 
× 𝑚𝑚 × 6 tensor representation in order to be fed into the subsequent convolutional part with three 
blocks of convolution with a (3 × 3 × 3 × 3) kernel subsequently applied upon the floating-point 
representation residually. It has been demonstrated in previous works regarding electronic band 
structure in diamond that such convolutions account for the so-called “inter/intra-band 
correlations”6 with periodic boundary conditions and symmetry. Likewise, the CNN-based model 
yielding the best outcomes for the DOS fitting task morphs the 6 × 1 representation of 𝛆𝛆 into a 𝑤𝑤 
× 1 vector by a series of fully connected layers, which is treated by two blocks of 1D convolution: 
the first with a (7 × 1) kernel and the second with a (3 × 1) kernel. Each convolution comes with 
16 channels. After that, we did channel-wise down-sampling and applied the result residually to 
the original 𝑤𝑤 × 1 vector. The Adam stochastic optimization algorithm was used to train the model, 
together with the gradually reducing dropout rate for fully-connected layers to enhance learning 
and prevent overfitting.  

Molecular dynamics (MD) simulation 
Thermal conductivity of diamond was computed via the equilibrium Green-Kubo formalism38,39, 
a methodology that connects the ensemble average of heat flux auto-correlation to thermal 
conductivity. Heat flux vectors were calculated based on atomic contributions (from atomic 
energies, velocities, and stresses). Thermal conductivity calculations require a sufficiently large 
simulation box to address the large mean free path of phonons, which is critical for high lattice 
thermal conductivity materials such as diamond. We first tested both sample size and correlation 
length dependencies to ensure the convergence of the thermal conductivity calculation. The 
convergence was established at a correlation length of at least 30 ps and a sample size of at least 
60×60×60 a03, where a0 is the equilibrium lattice constant at 300 K. For production MD runs, we 
first equilibrated all samples, inclusive of those exposed to varying hydrostatic strains, for 100 ps 
under NVT conditions. Then heat flux auto-correlation was determined over an additional 1 ns 
NVT MD run. The final thermal conductivity corresponding to a specific hydrostatic strain was 
obtained by time-averaging across the 1 ns period. All MD simulations were based on Tersoff 
potential obtained from the NIST repository40 to provide qualitative trends. 
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Notation 
During a general three-dimensional deformation involving three normal strains, the original point 
group of the diamond crystal, denoted as 𝑂𝑂ℎ, turns into a 𝐷𝐷2ℎ point group. The corresponding 
Brillouin zone would not be a regular truncated octahedron with equilateral hexagonal and square 
faces anymore. The center of the Brillouin zone is labeled as Γ following the tradition. In an 
undeformed diamond, the centers of the square and regular hexagonal surfaces on the Brillouin 
zone boundary both degenerate, which are referred to as 𝑋𝑋 and 𝐿𝐿, respectively. For the sake of 
comparison and simplicity, we adhere to this convention by considering the ‘𝑋𝑋’-type points as the 
centers of tetragonal surfaces and the ‘𝐿𝐿’-type points as the centers of regular or non-regular 
hexagonal surfaces. Connecting the Γ point to the ‘𝑋𝑋’-type points results in lines labeled as ‘Δ’-
type. Consequently, while the six ‘𝑋𝑋’- and ‘𝐿𝐿’-type points are no longer degenerate, they maintain 
the correct fractional coordinates of 〈0.5, 0, 0.5〉-type and 〈0.5, 0, 0〉-type. Moreover, the k-points 
situated along the Γ-‘𝑋𝑋’ line all possess coordinates of the 〈𝜁𝜁, 0, 𝜁𝜁〉-type, where 0 < 𝜁𝜁 < 0.5. 

 
Theoretical background of 𝜿𝜿𝑙𝑙 
 
The Hamiltonian of a crystal system can be written as 

𝐻𝐻 = Ψ0 + 𝑇𝑇 + 𝐻𝐻2 + 𝐻𝐻3 + ⋯ �9� 
where Ψ0 is a constant potential, 𝑇𝑇 the kinetic energy of ions, and 𝐻𝐻𝑛𝑛 the 𝑛𝑛-body crystal potentials. 
𝐻𝐻2 is the harmonic potential and does not contribute to the lattice thermal resistance. The 𝐻𝐻3 term 
describes three-phonon scattering processes and is the main contribution to 𝜿𝜿𝑙𝑙-1. In the form of 
second quantization, these can be expressed as 36 

𝐻𝐻2 = �ℏ𝜔𝜔𝜆𝜆 �
1
2

+ 𝑎𝑎�𝜆𝜆
†𝑎𝑎�𝜆𝜆�

𝜆𝜆

�10� 

𝐻𝐻3 = � Φ𝜆𝜆𝜆𝜆′𝜆𝜆′′�𝑎𝑎�−𝜆𝜆
† + 𝑎𝑎�𝜆𝜆��𝑎𝑎�−𝜆𝜆′

† + 𝑎𝑎�𝜆𝜆′�
𝜆𝜆𝜆𝜆′𝜆𝜆′′

�𝑎𝑎�−𝜆𝜆′′
† + 𝑎𝑎�𝜆𝜆′′� �11� 

where 𝜆𝜆 = (𝒒𝒒, 𝑗𝑗) represents the wave vector 𝒒𝒒, and polarization 𝑗𝑗 of the phonon mode, and 𝑎𝑎�𝜆𝜆
† and 

𝑎𝑎�𝜆𝜆 are the phonon creation and annihilation operators. The interaction strength of three-phonon 
scattering processes is given by Φ𝜆𝜆𝜆𝜆′𝜆𝜆′′ and is the determinative factor for the value of 𝜿𝜿𝑙𝑙. The 
procedures for computing 𝜿𝜿𝑙𝑙 were implemented in Phonopy and Phono3py software packages, and 
employed a supercell approach 36,41, with individual supercells computed using VASP 42,43. The 
full form of the 𝜿𝜿𝑙𝑙 tensor can be expressed as 

𝜿𝜿𝑙𝑙 =
1
𝑁𝑁𝑁𝑁

�𝐶𝐶𝜆𝜆𝜏𝜏𝜆𝜆𝒗𝒗𝜆𝜆⨂𝒗𝒗𝜆𝜆
𝜆𝜆

�12� 

where 𝑉𝑉 is the volume of the computed unit cell, 𝑁𝑁 is the number of unit cells employed, 𝒗𝒗𝜆𝜆 is the 
group velocity of a phonon mode with wave vector 𝒒𝒒 and polarization 𝑗𝑗,  and 𝜏𝜏𝜆𝜆 is the lifetime of 
each phonon mode. The lifetime can be computed as 𝜏𝜏𝜆𝜆 = 1

2
Γ𝜆𝜆(𝜔𝜔𝜆𝜆), with Γ𝜆𝜆(𝜔𝜔𝜆𝜆) the phonon 
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linewidth or phonon “self-energy” and is proportional to |Φ−𝜆𝜆𝜆𝜆′𝜆𝜆′′|2. The detailed expression for 
Γ𝜆𝜆(𝜔𝜔𝜆𝜆) is in the form of the selection rule of 3-phonon process 36 and can be obtained from 𝐻𝐻3.  
 

 

Table S1. Mathematical definitions of phonon softness (𝑠𝑠) in addition to Eqn. (4). Considerations 
are given based on convergence. 𝑐𝑐 is a constant. 

Definition Bands involved k-point involved 

∑
𝜔𝜔𝜈𝜈, 𝐤𝐤
2

|𝐤𝐤|2 + 𝑐𝑐𝜈𝜈,𝐤𝐤

∑ 1𝜈𝜈,𝐤𝐤
 All All 

∑
𝜔𝜔𝜈𝜈, 𝐤𝐤
2

|𝐤𝐤|2
𝜈𝜈=3
𝜈𝜈=1,𝐤𝐤≠𝟎𝟎

∑ 1𝜈𝜈=3
𝜈𝜈=1,𝐤𝐤≠𝟎𝟎

 𝜈𝜈 = 1, 2, 3 no Γ 

∑
𝜔𝜔𝜈𝜈, 𝐤𝐤
2

|𝐤𝐤|2𝜈𝜈,𝐤𝐤≠𝟎𝟎

∑ 1𝜈𝜈,𝐤𝐤≠𝟎𝟎
 All no Γ 

∑
𝜔𝜔𝜈𝜈, k
2

|𝐤𝐤|2
𝜈𝜈=3
𝜈𝜈=1,𝐤𝐤

∑ 1𝜈𝜈=3
𝜈𝜈=1,𝐤𝐤

 𝜈𝜈 = 1, 2, 3 All 

� �𝜔𝜔𝜈𝜈2𝑑𝑑𝐤𝐤
BZ

𝜈𝜈=3

𝜈𝜈=1
 𝜈𝜈 = 1, 2, 3 All 
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Figure S1. Thermal conductivity as a function of elastic strain energy density. The colors 
correspond to the relative softness derived from the definitions in Table S1. 

 
Figure S2. Alternations in the lattice thermal conductivity in response to varying hydrostatic 
strains by molecular dynamics (MD) simulations, utilizing a system of ~2.17 million C atoms 
governed by a Tersoff potential40. The unevenness in the curve arises from the inherent 
randomness of one-shot MD simulations. While the Tersoff potential itself does not explicitly 
model phonon interactions, the behavior that emerges from this potential can result in phonon 
scattering events such as 3-phonon scattering due to atomic interactions dictated by the potential. 
Therefore, despite the quantitative disparity in 𝜿𝜿𝑙𝑙 at a zero-strain condition, the qualitative trend 
of delineating the strain-dependent evolution of aligns coherently with the results in the main text.  
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Figure S3. Debye temperature calculation and results. (a) A plot of the fitting function  �9𝑁𝑁
𝑎𝑎
�
1
3 used, 

where a is a fitting parameter, and 𝜔𝜔D is the Debye frequency. The DOS from 0 to 1/4 of the 
maximum phonon frequency is used for fitting, and the Debye temperature is calculated as θD =
ℏ
𝑘𝑘B
𝜔𝜔D. (b) 3D scatter plot of strain distribution in the Ω − θD − 𝜅𝜅𝑙𝑙�  parameter space.  

 
 


