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Mapping Class Groups of Circle Bundles over a Surface

Lei Chen & Bena Tshishiku

Abstract. In this paper, we study the algebraic structure of map-

ping class group Mod(X) of 3-manifolds X that fiber as a circle

bundle over a surface S1 → X → Sg . There is an exact sequence

1 → H 1(Sg) → Mod(X) → Mod(Sg) → 1. We relate this to the Bir-

man exact sequence and determine when this sequence splits.

1. Introduction

For g ≥ 1, let Sg denote the closed oriented surface of genus g, and for k ∈ Z, let

Xk
g denote the closed 3-manifold that fibers

S1 → Xk
g → Sg

as an oriented circle-bundle with Euler number k. By Waldhausen [Wal68]

(see Section 2), if (g, k) �= (1,0), then the mapping class group Mod(Xk
g) :=

π0(Homeo+(Xk
g)) fits into a short exact sequence

1 → H 1(Sg;Z) → Mod(Xk
g) → Mod(Sg) → 1. (1)

This paper is motivated by the following question.

Question 1.1. For which values of g, k is the extension in (1) split?

The extension obviously splits for k = 0. It also splits when 2g − 2 divides k.

Indeed, the universal Sg bundle E → B Diff(Sg) induces (via the vertical (unit)

tangent bundle) a bundle over B Diff(Sg) with fiber USg
∼= X

2−2g
g whose mon-

odromy Mod(Sg) ∼= π1(B Diff(Sg)) → Mod(X
2g−2
g ) defines a splitting. The same

construction with the vertical cotangent bundle and tensor powers of these bundles

gives splittings of (1) when 2g − 2 divides k.

When k = 2 − 2g, there is, in fact, a natural action of Mod(Sg) on USg by

homeomorphisms, which gives a splitting of (1) upon taking isotopy classes. For

g ≥ 2, this action comes from the action of the punctured mapping class group

Mod(Sg,1) on triples of points on the boundary of hyperbolic space H
2. This

construction dates back to the work of Nielsen. See [FM12, Section 5.5.4, Sec-

tion 8.2.6] and [Sou10, Section 1]. This construction does not appear to generalize

to k divisible by 2 − 2g.

In general, Question 1.1 reduces to a question about group cohomology. Ex-

tension (1) splits if and only if its Euler class euk ∈ H 2(Mod(Sg);H
1(Sg;Z))
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vanishes [Bro82, Section IV.3]. Here the coefficients are twisted via the natural

action of Mod(Sg) on H 1(Sg;Z). A computation

H 2(Mod(Sg);H
1(Sg;Z)) ∼= Z/(2g − 2)Z (2)

for g ≥ 9 was announced by Morita [Mor86], but the details seem to have never

been published. Morita also gives an interpretation of a generator of (2) as a char-

acteristic class of surface bundles. We recover Morita’s computation and identify

the generator of (2) with the Euler class of the extension

1 → H1(Sg) → Mod(Sg,1)/π
′ → Mod(Sg) → 1, (3)

obtained from the Birman exact sequence

1 → π1(Sg) → Mod(Sg,1) → Mod(Sg) → 1

by taking quotients by the commutator subgroup π ′ ≡ [π1(Sg),π1(Sg)].

Theorem 1.2. Fix g ≥ 1, and let eu be the Euler class of extension (3). Then eu

has order 2g − 2 in H 2(Mod(Sg);H1(Sg;Z)). Furthermore, if g ≥ 8, then eu1

generates this group, that is,

H 2(Mod(Sg);H
1(Sg;Z)) ∼= Z/(2g − 2)Z.

Our main result relates sequences (1) and (3).

Theorem A. Fix g ≥ 1 and k ∈ Z. Assume that (g, k) �= (1,0). There is a map

between the short exact sequences (1) and (3)

The homomorphism kδ is the Poincaré duality isomorphism δ composed with mul-

tiplication by k. In particular, when k = 1, the exact sequences (1) and (3) are

isomorphic.

Theorem A implies that the Euler classes of extensions (1) satisfy euk = k eu1 for

fixed g. Combining Theorem A and Theorem 1.2, we obtain the following answer

to Question 1.1.

Corollary 1.3. For g ≥ 2 and k ∈ Z, extension (1) splits if and only if k is

divisible by 2g − 2. For g = 1, the extension splits for each k.

When a splitting exists, the different possible splittings (up to the action of

H 1(Sg;Z) on Mod(Xk
g) by conjugation) are parameterized by elements of

H 1(Mod(Sg);H
1(Sg;Z)) [Bro82, Ch. IV, Prop. 2.3]. This group vanishes for

g ≥ 1 [Mor85, Prop. 4.1], so the splitting, when it exists, is unique.
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Connection to Nielsen Realization

Instead of Question 1.1, we can ask whether there is a splitting of the composite

surjection

Homeo(Xk
g) → Mod(Xk

g) → Mod(Sg).

This is an instance of a Nielsen realization problem. Of course, if Mod(Xk
g) →

Mod(Sg) does not split, then neither does Homeo(Xk
g) → Mod(Sg), and Corol-

lary 1.3 gives examples of this. Since Mod(Sg) has a natural action on USg , the

surjection Homeo(Xk
g) → Mod(Sg) does split for k = ±(2g − 2). This is some-

what surprising since mapping class groups are rarely realized as groups of sur-

face homeomorphisms [Mar07; Che19; CS22]. We wonder whether this splitting

is unique, or if a splitting exists for other values k divisible by 2g−2 (for example,

k = 0). In [ACT23], we give examples that show that Homeo(Xk
g) → Mod(Sg)

does not always split when k is divisible by 2g − 2.

Previous Work and Proof Techniques

Waldhausen [Wal68, Section 7] proved that the group π0(Homeo(Xk
g)) is isomor-

phic to the outer automorphism group Out(π1(X
k
g)). From this the short exact

sequence (1) can be derived from work of Conner and Raymond [CR77] and the

Dehn–Nielsen–Baer theorem; alternatively, see McCullough [McC91, Section 3].

The Dehn–Nielsen–Baer theorem also plays a central role in Theorem A, since it

allows us to translate back and forth between topology and group theory. There is

a mix of both in the proof of Theorem A in Section 3.

To prove Theorem A, we consider a version of Question 1.1 where Xk
g and Sg

are punctured. For the punctured manifolds, similarly to (1), there is a short exact

sequence

1 → H 1(Sg;Z) → Mod(Xk
g,1) → Mod(Sg,1) → 1,

and we construct a splitting

σ : Mod(Sg,1) → Mod(Xk
g,1).

See Corollary 3.1. A key part of our proof of Theorem A is to determine the

image of the point-pushing subgroup π1(Sg) < Mod(Sg,1) under σ . For this, we

relate three natural surface group representations π1(Sg) → Mod(Xk
g,1) that ap-

pear in the following diagram, where the diagonal map is point pushing on Xk
g ;

see Proposition 3.4 for a precise statement.

To deduce Corollary 1.3, we use a spectral sequence argument to prove

that eu1 generates a subgroup of H 2(Mod(Sg);H
1(Sg;Z)) isomorphic to
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Z/(2g − 2)Z. A different spectral sequence computation proves that eu1 gen-

erates H 2(Mod(Sg);H
1(Sg;Z)) when g is large. These computations use several

known computations, including work of Morita [Mor85].

Section outline

In Section 2, we collect the results we need about the manifolds Xk
g and their

mapping class groups, including Waldhausen’s work. Theorem A is proved in

Section 3; this section is the core of the paper. In Section 4, we do two spectral

sequence computations to prove Theorem 1.2.

2. Circle Bundles over Surfaces

Here we review some results about circle bundles over surfaces that we will need

in future sections.

2.1. Classification

By an oriented circle bundle we mean a fiber bundle

S1 → E → B

with structure group Homeo+(S1), the group of orientation-preserving homeo-

morphisms of S1. The inclusion of the rotation group SO(2) in Homeo+(S1) is a

homotopy equivalence, so circle bundles are in bijection with rank-2 real vector

bundles. The classifying space B SO(2) is homotopy equivalent to CP ∞, which

is an Eilenberg–Maclane space K(Z,2). Thus each circle bundle is uniquely de-

termined up to isomorphism by its Euler class eu(E) ∈ H 2(B;Z), which is the

primary obstruction to a section of the bundle.

When B = Sg is a closed oriented surface, H 2(Sg;Z) ∼= Z, we can speak of

the Euler number. We use Xk
g to denote the total space of the circle bundle

S1 → Xk
g → Sg

with Euler number k. For example, for the unit tangent bundle, eu(USg) = 2 − 2g

(the Euler characteristic), so USg
∼= X

2−2g
g . We also note that Xk

g and X−k
g are

homeomorphic 3-manifolds, since the sign of the Euler number of a circle bundle

over Sg depends on the choice of orientation on Sg .

2.2. Fundamental Group π1(X
k
g) and Its Automorphisms

From the long exact sequence of a fibration we have an exact sequence

1 → Z → π1(X
k
g) → π1(Sg) → 1.

The group π1(X
k
g) has a presentation

π1(X
k
g) = 〈A1,B1, . . . ,Ag,Bg, z | z central, [A1,B1] · · · [Ag,Bg] = zk〉. (4)
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Using this, we find that 〈z〉 ∼= Z is the center of π1(X
k
g) as long as (g, k) �= (1,0).

When g ≥ 2, this follows from the fact that the group π1(Sg) has trivial center;

the case g = 1 can be treated directly.

Given this computation of the center, any automorphism of π1(X
k
g) induces an

automorphism of 〈z〉 ∼= Z and descends to an automorphism of π1(Sg). The latter

gives a homomorphism

Aut(π1(X
k
g)) → Aut(π1(Sg)),

which restricts to an isomorphism between the inner automorphism groups

Inn(π1(X
k
g))

∼= π1(Sg) ∼= Inn(π1(Sg)) (5)

and hence descends to a homomorphism

Out(π1(X
k
g)) → Out(π1(Sg)). (6)

Orientations

It will be convenient to denote by

Aut+(π1(Sg)) < Aut(π1(Sg))

the subgroup that acts trivially on H2(π1(Sg);Z) ∼= Z (the “orientation-preserv-

ing” subgroup). Similarly, we denote by

Aut+(π1(X
k
g)) < Aut(π1(X

k
g))

the subgroup of automorphisms that project into Aut+(π1(Sg)) and that act

trivially on the center 〈z〉 ∼= Z. In particular, Aut+(π1(X
k
g)) has index 4 in

Aut(π1(X
k
g)).

These orientation-preserving subgroups contain the (respective) inner auto-

morphism groups, and we denote the quotients Out+(π1(X
k
g)) and Out+(π1(Sg)).

2.3. Mapping Class Group Mod(Xk
g)

Fix g ≥ 1 and k ∈ Z, and assume that (g, k) �= (1,0). Let Homeo+(Xk
g) de-

note the group of homeomorphisms whose image in Out(π1(X
k
g)) is contained

in Out+(π1(Sg)). Define

Mod(Xk
g) := π0(Homeo+(Xk

g)).

Waldhausen [Wal68, Cor. 7.5] proved that the natural homomorphism

π0(Homeo(Xk
g)) → Out(π1(X

k
g))

is an isomorphism. Then by the definitions this homomorphism restricts to an

isomorphism Mod(Xk
g)

∼= Out+(π1(X
k
g)). Waldhausen also proved that π0 ×

Homeo(Xk
g) is isomorphic to the group of fiber-preserving homeomorphisms

modulo homeomorphisms that are isotopic to the identity through fiber-preserving

isotopies; see [Wal68, Rmk. following Cor. 7.5]. Consequently, there is a homo-

morphism

Mod(Xk
g) → Mod(Sg). (7)
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Altogether, we have the following commutative diagram relating the maps (6)

and (7):

(8)

The right vertical map is an isomorphism by the Dehn–Nielsen–Baer theorem

[FM12, Thm. 8.1]. Furthermore, by Conner and Raymond [CR77, Thm. 8] there

is a short exact sequence

1 → Hom(π1(Sg),Z) → Out+(π1(X
k
g)) → Out+(π1(Sg)) → 1. (9)

This establishes the short exact sequence (1) in the introduction. We will give a

concrete derivation of this exact sequence in Corollary 3.1.

3. Relating Mod(Xk
g) to the Birman Exact Sequence

In this section, we prove Theorem A. To construct the map of short exact se-

quences in Theorem A, we first define a homomorphism Mod(Sg,1) → Mod(Xk
g),

and then we identify its kernel with the commutator subgroup of the point-pushing

subgroup π1(Sg) < Mod(Sg,1). We do this is Sections 3.1 and 3.2, respectively.

3.1. A Homomorphism � : Mod(Sg,1) → Mod(Xk
g)

Fix a basepoint ∗ ∈ Sg , and set Sg,1 = Sg \ {∗}. By the Dehn–Nielsen–Baer theo-

rem, Mod(Sg,1) is isomorphic to Out∗(F2g), where F2g is the free group of rank

2g, and Out∗(F2g) < Out(F2g) is the subgroup that preserves the conjugacy class

corresponding to the free homotopy class of the loop around the puncture in Sg,1.

We construct � as a composition

� : Mod(Sg,1) ∼= Out∗(F2g)
σ
−→ Aut+(π1(X

k
g)) → Out+(π1(X

k
g))

∼= Mod(Xk
g). (10)

To define σ , fix a generating set ³1, ´1, . . . , ³g, ´g for F2g such that c =∏g

i=1[³i, ´i] represents the conjugacy class of the loop around the puncture. Let

ι : F2g → π1(X
k
g) (11)

be the homomorphism defined by ³i 
→ Ai and ´i 
→ Bi . Given f ∈ Out∗(F2g),

fix an automorphism f̃ : F2g → F2g that represents f , and assume that f̃ (c) = c

(this can always be achieved by composing any lift with an inner automorphism

of F2g). Next, we define σ(f ) on generators of π1(X
k
g) by

σ(f )(Ai) = ιf̃ (³i), σ (f )(Bi) = ιf̃ (´i), σ (f )(z) = z. (12)

To show that σ(f ) extends to an endomorphism of π1(X
k
g), we check that the

relation [A1,B1] · · · [Ag,Bg] = zk is preserved under σ(f ):
∏

i

[σ(f )(Ai), σ (f )(Bi)] =
∏

i

[ιf̃ (³i), ιf̃ (´i)] = ι(c) = zk = σ(f )(zk).
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The second equality uses the fact that f̃ (c) = c. The map σ(f ) is independent of

the choice of f̃ because different choices of f̃ differ by conjugation by powers

of c (because the centralizer of c in F2g is the cyclic subgroup 〈c〉)1 and ι(c) = zk

is central in π1(X
k
g). The homomorphism σ(f ) : π1(X

k
g) → π1(X

k
g) is an auto-

morphism and belongs to Aut+(π1(X
k
g)) by definition. Furthermore, f 
→ σ(f )

is a homomorphism, which is easy to check using the observation that if w = ιw′,

then σ(f )(w) = ιf̃ (w′).

Composing σ with Aut+ → Out+ gives the desired homomorphism � . As a

corollary of this construction, we have proved the following:

Corollary 3.1. Fix g ≥ 1 and k ∈ Z, and assume that (g, k) �= (1,0). The nat-

ural map 	 : Aut+(π1(X
k
g)) → Aut+(π1(Sg)) (see Section 2.2) fits into an exact

sequence

1 → Hom(π1(Sg),Z) → Aut+(π1(X
k
g))

	
−→ Aut+(π1(Sg)) → 1, (13)

and this exact sequence splits.

Proof. First, we compute the kernel of 	. Using the presentation for π1(X
k
g) in

(4), if f ∈ ker(	), then

f (Ai) = Aiz
mi and f (Bi) = Biz

ni

for some m1, n1, . . . ,mg, ng ∈ Z. The map ai 
→ mi , bi 
→ ni extends to a homo-

morphism τ(f ) : π1(Sg) → Z. It is elementary to check that the map ker(	) →

Hom(π1(Sg),Z) defined by f 
→ τ(f ) is an isomorphism.

The homomorphism σ defined above shows that 	 is a split surjection. Note

that Mod(Sg,∗) ∼= Mod(Sg \ {∗}) (basepoint vs. puncture), so by the Dehn–

Nielsen–Baer theorem there is an isomorphism Aut+(π1(Sg)) ∼= Out∗(F2g), and

we use this isomorphism to view σ as a splitting of 	. �

Remark 3.2. We call elements of ker(	) ∼= H 1(Sg;Z) transvections.

Remark 3.3. The homomorphism � can be constructed topologically as follows.

Fix a regular neighborhood D of the puncture on Sg,1 (so D is a once-punctured

disk). Given a mapping class f ∈ Mod(Sg,1), choose a representing homeomor-

phism f. Without loss of generality, we can assume that f is the identity on D.

The bundle Xk
g → Sg can be trivialized over S \ D (because the classifying space

B SO(2) is simply connected). Fixing a trivialization (S \ D) × S1 over S \ D,

we lift f to the product homeomorphism f × idS1 . This homeomorphism is the

identity on the boundary ∂(S \ D) × S1, so we can extend by the identity to ob-

tain a homeomorphism f̃ of Xk
g . The map sending f ∈ Mod(Sg,1) to the isotopy

class [f̃] ∈ Mod(Xk
g) is the topological version of the homomorphism � . Note that

the isotopy class [f] is only well-defined up to Dehn twists about ∂D, which is a

1Note that the centralizer is isomorphic to Z and contains 〈c〉. It would only be bigger if c = ui

for some u ∈ F2g and i ≥ 2. By contradiction, if c = ui for i ≥ 2, then u is cyclically reduced

because c is. This implies that u is a subword of c =
∏

[³i , ´i ], which is absurd.
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loop around the puncture. This is analogous to the ambiguity encountered in the

definition of σ , which ultimately does not affect the definition of � .

Corollary 3.1 and Equation (5) combine to give the short exact sequence of outer

automorphism groups (9).

Warning

The splitting of the short exact sequence (13) does not give a splitting of the

short exact sequence (9). Indeed, we will show that the latter sequence does not

always split (Corollary 1.3). The subtlety comes from the fact that the inner au-

tomorphism group Inn(π1(X
k
g))

∼= π1(Sg) does not coincide with the image of

π1(Sg) ∼= Inn(π1(Sg)) < Aut(π1(Sg)) under the section σ . Proposition 3.4 below

describes the precise relationship.

3.2. Kernel of � : Mod(Sg,1) → Mod(Xk
g)

Observe that the kernel of � is contained in the point-pushing subgroup

π1(Sg) < Mod(Sg,1). This is because the composition of � with the natural map

Mod(Xk
g) → Mod(Sg) is the natural map Mod(Sg,1) → Mod(Sg), whose kernel

is the point-pushing subgroup. Next, we determine the image of the point-pushing

subgroup under the section σ used to define � . Here we find a simple relationship

between three surface group representations:

The main results are Proposition 3.4 and Corollary 3.5. To state Proposi-

tion 3.4, we need the following notation. Let

δ : H1(Sg;Z) → H 1(Sg;Z)

be the Poincaré duality map, given explicitly by γ 
→ 〈−, γ 〉, where

〈−,−〉 : H1(Sg;Z) × H1(Sg;Z) → Z

is the algebraic intersection form. We use δ̂ to denote the composition

δ̂ : H1(Sg;Z)
δ
−→ H 1(Sg;Z) ↪→ Aut+(π1(X

k
g)).

This map is given explicitly by δ̂(γ )(w) = w · z〈[w̄],γ 〉, where w̄ is the image of

w under π1(X
k
g) → π1(Sg), and [w̄] ∈ H1(Sg;Z) is the corresponding homology

class.

Fix a basepoint � ∈ Sg,1. Recall that we have fixed a standard generating set

{³i, ´i} of π1(Sg,1, �) ∼= F2g so that c :=
∏

i[³i, ´i] is a loop around the puncture
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∗ of Sg,1 = Sg \ {∗}. Define

� : π1(Sg,1, �) → π1(Sg,∗) (14)

by γ 
→ ε.γ.ε̄, where ε is a fixed arc from ∗ to �.

Proposition 3.4. Fix t ∈ π1(Sg,∗), and let Push(t) ∈ Mod(Sg,1) ∼= Out∗(F2g) be

the point-pushing mapping class. If t̃ ∈ π1(Sg,1, �) is any lift of t (i.e. �(t̃) = t),

then

σ(Push(t)) = Cιt̃ ◦ δ̂([kt]), (15)

where Cx denotes conjugation by x, and the maps ι : F2g → π1(X
k
g) and σ :

Out∗(F2g) → Aut+(π1(X
k
g)) are defined in (11) and (12).

As a sanity check, observe that Cιt̃ does not depend on the choice of lift t̃ because

any two lifts differ by an element of the normal closure of c in π1(Sg,1, �) = F2g ,

and conjugation by any such element is trivial on π1(X
k
g).

Proof of Proposition 3.4. It suffices to prove the lemma for t ∈ π1(Sg,∗) that are

represented by a nonseparating simple closed curve. To see this, first note that

π1(Sg,∗) is generated by these curves. Furthermore, the groups Inn(π1(X
k
g)) and

H 1(Sg;Z) commute in Aut(π1(X
k
g)), so

[Cιt̃1
◦ δ̂([t1])] ◦ [Cιt̃2

◦ δ̂([t2])] = Cι(t̃1∗t̃2)
◦ δ̂([t1 ∗ t2]).

Assume now that t ∈ π1(Sg,∗) is represented by a nonseparating simple closed

curve. After an isotopy, we can assume that t contains ε as a subarc. Choose t̃ as

pictured in Figure 1.

We want to show that

σ(Push(t))(w) = [Cιt̃ ◦ δ̂([kt])](w)

for each w ∈ π1(X
k
g). Since this is obviously true for w = z, it suffices to show

this equality for w = ι(s) for s ∈ π1(Sg,1, �); furthermore, it suffices to show the

equality on any generating set of π1(Sg,1, �). We use the (infinite) generating set

consisting of curves of one of the forms pictured in Figure 2 (the intersection of

these curves with the annulus around t has one component).

Note that Push(t) fixes the basepoint �, so we can compute the action of

Push(t) on s ∈ π1(Sg,1, �). We compute the action of Push(t) on the elements

Figure 1 A small regular neighborhood of a loop representing t ∈

π1(Sg,∗) and a lift t̃ ∈ π1(Sg,1, �).
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Figure 2 The group π1(Sg,1, �) is generated by t̃ and loops of the

form pictured above.

Figure 3 Action of point-pushing about t on the loops in Figure 2.

The curve c is fixed up to isotopy (up to isotopy, Push(t) is the identity

on a neighborhood of t that contains c).

in Figure 2 as follows. See Figure 3 for an illustration.

s1 
→ (t̃)−1s1 t̃ c
−1 and s2 
→ (t̃)−1s2 t̃ and

s3 
→ c(t̃)−1s3 t̃ c
−1 and c 
→ c.

This proves, for example, that

σ(Push(t))(ιs1) = (ιt̃ )−1(ιs1)(ιt̃)z
−k = [Cιt̃ ◦ δ̂([kt])](ιs1).

(To check this computation, it is helpful to recall that σ(f )(w) = ιf̃ (w′)

when w = ιw′ and that ι(c) = zk . Furthermore, since 〈[s1], [t]〉 = −1, we have

δ̂([kt])(ιs1) = (ιs1)z
−k .)

We conclude similarly for the generators s2, s3. This proves the desired formula

for σ(Push(t)). �

The following corollary is an immediate consequence of Proposition 3.4.

Corollary 3.5. Consider the composition

� : Aut+(π1(Sg))
σ
−→ Aut+(π1(X

k
g)) → Out+(π1(X

k
g)). (16)
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The restriction of � to π1(Sg) ∼= Inn(π1(Sg)) factors as follows:

Here ab denotes the abelianization map π1(Sg,∗) → H1(Sg;Z).

3.3. Proof of Theorem A

Using the isomorphisms between mapping class groups and automorphism

groups, the desired diagram is equivalent to the following one:

The map � in (16) descends to the middle vertical map and restricts to the

left vertical map by Corollary 3.5. The fact that σ is a section (Corollary 3.1) im-

plies that the middle vertical map descends to the identity map on Out+(π1(Sg)).

When k = 1, the middle vertical map is an isomorphism by the five lemma. This

concludes the proof of Theorem A.

4. Spectral Sequence Computation

In this section, we prove Theorem 1.2. This is achieved by two different compu-

tations using the Lyndon–Hochschild–Serre (LHS) spectral sequence. Recall that

this spectral sequence takes input a short exact sequence of groups 1 → N →

G → Q → 1 and a G-module A, has E2 page

E
p,q

2 = Hp(Q;H q(N;A)),

and converges to Hp+q(G;A). For both computations, we use the Birman exact

sequence, but with different choices of the module A.

Notational note. To simplify the notation, we use the convention that cohomol-

ogy groups have Z coefficients unless otherwise specified.

4.1. Euler Class Computation

Our goal in this section is to prove the following proposition, which implies Corol-

lary 1.3.

Proposition 4.1. Fix g ≥ 1. Let euk be the Euler class of extension (1). Then

euk = k eu1, and eu1 has order 2g − 2 in H 2(Mod(Sg);H
1(Sg)).
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Proof. The relation euk = k eu1 already follows from Theorem A. Indeed, choos-

ing a set-theoretic section for the sequence in the top row of the diagram in Theo-

rem A gives a cocycle representative for euk that is k times the cocycle represen-

tative for e1.

Now we prove that eu1 generates a cyclic subgroup isomorphic to Z/(2g−2)Z

in H 2(Mod(Sg);H
1(Sg)). Our method is to apply the LHS spectral sequence to

the Birman exact sequence with the module A = H 1(Sg). Here

E
p,q

2
∼= Hp(Mod(Sg);H

q(Sg;A)).

A portion of the associated 5-term exact sequence is as follows:

0 → H 1(Mod(Sg);H
1(Sg)) → H 1(Mod(Sg,1);H

1(Sg))

A
−→ Hom(H1(Sg),H

1(Sg))
Mod(Sg)

d
0,1
2

−−→ H 2(Mod(Sg);H
1(Sg)).

This sequence has been studied by Morita. Morita [Mor85, Prop. 4.1] com-

putes that the first term vanishes, so the map A is injective. The group

Hom(H1(Sg),H
1(Sg))

Mod(Sg) is isomorphic to Z and generated the Poincaré du-

ality isomorphism δ. Morita [Mor85, proof of Prop. 6.4] shows that the image

of A is (2g − 2)Z. Consequently, the differential d
0,1
2 descends to an injection

Z/(2g − 2)Z → H 2(Mod(Sg);H
1(Sg)).

It remains to show that d
0,1
2 sends a generator to eu1. The differential d

0,1
2 is the

transgression; see, for example, [NSW08, Prop. 1.6.6, Thm. 2.4.3]. By standard

knowledge of the transgression applied to our situation we find that d
0,1
2 sends a

generator to δ∗(eu), where eu is the Euler class of extension (3), and

δ∗ : H 2(Mod(Sg);H1(Sg)) → H 2(Mod(Sg);H
1(Sg))

is the isomorphism induced by the Poincaré duality isomorphism δ. (For this prop-

erty of the transgression, see [NSW08, Section I.6, Exercise 1–2]. Whereas that

reference is mainly concerned with finite or profinite groups, the analysis of the

transgression contained given there applies more generally.) Finally, we observe

that δ∗(eu) = eu1 by Theorem A. �

4.2. Computation of H 2(Mod(Sg);H
1(Sg))

Running the LHS spectral sequence with the trivial module A = Z, we prove that

if g ≥ 8, then

H 2(Mod(Sg);H
1(Sg)) ∼= Z/(2g − 2)Z. (17)



Mapping Class Groups of Circle Bundles over a Surface 13

Combining this with Proposition 4.1 proves Theorem 1.2. The relevant portion of

the spectral sequence appears below.

The computations in the first column are easy. In the second column, Morita

[Mor85, Prop. 4.1] computed H 1(Mod(Sg);H
1(Sg)) = 0 for g ≥ 1. The other

computation H 1(Mod(Sg)) = 0 holds for g ≥ 1 because the abelianization of

Mod(Sg) is finite [FM12, Section 5.1.2-3].

According to [BT01, Cor. 1.2],

H∗(Mod(Sg,1)) ∼= H∗(Mod(Sg)) ⊗Z[x]

in degrees g ≥ 2∗. Here x has degree 2. Applying this and using the universal

coefficients theorem, we conclude that

H i(Mod(Sg)) → H i(Mod(Sg,1))

is an isomorphism if i = 3 and g ≥ 6, and it is injective if i = 4 and if g ≥ 8.

Since the map H 4(Mod(Sg)) → H 4(Mod(Sg,1)) is injective, the differential

d
2,1
2 is zero. Since the map H 3(Mod(Sg)) → H 3(Mod(Sg,1)) is an isomorphism,

the differential d
0,2
2 is surjective.

Thus the filtration of H 2(Mod(Sg,1)) coming from the E∞ page gives an exact

sequence

0 → H 2(Mod(Sg)) → H 2(Mod(Sg,1))
F
−→ H 0(Mod(Sg);H

2(Sg)) ∼= Z

d
0,2
2

−−→ H 2(Mod(Sg);H
1(Sg)) → 0.

For g ≥ 4,

H 2(Mod(Sg)) ∼= Z[e1] and H 2(Mod(Sg,1)) ∼= Z[e, e1],

and the map Z[e1] → Z[e, e1] is the obvious one e1 
→ e1. We claim that F(e) =

2 − 2g. From this we deduce the desired isomorphism (17). The claim follows

from the fact that the extension that defines e, when restricted to the point-pushing

subgroup π1(Sg) < Mod(Sg,1), gives the extension

1 → Z → π1(USg) → π1(Sg) → 1,

where USg is the unit tangent bundle. See [FM12, Section 5.5.5]. This extension

has Euler class 2 − 2g, so the claim follows.
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