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Mapping Class Groups of Circle Bundles over a Surface
LE1I CHEN & BENA TSHISHIKU

ABSTRACT. In this paper, we study the algebraic structure of map-
ping class group Mod(X) of 3-manifolds X that fiber as a circle
bundle over a surface S — X — Sg. There is an exact sequence
1— H! (Sg) — Mod(X) — Mod(Sg) — 1. We relate this to the Bir-
man exact sequence and determine when this sequence splits.

1. Introduction

For g > 1, let S; denote the closed oriented surface of genus g, and for k € Z, let
X l; denote the closed 3-manifold that fibers

St Xy — S,
as an oriented circle-bundle with Euler number k. By Waldhausen [ ]
(see Section 2), if (g, k) # (1,0), then the mapping class group Mod(Xlg,) =
mo(Homeo™ (X §)) fits into a short exact sequence

1— H'(Sg: Z) > Mod(X§) — Mod(S,) — 1. 1)

This paper is motivated by the following question.
QuEsTION 1.1. For which values of g, & is the extension in (1) split?

The extension obviously splits for k = 0. It also splits when 2g — 2 divides k.
Indeed, the universal S bundle E — B Diff(S,) induces (via the vertical (unit)

tangent bundle) a bundle over B Diff(S,) with fiber US, = X;—Zg whose mon-

odromy Mod(S,) = 71 (B Diff(S,)) — Mod(Xégfz) defines a splitting. The same
construction with the vertical cotangent bundle and tensor powers of these bundles
gives splittings of (1) when 2g — 2 divides k.

When k =2 — 2g, there is, in fact, a natural action of Mod(S,) on US, by
homeomorphisms, which gives a splitting of (1) upon taking isotopy classes. For
g > 2, this action comes from the action of the punctured mapping class group
Mod(Sg,1) on triples of points on the boundary of hyperbolic space H?2. This
construction dates back to the work of Nielsen. See [ , Section 5.5.4, Sec-
tion 8.2.6] and [ , Section 1]. This construction does not appear to generalize
to k divisible by 2 — 2g.

In general, Question reduces to a question about group cohomology. Ex-
tension (1) splits if and only if its Euler class euy € H2(Mod(Sg); Hl(Sg; 7))
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vanishes [ , Section IV.3]. Here the coefficients are twisted via the natural
action of Mod(S,) on H! (Sg; Z). A computation

H>(Mod(Sy): H' (Sg: 7)) 22/ (2g — 2)Z )

for g > 9 was announced by Morita [ ], but the details seem to have never
been published. Morita also gives an interpretation of a generator of (2) as a char-
acteristic class of surface bundles. We recover Morita’s computation and identify
the generator of (2) with the Euler class of the extension

1 — H;(Sg) — Mod(Sg,1)/7" — Mod(S,) — 1, 3)
obtained from the Birman exact sequence
1 — m1(Sg) — Mod(Sg,1) — Mod(Sg) — 1
by taking quotients by the commutator subgroup 7" = [11(Sy), 71 (S,)].

THEOREM 1.2. Fix g > 1, and let eu be the Euler class of extension (3). Then eu
has order 2g — 2 in Hz(Mod(Sg); Hy(Sg; Z)). Furthermore, if g > 8, then eu;
generates this group, that is,

H*(Mod(S,); H'(Sy; 2)) =7,/ (2g — 2)Z.
Our main result relates sequences (1) and (3).

THEOREM A. Fix g > 1 and k € 7Z. Assume that (g, k) # (1,0). There is a map
between the short exact sequences (1) and (3)

1 Hi(S,) Mod(S,1) /7" —= Mod(S,) —— 1

| | |

H'(Sy; Z) —— Mod(X}) —— Mod(S;) —— 1

The homomorphism ké is the Poincaré duality isomorphism § composed with mul-
tiplication by k. In particular, when k = 1, the exact sequences (1) and (3) are
isomorphic.

Theorem A implies that the Euler classes of extensions (1) satisfy euy = k eu; for
fixed g. Combining Theorem A and Theorem 1.2, we obtain the following answer
to Question

COROLLARY 1.3. For g > 2 and k € Z, extension (1) splits if and only if k is
divisible by 2g — 2. For g = 1, the extension splits for each k.

When a splitting exists, the different possible splittings (up to the action of
H l(Sg;Z) on Mod(Xiﬁ) by conjugation) are parameterized by elements of
H'(Mod(Sg); H'(Se;2)) [ , Ch. IV, Prop. 2.3]. This group vanishes for
g>1] , Prop. 4.1], so the splitting, when it exists, is unique.
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Connection to Nielsen Realization

Instead of Question 1.1, we can ask whether there is a splitting of the composite
surjection

Homeo(X}§) — Mod(X§) — Mod(S,).

This is an instance of a Nielsen realization problem. Of course, if Mod(X ’;) —
Mod(Sg) does not split, then neither does Homeo(X ’éﬁ) — Mod(Sg), and Corol-
lary gives examples of this. Since Mod(S,) has a natural action on USy, the
surjection Homeo(X’gi) — Mod(Sg) does split for k = £(2g — 2). This is some-
what surprising since mapping class groups are rarely realized as groups of sur-
face homeomorphisms [ ; ; ]. We wonder whether this splitting
is unique, or if a splitting exists for other values k divisible by 2g — 2 (for example,
k=0).In[ ], we give examples that show that Homeo(Xg) — Mod(Sy)
does not always split when k is divisible by 2g — 2.

Previous Work and Proof Techniques

Waldhausen [ , Section 7] proved that the group mo(Homeo(X iﬁ)) is isomor-
phic to the outer automorphism group Out(m; (X g)). From this the short exact
sequence (1) can be derived from work of Conner and Raymond [ ] and the
Dehn—Nielsen—Baer theorem; alternatively, see McCullough [ , Section 3].
The Dehn—Nielsen—Baer theorem also plays a central role in Theorem A, since it
allows us to translate back and forth between topology and group theory. There is
a mix of both in the proof of Theorem A in Section 3.

To prove Theorem A, we consider a version of Question where X g and S,
are punctured. For the punctured manifolds, similarly to (1), there is a short exact
sequence

1— H'(S;;2) — Mod(x;l) — Mod(Sg.1) — 1,
and we construct a splitting
o :Mod(Sg 1) = Mod(X% ).

See Corollary 3.1. A key part of our proof of Theorem A is to determine the
image of the point-pushing subgroup 71 (Sg) < Mod(S,, 1) under o. For this, we
relate three natural surface group representations 71 (S;) — Mod(X ’g" ;) that ap-
pear in the following diagram, where the diagonal map is point pushing on X*;
see Proposition 3.4 for a precise statement.

point-pushing on Sy

71'1(59) Mod(Sg,l)
)
Hi(S4;Z) transvections MOd(XéC )
To deduce Corollary , we use a spectral sequence argument to prove

that eu; generates a subgroup of Hz(Mod(Sg);H ](Sg;Z)) isomorphic to
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Z/2g — 2)Z. A different spectral sequence computation proves that eu; gen-
erates H 2(Mod(Sg); H! (Sg; Z)) when g is large. These computations use several
known computations, including work of Morita [ 1.

Section outline

In Section 2, we collect the results we need about the manifolds XX and their
mapping class groups, including Waldhausen’s work. Theorem A is proved in
Section 3; this section is the core of the paper. In Section 4, we do two spectral
sequence computations to prove Theorem

2. Circle Bundles over Surfaces

Here we review some results about circle bundles over surfaces that we will need
in future sections.

2.1. Classification
By an oriented circle bundle we mean a fiber bundle
s' > E—B

with structure group Homeo™ (S!), the group of orientation-preserving homeo-
morphisms of S ! The inclusion of the rotation group SO(2) in Homeo™ (S Disa
homotopy equivalence, so circle bundles are in bijection with rank-2 real vector
bundles. The classifying space B SO(2) is homotopy equivalent to CP°°, which
is an Eilenberg—Maclane space K (Z, 2). Thus each circle bundle is uniquely de-
termined up to isomorphism by its Euler class eu(E) € H 2(B; 7), which is the
primary obstruction to a section of the bundle.

When B = S, is a closed oriented surface, Hz(Sg; 7Z) = Z, we can speak of
the Euler number. We use X § to denote the total space of the circle bundle

1 k
S —>Xg—>Sg

with Euler number k. For example, for the unit tangent bundle, eu(USy) =2 —2¢g

(the Euler characteristic), so US, = Xéz,_zg. We also note that X]g‘ and X;k are
homeomorphic 3-manifolds, since the sign of the Euler number of a circle bundle
over S, depends on the choice of orientation on S.

2.2. Fundamental Group w1 (X ]éf) and Its Automorphisms
From the long exact sequence of a fibration we have an exact sequence
1> Z— m(Xlg‘,) — m(Sg) = 1.
The group 71 (X ’g‘) has a presentation

m1(XX) = (A1, By, ..., Ag, Bg.z| z central, [A1, Bi]---[Ag, Bl =25).  (4)
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Using this, we find that (z) = 7Z is the center of m; (X’g‘) as long as (g, k) # (1, 0).
When g > 2, this follows from the fact that the group 71(S,) has trivial center;
the case g = 1 can be treated directly.

Given this computation of the center, any automorphism of 7 (X ’é‘,) induces an
automorphism of (z) = Z and descends to an automorphism of 71 (S,). The latter
gives a homomorphism

Aut( (X§)) — Aut(mi (Sy)),

which restricts to an isomorphism between the inner automorphism groups

Inn(my (X];)) = m1(Sg) = Inn(mr1(Sy)) (®)]
and hence descends to a homomorphism
Out(m (X’;)) — Out(71(Sg)). ©6)
Orientations

It will be convenient to denote by

Autt (711 (Sg)) < Aut(1(S,))
the subgroup that acts trivially on H,(1(S,); Z) = Z (the “orientation-preserv-
ing” subgroup). Similarly, we denote by

Aut™ (1 (X})) < Aut(r; (X))
the subgroup of automorphisms that project into Aut™(m (S¢)) and that act
trivially on the center (z) = Z. In particular, Aut* (m (X’g‘)) has index 4 in
Aut(1 (X5)).

These orientation-preserving subgroups contain the (respective) inner auto-
morphism groups, and we denote the quotients Outt (71 (X ]g‘)) and Out™ (( (S ¢)).

2.3. Mapping Class Group Mod(Xlg)

Fix g > 1 and k € Z, and assume that (g, k) # (1,0). Let Homeo"’(Xif) de-
note the group of homeomorphisms whose image in Out(mw; (X ’gf)) is contained
in Out™ (71 (S,)). Define

Mod(X}) := mo(Homeo™ (X})).
Waldhausen [ , Cor. 7.5] proved that the natural homomorphism
mo(Homeo(X})) — Out(rr; (X§))
is an isomorphism. Then by the definitions this homomorphism restricts to an

isomorphism Mod(Xf,) = Out*(m(X{g‘)). Waldhausen also proved that o x

Homeo(Xg) is isomorphic to the group of fiber-preserving homeomorphisms
modulo homeomorphisms that are isotopic to the identity through fiber-preserving
isotopies; see [ , Rmk. following Cor. 7.5]. Consequently, there is a homo-
morphism

Mod(X%) — Mod(S,). (7
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Altogether, we have the following commutative diagram relating the maps (6)
and (7):
Mod(XF)
| |- ®
Out™ (mi (XF)) Out™ (m1(Sy))

Mod(Sy)

The right vertical map is an isomorphism by the Dehn—Nielsen—Baer theorem
[ , Thm. 8.1]. Furthermore, by Conner and Raymond [ , Thm. 8] there
is a short exact sequence

1 — Hom(rr (Sg). Z) — Out™ (1 (X§)) — Out™ (1 (S,)) — 1. ©

This establishes the short exact sequence (1) in the introduction. We will give a
concrete derivation of this exact sequence in Corollary

3. Relating Mod(X ’éf) to the Birman Exact Sequence

In this section, we prove Theorem A. To construct the map of short exact se-
quences in Theorem A, we first define a homomorphism Mod (S, 1) — Mod(X if),
and then we identify its kernel with the commutator subgroup of the point-pushing
subgroup 71 (Sg) < Mod(Sg,1). We do this is Sections and 3.2, respectively.

3.1. A Homomorphism ¥ : Mod(S, 1) — Mod(X/g)

Fix a basepoint * € Sg, and set S; 1 = S, \ {*}. By the Dehn—Nielsen—Baer theo-
rem, Mod(S, 1) is isomorphic to Out*(Fgg), where Fy, is the free group of rank
2g, and Out*(F2g) < Out(F2y) is the subgroup that preserves the conjugacy class
corresponding to the free homotopy class of the loop around the puncture in Sy ;.
We construct W as a composition

W : Mod(S,,1) = Out* (Fag) > Aut™ (1 (X%)) — Out™ (1 (X%))

= Mod(X?}). (10)

To define o, fix a generating set a1, B1,...,a,, By for Fo, such that ¢ =
]_[f':1 [«;, Bi] represents the conjugacy class of the loop around the puncture. Let
L: Fag — mi(Xy) (11)

be the homomorphlsm defined by «; = A; and B; — B;. Given f € Out*(Fa,),
fix an automorphism f: Fyg — F»g that represents f, and assume that fey=c
(this can always be achieved by composing any lift with an inner automorphism
of F»,). Next, we define o (f) on generators of m(X’éf) by

o(NHA)=if(@),  o(HBI=fB), o(NHD=z (12
To show that o (f) extends to an endomorphism of 7y (X ’gf), we check that the
relation [Ay, B1]---[Ag, Bg]l = Z*is preserved under o (f):

[[lo(H A, o (B =] [lef @) F Bl =tc) =2 = (£)(h).
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The second equahty uses the fact that f(c) = ¢. The map o (f) is independent of
the choice of f because different choices of f differ by conjugation by powers
of ¢ (because the centralizer of ¢ in Fyg is the cyclic subgroup (c))" and ¢(c) = Z*
is central in (Xiﬁ). The homomorphism o (f) : my (Xiﬁ) — M (X’éf) is an auto-
morphism and belongs to Aut™ (rr; (X ’g)) by definition. Furthermore, f + o (f)
is a homomorphism, which is easy to check using the observation that if w = (w’,
then o (f)(w) = ¢ f (w').

Composing o with Aut™ — Out™ gives the desired homomorphism W. As a
corollary of this construction, we have proved the following:

COROLLARY 3.1. Fix g > 1 and k € Z, and assume that (g, k) # (1, 0). The nat-
ural map ® : Aut™ (m (Xif,)) — Autt(mg (Sg)) (see Section 2.2) fits into an exact
sequence

1 — Hom((S,), Z) — Aut™ (m (X’g)) 2 Autt(r (Se) — 1, (13)

and this exact sequence splits.

Proof. First, we compute the kernel of ®. Using the presentation for 71 (X ’éf) in
(4), if f € ker(®), then

f(A)=A;Z" and f(B;)=B;z"
for some my,ny,...,mg,ng € Z. The map a; — m;, b; — n; extends to a homo-
morphism t(f) : 71(S,) — Z. It is elementary to check that the map ker(®) —
Hom(7r1(Sg), Z) defined by f + t(f) is an isomorphism.

The homomorphism o defined above shows that & is a split surjection. Note
that Mod(Sg, *) = Mod(S, \ {*}) (basepoint vs. puncture), so by the Dehn-
Nielsen—Baer theorem there is an isomorphism Aut™ (771 (S, ) = Out*(Fgg), and
we use this isomorphism to view o as a splitting of . O

REMARK 3.2. We call elements of ker(®) = H'! (Sg; Z) transvections.

REMARK 3.3. The homomorphism W can be constructed topologically as follows.
Fix a regular neighborhood D of the puncture on S 1 (so D is a once-punctured
disk). Given a mapping class f € Mod(S, 1), choose a representing homeomor-
phism §. Without loss of generality, we can assume that f is the identity on D.
The bundle X iﬁ — S, can be trivialized over S \ D (because the classifying space
B SO(2) is simply connected). Fixing a trivialization (S \ D) x S' over S\ D,
we lift § to the product homeomorphism § x idgi. This homeomorphism is the
identity on the boundary 3(S \ D) x S', so we can extend by the identity to ob-
tain a homeomorphism % of X iﬁ. The map sending f € Mod(Sg,1) to the isotopy

class [}] € Mod(X ’g,) is the topological version of the homomorphism W. Note that
the isotopy class [f] is only well-defined up to Dehn twists about d D, which is a

INote that the centralizer is isomorphic to Z and contains (c). It would only be bigger if ¢ = ul
for some u € Fzg and i > 2. By contradiction, if ¢ = u' for i > 2, then u is cyclically reduced
because c is. This implies that u is a subword of ¢ = [[[«;, B;], which is absurd.
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loop around the puncture. This is analogous to the ambiguity encountered in the
definition of o, which ultimately does not affect the definition of W.

Corollary 3.1 and Equation (5) combine to give the short exact sequence of outer
automorphism groups (9).

Warning

The splitting of the short exact sequence (13) does not give a splitting of the
short exact sequence (9). Indeed, we will show that the latter sequence does not
always split (Corollary 1.3). The subtlety comes from the fact that the inner au-
tomorphism group Inn(m; (X]éf)) = m1(S,) does not coincide with the image of
m1(Sg) = Inn(m1(Sg)) < Aut(srq(Sg)) under the section o. Proposition below
describes the precise relationship.

3.2. Kernel of ¥ : Mod(Sg,1) — Mod(Xg)

Observe that the kernel of W is contained in the point-pushing subgroup
m1(Sg) <Mod(Sg,1). This is because the composition of W with the natural map
Mod(X’éf) — Mod(S) is the natural map Mod(S, 1) — Mod(S,), whose kernel
is the point-pushing subgroup. Next, we determine the image of the point-pushing
subgroup under the section o used to define W. Here we find a simple relationship
between three surface group representations:

”l(Sg)

o | inner auts of m1(Sy), lifted

m1(Sy) Aut* (”1(X§)) m1(Sy)
inner auts of w1 (X, ff) transvections
The main results are Proposition and Corollary 3.5. To state Proposi-
tion 3.4, we need the following notation. Let

8:Hi(Sg;Z) — H'(Sy:2)
be the Poincaré duality map, given explicitly by y +— (—, y), where
(=, =) H1(Sg;Z) x H((Sg; Z) — Z
is the algebraic intersection form. We use § to denote the composition
§: Hi(Sg; Z) > H' (g3 Z) = Aut™ (g (x5)).

This map is given explicitly by $ () (w) = w - z[P17) where w is the image of
w under m(ng) — 1(Sg), and [w] € H{(Sg; Z) is the corresponding homology
class.

Fix a basepoint » € S, 1. Recall that we have fixed a standard generating set
{ai, Bi} of w1 (Sg,1,%) = Fog sothat ¢ := ]_[i[oe,-, Bilis aloop around the puncture
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* of Sg 1 =S, \ {*}. Define
IT: 71 (Sg,1,%) — m1(Sg, *) (14)

by y > ¢e.y.g, where ¢ is a fixed arc from * to .

PROPOSITION 3.4. Fixt € m1(Sg, %), and let Push(t) € Mod(S,, 1) = Out*(Fa) be
the point-pushing mapping class. If t € 71 (Sq,1, %) is any lift of t (i.e. TI(f) = 1),
then

o (Push(t))=Cjo S([kt)), (15)

where Cy denotes conjugation by x, and the maps  : Frg — m(X’;) and o :
Out*(Fpg) — Autt (1 (Xlgf)) are defined in (11) and (12).

As a sanity check, observe that C,; does not depend on the choice of lift 7 because
any two lifts differ by an element of the normal closure of ¢ in 71 (S, 1, *) = F2g,
and conjugation by any such element is trivial on my (X ’g‘).

Proof of Proposition 3.4. 1t suffices to prove the lemma for ¢ € (S, *) that are
represented by a nonseparating simple closed curve. To see this, first note that
m1(Sg, *) is generated by these curves. Furthermore, the groups Inn(my (X iﬁ)) and

Hl(Sg; 7Z) commute in Aut(m(X’;)), o)

[Cii, 0 8([11D)] 0 [C, 0 8([121)] = C iy © 8([11 % 12]).

Assume now that 7 € 71 (Sg, *) is represented by a nonseparating simple closed
curve. After an isotopy, we can assume that ¢ contains ¢ as a subarc. Choose f as
pictured in Figure

We want to show that

o (Push(r))(w) = [C,; 0 8 ([kt])](w)

for each w € m; (X]éf). Since this is obviously true for w = z, it suffices to show
this equality for w = t(s) for s € 71(Sg,1, *); furthermore, it suffices to show the
equality on any generating set of 71 (Sg 1, *). We use the (infinite) generating set
consisting of curves of one of the forms pictured in Figure 2 (the intersection of
these curves with the annulus around ¢ has one component).

Note that Push(¢) fixes the basepoint x, so we can compute the action of
Push(zr) on s € m1(S,,1,%x). We compute the action of Push(z) on the elements

+

——

t
* € *

Figure 1 A small regular neighborhood of a loop representing ¢ €
71 (Sg, *) and a lift 7 € 71 (Sg 1, %).
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\ /

S1 Szv

s

~J
-

A
N

Figure 2 The group 71 (Sg 1, %) is generated by f and loops of the
form pictured above.

Push(t)(s1) Push(t)(s2)
L L\

—— A& Push(t)(s5)

] rr

Figure 3 Action of point-pushing about ¢ on the loops in Figure 2.
The curve c is fixed up to isotopy (up to isotopy, Push(z) is the identity
on a neighborhood of ¢ that contains c).

in Figure 2 as follows. See Figure 3 for an illustration.

1

s> (O Vsifc™! and sy > ()" 'sof  and

' and ¢ ec.

53 > c(f)_IS3fc_
This proves, for example, that
o (Push(1))(ts1) = ()~ (s1) (1D)z™F = [C,7 0 S(Lkt DI (es1).

(To check this computation, it is helpful to recall that o (f)(w) = f (w")
when w = 1w’ and that ¢(c) = zF. Furthermore, since ([s11, [t]) = —1, we have

Sk (es1) = (es)z ™)
We conclude similarly for the generators s7, s3. This proves the desired formula
for o (Push(?)). U

The following corollary is an immediate consequence of Proposition
COROLLARY 3.5. Consider the composition

W Autt (1 (Sg)) > Aut® (1 (X5)) > Out™ (1 (X)). (16)
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The restriction of W to m1(Sg) = Inn(r1(Sg)) factors as follows:

conjugation

m1(Sg) Aut™ (m(Sg))
ké o abl l v
HY(S4;7Z) Out™ (m1(X}))

transvections

Here ab denotes the abelianization map m1(Sg, *) — H1(Sg; Z).

3.3. Proof of Theorem

Using the isomorphisms between mapping class groups and automorphism
groups, the desired diagram is equivalent to the following one:

1 —m(S,)*P Aut™ (m1(Sy)) /7" — Out™ (m1(9;)) — 1

.

1 — Hom(m(Sy), Z) Out™ (WI(X;“))

Out™ (m1(Sy)) — 1

The map W in (16) descends to the middle vertical map and restricts to the
left vertical map by Corollary 3.5. The fact that o is a section (Corollary 3.1) im-
plies that the middle vertical map descends to the identity map on Out™ (771 (S o).
When k = 1, the middle vertical map is an isomorphism by the five lemma. This
concludes the proof of Theorem

4. Spectral Sequence Computation

In this section, we prove Theorem |.2. This is achieved by two different compu-
tations using the Lyndon—Hochschild—Serre (LHS) spectral sequence. Recall that
this spectral sequence takes input a short exact sequence of groups 1 - N —
G — Q — 1 and a G-module A, has E, page

EY? = HP(Q: HI(N: A)),

and converges to H PT4(G; A). For both computations, we use the Birman exact
sequence, but with different choices of the module A.

Notational note. To simplify the notation, we use the convention that cohomol-
ogy groups have Z coefficients unless otherwise specified.

4.1. Euler Class Computation

Our goal in this section is to prove the following proposition, which implies Corol-
lary

PropoOSITION 4.1. Fix g > 1. Let euy be the Euler class of extension (1). Then
euy = keuy, and euy has order 2g — 2 in H2(M0d(Sg); H! (Sg)).
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Proof. The relation euy = k eu; already follows from Theorem A. Indeed, choos-
ing a set-theoretic section for the sequence in the top row of the diagram in Theo-
rem A gives a cocycle representative for euy that is k times the cocycle represen-
tative for ej.

Now we prove that eu; generates a cyclic subgroup isomorphic to Z/(2g —2)7Z
in H 2(Mod(Sg); H! (Sg)). Our method is to apply the LHS spectral sequence to
the Birman exact sequence with the module A = H 1 (Sg). Here

EYY = HP(Mod(Sy); H1(S,; A)).
A portion of the associated 5-term exact sequence is as follows:

0— H'(Mod(S,); H'(S,)) — H'(Mod(Sg.1); H'(S))

A Hom(H, (Sg), H'(Sg))ModSe)
0,1

4, 2 gl
——> H (MOd(Sg),H (Sg)).

This sequence has been studied by Morita. Morita [ , Prop. 4.1] com-
putes that the first term vanishes, so the map A is injective. The group
Hom(H(Sg), H 1 (Sg))MOd(Sg) is isomorphic to Z and generated the Poincaré du-
ality isomorphism §. Morita [ , proof of Prop. 6.4] shows that the image
of A is (2g — 2)Z. Consequently, the differential dg I descends to an injection
Z/2g —2)Z —~ Hz(Mod(Sg); H(S,)).

It remains to show that dg ‘Isendsa generator to eu . The differential dg 1is the
transgression; see, for example, [ , Prop. 1.6.6, Thm. 2.4.3]. By standard
knowledge of the transgression applied to our situation we find that dg ‘I sends a
generator to 8, (eu), where eu is the Euler class of extension (3), and

8« 1 H*(Mod(Sg); Hi(Sg)) — H*(Mod(S,); H'(S,))

is the isomorphism induced by the Poincaré duality isomorphism &. (For this prop-
erty of the transgression, see [ , Section 1.6, Exercise 1-2]. Whereas that
reference is mainly concerned with finite or profinite groups, the analysis of the
transgression contained given there applies more generally.) Finally, we observe
that 8, (eu) = eu; by Theorem A. O

4.2. Computation of H*>(Mod(Sg); H'(S,))

Running the LHS spectral sequence with the trivial module A = Z, we prove that
if g > 8§, then

H*(Mod(S,); H'(Sy)) =7/ (2g — 2)Z. (17)
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Combining this with Proposition 4.1 proves Theorem |.2. The relevant portion of
the spectral sequence appears below.

2 | HO(Mod(S,); H%(S,)) &2

1 0 0 H?*(Mod(S,); H'(Sy)) d%,l

0 7 0 H%(Mod(S,)) H3(Mod(Sy))” H*(Mod(S,))
0 1 2 3 4

The computations in the first column are easy. In the second column, Morita

[ , Prop. 4.1] computed H'(Mod(S,); H'(S;)) = 0 for g > 1. The other
computation H 1(Mod(Sg)) = 0 holds for g > 1 because the abelianization of
Mod(Sy) is finite [ , Section 5.1.2-3].

According to [ , Cor. 1.2],

H,(Mod(Sg,1)) = H«(Mod(S,)) ® Z[x]

in degrees g > 2x. Here x has degree 2. Applying this and using the universal
coefficients theorem, we conclude that

H' (Mod(Sg)) — H'(Mod(S;.1))
is an isomorphism if i =3 and g > 6, and it is injective if i =4 and if g > 8.
Since the map H 4(Mod(Sg)) — H 4(Mod(Sg,l)) is injective, the differential
d22’l is zero. Since the map H?> (Mod(Sg)) — H3(Mod(Sg,1)) is an isomorphism,
the differential dg 2is surjective.

Thus the filtration of H 2(Mod(Sg,l)) coming from the E, page gives an exact
sequence

0— H*(Mod(Sg)) — H*(Mod(Sg 1)) LN HO(Mod(S,); H*(Sg)) =7
0,2

d 2 .l
> H*(Mod(S,); H'(S,)) — 0.
For g > 4,

H*(Mod(S,)) = Z[e;] and H?*(Mod(S,.1)) = Zle, e1],

and the map Z[e1] — Zle, e1] is the obvious one e] > ¢1. We claim that F(e) =
2 — 2g. From this we deduce the desired isomorphism (17). The claim follows
from the fact that the extension that defines e, when restricted to the point-pushing
subgroup 71 (Sg) < Mod(S,,1), gives the extension

1 > Z— m(USg) — m1(Sg) — 1,

where US, is the unit tangent bundle. See [ , Section 5.5.5]. This extension
has Euler class 2 — 2g, so the claim follows.
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